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Abstract
In this paper, we consider the (additive integrality) gap of the cutting stock problem
(CSP) and the skiving stock problem (SSP). Formally, the gap is defined as the differ-
ence between the optimal values of the ILP and its LP relaxation. For both, the CSP
and the SSP, this gap is known to be bounded by 2 if, for a given instance, the bin size
is an integer multiple of any item size, hereinafter referred to as the divisible case.
In recent years, some improvements of this upper bound have been proposed. More
precisely, the constants 3/2 and 7/5 have been obtained for the SSP and the CSP,
respectively, the latter of which has never been published in English language. In this
article, we introduce two reduction strategies to significantly restrict the number of
representative instances which have to be dealt with. Based on these observations, we
derive the new and improved upper bound 4/3 for both problems under consideration.

Keywords Cutting and packing · Cutting stock problem · Skiving stock problem ·
Additive integrality gap · Divisible case

Mathematics Subject Classification 90C10 · 90C27

1 General introduction

Let a capacity (bin size) L ∈ N and m ∈ N items, characterized by their sizes li ∈ N

and quantities bi ∈ N, i ∈ I := {1, . . . ,m}, be given. More compactly, we will refer
to these input data by a tuple E = (m, l, L, b) with l := (l1, . . . , lm)� ∈ Nm and
b := (b1, . . . , bm)� ∈ Nm , termed as an instance. In this paper, we consider the
following two combinatorial optimization problems:
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– Cutting stock problem (CSP): Find the minimum number of bins (of capacity L)
that is able to accommodate all items without exceeding the capacity of any bin.

– Skiving stock problem (SSP): Find the maximum number of bins (of capacity L)
that can be filled using the given items, so that the total load of any bin at least
reaches the capacity.

Note that, usually, the CSP and the SSP are introduced from the perspective of cut-
ting large items into smaller ones or combining small objects to obtain larger ones.
However, to overcome the difficulty that the input parameters of an instance would
partly have different meanings for the CSP and the SSP, we decided to choose the
bin packing terminology throughout this article, so that both problems can suitably be
addressed by the same vocabulary.

Obviously, the above optimization tasks are united by an economic component (i.e.,
lower costs in a broad sense) and the idea of sustainability (i.e., restricting the waste
of resources). Nevertheless, from a historical point of view, there is a quite remarkable
difference. While the CSP already started to attract scientific interest several decades
ago, see (Gilmore and Gomory 1961; Kantorovich 1939) for early publications, the
SSP is a rather young field of research which was introduced as a natural counterpart
of the CSP in a specific application (Johnson et al. 1997; Zak 2003). In recent years,
according to the constantly growing importance of the CSP, see particularly (Delorme
et al. 2015, Figure 1), also a larger body of work has been established with respect to
the SSP. For a more detailed introduction to both optimization problems and possible
areas of application, here we recommend the survey articles (Delorme et al. 2016;
Valério de Carvalho 2002) for the CSP, the papers (Martinovic et al. 2020; Martinovic
and Scheithauer 2016a) for the SSP, as well as the book Scheithauer (2018) for a
general overview on cutting and packing. Observe that although the CSP and the SSP
form an obviously related pair of minimization and maximization problems, they are
not dual formulations in the sense of mathematical optimization. Consequently, both
problems have to be considered as theoretically independent. However, it is worth
noting that the CSP and the SSP also appear side-by-side in holistic cutting-and-
skiving scenarios within different fields of industry (Chen et al. 2019; Johnson et al.
1997).

Over time, many different integer linear programming (ILP) formulations have
been presented for the two problems. Starting with assignment models Kantorovich
(1939) or pattern-based approaches (Gilmore and Gomory 1961; Zak 2003), nowa-
days more and more research deals with pseudo-polynomial alternative frameworks
like onecut models (Dyckhoff 1981;Martinovic and Scheithauer 2016a) or flow-based
formulations (Delorme and Iori 2020; Martinovic et al. 2020; Valério de Carvalho
2002), the latter of which actually showed the most competitive performances so far.
Besides structural parameters (like the numbers of variables and constraints or the
sparsity of the system matrices), the strength of the corresponding LP relaxation is
one of the most important indicators for an efficient solution procedure. More pre-
cisely, research has shown, and it became widely accepted, that the quality of the
bound provided by the LP relaxation of an ILP model is a crucial factor in the size of
the branch-and-bound search trees. In the next section, this aspect shall be introduced
more thoroughly.
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2 The additive integrality gap: preliminaries and literature review

Let E = (m, l, L, b) denote an instance (of the CSP or the SSP). To appropriately
quantify the tightness of the LP bound, the additive integrality gap (or briefly gap),
i.e., the difference between the optimal values of the LP relaxation and the original ILP
formulation, is considered in this paper. Inwhat follows, wewill introduce this concept
with respect to the pattern-based formulations presented by Gilmore and Gomory
(1961) and Zak (2003). Due to well known equivalence results, see (Martinovic et al.
2018, Theorem 10) or Delorme and Iori (2020) for the CSP and (Martinovic and
Scheithauer 2016a, Section 3) for theSSP, the gap is independent of the factwhether the
pattern-based model or alternative formulations like flow-based or onecut approaches
are considered.

Definition 1 Let E = (m, l, L, b) denote an instance (of the CSP or the SSP). Then,
any vector a ∈ Zm+ with

– l�a ≤ L is called a cutting pattern,
– l�a ≥ L is called a packing pattern,
– l�a = L is called an exact pattern.

We will refer to the respective sets by P≤ := P≤(E), P≥ := P≥(E), and P= :=
P=(E). Moreover, in order to address a specific pattern, we will use the notation
a j = (a j

1 , . . . , a
j
m)� ∈ Zm+, where j can belong to one of the index sets J≤ := J≤(E),

J≥ := J≥(E), or J= := J=(E).

Based on these definitions, we can formulate the

Pattern-based Model of the CSP

zCSP =
∑

j∈J≤
x j → min

s.t.
∑

j∈J≤
x j · a j

i ≥ bi , i ∈ I ,

x j ∈ Z+, j ∈ J≤,

and the

Pattern-based Model of the SSP

zSSP =
∑

j∈J≥
x j → max

s.t.
∑

j∈J≥
x j · a j

i ≤ bi , i ∈ I ,

x j ∈ Z+, j ∈ J≥,

where x j counts howmany bins are filled according to the (cutting or packing) pattern
a j , while the respective sets of constraints manage that at least (or at most) bi items

123



88 J. Martinovic

of type i ∈ I are used. In both cases, the LP relaxation can be obtained by replacing
the condition x j ∈ Z+ with x j ≥ 0.

Definition 2 Let E = (m, l, L, b) denote an instance (of the CSP or the SSP). Then,
the differences

ΔCSP (E) := zCSP,�(E) − zCSP,�
LP (E),

ΔSSP (E) := zSSP,�
LP (E) − zSSP,�(E),

are called the (additive integrality) gap of E , depending on whether the CSP or SSP
is referred to. Here, the index “LP” stands for the continuous relaxation, whereas the
superscript “�” indicates the optimal value of the respective formulation.

Besides only considering one single instance, frequently the gap of a whole class T
of instances is of interest, too. In these situations, the gap of T shall be understood in
the following way:

ΔCSP (T ) := sup
E∈T

ΔCSP (E) or ΔSSP (T ) := sup
E∈T

ΔSSP (E).

Remark 1 It is worth mentioning that there is no “dominance” between both gaps. By
way of example, consider the instances

– E = (3, (21, 14, 6), 42, (1, 2, 6)) with ΔCSP (E) = 41/42 < 1 and ΔSSP (E) =
43/42 > 1, or

– E = (9, (62, 40, 37, 32, 29, 16, 9, 6, 4), 81, (1, 1, 1, 1, 1, 1, 1, 2, 1)) with
ΔCSP (E) = 1 and ΔSSP (E) = 20/21 < 1, see (Kartak et al. 2015, Table 2).

For the purpose of a clearer presentation, let us briefly mention the patterns used in the
optimal solutions corresponding to the first instance from the above list. For both, the
CSP and the SSP, the optimal LP value results to 85/42, and it is obtained by taking
the exact patterns

1

2
× (2, 0, 0)�,

2

3
× (0, 3, 0)�,

6

7
× (0, 0, 7)�.

As for the integer optimization problems, in the CSP scenario three bins are required to
pack all the items (e.g., by using (1, 1, 1)�, (0, 1, 4)�, and (0, 0, 1)� precisely once),
while in the SSP case it is not possible to pack more than one bin. Hence, there is
no obvious relationship between these two concepts, even though the corresponding
optimization problems possess a similar structure.

As regards the CSP, a significant body of work on the additive integrality gap has been
employed in recent decades. At the beginning of these investigations, it was conjec-
tured that the gap of the CSP can be bounded from above by the constant 1. A first
counterexample to this claim was presented by Marcotte (1986), but it required very
large (thus practically irrelevant) input data. Some years later, Fieldhouse (1990) and
Nica (1994a) constructed further counterexamples of moderate sizes, so that finally
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ΔCSP (E) < 2, the so called modified integer round-up property (MIRUP), was con-
jectured for all instances E , see Scheithauer and Terno (1995).With respect to the SSP,
a similar claim (the modified integer round-down property (MIRDP) ΔSSP (E) < 2)
was introduced by Zak (2003). Even nowadays, it is still an open question whether
these inequalities hold or not. Moreover, there are only very few discrete optimization
problems, whose additive integrality gap is known to be bounded by a small constant
(being independent of the instance); see Nemhauser and Park (1991) for an example
in edge coloring. Due to these reasons, particularly in the last years, research on the
gap (of both, the CSP and the SSP) was further intensified, mainly with respect to

– The construction of instances having large gaps (Caprara et al. 2015; Kartak and
Ripatti 2019; Rietz and Dempe 2008; Rietz and Scheithauer 2002),

– Upper bounds for the maximum gap (Martinovic and Scheithauer 2016b; Rietz
2003b; Rietz et al. 2002),

– The investigation of special cases (Martinovic and Scheithauer 2017, 2018a).

One of the most important special cases for which the MIRUP and the MIRDP could
successfully be proved is given by the divisible case1.

Definition 3 Let E = (m, l, L, b) denote an instance (of the CSP or the SSP). Then,
E belongs to the divisible case (E ∈ DC for short) if L/li ∈ N holds for all i ∈ I .

Note that (in a slight abuse of our initial assumption l ∈ Nm) for the sake of simplicity,
we will always represent an instance E ∈ DC by its normalized form with L = 1 and
li = 1/qi ∈ {1/q : q ∈ N} for all i ∈ I . Besides this convenient structure, one main
advantage of the divisible case is given by the following result about the optimal LP
value:

Lemma 1 Let E = (m, l, 1, b) ∈ DC. Then, we have

zCSP,�
LP (E) = zSSP,�

LP (E) = l�b.

Proof Let l1 = 1/q1 for some q1 ∈ N. Then, the exact pattern a1 := (q1, 0, . . . , 0)� ∈
P=(E) can be used x1 = b1/q1 times in the LP relaxation. In the same manner, we
can proceed with the further items and obtain the objective value

∑
i∈I bi/qi = l�b.

This value is optimal, for the CSP as well as for the SSP, since we did not waste any
material. ��
Hence, only one optimization problem needs to be solved when investigating the gap
of the divisible case.

From a theoretical point of view, the following key results have already been
obtained in the literature:

– We haveΔCSP (E) < 2, see e.g. (Marcotte 1983, Theorem 2.16), andΔSSP (E) <

2, see e.g. (Martinovic and Scheithauer 2016b, Theorem 9), for all E ∈ DC.
– Meanwhile, these upper bounds could be improved toΔCSP (E) < 1.4, see (Rietz
2003b, Satz 1), and ΔSSP (E) < 3/2, see Martinovic and Scheithauer (2017).

1 An exemplary instance is given in the first part of the previous remark.
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Observe that the first result has never been published in English language, and,
unfortunately, its documentation in the German dissertation Rietz (2003b) was not
established thoroughly enough to understand and reconstruct all the arguments.
Hence, we will not make active use of this inequality here.

– The largest known gaps for the divisible case are ΔCSP (E) = 137/132 provided
by E = (3, (44, 33, 12), 132, (2, 3, 6)), see (Scheithauer 2018, Section 4.11.6),
and ΔSSP (E) = 22/21 approximated by an infinite sequence of instances, see
(Martinovic and Scheithauer 2016b, Corollary 16). Actually, it is even conjectured
that 22/21 represents the best possible upper bound for the divisible case of the
SSP, see (Martinovic and Scheithauer 2018b, Conjecture 1).

– Upper bounds for the gap of the divisible case can directly be used to formulate
upper bounds for the gap of arbitrary instances, see (Martinovic and Scheithauer
2019, Theorem 4) for an example. Hence, any improvement that is achieved for
this special case can be transferred to more general instances, too.

Note that, besides being of theoretical importance, the divisible case sometimes also
appears in practically relevant scenarios, especially when there is a high degree of
standardization such as in bin-packing based (multiprocessor) scheduling applications
(Bar-Noy et al. 2007; Coffman et al. 1987).

Given the aforementioned observations, themain contributions of the present article
can be summarized as follows:

– We introduce two new reduction strategies that allow to only focus on a consider-
ably restricted set of (somewhat homogeneous) instances (→ Sect. 3).

– We derive the improved upper boundΔCSP (E) < 4/3 for all E ∈ DC (→ Sect. 4).
– We transfer the previous result to the SSP, i.e., we show ΔSSP (E) < 4/3 for all

E ∈ DC (→ Sect. 5).

On the one hand, we significantly improve the currently best upper bounds for the gap
of the divisible case for both, the CSP and the SSP. Moreover, we highlight the fact
that our underlying theoretical approach is very general, so that a muchmore extensive
analysis of the applied arguments could potentially lead to further improvements of
these upper bounds.

3 Reduction strategies

The following definition will be required to decompose the set of all instances of the
divisible case.

Definition 4 Let δ ∈ N with δ ≥ 2 be given. For any n ∈ N, we define the sets

DC−(n, δ) :=
{
E = (m, l, 1, b) ∈ DC : l�b ∈

[
n − 1, n − 1

δ

]}
,

DC+(n, δ) :=
{
E = (m, l, 1, b) ∈ DC : l�b ∈

[
n + 1

δ
, n + 1

]}
.
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Remark 2 In fact, the integrality of the parameter δ is not required for the definition
here, and also most of the general arguments used during this article could be modified
to become applicable to δ ∈ R, too. However, since integer values are sufficient for our
main contributions and slightly simplify the corresponding formulas and calculations,
we will restrict ourselves to the integrality assumption, but not without pointing out at
the corresponding places, which changes would be necessary in case of real numbers
or which challenges (e.g., in the proofs) would result from that.

For fixed δ ≥ 2, the sets DC−(n, δ), n ∈ N, will be used for the CSP, whereas the
sets DC+(n, δ), n ∈ N, will later be important for the SSP case. Observe that, due to
Lemma 1, the optimal LP value of an instance E ∈ DC−(n, δ) is known to satisfy

zCSP,�
LP (E) ∈

[
n − 1, n − 1

δ

]
,

while E ∈ DC+(n, δ) directly implies

zSSP,�
LP (E) ∈

[
n + 1

δ
, n + 1

]
.

In the following, we first concentrate on the CSP case. To this end, let δ ≥ 2 be fixed
to some appropriate value (which is specified later).

Lemma 2 If for any n ∈ N and any instance Ẽ ∈ DC−(n, δ), the items of Ẽ can be
assigned to (at most) n bins (cutting patterns), then we have

ΔCSP (E) < 1 + 1

δ

for all E ∈ DC.

Proof For any instance E = (m, l, 1, b) ∈ DC there is some n := n(E) ∈ N with
l�b ∈ [n − 1, n):

– If E ∈ DC−(n, δ), then we have zCSP,�(E) ≤ n by hypothesis and, finally,

ΔCSP (E) = zCSP,�(E) − zCSP,�
LP (E) ≤ n − l�b ≤ 1 < 1 + 1

δ
.

– If E /∈ DC−(n, δ), then we first have

zCSP,�
LP (E) = l�b ∈

(
n − 1

δ
, n

)
.

On the other hand, given that MIRUP holds for the entire divisible case, we obtain
zCSP,�(E) ∈ {n, n + 1}. Both observations lead to

ΔCSP (E) = zCSP,�(E) − zCSP,�
LP (E) < (n + 1) −

(
n − 1

δ

)
= 1 + 1

δ
.

��
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Remark 3 In an analogous manner, proving that the items of any instance Ẽ ∈
DC+(n, δ), n ∈ N, can be used to build (at least) n bins (packing patterns) is sufficient
to show

ΔSSP (E) < 1 + 1

δ

for all E ∈ DC. Indeed, let us consider an instance E ∈ DC (of the SSP) with
l�b ∈ (n, n + 1] for some n ∈ N, then one of the two cases appears:

– For E ∈ DC+(n, δ), we have zSSP,�(E) ≥ n by hypothesis, leading to

ΔSSP (E) = zSSP,�
LP (E) − zSSP,�(E) ≤ l�b − n ≤ (n + 1) − n = 1 < 1 + 1

δ
.

– For E /∈ DC+(n, δ), we have zSSP,�(E) ∈ {n− 1, n} by MIRDP (which holds for
the entire divisible case), leading to

ΔSSP (E) = zSSP,�
LP (E) − zSSP,�(E) ≤ l�b − (n − 1) <

(
n + 1

δ

)
− (n − 1) = 1 + 1

δ
.

We refer the reader to Sect. 5 for more details concerning the SSP case.

Obviously, for fixed δ, the sets DC−(n, δ), n ∈ N, contain an infinite number of
instances to be checked with respect to Lemma 2. Moreover, these instances can be
considered to be very heterogeneous since neither the sizes li nor the quantities bi ,
i ∈ I , of an instance E ∈ DC−(n, δ) are restricted. To overcome these issues, we will
introduce two reduction strategies leading to

(1) an upper bound for the quantities bi , i ∈ I ,
(2) a lower bound for the sizes li , i ∈ I ,

so that coping with only finitely many cases (each of which offering some structural
information) will be sufficient to prove the result for all possible instances of the
divisible case.

Before explaining these steps in more details, the following definition is required:

Definition 5 An instance E = (m, l, 1, b) ∈ DC is called irreducible, if two or more
items (not necessarily having different sizes) cannot be used to build a unit fraction.
More formally, an irreducible instance is characterized by

a ≤ b,
∑

i∈I
ai ≥ 2 	⇒ ∀k ∈ N :

∑

i∈I
ai li �= 1

k

for any vector a ∈ Zm+. Otherwise, E is called reducible.
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Remark 4 In particular, any irreducible instance E ∈ DC has the following properties:

– E does not possess any exact pattern a ∈ P=(E) with a ≤ b (in a componentwise
sense), since this would contradict to the above definition for k = 1.

– Let t(q) denote the smallest prime divisor of q ∈ N with q ≥ 2. Then, any item
of size 1/q can appear at most t(q) − 1 times in E . (Otherwise, t(q) items of size
1/q would sum up to a unit fraction).

– In addition to the previous observation, item combinations like 1/3 + 1/6 = 1/2
or 1/4 + 1/12 = 1/3 cannot appear in E .

In order to implement the first reductionmentioned above, we now proceed as follows:

Reduction 1 If zCSP,�(E) ≤ n can be shown for all irreducible instances E ∈
DC−(n, δ), then it also holds for any reducible instance in DC−(n, δ).

Proof Consider a reducible instance E ∈ DC−(n, δ). Then, we can find a subset
(containing at least two items) summing up to some value 1/k, k ∈ N. By replacing
this subset of items with one artificial item of size 1/k, we obtain an instance E ′ with
fewer items but the same optimal LP value. After a finite number of such steps, we end
up with an irreducible instance whose items can be packed into at most n bins (cutting
patterns) by hypothesis. In this feasible packing, any artificial item of size 1/k can be
replaced by the corresponding subset of original items (of E) which was used to build
the item of size 1/k. Consequently, also the items of E can be packed into at most n
bins and we are done. ��

While this method canmainly be used to restrict the quantities bi , i ∈ I , of an instance,
the second reduction strategy is useful to only focus on the “large items” of E .

Definition 6 Let δ ≥ 2, n ∈ N, and an instance E ∈ DC be given. Then, the set of
large items (of E) is defined by

ΛE := ΛE (n, δ) =
{
i ∈ I : li ≥ 1

δ · (n − 1) − 1

}
. (1)

All other items will be termed as small.

Remark 5 When dealing with real-valued parameters δ, the definition has to be
adjusted, so that an item i ∈ I is called large, whenever it satisfies

li ≥ 1

�δ · (n − 1) − 1� .

Then, we obtain the following observation.
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Reduction 2 Let E ∈ DC−(n, δ) be irreducible. If it is possible to assign all large
items of E to at most n bins (cutting patterns), then we have zCSP,�(E) ≤ n, i.e., all
items actually fit into those n bins.2

Proof Let us assume that, after having assigned the large items of E to at most n bins,
it is not possible to put one of the remaining small items, say one item of size l� := li
for some i ∈ I \ ΛE , into the existing bins without exceeding the bin size. This can
only happen, if for any bin Bj , j ∈ {1, . . . , n}, the total loadC( j) (of the items already
allocated to Bj ) is greater than 1 − l�. Consequently, we have

n − 1

δ
≥ l�b ≥

n∑

j=1

C( j) + l� > n · (1 − l�) + l�.

Rearranging the terms leads to

n · (1 − l�) + l� < n − 1

δ
⇐⇒ (n − 1)l�

>
1

δ
⇐⇒ l� >

1

δ · (n − 1)
⇐⇒ l� ≥ 1

δ · (n − 1) − 1
,

where the last equivalence is true since any item size is a unit fraction. However, this
would imply that the item of size l� is a large item which already has been feasibly
assigned to a bin by hypothesis. Hence, we obtain a contradiction and the statement
is proved. ��
This second reduction strategy allows to only consider the large items of an instance
E ∈ DC−(n, δ), where the term large is specified by Condition (1). Moreover, it
implicitly states that, after having distributed these objects, the small items can be
assigned in an arbitrary manner, as long as the capacities are respected. By way of
example, one appropriate strategy to assign the small items is based on the best-fit
decreasing heuristic, as described in (Martinovic and Scheithauer 2017, Algorithm
1). In that algorithm, the (remaining) items are sorted with respect to non-increasing
sizes and processed separately. More precisely, in a given iteration, the currently
largest object is taken and it is assigned to the least filled bin (where ties are broken
by choosing the lowest-indexed bin).

4 The CSP case: improved upper bounds for the gap

As a first contribution, we consider the case δ = 2whichwould lead to the upper bound
ΔCSP (E) < 3/2 for E ∈ DC according to Lemma 2. The reasons for presenting this
auxiliary result are twofold:

2 Actually, zCSP,�(E) ≤ n for an instance E ∈ DC−(n, δ) already shows the optimality of the value n.
However, as the feasibility of the assignment is sufficient for our purposes, we do not specifically stress this
fact.
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– Remember that the proof for the currently best upper bound ΔCSP (E) < 1.4
has never been published in English language, and so it is hardly known in the
scientific community. Hence, instead of using a result that cannot easily be verified,
it is more convenient to briefly prove an upper bound of nearly the same quality.

– Later, we can apply this preliminary observation to appropriately deal with some
subcases appearing in our main theorem.

Theorem 1 Let n ∈ N be given, and let us consider an irreducible instance E ∈
DC−(n, 2). Then, these items can be assigned to at most n bins (cutting patterns). In
particular, we have ΔCSP (E) < 3/2 for all E ∈ DC.
Proof It is sufficient to consider the large items of E , meaning that we focus on those
items with

li ≥ 1

δ · (n − 1) − 1
= 1

2n − 3
.

Since E is irreducible, for any fixed k = 1, . . . , n − 1 we have at most one item of
size 1/(2k) and at most 2k − 2 items of size 1/(2k − 1). Due to

1

2k
+ 2k − 2

2k − 1
= 1 + 1

2k
− 1

2k − 1
= 1 − 1

2k(2k − 1)
< 1,

these items would fit into one bin. Hence, the large items of E can be assigned to at
most n bins3 which concludes the proof thanks to Reduction 2. ��
Note that also this proof is constructive since it contains a precise method to obtain a
feasible solution using n bins.More precisely, the large items of E are grouped accord-
ing to the instructions in the previous proof, whereas the small items can exemplarily
be distributed by the best-fit decreasing heuristic from (Martinovic and Scheithauer
2017, Algorithm 1).

Now we intend to show an analogous result for δ = 3 which would lead to the
improved upper bound ΔCSP (E) < 4/3 for all E ∈ DC. To this end, let us consider
an irreducible instance E = (m, l, 1, b) ∈ DC−(n, 3) for some n ∈ N. Note that for
n = 1 it is obvious that all items can be packed into one bin. Consequently, we can
assume n ≥ 2.Moreover, due to Reduction 2, it is sufficient to consider the large items
of E , meaning that we only have to show that all items with

li ≥ 1

δ · (n − 1) − 1
= 1

3n − 4
,

can be assigned to (at most) n bins (cutting patterns). To prove the latter, Theorem 1
can be applied. More formally, for δ = 3, let TE (n) := TE (n, δ) denote the total size
of all large items appearing in E , i.e.,

TE (n) :=
∑

i∈ΛE (n,δ)

li bi =
∑

i∈ΛE (n,3)

li bi ,

3 Actually, we have shown a bit more, namely that already n − 1 bins are sufficient.
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and let us define

T (n) := max
{
TE (n) : E ∈ DC−(n, 3) is irreducible

}
.

Then it suffices4 to verify that

T (n) ≤ n − 1

2
(2)

holds for all n ≥ 2. To prove this claim, observe that for N := 3n − 4 we have

T (n) ≤
N∑

q=2

t(q) − 1

q
︸ ︷︷ ︸

=:U (N )

−R(N ),

where U (N ) = U (3n − 4) sums up at most t(q) − 1 items of size 1/q for any large
item q = 2, . . . , N = 3n − 4 (again with t(q) representing the smallest prime divisor
of q), and R(N ) ≥ 0 is a correction term that possibly subtracts some item sizes that
we obtain from forbidden item combinations, see Remark 4. Hence, our main strategy
in the following proofs consists of showing

U (3n − 4) − R(3n − 4) ≤ n − 1

2
(3)

for an appropriately defined term R(3n − 4) ≥ 0, which directly implies Condition
(2).

Theorem 2 Condition (2) is true for all n ∈ {2, 3, . . . , 24}.
Proof At first note that the valuesU (3n − 4) given in (3) can be easily computed, see
Table 1.

Based on these data and the choice R(N ) = R(3n − 4) = 0, we can directly see
that (3) is true for n ∈ {2, 3, 4} ∪ {10, 11, . . . , 24}. The remaining cases can be dealt
with separately:

– For n = 5 we have 3n − 4 = 11 andU (11) ≈ 4.5968 > 5− 1/2. However, since
1/6+ 1/3 = 1/2 holds, we can at least subtract R(11) = 1/6 fromU (11), so that
we end up with

T (5) ≤ U (11) − 1

6
≤ 5 − 1

2
.

4 Indeed, then the large items of E either form an instance of DC(n, 2) (if TE (n) ≥ n − 1 holds), so that
they can be assigned to at most n bins by the previous theorem. Or we have TE (n) < n − 1 also meaning
that at most n bins are sufficient to accommodate all large items as a direct consequence of MIRUP for the
divisible case.
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Table 1 Comparison between
U (3n − 4) and n − 1/2 for small
values of n

n N = 3n − 4 U (N ) (3)

2 2 0.5 �
3 5 2.2167 �
4 8 3.3655 �
5 11 4.5968 ×
6 14 5.6746 ×
7 17 6.8116 ×
8 20 7.8646 ×
9 23 8.9618 ×
10 26 9.2019 �
11 29 10.2772 �
12 32 11.3095 �
13 35 11.5138 �
14 38 12.5409 �
15 41 13.5928 �
16 44 14.6161 �
17 47 15.6610 �
18 50 15.8243 �
19 53 16.8638 �
20 56 16.9729 �
21 59 18.0083 �
22 62 19.0247 �
23 65 19.1336 �
24 68 20.1486 �

The last column of the table indicates whether Condition (3) is satisfied
(�) or not (×)

– For n = 6 we have 3n − 4 = 14 andU (14) ≈ 5.6746 > 6− 1/2. However, since
additionally 2/5+1/10 = 1/2 holds, we can at least subtract R(14) = 1/6+1/10
from U (14), so that we end up with

T (6) ≤ U (14) − 1

6
− 1

10
≤ 6 − 1

2
.

– For n = 7 we have 3n − 4 = 17 andU (17) ≈ 6.8116 > 7− 1/2. However, since
additionally 1/4 + 1/12 = 1/3 holds, we obtain

T (7) ≤ U (17) − 1

6
− 1

10
− 1

12
≤ 7 − 1

2
.

– For n = 8 we have 3n − 4 = 20 andU (20) ≈ 7.8646 > 8− 1/2. However, since
additionally 3/7 + 1/14 = 1/2 holds, we obtain

T (8) ≤ U (20) − 1

6
− 1

10
− 1

12
− 1

14
≤ 8 − 1

2
.
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– For n = 9 we have 3n − 4 = 23 andU (23) ≈ 8.9618 > 9− 1/2. However, since
additionally 1/9 + 1/18 = 1/6 holds, we obtain

T (9) ≤ U (23) − 1

6
− 1

10
− 1

12
− 1

14
− 1

18
≤ 9 − 1

2
.

��
Obviously, we cannot compute the true values T (n) for all n ∈ N, and neither the
upper boundU (3n−4) can always be used since, depending on n, we would possibly
have to find more and more forbidden item combinations (which can contribute to
R(3n − 4)). The next lemma helps us to establish an upper bound for T (n) based on
some well known properties of prime numbers.

Lemma 3 For N ≥ 8 (with N = 3n − 4 for some n ∈ N) we have

T (n) <
N

ln(N )
·
(
1 + 1

ln(N )
+ 2

(ln(N ))2
+ 7.59

(ln(N ))3

)
+ 1

30

Proof Let N ≥ 8 be fixed. At first we define the set

Up(N ) := {k ∈ {2, . . . , N } : t(k) = p}

for every prime p ∈ P with 2 ≤ p ≤ N . Note that Up(N ) contains all integers from
{2, . . . , N } having p as the smallest prime divisor. The main calculation of this proof
requires some inequalities which we are going to mention beforehand:

(A) Let N := 3n − 4 ≥ 8 (meaning that we have n ≥ 4) and R(N ) = 1/6, then we
obtain

T (n) ≤ U (N ) − 1

6
=

N∑

q=2

t(q) − 1

q
− 1

6
,

since only one of the items 1/3 and 1/6 can be part of an irreducible instance.
(B) Since every q ∈ Up(N ) has p as the smallest prime divisor, we can state

∑

q∈Up(N )

1
q
p

<

∞∑

k=0

1

pk
= 1

1 − 1
p

= 1 + 1

p − 1

due to the well known convergence properties of the geometric series.
(C) Due to N ≥ 8, we have

∑

p∈P,p≤N

1

p − 1
−

N∑

q=2

1

q
≤ 1 − 1

3
− 1

5
− 1

7
− 1

8
<

1

5
. (4)
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For N = 8 this can be verified by a direct calculation. Beyond that, we can see the
correctness of this inequality in an inductive way. More precisely, the difference
on the left hand side definitely decreases until we reach the next prime number
N = p because the first sum stays constant while the second sum gathers more
and more unit fractions. Hence, for the induction, we only need to focus on
those steps referring to prime numbers. Having arrived at N = p ∈ P, the first
sum receives an additional term 1/(N − 1). However, since (for N ≥ 8) we do
not find two consecutive prime numbers, the second sum at least increased by
1/(N − 1) + 1/N compared to the previous prime number (where we noticed
the last increase of the first sum), meaning that the overall difference stays below
1/5.

(D) Let π(N ) count the number of primes in {2, . . . , N }, then we can state

π(N ) ≤ N

ln(N )
·
(
1 + 1

ln(N )
+ 2

(ln(N ))2
+ 7.59

(ln(N ))3

)

by means of (Dusart 2018, Theorem 5.1). This inequality even holds for N ≥ 2.

Based on these ingredients, we can proceed as follows

T (n)
(A)≤ U (N ) − 1

6
=

N∑

q=2

t(q)

q
−

N∑

q=2

1

q
− 1

6
=

∑

p∈P,p≤N

∑

q∈Up(N )

1
q
p

−
N∑

q=2

1

q
− 1

6

(B)
<

∑

p∈P,p≤N

(
1 + 1

p − 1

)
−

N∑

q=2

1

q
− 1

6

=
∑

p∈P,p≤N

1 +
∑

p∈P,p≤N

1

p − 1
−

N∑

q=2

1

q
− 1

6

(C)
< π(N )+1

5
− 1

6

(D)≤ N

ln(N )
·
(
1 + 1

ln(N )
+ 2

(ln(N ))2
+ 7.59

(ln(N ))3

)
+ 1

30
,

and the proof is complete. ��
Note that N ≥ 8 is required in the proof to obtain the additional term −1/8 when
subtracting the two sums in (4).

For the sake of simplicity, let us use

Ũ (N ) := N

ln(N )
·
(
1 + 1

ln(N )
+ 2

(ln(N ))2
+ 7.59

(ln(N ))3

)
+ 1

30

as an abbreviation. Then it can be verified that:

Theorem 3 Condition (2) is true for all n ≥ 25.

Proof Let n ≥ 25 and N := 3n − 4 be fixed, then we have T (n) < Ũ (N ) ≤ n − 1
2 ,

i.e., Condition (2) is true. For all the details, we refer the interested reader to the
“Appendix”. ��
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Putting Theorems 2 and 3 together, we can conclude that:

Theorem 4 We have ΔCSP (E) < 4/3 for all E ∈ DC.

Consequently, we have found a new and improved upper bound for the gap of divisible
case instances of the CSP.

5 A transfer to the SSP case

Let us now consider an instance E = (m, l, 1, b) ∈ DC of the skiving stock problem.
In analogy to the CSP case we can focus on irreducible instances.

Lemma 4 Let E ∈ DC+(n, 3) be irreducible, then the items of E can be assigned to
n bins (packing patterns).

Proof Let us consider the large items of E , i.e., those items satisfying

li ≥ 1

3n − 4
.

In the proofs of the previous section, we have shown that (for given n and δ = 3) all
large items (of any irreducible instance Ẽ ∈ DC) can always be assigned to n cutting
patterns.Hence, the same is true for the large items contained in the considered instance
E , so that they possess a total size of at most n. Thus, some items of the SSP instance
are still to be distributed. Note that all of them are small items, i.e., they have a size

li ≤ 1

3n − 3
.

Let us assign the remaining items based on the best-fit decreasing heuristic presented
in (Martinovic and Scheithauer 2017, Algorithm 1), meaning that the current item is
allocated to a bin Bj , j ∈ {1, . . . , n}, whose total item loadC( j) is the smallest. Then,
it is clear that a bin Bj with C( j) ≥ 1 will receive an additional item only in those
cases when all bins actually satisfy C( j) ≥ 1.

For the sake of contradiction, let us assume that after having assigned the last item
of E , there is some k ∈ {1, . . . , n} with C(k) < 1, i.e., we did not end up with a
feasible solution for the SSP. This would mean that no item was assigned to a bin
which already represented a packing pattern, i.e., any filled bin satisfies

1 ≤ C( j) < 1 + 1

3n − 3
,

since only small items are distributed in this phase. This would lead to

n + 1

3
≤ l�b =

n∑

j=1

C( j) = C(k) +
∑

j �=k

C( j) < 1 + (n − 1) ·
(
1 + 1

3n − 3

)
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= n + n − 1

3n − 3
= n + 1

3

giving the contradiction. Hence, we have constructed n bins (for the SSP) and the
proof is complete. ��
Given this observation, a direct consequence is the following:

Theorem 5 We have ΔSSP (E) < 4
3 for any E ∈ DC.

Hence, we have also improved the best upper bound for the SSP case to 4/3. Note that
a much more detailed analysis of the arguments applied in the CSP case could also
directly influence the quality of the upper bound of the SSP.

Remark 6 In fact, the strategy from the previous proof ismuchmore general. In theCSP
case, we have not only proved that the large items of a given instance E ∈ DC−(n, δ)

would fit into at most n cutting patterns; the proofs of Theorems 2 and 3 actually show
that all large items of any(!) irreducible instance E ∈ DC can be assigned to at most n
bins5. In the proof of the previous lemma, we used this observation to easily transfer
the upper bound from the CSP to the SSP. Effectively, this means that we can apply
the same proof also for some larger values of δ, as long as we can verify that all large
items i ∈ ΛE (n, δ) of any irreducible instance E ∈ DC can feasibly be assigned to
(at most) n bins without exceeding their capacities.

Finally, it is important to note again that improved upper bounds for the divisible case
directly influence the upper bounds for more general instances. By way of example,
given the results of this section, the constant term in (Martinovic and Scheithauer
2019, Theorem 4) can now be reduced from 3/2 to 4/3 for any arbitrary instance E
of the SSP.

6 Conclusions

In this article, we investigated the additive integrality gap of both, the CSP and the SSP,
from a theoretical point of view. In particular, we focussed on the well known divisible
case, where the bin size is assumed to be an integer multiple of any item size li , i ∈ I .
For such instances we first developed two reduction strategies to considerably limit the
number of instances that has to be considered. More precisely, one of these reductions
aims at restricting the quantities bi , while the second one implements a lower bound
on the item sizes li , i ∈ I . Based on these two observations, we were able to state
the improved upper bound 4/3 for the CSP and the SSP. Moreover, our approach
potentially offers the possibility of further improvements if a much more extensive
analysis is conducted. Another aspect of future research deals with narrowing the
interval between the currently best upper bounds and the largest known gaps provided
by concrete instances, as mentioned at the end of Sect. 2.

5 Indeed, in Theorems 2 and 3 we did not use the fact that the considered instance has a total item size
l�b ∈ [n − 1, n − 1/δ] to prove that there is a feasible assignment to at most n bins.
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A A Proof of Theorem 3

Let n ≥ 25 and N := 3n − 4. Remember that we have to show Ũ (N )≤n − 1
2 or

equivalently

N

ln(N )
·
(
1 + 1

ln(N )
+ 2

(ln(N ))2
+ 7.59

(ln(N ))3

)
+ 1

30
≤ n − 1

2
(5)

– First of all, note that for n = 25 (i.e., N = 71) we have Ũ (71) ≈ 24.0625, so that
(5) holds by a direct calculation.

– Now let us interpret both sides of (5) as a function of n ∈ R, i.e., we set

f1(3n − 4) := 3n − 4

ln(3n − 4)
·

(
1 + 1

ln(3n − 4)
+ 2

(ln(3n − 4))2
+ 7.59

(ln(3n − 4))3

)
+ 1

30
,

f2(n) := n − 1

2
.

Given the previous observation Ũ (71)≤25 − 1
2 , it suffices to show that

d

dn
f1(3n − 4) <

d

dn
f2(n) ⇐⇒ d

dn
f1(3n − 4) < 1 (6)

holds for all n ≥ 25. By a direct calculation, it can be verified that

d

dn
f1(3n − 4) = 3 · (

(ln(3n − 4))4 + 1.59 · ln(3n − 4) − 30.36
)

(ln(3n − 4))5
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holds for any n > 4/3. Consequently, since n ≥ 25 (and thus ln(3n − 4) > 0) is
true, we have

d

dn
f1(3n − 4) < 1

⇐⇒ 3 ·
(
(ln(3n − 4))4 + 1.59 · ln(3n − 4) − 30.36

)
< (ln(3n − 4))5.

Setting x := ln(3n − 4) it remains to show

x5 − 3x4 − 4.77x + 91.08 > 0,

where x > 4 can be assumed due to x ≥ ln(3 · 25 − 4) ≈ 4.26. Now, we end up
with

x5 − 3x4 − 4.77x + 91.08 > x5 − 3x4 − 5x = x(x4 − 3x3 − 5) > 0 ⇐⇒ x4 − 3x3 > 5

(7)

because x > 4 is true. But the final condition in (7) is satisfied since we can state

x4 − 3x3 = x3(x − 3) > 43 · (4 − 3) > 5

for x > 4. This finally shows

d

dn
f1(3n − 4) < 1

for all n ≥ 25, so that the left hand side of (5) grows more slowly than the right
hand side. Together with Ũ (71) ≤ 25 − 1

2 this shows (5) for any n ≥ 25 and we
are done.

Remark 7 Note that this proof strategy cannot simply be overtaken for the case of
real-valued parameters δ since we would be confronted with the non-differentiable
term �δ(n − 1) − 1�, so that the chain rule cannot be applied to f1.
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