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Abstract
Quantum Bridge Analytics relates generally to methods and systems for hybrid
classical-quantum computing, and more particularly is devoted to developing tools
for bridging classical and quantum computing to gain the benefits of their alliance in
the present and enable enhanced practical application of quantum computing in the
future. This is the first of a two-part tutorial that surveys key elements of Quantum
Bridge Analytics and its applications, with an emphasis on supplementing models
with numerical illustrations. In Part 1 (the present paper) we focus on the Quadratic
Unconstrained Binary Optimization model which is presently the most widely applied
optimization model in the quantum computing area, and which unifies a rich variety
of combinatorial optimization problems.

Keywords Quadratic Unconstrained Binary Optimization (QUBO) · Quantum
computing · Quantum Bridge Analytics · Combinatorial optimization

Mathematics Subject Classification 90C27 · 81P68 · 11E16

1 Introduction

The field of Combinatorial Optimization (CO) is one of themost important areas in the
field of optimization,with practical applications found in every industry, includingboth
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the private and public sectors. It is also one of themost active research areas pursued by
the research communities of Operations Research, Computer Science and Analytics
as they work to design and test new methods for solving real world CO problems.

Generally, these problems are concernedwithmakingwise choices in settingswhere
a large number of yes/no decisions must be made and each set of decisions yields a
corresponding objective function value—like a cost or profit value. Finding good
solutions in these settings is extremely difficult. The traditional approach is for the
analyst to develop a solution algorithm that is tailored to the mathematical structure
of the problem at hand. While this approach has produced good results in certain
problem settings, it has the disadvantage that the diversity of applications arising in
practice requires the creation of a diversity of solution techniques, each with limited
application outside their original intended use.

In recent years, we have discovered that a mathematical formulation known as
QUBO, an acronym for a Quadratic Unconstrained Binary Optimization problem,
can embrace an exceptional variety of important CO problems found in industry, sci-
ence and government, as documented in studies such as Kochenberger et al. (2014)
and Anthony et al. (2017). Through special reformulation techniques that are easy to
apply, the power of QUBO solvers can be used to efficiently solve many important
problems once they are put into theQUBO framework. TheQUBOmodel has emerged
as an underpinning of the quantum computing area known as quantum annealing and
Fujitsu’s digital annealing, and has become a subject of study in neuromorphic com-
puting. Through these connections, QUBO models lie at the heart of experimentation
carried out with quantum computers developed by D-Wave Systems and neuromor-
phic computers developed by IBM. The consequences of these new discoveries linking
QUBO models to quantum computing are being explored in initiatives by organiza-
tions such as IBM, Google, Amazon, Microsoft, D-Wave and Lockheed Martin in the
commercial realm and Los Alamos National Laboratory, Oak Ridge National Labo-
ratory, Lawrence Livermore National Laboratory and NASA’s Ames Research Center
in the public sector. Computational experience is being amassed by both the classical
and the quantum computing communities that highlights not only the potential of the
QUBO model but also its effectiveness as an alternative to traditional modeling and
solution methodologies.

The connection with Quantum Bridge Analytics derives from the gains to be
achieved by building on these developments to bridge the gap between classi-
cal and quantum computational methods and technologies. As emphasized in the
2019 Consensus Study Report titled Quantum Computing: Progress and Prospects,
by the National Academies of Sciences, Engineering and Medicine (https://www.
nap.edu/catalog/25196/quantum-computing-progress-and-prospects) quantum com-
puting will remain in its infancy for perhaps another decade, and in the interim
“formulating an R&D program with the aim of developing commercial applications
for near-term quantum computing is critical to the health of the field.” The report
further notes that such a program will rest on developing “hybrid classical-quantum
techniques.” Innovations that underlie and enable these hybrid classical-quantum tech-
niques are the focus of Quantum Bridge Analytics and draw heavily on the QUBO
model for their inspiration.
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The significance of the ability of the QUBO model to encompass many models in
combinatorial optimization is enhanced by the fact that theQUBOmodel can be shown
to be equivalent to the Ising model that plays a prominent role in physics, as high-
lighted in the paper by Lucas (2014). Consequently, the broad range of optimization
problems solved effectively by state-of-the-art QUBO solution methods are joined by
an important domain of problems arising in physics applications.

The materials provided in the sections that follow illustrate the process of reformu-
lating important optimization problems as QUBO models through a series of explicit
examples. Collectively these examples highlight the application breadth of the QUBO
model. We disclose the unexpected advantages of modeling a wide range of problems
in a form that differs from the linear models classically adopted in the optimization
community.We show howmany different types of constraining relationships arising in
practice can be embodiedwithin the “unconstrained”QUBO formulation in a very nat-
ural manner using penalty functions, yielding exact model representations in contrast
to the approximate representations produced by customary uses of penalty functions.
Each step of generating such models is illustrated in detail by simple numerical exam-
ples, to highlight the convenience of using QUBO models in numerous settings. As
part of this, we provide techniques that can be used to recast a variety of problems that
may not seem at first to fit within an unconstrained binary optimization structure into
an equivalent QUBO model. We also describe recent innovations for solving QUBO
models that offer a fertile avenue for integrating classical and quantum computing and
for applying these models in machine learning.

As pointed out in Kochenberger and Glover (2006), the QUBOmodel encompasses
the following important optimization problems:

• Number Partitioning Problems
• Maximum Cut Problems
• Minimum Vertex Covering Problems
• Set Packing Problems
• SAT problems
• Set Partitioning Problems
• Graph Coloring Problems
• General 0/1 Programming Problems
• Quadratic Assignment Problems
• Quadratic Knapsack Problems
• Multiple Knapsack Problems
• Capital Budgeting Problems
• Task Allocation Problems (distributed computer systems)
• Maximum Diversity Problems
• P-Median Problems
• Asymmetric Assignment Problems
• Symmetric Assignment Problems
• Side Constrained Assignment Problems
• Constraint Satisfaction Problems (CSPs)
• Discrete Tomography Problems
• Warehouse Location Problems
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• Maximum Clique Problems
• Maximum Independent Set Problems
• Linear Ordering Problems
• Clique Partitioning Problems

Details of such applications are elaboratedmore fully inKochenberger et al. (2014).
In the following developmentwe describe approaches thatmake it possible tomodel

these and many other types of problems in the QUBO framework and provide infor-
mation about recent developments linking QUBO to machine learning and quantum
computing.

1.1 Basic QUBO problem formulation

We now give a formal definition of the QUBOmodel whose significance will be made
clearer by numerical examples that give a sense of the diverse array of practical QUBO
applications.

Definition The QUBO model is expressed by the optimization problem:

QUBO: Minimize y = xT Qx

where x is a vector of binary decision variables and Q is a square matrix of constants.

It is common to assume that the Q matrix is symmetric or in upper triangular form,
which can be achieved without loss of generality simply as follows:

Symmetric form: For all i and j except i = j , replace qi j by (qi j + q ji )/2 .
Upper triangular form: For all i and j with j > i , replace qi j by qi j + q ji . Then

replace all q ji for j < i by 0. (If the matrix is already symmetric, this just doubles the
qi j values above the main diagonal, and then sets all values below the main diagonal
to 0).

In the examples given in the following sections, we will work with the full, sym-
metric Q matrix rather than adopting the “upper triangular form.

Comment on the formal classification of QUBO models and their solution QUBO
models belong to a class of problems known to be NP-hard. The practical meaning
of this is that exact solvers designed to find “optimal” solutions (like the commercial
CPLEX and Gurobi solvers) will most likely be unsuccessful except for very small
problem instances. Using such methods, realistic sized problems can run for days
and even weeks without producing high quality solutions. Fortunately, as we disclose
in the sections that follow, impressive successes are being achieved by using modern
metaheuristicmethods that are designed to find high quality but not necessarily optimal
solutions in amodest amount of computer time. These approaches are opening valuable
possibilities for joining classical and quantum computing.

123



Quantum Bridge Analytics I: a tutorial on formulating and… 339

2 Illustrative examples and definitions

Before presenting common practical applications, we first give examples and defini-
tions to lay the groundwork to see better how these applications can be cast in QUBO
form.

To begin, consider the optimization problem

Minimize y = −5x1 − 3x2 − 8x3 − 6x4 + 4x1x2 + 8x1x3 + 2x2x3 + 10x3x4

where the variables, x j , are binary. We can make several observations:

1. The function to be minimized is a quadratic function in binary variables with a
linear part −5x1 −3x2 −8x3 −6x4 and a quadratic part 4x1x2 +8x1x3 +2x2x3 +
10x3x4.

2. Since binary variables satisfy x j = x2j , the linear part can be written as

−5x21 − 3x22 − 8x23 − 6x24 .

3. Then we can re-write the model in the following matrix form:

Minimize y = (x1, x2, x3, x4)

⎡
⎢⎢⎣

−5 2 4 0
2 −3 1 0
4 1 −8 5
0 0 5 −6

⎤
⎥⎥⎦

⎡
⎢⎢⎣
x1
x2
x3
x4

⎤
⎥⎥⎦

4. In turn, this can be written in the matrix notation introduced in Sect. 1 as

QUBO: Minimize y = xT Qx

where x is a column vector of binary variables. Note that the coefficients of the
original linear terms appear on the main diagonal of the Q matrix. In this case Q
is symmetric about the main diagonal without needing to modify the coefficients
by the approach shown in Sect. 1.

5. Other than the 0/1 restrictions on the decision variables, QUBO is an unconstrained
model with all problem data being contained in the Q matrix. These characteris-
tics make the QUBO model particularly attractive as a modeling framework for
combinatorial optimization problems, offering a novel alternative to classically
constrained representations.

6. The solution to the model of point 3 above is: y = −11, x1 = x4 = 1, x2 = x3 =
0.

Remarks

• As already noted, the stipulation that Q is symmetric about the main diagonal does
not limit the generality of the model.
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• Likewise, casting the QUBOmodel as a minimization problem does not limit gen-
erality. A well-known observation permits a maximization problem to be solved
by minimizing the negative of its objective function (and the negative of the min-
imized objective function value gives the optimum value for the maximization
problem).

• As previously emphasized, a variety of optimization problems can naturally be
formulated and solved as an instance of the QUBOmodel. In addition, many other
problems that don’t appear to be related to QUBO problems can be re-formulated
as a QUBO model. We illustrate this special feature of the QUBO model in the
sections that follow.

3 Natural QUBO formulations

As mentioned earlier, several important problems fall naturally into the QUBO class.
To illustrate such cases, we provide two examples of important applications whose
formulations naturally take the form of a QUBO model.

3.1 The number partitioning problem

The number partitioning problem has numerous applications cited in the bibliography.
A common version of this problem involves partitioning a set of numbers into two
subsets such that the subset sums are as close to each other as possible. We model this
problem as a QUBO instance as follows:

Consider a set of numbers S = {s1, s2, s3, . . . , sm}. Let x j = 1 if s j is assigned to
subset 1; 0 otherwise. Then the sum for subset 1 is given by sum1 = ∑m

j=1 s j x j and
the sum for subset 2 is given by sum2 = ∑m

j=1 s j −
∑m

j=1 s j x j . The difference in the
sums is then

diff =
m∑
j=1

s j − 2
m∑
j=1

s j x j = c − 2
m∑
j=1

s j x j .

We approach the goal of minimizing this difference by minimizing

diff2 =
⎛
⎝c − 2

m∑
j=1

s j x j

⎞
⎠

2

= c2 + 4xT Qx

where

qi j = si (si − c), qi j = q ji = si s j
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Dropping the additive and multiplicative constants, our QUBO optimization problem
becomes:

QUBO: Minimize y = xT Qx

where the Q matrix is constructed with qi j and qii as defined above.

Numerical example Consider the set of eight numbers

S = {25, 7, 13, 31, 42, 17, 21, 10}

By the development above, we have c2 = 27, 556 and the equivalent QUBO problem
is min y = xT Qx with

Q=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 3525 175 325 775 1050 425 525 250
175 − 1113 91 217 294 119 147 70
325 91 − 1989 403 546 221 273 130
775 217 403 − 4185 1302 527 651 310
1050 294 546 1302 − 5208 714 882 420
425 119 221 527 714 − 2533 357 170
525 147 273 651 882 357 − 3045 210
250 70 130 310 420 170 210 − 1560

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Solving QUBO gives x = (0, 0, 0, 1, 1, 0, 0, 1) for which y = − 6889, yield-
ing perfectly matched sums which equal 83. The development employed here can be
expanded to address other forms of the number partitioning problem, including prob-
lems where the numbers must be partitioned into three or more subsets, as discussed
in Aliadee et al. (2005).

3.2 TheMax-Cut problem

The Max Cut problem is one of the most famous problems in combinatorial optimiza-
tion. Given an undirected graph G(V,E) with a vertex set V and an edge set E, the Max
Cut problem seeks to partition V into two sets such that the number of edges between
the two sets (considered to be severed by the cut), is a large as possible.

We can model this problem by introducing binary variables satisfying x j = 1 if
vertex j is in one set and x j = 0 if it is in the other set. Viewing a cut as severing
edges joining two sets, to leave endpoints of the edges in different vertex sets, the
quantity xi + x j − 2xi x j identifies whether the edge (i, j) is in the cut. That is, if
xi + x j − 2xi x j is equal to 1, then exactly one of xi and x j equals 1, which implies
edge (i, j) is in the cut. Otherwise xi + x j − 2xi x j is equal to zero and the edge is
not in the cut.

Thus, the problem of maximizing the number of edges in the cut can be formulated
as

Maximize y =
∑

(i, j)∈E
(xi + x j − 2xi x j )
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Fig. 1 Max cut example

which is an instance of

QUBO: Max y = xT Qx

The linear terms determine the elements on themain diagonal of Q and the quadratic
terms determine the off-diagonal elements. See Boros and Hammer (1991, 2002) and
Kochenberger et al. (2013) for further discussions of QUBO and theMaxCut problem.

Numerical example To illustrate the Max Cut problem, consider the following undi-
rected graph with 5 vertices and 6 edges (Fig. 1).

Explicitly taking into account all edges in the graphgives the following formulation:

Maximize y = (x1 + x2 − 2x1x2) + (x1 + x3 − 2x1x3) + (x2 + x4 − 2x2x4)

+ (x3 + x4 − 2x3x4) + (x3 + x5 − 2x3x5) + (x4 + x5 − 2x4x5)

or

max y = 2x1 + 2x2 + 3x3 + 3x4 + 2x5 − 2x1x2 − 2x1x3 − 2x2x4
−2x3x4 − 2x3x5 − 2x4x5

This takes the desired form

QUBO: Max y = xT Qx

by writing the symmetric Q matrix as:

Q =

⎡
⎢⎢⎢⎢⎣

2 −1 −1 0 0
−1 2 0 −1 0
−1 0 3 −1 −1
0 −1 −1 3 −1
0 0 −1 −1 2

⎤
⎥⎥⎥⎥⎦
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Table 1 A few Known
constraint/penalty pairs

Classical constraint Equivalent penalty

x + y ≤ 1 P(xy)

x + y ≥ 1 P(1 − x − y + xy)

x + y = 1 P(1 − x − y + 2xy)

x ≤ y P(x − xy)

x1 + x2 + x3 ≤ 1 P(x1x2 + x1x3 + x2x3)

x = y P(x + y − 2xy)

Solving this QUBO model gives x = (0, 1, 1, 0, 0) . Hence vertices 2 and 3 are in
one set and vertices 1, 4, and 5 are in the other, with a maximum cut value of 5.

In the above examples, the problem characteristics led directly to an optimization
problem in QUBO form. As previously remarked, many other problems require “re-
casting” to create the desired QUBO form. We introduce a widely-used form of such
re-casting in the next section.

4 Creating QUBOmodels using known penalties

The “natural form” of a QUBOmodel illustrated thus far contains no constraints other
than those requiring the variables to be binary. However, by far the largest number
of problems of interest include additional constraints that must be satisfied as the
optimizer searches for good solutions.

Many of these constrained models can be effectively re-formulated as a QUBO
model by introducing quadratic penalties into the objective function as an alternative
to explicitly imposing constraints in the classical sense. The penalties introduced are
chosen so that the influence of the original constraints on the solution process can
alternatively be achieved by the natural functioning of the optimizer as it looks for
solutions that avoid incurring the penalties. That is, the penalties are formulated so
that they equal zero for feasible solutions and equal some positive penalty amount for
infeasible solutions. For a minimization problem, these penalties are added to create
an augmented objective function to be minimized. If the penalty terms can be driven to
zero, the augmented objective function becomes the original function to beminimized.

For certain types of constraints, quadratic penalties useful for creating QUBOmod-
els are known in advance and readily available to be used in transforming a given
constrained problem into a QUBO model. Examples of such penalties for some com-
monly encountered constraints are given in Table 1. Note that in the table, all variables
are intended to be binary and the parameter P is a positive, scalar penalty value. This
value must be chosen sufficiently large to assure the penalty term is indeed equivalent
to the classical constraint, but in practice an acceptable value for P is usually easy to
specify. We discuss this matter more thoroughly later.

To illustrate themain idea, consider a traditionally constrained problemof the form:

Min y = f (x)
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s.t. x1 + x2 ≤ 1

where x1 and x2 are binary variables. Note that this constraint allows either or neither x
variable to be chosen. It explicitly precludes both from being chosen (i.e., both cannot
be set to 1).

From the 1st row in the table above, we see that a quadratic penalty that corresponds
to our constraint is

P(x1x2)

where P is a positive scalar. For P chosen sufficiently large, the unconstrained problem

Minimize y = f (x) + P(x1x2)

has the same optimal solution as the original constrained problem. If f (x) is linear
or quadratic, then this unconstrained model will be in the form of a QUBO model. In
our present example, any optimizer trying to minimize y will tend to avoid solutions
having both x1 and x2 equal to 1, else a large positive amount will be added to the
objective function. That is, the objective function incurs a penalty corresponding to
infeasible solutions. This simple penalty has been used effectively by Pardalos and
Xue (1999) in the context of the maximum clique and related problems.

4.1 Theminimum vertex cover (MVC) problem

In Sect. 3.2 we saw how the QUBOmodel could be used to represent the famous Max
Cut problem. Here we consider another well-known optimization problem on graphs
called the minimum vertex cover problem. Given an undirected graph with a vertex set
V and an edge set E , a vertex cover is a subset of the vertices (nodes) such that each
edge in the graph is incident to at least one vertex in the subset. The minimum vertex
cover problem seeks to find a cover with a minimum number of vertices in the subset.

A standard optimization model for MVC can be formulated as follows. Let x j = 1
if vertex j is in the cover (i.e., in the subset) and x j = 0 otherwise. Then the standard
constrained, linear 0/1 optimization model for this problem is:

Minimize
∑
j∈V

x j

s.t. xi + x j ≥ 1 for all (i, j) ∈ E

Note that the constraints ensure that at least one of the endpoints of each edge will be
in the cover and the objective function seeks to find the cover using the least number
of vertices. Note also that we have a constraint for each edge in the graph, meaning
that even for modest sized graphs we can have many constraints. Each constraint will
alternatively be imposed by adding a penalty to the objective function in the equivalent
QUBO model.
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Fig. 2 Minimum vertex cover
example

Referring to Table 1, we see that the constraints in the standard MVC model can
be represented by a penalty of the form P(1 − x − y + xy). Thus, an unconstrained
alternative to the constrained model for MVC is

Minimize
∑
j∈V

x j + P

⎛
⎝ ∑

(i, j)∈E
(1 − xi − x j + xi x j )

⎞
⎠

where P again represents a positive scalar penalty. In turn, we can write this as mini-
mize xT Qx plus a constant term. Dropping the additive constant, which has no impact
on the optimization, we have an optimization problem in the form of a QUBO model.

Remark Acommon extension of this problem allows aweightw j to be associatedwith
each vertex j . Following the development above, the QUBO model for the Weighted
Vertex Cover problem is given by:

Minimize
∑
j∈V

w j x j + P

⎛
⎝ ∑

(i, j)∈E
(1 − xi − x j + xi x j )

⎞
⎠

Numerical example Consider the graph of Sect. 3.2 again but this time we want to
determine a minimum vertex cover (Fig. 2).

For this graph with n = 6 edges and m = 5 nodes, the model becomes:

Minimize y

= x1 + x2 + x3 + x4 + x5 + P(1 − x1 − x2 + x1x2) + P(1 − x1 − x3 + x1x3)

+ P(1 − x2 − x4 + x2x4) + P(1 − x3 − x4 + x3x4) + P(1 − x3 − x5 + x3x5)

+ P(1 − x4 − x5 + x4x5)
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which can be written as

Minimize y = (1 − 2P)x1+(1 − 2P)x2 + (1 − 2P)x3 + (1 − 2P)x4+(1 − 2P)x5
+ Px1x2 + Px1x3 + Px2x4 + Px3x4 + Px3x5 + Px4x5 + 6P

Arbitrarily choosing P to be equal to 8 and dropping the additive constant (6P = 48)
gives our QUBO model

QUBO: min xT Qx

with the Q matrix given by

Q =

⎡
⎢⎢⎢⎢⎣

−15 4 4 0 0
4 −15 0 4 0
4 0 −23 4 4
0 4 4 −23 4
0 0 4 4 −15

⎤
⎥⎥⎥⎥⎦

Note that we went from a constrained model with 5 variables and 6 constraints to
an unconstrained QUBO model in the same 5 variables. Solving this QUBO model
gives: xT Qx = −45 at x = (0, 1, 1, 0, 1) for which y = 48 − 45 = 3, meaning that
a minimum cover is given by nodes 2, 3, and 5. It is easy to check that at this solution,
all the penalty functions are equal to 0.

Comment on the scalar penalty PAs we have indicated, the reformulation process for
many problems requires the introduction of a scalar penalty P for which a numerical
valuemust be given.These penalties are not unique,meaning thatmanydifferent values
can be successfully employed. For a particular problem, a workable value is typically
set based on domain knowledge and on what needs to be accomplished. Often, we use
the same penalty for all constraints but there is nothing wrong with having different
penalties for different constraints if there is a good reason to differentially treat various
constraints. If a constraint must absolutely be satisfied, i.e., it is a “hard”constraint,
then P must be large enough to preclude a violation. Some constraints, however, are
“soft”, meaning that it is desirable to satisfy them but slight violations can be tolerated.
For such cases, a more moderate penalty value will suffice.

A penalty value that is too large can impede the solution process as the penalty
terms overwhelm the original objective function information, making it difficult to
distinguish the quality of one solution from another. On the other hand, a penalty
value that is too small jeopardizes the search for feasible solutions. Generally, there
is a “Goldilocks region” of considerable size that contains penalty values that work
well. A little preliminary thought about the model can yield a ballpark estimate of
the original objective function value. Taking P to be some percentage (75–150%) of
this estimate is often a good place to start. In the end, solutions generated can always
be checked for feasibility, leading to changes in penalties and further rounds of the
solution process as needed to zero in on an acceptable solution.
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4.2 The set packing problem

The set packing problem is a well-known optimization problem in binary variables
with a general (traditional) formulation given by

Max
n∑
j=1

w j x j

s.t.
n∑
j=1

ai j x j ≤ 1 for i = 1, . . . ,m

where the ai j are 0/1 coefficients, the w j are weights and the x j variables are binary.
Using the penalties of the form shown in the first and fifth rows of Table 1, we can
easily construct a quadratic penalty corresponding to each of the constraints in the
traditional model. Then by subtracting the penalties from the objective function, we
have an unconstrained representation of the problem in the form of a QUBO model.

Numerical example Consider the following small example of a set packing problem:

Max x1 + x2 + x3 + x4
s.t. x1 + x3 + x4 ≤ 1

s.t. x1 + x2 ≤ 1

Here all the objective function coefficients, the w j values, are equal to 1. Using the
penalties mentioned above, the equivalent unconstrained problem is:

Max y = x1 + x2 + x3 + x4 − Px1x3 − Px1x4 − Px3x4 − Px1x2

This has our customary QUBO form

QUBO: max xT Qx

where the Q matrix , with P arbitrarily chosen to be 6, is given by

Q =

⎡
⎢⎢⎣

1 −3 −3 −3
−3 1 0 0
−3 0 1 −3
−3 0 −3 1

⎤
⎥⎥⎦

Solving the QUBO model gives y = 2 at x = (0, 1, 1, 0). Note that at this solution,
all four penalty terms are equal to zero.

Remark Set packing problems with thousands of variables and constraints have been
efficiently reformulated and solved in Alidaee et al. (2008) using the QUBO reformu-
lation illustrated in this example.
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4.3 TheMax 2-Sat problem

Satisfiability problems, in their various guises, have applications in many different
settings. Often these problems are represented in terms of clauses, in conjunctive
normal form, consisting of several true/false literals. The challenge is to determine the
literals so that as many clauses as possible are satisfied.

For our optimization approach, we will represent the literals as 0/1 values and
formulate models that can be re-cast into the QUBO framework and solved with
QUBO solvers. To illustrate the approach, we consider the category of satisfiability
problems known as Max 2-Sat problems.

For Max 2-Sat, each clause consists of two literals and a clause is satisfied if either
or both literals are true. There are three possible types of clauses for this problem,
each with a traditional constraint that must be satisfied if the clause is to be true. In
turn, each of these three constraints has a known quadratic penalty given in Table 1.

The three clause types along with their traditional constraints and associated penal-
ties are:

1. No negations Example (xi ∨ x j )
Traditional constraint: xi + x j ≥ 1
Quadratic Penalty: (1 − xi − x j + xi x j ).

2. One negation Example (xi ∨ x̄ j )
Traditional constraint: xi + x̄ j ≥ 1
Quadratic Penalty: (x j − xi x j ).

3. Two negations Example (x̄i ∨ x̄ j )
Traditional constraint: x̄i + x̄ j ≥ 1
Quadratic Penalty: (xi x j ).

(Note that x j = 1 or 0 denoting whether literal j is true or false. The notation x̄ j , the
complement of x j , is equal to (1 − x j ).)

For each clause type, if the traditional constraint is satisfied, the corresponding
penalty is equal to zero, while if the traditional constraint is not satisfied, the quadratic
penalty is equal to 1. Given this one-to-one correspondence, we can approach the
problem of maximizing the number of clauses satisfied by equivalently minimizing
the number of clauses not satisfied. This perspective, as we will see, gives us a QUBO
model.

For a given Max 2-Sat instance then, we can add the quadratic penalties associated
with the problem clauses to get a composite penalty function which we want to min-
imize. Since the penalties are all quadratic, this penalty function takes the form of a
QUBO model, Min y = xT Qx . Moreover, if y turns out to be equal to zero when
minimizing the QUBO model, this means we have a solution that satisfies all of the
clauses; if y turns out to equal 5, that means we have a solution that satisfies all but 5
of the clauses; and so forth.

This modeling and solution procedure is illustrated by the following example with
4 variables and 12 clauses in Table 2 where the penalties are determined by the clause
type.
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Table 2 Clauses and quadratic
penalties

Clause # Clause Quadratic penalty

1 x1 ∨ x2 1 − x1 − x2 + x1x2
2 x1 ∨ x̄2 x2 − x1x2
3 x̄1 ∨ x2 x1 − x1x2
4 x̄1 ∨ x̄2 x1x2
5 x̄1 ∨ x3 x1 − x1x3
6 x̄1 ∨ x̄3 x1x3
7 x2 ∨ x̄3 x3 − x2x3
8 x2 ∨ x4 1 − x2 − x4 + x2x4
9 x̄2 ∨ x3 x3 − x2x3
10 x̄2 ∨ x̄3 x2x3
11 x3 ∨ x4 1 − x3 − x4 + x3x4
12 x̄3 ∨ x̄4 x3x4

Adding the individual clause penalties together gives our QUBO model

Min y = 3 + x1 − 2x4 − x2x3 + x2x4 + 2x3x4

or,

Min y = 3 + xT Qx

where the Q matrix is given by

Q =

⎡
⎢⎢⎣
1 0 0 0
0 0 −1/2 1/2
0 −1/2 0 1
0 1/2 1 −2

⎤
⎥⎥⎦

Solving QUBO gives: y = 3 − 2 = 1 at x1 = x2 = x3 = 0, x4 = 1, meaning that all
clauses but one are satisfied.

Remark The QUBO approach illustrated above has been successfully used in Kochen-
berger et al. (2005) to solve Max 2-sat problems with hundreds of variables and
thousands of clauses. An interesting feature of this approach for solving Max 2-sat
problems is that the size of the resulting QUBO model to be solved is independent
of the number of clauses in the problem and is determined only by the number of
variables at hand. Thus, a Max 2-Sat problem with 200 variables and 30,000 clauses
can be modeled and solved as a QUBO model with just 200 variables.
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5 Creating QUBOmodels: a general purpose approach

In this section, we illustrate how to construct an appropriate QUBO model in cases
where a QUBO formulation doesn’t arise naturally (as we saw in Sect. 3) or where
useable penalties are not known in advance (as we saw in Sect. 4). It turns out that
for these more general cases, we can always “discover” useable penalties by adopting
the procedure outlined below. For this purpose, consider the general 0/1 optimization
problem of the form:

Min y = xTCx

s.t. Ax = b, x binary

This model accommodates both quadratic and linear objective functions since the
linear case results when C is a diagonal matrix (observing that x2j = x j when x j is a
0-1 variable). Under the assumption that A and b have integer components, problems
with inequality constraints can always be put in this form by including slack variables
and then representing the slack variables by a binary expansion. (For example, this
would introduce a slack variable s to convert the inequality 4x1 + 5x2 − x3 ≤ 6 into
4x1 + 5x2 − x3 + s = 6 , and since clearly s ≤ 7 (in case x3 = 1), s could be
represented by the binary expansion s1 + 2s2 + 4x3 where s1, s2 and s3 are additional
binary variables. If it is additionally known that not both x1 and x2 can be 0, then s
can be at most 3 and can be represented by the expansion s1 + 2s2. A fuller treatment
of slack variables is given subsequently.) These constrained quadratic optimization
models are converted into equivalent unconstrained QUBO models by converting
the constraints Ax = b (representing slack variables as x variables) into quadratic
penalties to be added to the objective function, following the same re-casting as we
illustrated in Sect. 4.

Specifically, for a positive scalar P , we add a quadratic penalty P(Ax−b)T (Ax−b)
to the objective function to get

y = xTCx + P(Ax − b)T (Ax − b)

= xTCx + xT Dx + c

= xT Qx + c

where thematrix D and the additive constant c result directly from thematrix multipli-
cation indicated. Dropping the additive constant, the equivalent unconstrained version
of the constrained problem becomes

QUBO: min xT Qx, x binary

Remarks

1. A suitable choice of the penalty scalar P , as we commented earlier, can always be
chosen so that the optimal solution to QUBO is the optimal solution to the original
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constrained problem. Solutions obtained can always be checked for feasibility to
confirm whether or not appropriate penalty choices have been made.

2. For ease of reference, the preceding procedure that transforms the general problem
into an equivalent QUBOmodel will be called Transformation #1. The mechanics
of Transformation #1 can be employed whenever we need to convert linear con-
straints of the form Ax = b into usable quadratic penalties in our efforts to re-cast
a given problem with equality constraints into the QUBO form. Boros and Ham-
mer (2002) give a discussion of this approach which is the basis for establishing
the generality of QUBO.
For realistic applications, a program will need to be written implementing Trans-
formation #1 and producing the Q matrix needed for the QUBO model. Any
convenient language, like C++, Python, Matlab, etc., can be used for this purpose.
For small problems, or for preliminary tests preceding large-scale applications, we
can usually proceed manually as we will do in these notes.

3. Note that the additive constant, c, does not impact the optimization and can be
ignored during the optimization process. Once the QUBO model has been solved,
the constant c can be used to recover the original objective function value. Alter-
natively, the original objective function value can always be determined by using
the optimal x j found when QUBO is solved.

Transformation #1 is the “go to” approach in caseswhere appropriate quadratic penalty
functions are not known in advance. In general, it represents an approach that can be
adopted for any problem. Due to this generality, Transformation #1 has proven to be
an important modeling tool in many problem settings.

Before moving on to applications in this section, we want to single out another
constraint/penalty pair for special recognition that we worked with before in Sect. 4:

(xi + x j ≤ 1) → P(xi x j )

Constraints of this formappear inmany important applications.Due to their importance
and frequency of use, we refer to this special case as Transformation #2.We shall have
occasion to use this as well as Transformation #1 later in this section.

5.1 Set partitioning

The set partitioning problem (SPP) has to do with partitioning a set of items into
subsets so that each item appears in exactly one subset and the cost of the subsets
chosen is minimized. This problem appears in many settings including the airline and
other industries and is traditionally formulated in binary variables as

Min
n∑
j=1

c j x j

s.t.
n∑
j=1

ai j x j = 1 for i = 1, . . . ,m
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where x j denotes whether or not subset j is chosen, c j is the cost of subset j , and
the ai j coefficients are 0 or 1 denoting whether or not variable x j explicitly appears
in constraint i . Note that his model has the form of the general model given at the
beginning of this section where, in this case, the objective function matrix C is a
diagonal matrix with all off-diagonal elements equal to zero and the diagonal elements
are given by the original linear objective function coefficients. Thus, we can re-cast
the model into a QUBO model directly by using Transformation #1. We illustrate this
with the following example.

Numerical example Consider a set partitioning problem

Min y = 3x1 + 2x2 + x3 + x4 + 3x5 + 2x6
s.t. x1 + x3 + x6 = 1

x2 + x3 + x5 + x6 = 1

x3 + x4 + x5 = 1

x1 + x2 + x4 + x6 = 1

and x binary. Normally, Transformation #1 would be embodied in a supporting com-
puter routine and employed to re-cast this problem into an equivalent instance of a
QUBO model. For this small example, however, we can proceed manually as fol-
lows: The conversion to an equivalent QUBO model via Transformation #1 involves
forming quadratic penalties and adding them to the original objective function. In
general, the quadratic penalties to be added (for a minimization problem) are given
by P

∑
i
(
∑n

j=1 ai j xi j − bi )2 where the outer summation is taken over all constraints

in the system Ax = b.
For our example we have

Minimize y = 3x1 + 2x2 + x3 + x4 + 3x5 + 2x6 + P(x1 + x3 + x6 − 1)2

+ P(x2 + x3 + x5 + x6 − 1)2 + P(x3 + x4 + x5 − 1)2

+ P(x1 + x2 + x4 + x6 − 1)2

Arbitrarily taking P to be 10, and recalling that x2j = x j since our variables are binary,
this becomes

Minimize y = − 17x21 − 18x22 − 29x23 − 19x24 − 17x25 − 28x26 + 20x1x2
+ 20x1x3 + 20x1x4 + 40x1x6
+ 20x2x3 + 20x2x4 + 20x2x5 + 40x2x6 + 20x3x4 + 40x3x5
+ 40x3x6 + 20x4x5
+ 20x4x6 + 20x5x6 + 40

Dropping the additive constant 40, we then have our QUBO model

Min xT Qx, x binary
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where the Q matrix is

Q =

⎡
⎢⎢⎢⎢⎢⎢⎣

−17 10 10 10 0 20
10 −18 10 10 10 20
10 10 −29 10 20 20
10 10 10 −19 10 10
0 10 20 10 −17 10
20 20 20 10 10 −28

⎤
⎥⎥⎥⎥⎥⎥⎦

Solving this QUBO formulation gives an optimal solution x1 = x5 = 1 (with all
other variables equal to 0) to yield y = 6.

Remarks

1. The QUBO approach to solving set partitioning problems has been successfully
applied in Lewis et al. (2008) to solve large instances with thousands of variables
and hundreds of constraints.

2. The special nature of the set partitioning model allows an alternative to Transfor-
mation #1 for constructing the QUBO model. Let k j denote the number of 1’s in
the j th column of the constraint matrix A and let ri j denote the number of times
variables i and j appear in the same constraint. Then the diagonal elements of
Q are given by qii = ci − Pki and the off-diagonal elements of Q are given
by qi j = q ji = Pri j . The additive constant is given by m ∗ P . These relation-
ships make it easy to formulate the QUBO model for any set partitioning problem
without having to go through the explicit algebra of Transformation #1.

3. The set partitioning problem may be viewed as a form of clustering problem and
is elaborated further in Sect. 6.

5.2 Graph coloring

Inmany applications, Transformation #1 and Transformation #2 can be used in concert
to produce an equivalent QUBO model, as demonstrated next in the context of graph
coloring. Vertex coloring problems seek to assign colors to nodes of a graph in such
a way that adjacent nodes receive different colors. The K -coloring problem attempts
to find such a coloring using exactly K colors. A wide range of applications, ranging
from frequency assignment problems to printed circuit board design problems, can be
represented by the K -coloring model.

These problems can be modeled as satisfiability problems as follows:
Let xi j = 1 if node i is assigned color j , and 0 otherwise.
Since each node must be colored, we have the constraints

K∑
j=1

xi j = 1, i = 1, . . . , n

123



354 F. Glover et al.

Fig. 3 Graph coloring example

where n is the number of nodes in the graph. A feasible coloring, in which adjacent
nodes are assigned different colors, is assured by imposing the constraints

xip + x jp ≤ 1, p = 1, . . . , K

for all adjacent nodes (i, j) in the graph.
This problem, then, can be re-cast in the form of a QUBO model by using Trans-

formation #1 on the node assignment constraints and using Transformation #2 on the
adjacency constraints. This problem does not have an objective function in its original
formulation, meaning our focus is on finding a feasible coloring using the K colors
allowed. As a result, any positive value for the penalty P will do. (The resultingQUBO
model of course has an objective function given by xT Qx where Q is determined by
the foregoing re-formulation.)

Numerical example Consider the problem of finding a feasible coloring of the fol-
lowing graph using K = 3 colors (Fig. 3).

Given the discussion above, we see that the goal is to find a solution to the system:

xi1 + xi2 + xi3 = 1 i = 1, 5

xip + x jp ≤ 1 p = 1, 3

(for all adjacent nodes i and j)

In this traditional form, the model has 15 variables and 26 constraints. As suggested
above, to recast this problem into theQUBOform,we can useTransformation #1 on the
node assignment equations and Transformation #2 on adjacency inequalities. Oneway
to proceed here is to start with a 15-by-15 Q matrix where initially all the elements are
equal to zero and then re-define appropriate elements based on the penalties obtained
from Transformations #1 and #2. To clarify the approach, we will take these two
sources of penalties one at a time. For ease of notation and to be consistent with earlier
applications, we will first re-number the variables using a single subscript, from 1 to
15, as follows:

(x11, x12, x13, x21, x22, x23, x31, . . . , x52, x53)

= (x1, x2, x3, x4, x5, x6, x7, . . . , x14, x15)
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As we develop our QUBO model, we will use the variables with a single sub-
script.

First, we shall consider the node assignment equations and the penalties we get
from Transformation #1. Taking these equations in turn we have

P(x1+x2+x3−1)2 which becomes P(−x1−x2−x3+2x1x2+2x1x3+2x2x3)+P .
P(x4+x5+x6−1)2 which becomes P(−x4−x5−x6+2x4x5+2x4x6+2x5x6)+P .
P(x7+x8+x9−1)2 which becomes P(−x7−x8−x9+2x7x8+2x7x9+2x8x9)+P .
P(x10+x11+x12−1)2 which becomes P(−x10−x11−x12+2x10x11+2x10x12+

2x11x12) + P .
P(x13+x14+x15−1)2 which becomes P(−x13−x14−x15+2x13x14+2x13x15+

2x14x15) + P .
Taking P to equal 4 and inserting these penalties in the “developing” Q matrix

gives the partially completed Q matrix along with an additive constant of 5P .

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0
4 − 4 4 0 0 0 0 0 0 0 0 0 0 0 0
4 4 − 4 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 − 4 4 4 0 0 0 0 0 0 0 0 0
0 0 0 4 − 4 4 0 0 0 0 0 0 0 0 0
0 0 0 4 4 − 4 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 − 4 4 4 0 0 0 0 0 0
0 0 0 0 0 0 4 − 4 4 0 0 0 0 0 0
0 0 0 0 0 0 4 4 − 4 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 − 4 4 4 0 0 0
0 0 0 0 0 0 0 0 0 4 − 4 4 0 0 0
0 0 0 0 0 0 0 0 0 4 4 − 4 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 − 4 4 4
0 0 0 0 0 0 0 0 0 0 0 0 4 − 4 4
0 0 0 0 0 0 0 0 0 0 0 0 4 4 − 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Note the block diagonal structure. Many problems have patterns that can be exploited
in developing Q matrices needed for their QUBO representation. Looking for patterns
is often a useful de-bugging tool.

To complete our Q matrix, it is a simple matter of inserting the penalties represent-
ing the adjacency constraints into the above matrix. For these, we use the penalties
of Transformation #2, namely Pxi x j , for each adjacent pair of nodes and each of
the three allowed colors. We have 7 adjacent pairs of nodes and three colors, yield-
ing a total of 21 adjacency constraints. Allowing for symmetry, we shall insert 42
penalties into the matrix, augmenting the penalties already in place. For example, for
the constraint ensuring that nodes 1 and 2 can not both have color #1, the penalty is
Px1x4, implying that we insert the penalty value “2” in row 1 and column 4 of our
matrix and also in column 1 and row 4. (Recall that we have relabeled our variables
so that the original variables x11 and x21 are now variables x1 and x4.) Including
the penalties for the other adjacency constraints completes the Q matrix as shown
below
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 4 4 4 2 0 0 0 0 0 0 0 0 2 0 0
4 − 4 4 0 2 0 0 0 0 0 0 0 0 2 0
4 4 − 4 0 0 2 0 0 0 0 0 0 0 0 2
2 0 0 − 4 4 4 2 0 0 2 0 0 2 0 0
0 2 0 4 − 4 4 0 2 0 0 2 0 0 2 0
0 0 2 4 4 − 4 0 0 2 0 0 2 0 0 2
0 0 0 2 0 0 − 4 4 4 2 0 0 0 0 0
0 0 0 0 2 0 4 − 4 4 0 2 0 0 0 0
0 0 0 0 0 2 4 4 − 4 0 0 2 0 0 0
0 0 0 2 0 0 2 0 0 − 4 4 4 2 0 0
0 0 0 0 2 0 0 2 0 4 − 4 4 0 2 0
0 0 0 0 0 2 0 0 2 4 4 − 4 0 0 2
2 0 0 2 0 0 0 0 0 2 0 0 − 4 4 4
0 2 0 0 2 0 0 0 0 0 2 0 4 − 4 4
0 0 2 0 0 2 0 0 0 0 0 2 4 4 − 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The above matrix incorporates all of the constraints of our coloring problem, yield-
ing the equivalent QUBO model

QUBO: min xT Qx

Solving this model yields the feasible coloring:
x2 = x4 = x9 = x11 = x15 = 1 with all other variables equal to zero.
Switching back to our original variables, this solution means that nodes 1 and 4 get

color #2, node 2 gets color #1, and nodes 3 and 5 get color #3.

Remark This approach to graph coloring problems has proven to be very effective
for a wide variety of coloring instances with hundreds of nodes, as demonstrated in
Kochenberger et al. (2005).

5.3 General 0/1 programming

Many important problems in industry and government can be modeled as 0/1 linear
programs with a mixture of constraint types. The general problem of this nature can
be represented in matrix form by

max cx

s.t. Ax = b

x binary

where slack variables are introduced as needed to convert inequality constraints into
equalities. Given a problem in this form, Transformation #1 can be used to re-cast the
problem into the QUBO form

max x0 = xT Qx

x binary
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As discussed earlier, problems with inequality constraints can be handled by intro-
ducing slack variables, via a binary expansion, to create the system of constraints
Ax = b.

Numerical example Consider the general 0/1 problem

Max y = 6x1 + 4x2 + 8x3 + 5x4 + 5x5
s.t. 2x1 + 2x2 + 4x3 + 3x4 + 2x5 ≤ 7

1x1 + 2x2 + 2x3 + 1x4 + 2x5 = 4

3x1 + 3x2 + 2x3 + 4x4 + 4x5 ≥ 5

x ∈ 0, 1

Since Transformation #1 requires all constraints to be equations rather than inequal-
ities, we convert the 1st and 3rd constraints to equations by including slack variables
via a binary expansion. To do this, we first estimate upper bounds on the slack activities
as a basis for determining how many binary variables will be required to represent the
slack variables in the binary expansions. Typically, the upper bounds are determined
simply by examining the constraints and estimating a reasonable value for how large
the slack activity could be. For the problem at hand, we can refer to the slack variables
for constraints 1 and 3 as s1 and s3 with upper bounds 3 and 6 respectively. Our binary
expansions are:

0 ≤ s1 ≤ 3 ⇒ s1 = 1x6 + 2x7
0 ≤ s3 ≤ 6 ⇒ s3 = 1x8 + 2x9 + 4x10

Where x6, x7, x8, x9 and x10 are new binary variables. Note that these new variables
will have objective function coefficients equal to zero. Including these slack variables
gives the system Ax = b with A given by:

A =
⎛
⎝
2 2 4 3 2 1 2 0 0 0
1 2 2 1 2 0 0 0 0 0
3 3 2 4 4 0 0 − 1 − 2 − 4

⎞
⎠

Wecan nowuseTransformation #1 to reformulate our problem as aQUBO instance.
Adding the penalties to the objective function gives

Max y = 6x1 + 4x2 + 8x3 + 5x4 + 5x5

− P(2x1 + 2x2 + 4x3 + 3x4 + 2x5 + 1x6 + 2x7 − 7)2

− P(1x1 + 2x2 + 2x3 + 1x4 + 2x5 − 4)2

− P(3x1 + 3x2 + 2x3 + 4x4 + 4x5 − 1x8 − 2x9 − 4x10 − 5)2

Taking P = 10 and re-writing this in the QUBO format gives

max y = xT Qx
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with an additive constant of −900 and a Q matrix

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

526 − 150 − 160 − 190 − 180 − 20 − 40 30 60 120
− 150 574 − 180 − 200 − 200 − 20 − 40 30 60 120
− 160 − 180 688 − 220 − 200 − 40 − 80 20 40 80
− 190 − 200 − 220 645 − 240 − 30 − 60 40 80 160
− 180 − 200 − 200 − 240 605 − 20 − 40 40 80 160
− 20 − 20 − 40 − 30 − 20 130 − 20 0 0 0
− 40 − 40 − 80 − 60 − 40 − 20 240 0 0 0
30 30 20 40 40 0 0 − 110 − 20 − 40
60 60 40 80 80 0 0 − 20 − 240 − 80
120 120 80 160 160 0 0 − 40 − 80 − 560

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Solving max y = xT Qx gives the non-zero values

x1 = x4 = x5 = x9 = x10 = 1

for which y = 916. Note that the third constraint is loose. Adjusting for the additive
constant, and recalling that we started with a maximization problem, gives an objec-
tive function value of 16. Alternatively, we could have simply evaluated the original
objective function at the solution x1 = x4 = x5 = 1 to get the objective function value
of 16.

Remark Any problem in linear constraints and bounded integer variables can be con-
verted through a binary expansion into min y = xT Qx as illustrated here. In such
applications, however, the elements of the Q matrix can, depending on the data, get
unacceptably large and may require suitable scaling to mitigate this problem.

5.4 Quadratic Assignment

The Quadratic Assignment Problem (QAP) is a renowned problem in combinatorial
optimization with applications in a wide variety of settings. It is also one of the more
challengingmodels to solve. The problem setting is as follows:We are given n facilities
and n locations along with a flow matrix ( fi j ) denoting the flow of material between
facilities i and j . A distance matrix (di j ) specifies the distance between sites i and j .
The optimization problem is to find an assignment of facilities to locations tominimize
the weighted flow across the system. Cost information can be explicitly introduced
to yield a cost minimization model, as is common in some applications. The decision
variables are xi j = 1 if facility i is assigned to location j ; otherwise, xi j = 0. Then
the classic QAP model can be stated as:

Minimize
n∑

i=1

n∑
j=1

n∑
k=1

n∑
l=1

fi j dkl xik x jl

s.t.
n∑

i=1

xi j = 1, j = 1, . . . n
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n∑
j=1

xi j = 1, i = 1, . . . n

xi j ∈ {0, 1}, i, j = 1, . . . n

All QAP problems have n2 variables, which often yields large models in practical
settings. This model has the general form presented at the beginning of this section
and consequently Transformation #1 can be used to convert any QAP problem into a
QUBO instance.

Numerical example Consider a small example with n = 3 facilities and 3
locations with flow and distance matrices respectively given as follows:
⎡
⎣
0 5 2
5 0 3
2 3 0

⎤
⎦ and

⎡
⎣
0 8 15
8 0 13
15 13 0

⎤
⎦.

It is convenient to re-label the variables using only a single subscript as we did
previously in the graph coloring problem, thus replacing

(x11, x12, x13, x21, x22, x23, x31, x32, x33) = (x1, x2, x3, x4, x5, x6, x7, x8, x9)

Given the flow and distance matrices our QAP model becomes:

Minimize x0 = 80x1x5 + 150x1x6 + 32x1x8 + 60x1x9 + 80x2x4 + 130x2x6
+ 60x2x7 + 52x2x9 + 150x3x4 + 130x3x5

+ 60x3x752x3x8 + 48x4x8 + 90x4x9 + 78x5x9 + 78x6x8
s.t. x1 + x2 + x3 = 1

x4 + x5 + x6 = 1

x7 + x8 + x9 = 1

x1 + x4 + x7 = 1

x2 + x5 + x8 = 1

x3 + x6 + x9 = 1

Converting the constraints into quadratic penalty terms and adding them to the
objective function gives the unconstrained quadratic model

Minimize x0 = 80x1x5 + 150x1x6 + 32x1x8 + 60x1x9 + 80x2x4
+ 130x2x6 + 60x2x7 + 52x2x9
+ 150x3x4 + 130x3x5 + 60x3x752x3x8 + 48x4x8
+ 90x4x9 + 78x5x9 + 78x6x8

+ P(x1 + x2 + x3 − 1)2 + P(x4 + x5 + x6 − 1)2
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+ P(x7 + x8 + x9 − 1)2

+ P(x1 + x4 + x7 − 1)2 + P(x2 + x5 + x8 − 1)2

+ P(x3 + x6 + x9 − 1)2

Choosing a penalty value of P = 200, this becomes the standard QUBO problem

QUBO: min y = xT Qx

with an additive constant of 1200 and the following 9-by-9 Q matrix:

Q=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 400 200 200 200 40 75 200 16 30
200 − 400 200 40 200 65 16 200 26
200 200 − 400 75 65 200 30 26 200
200 40 75 − 400 200 200 200 24 45
40 200 65 200 − 400 200 24 200 39
75 65 200 200 200 − 400 45 39 200
200 16 30 200 24 45 − 400 200 200
16 200 26 24 200 39 200 − 400 200
30 26 200 45 39 200 200 200 − 400

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Solving QUBO gives y = −982 at x1 = x5 = x9 = 1 and all other variables = 0.
Adjusting for the additive constant, we get the original objective function value of
1200 − 982 = 218.

Remark A QUBO approach to solving QAP problems, as illustrated above, has been
successfully applied to problems with more than 30 facilities and locations in Wang
et al. (2016).

5.5 Quadratic knapsack

Knapsack problems, like the other problems presented earlier in this section, play a
prominent role in the field of combinatorial optimization, having widespread applica-
tion in such areas as project selection and capital budgeting. In such settings, a set of
attractive potential projects is identified and the goal is to identify a subset of maxi-
mum value (or profit) that satisfies the budget limitations. The classic linear knapsack
problem applies when the value of a project depends only on the individual projects
under consideration. The quadratic version of this problem arises when there is an
interaction between pairs of projects affecting the value obtained.

For the general case with n projects, the Quadratic Knapsack Problem (QKP) is
commonly modeled as

Max
n−1∑
i=1

n∑
j=1

vi j xi x j
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subject to the budget constraint

n∑
j=1

a j x j ≤ b

where x j = 1 if project j is chosen: else, x j = 0 . The parameters vi j , a j ,and b
represent, respectively, the value associatedwith choosing projects i and j, the resource
requirement of project j , and the total resource budget. Generalizations involving
multiple knapsack constraints are found in a variety of application settings.

Numerical example Consider the QKP model with four projects:

Max 2x1 + 5x2 + 2x3 + 4x4 + 8x1x2 + 6x1x3
+ 10x1x4 + 2x2x3 + 6x2x4 + 4x3x4

subject to the knapsack constraint:

8x1 + 6x2 + 5x3 + 3x4 ≤ 16

We re-cast this into the form of a QUBO model by first converting the constraint
into an equation and then using the ideas embedded in Transformation #1. Introducing
a slack variable in the form of the binary expansion 1x5 + 2x6 , we get the equality
constraint

8x1 + 6x2 + 5x3 + 3x4 + 1x5 + 2x6 = 16

which we can convert to penalties to produce our QUBO model as follows,
Including the penalty term in the objective function gives the unconstrained

quadratic model:

Max y = 2x1 + 5x2 + 2x3 + 4x4 + 8x1x2 + 6x1x3
+ 10x1x4 + 2x2x3 + 6x2x4 + 4x3x4

− P(8x1 + 6x2 + 5x3 + 3x4 + 1x5 + 2x6 − 16)2

Choosing a penalty P = 10, and cleaning up the algebra gives the QUBO model:

QUBO: max y = xT Qx

with an additive constant of −2560 and the Q matrix

⎡
⎢⎢⎢⎢⎢⎢⎣

1922 − 476 − 397 − 235 − 80 − 160
− 476 1565 − 299 − 177 − 60 − 120
− 397 − 299 1352 − 148 − 50 − 100
− 235 − 177 − 148 874 − 30 − 60
− 80 − 60 − 50 − 30 310 − 20
− 160 − 120 − 100 − 60 − 20 600

⎤
⎥⎥⎥⎥⎥⎥⎦
.
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Solving QUBO gives y = 2588 at x = (1, 0, 1, 1, 0, 0). Adjusting for the additive
constant, gives the value 28 for the original objective function.

Remark The QUBO approach to QKP has proven to be successful on problems with
several hundred variables as shown in Glover et al. (2002).

6 Connections to quantum computing andmachine learning

QuantumComputing QUBODevelopmentsAs noted in Sect. 1, one of the most signif-
icant applications of QUBO emerges from its equivalence to the famous Ising problem
in physics. In common with the earlier demonstration that a remarkable array of NP-
hard problems can converted into the QUBO form, Lucas (2014) more recently has
observed that such problems can be converted into the Ising form, including graph
and number partitioning, covering and set packing, satisfiability, matching, and con-
strained spanning tree problems, among others. Pakin (2017) presents an algorithm for
finding the shortest path through a maze by expressing the shortest path as the glob-
ally optimal value of an Ising Hamiltonian instead of via a traditional backtracking
mechanism. Ising problems replace x ∈ {0, 1}n by x ∈ {−1, 1}n and can be put in the
QUBO form by defining x j ′ = (x j + 1)/2 and then redefining x j to be x j ′ .1 Efforts
to solve Ising problems are often carried out with annealing approaches, motivated by
the perspective in physics of applying annealing methods to find a lowest energy state.

More effective methods for QUBO problems, and hence for Ising problems, are
obtained using modern metaheuristics. Among the best metaheuristic methods for
QUBO are those based on tabu search and path relinking as described in Glover
(1996, 1997), Glover and Laguna (1997) and adapted to QUBO in Wang et al. (2012,
2013).

A bonus from this development has been to create a link between QUBO problems
and quantum computing.2 A quantum computer based on quantum annealing with
an integrated physical network structure of qubits known as a Chimera graph has
incorporated ideas from Wang et al. (2012) in its software and has been implemented
on the D-Wave System. The ability to obtain a quantum speedup effect for this system
applied to QUBO problems has been demonstrated in Boixo et al. (2014).

Additional advances incorporating methodology from Wang et al. (2012, 2013)
are provided in the D-Wave open source software system (Qbsolv 2017) and in the
supplementary QMASM system by Pakin (2018). Qbsolv is a hyrid classical/hardware
accelerator tool, which takes as input a QUBO that may be larger/denser/higher-
precision than the accelerator, and solves subQUBOs on an accelerator and combines
the results for full QUBO solution. It has enabled widespread experimentation to
map optimization problems to the QUBO form for execution on classical and D-wave
computers. D-Wave has now upgraded this system by drawing on the MIT Kerberos

1 This adds a constant to the QUBO model, which is irrelevant for optimization.
2 Reference to quantum computing would not be complete without mentioning Google’s recent claim
to achieving ‘quantum supremacy.’ This outcome has no bearing on the computational considerations
discussed here. See, for example Preskill (2019).
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system (2019) which offersmany convenience features for users. TheQuantumBridge
Analytics perspective, as elaborated below, is providing additional gains.

Recent QUBO quantum computing applications, complementing earlier applica-
tions on classical computing systems, include those for graph partitioning problems
in Mniszewski et al. (2016) and Ushijima-Mwesigwa et al. (2017); graph clustering
(quantum community detection problems) inMniszewski et al. (2018) and Negre et al.
(2019); traffic-flow optimization in Neukart et al. (2017); vehicle routing problems
in Feld et al. (2018), Clark et al. (2019) and Ohzeki et al. (2018); maximum clique
problems in Chapuis et al. (2018); cybersecurity problems in Berwald et al. (2018)
and Reinhardt (2018); predictive health analytics problems in Oliveira et al. (2018)
and Sahner (2018); and financial portfolio management problems in Elsokkary et al.
(2017) andKalra et al. (2018). In another recent development, QUBOmodels are being
studied using the IBM neuromorphic computer as reported in Alom et al. (2017) and
Aimone et al. (2018). Still more recently, Aramon et al. (2019) have investigated and
tested the Fujitsu Digital Annealer approach, which is also designed to solve fully
connected QUBO problems, implemented on application-specific CMOS hardware
and solved problems of 1024 variables.

Multiple quantum computational paradigms are emerging as important research
topics, and their relative merits have been the source of some controversy. One of
the most active debates concerns the promise of quantum gate systems, also known
as quantum circuit systems, versus the promise of adiabatic or quantum annealing
systems. Part of this debate has concerned the question of whether adiabatic quantum
computing incorporates the critical element of quantum entanglement. After some
period, the debate was finally resolved by Albash et al. (2015) and Lanting et al.
(2014), demonstrating that this question can be answered in the affirmative.

Yet another key consideration involves the role of decoherence. Some of the main
issues are discussed in Amin et al. (2008) and Albash and Lidar (2015). The chal-
lenge is for the gate model to handle decoherence effectively. Superconducting qubit
techniques have very short-lived coherence times and the adiabatic approach does not
require them, while the gate model does.

An important discovery by Yu et al. (2018) shows that the adiabatic and gate sys-
tems offer effectively the same potential for achieving the gains inherent in quantum
computing processes, with a mathematical demonstration that the quantum circuit
algorithm can be transformed into the quantum adiabatic algorithm with the exact
same time complexity. This has useful implications for the relevance of QUBO mod-
els that have been implemented in an adiabatic quantum annealing setting, disclosing
that analogous advances associated with QUBO models may ultimately be realized
through quantum circuit systems.

Complementing this analysis, Shaydulin et al. (2018) have conducted a first per-
formance comparison of these two leading paradigms, showing that quantum local
search approach with both frameworks can achieve results comparable to state-of-
the-art local search using classical computing architectures, with a potential for the
quantum approaches to outperform the classical systems as hardware evolves. How-
ever, the time frame for realizing such potential has been estimated by some analysts
to lie 10 or more years in the future (Reedy 2017; Debenedictis 2019).
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Regardless of which quantum paradigm proves superior (and when this paradigm
will become competitive with the best classical computing systems), the studies of
Alom et al. (2017) and Aimone et al. (2018) in neuromorphic computing reinforce the
studies of adiabatic and gate based models by indicating the growing significance of
the QUBO/Ising model across multiple frameworks.

However, to set the stage for solvingQUBOproblems on quantum computers, these
problems must be embedded (or compiled) onto quantum computing hardware, which
in itself is a very hard problem. Date et al. (2019) address this issue by proposing
an efficient algorithm for embedding QUBO problems that runs fast, uses less qubits
than previous approaches and gets an objective function value close to the global min-
imum value. In a computational comparison, they find that their embedding algorithm
outperforms the embedding algorithm of D-Wave, which is the current state of the art.

Vyskocil et al. (2019) observe that the transformation introduced in Sect. 5.3 for
handling general inequality constraints of the form

∑n
i=1 xi ≤ k introduce penalties

for numerous cross products, which poses difficulties for current quantum annealers
such as those by D-Wave Systems. The authors give a scalable and modular two-
level approach for handling this situation that first solves a small preliminary mixed
integer optimization problem with 16 binary variables and 16 constraints, and then
uses this to create a transformation that increases the number of QUBO variables but
keeps the number of cross product terms in check, thereby aiding a quantum computer
implementation.

Nevertheless, other considerations are relevant for evaluating the performance of
different computational paradigms for solving QUBO problems, among them the use
of reduction and preprocessing methods for decomposing large scale QUBO prob-
lem instances into smaller ones. Hahn and Djidjev (2017) and Pelofske et al. (2019)
investigate such preprocessing methods that utilize upper and lower bound heuristics
in conjunction with graph decomposition, vertex and edge extraction and persistency
analysis. Additional preprocessing methods are introduced in Glover et al. (2018b) as
described subsequently in the context of machine learning.

Joining classical and quantum computing paradigms As emphasized in the 2019
Consensus Study Report titled Quantum Computing: Progress and Prospects, by the
National Academies of Sciences, Engineering andMedicine (2019), quantum comput-
ing will remain in its infancy for some years to come, and in the interim “formulating
an R&D program with the aim of developing commercial applications for near-term
quantum computing is critical to the health of the field.” As noted in this report, such a
program will rest on developing “hybrid classical-quantum techniques,” which is the
focus ofQuantumBridgeAnalytics.With the emergence ofQuantumBridgeAnalytics
(QBA), a field devoted to bridging the gap between classical and quantum computa-
tional methods and technologies, the creation of effective foundations for such hybrid
systems is being actively pursued with the development of the Alpha-QUBO solver
(2019). This work is paving the way for a wide range of additional QUBO and QUBO-
related applications in commercial and academic research settings. The power of the
QBA approach has recently been demonstrated in Glover and Kochenberger (2019),
with computational tests showing that a relative of Alpha-QUBO, called QUBO 2.0,
solves QUBO problems between 100 and 500 variables up to three orders of mag-
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nitude faster than a mainstream quantum computing system using Kerberos, and is
additionally capable of solving much larger problems involving many thousands of
variables.

Another blend of classical and quantumcomputing, known as theQuantumApprox-
imate Optimization Algorithm (QAOA), is a hybrid variational algorithm introduced
by Farhi and Goldstone (2014) that produces approximate solutions for combinatorial
optimization problems. The QAOA approach has been recently applied in Zhou et al.
(2018) toMaxCut (MC) problems, including a variant in process forMax Independent
Set (MIS) problems, and is claimed by its authors to have the potential to challenge the
leading classical algorithms. In theory, QAOA methods can be applied to more types
of combinatorial optimization problems than embraced by the QUBO model, but at
present the MC and MIS problems studied by QAOA are a very small segment of the
QUBO family and no time frame is offered for gaining the ability to tackle additional
QUBOproblem instances. Significantly, the parameters of the QAOA frameworkmust
be modified to produce different algorithms to appropriately handle different problem
types. Whether this may limit the universality of this approach in a practical sense
remains to be seen.

Wang and Abdullah (2018) acknowledge that the acclaim given to QAOA for
exhibiting the feature called “quantum supremacy” does not imply that QAOAwill be
able to outperform classical algorithms on important combinatorial optimization prob-
lems such as Constraint Satisfaction Problems, and current implementations of QAOA
are subject to a gate fidelity limitation, where the potential advantages of larger values
of the parameter p in QAOA applications are likely to be countered by a decrease in
solution accuracy.

QAOA has inspired many researchers to laud its potential virtues, though the prac-
tical significance of this potential at present is not well established. Investigations
are currently underway in Kochenberger et al. (2019) to examine this issue by com-
putational testing on a range of QUBO models that fall within the scope of QAOA
implementations presently available, to determine the promise of QAOA in relation
to classical optimization on these models.

We now examine realms of QUBOmodels that are actively being investigated apart
from issues of alternative computational frameworks for solving them efficiently.

Unsupervised machine learning with QUBOOne of the most salient forms of unsuper-
visedmachine learning is represented by clustering. TheQUBO set partitioningmodel
provides a very natural form of clustering and gives this model a useful link to unsu-
pervised machine learning. As observed in Ailon et al. (2008) and Aloise et al. (2010),
the CPP (clique partitioning problem) is popular in the area of machine learning as
it offers a general model for correlation clustering (CC) and the modularity maxi-
mization (MM). Pudenz and Lidar (2013) further shows how a QUBO based quantum
computing model can be used in unsupervised machine learning. A related application
in O’Malley et al. (2018) investigates nonnegative/binary matrix factorization with a
D-Wave quantum annealer.

An application of QUBO to unsupervised machine learning in Glover et al. (2018a)
provides an approach that can be employed either together with quantum computing
or independently. In a complementary development, clustering is used to facilitate the
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solution of QUBO models in Samorani et al. (2018), thereby providing a foundation
for studying additional uses of clustering in this context.

Supervised machine learning with QUBO A proposal to use QUBO in supervised
machine learning is introduced in Schneidman et al. (2006). From the physics perspec-
tive, the authors argue that the equivalent Ising model is useful for any representation
of neural function, based on the supposition that a statistical model for neural activity
should be chosen using the principle of maximum entropy. Consequently, this model
has a natural role in statistical neuralmodels of supervisedmachine learning. Hamilton
et al. (2018) discussed the potential to use advance computing such as neuromorphic
processing units and quantum annealers in spin-glass networks, Boltzmann machines,
convolutional neural networks and constraint satisfaction problems.

Machine learning to improve QUBO solution processes The development of rules and
strategies to learn the implications of specific model instances has had a long history.
Today this type of machine learning permeates the field of mixed integer programming
to identify relationships such as values (or bounds) that can be assigned to variables, or
inequalities that can constrain feasible spaces more tightly. Although not traditionally
viewed through the lens of machine learning, due in part to being classified under the
name of pre-processing, these approaches are now widely acknowledged to constitute
a viable and important part of the machine learning domain.

Efforts to apply machine learning to uncover the implications of QUBO problem
structures have proceeded more slowly than those devoted to identifying such impli-
cations in the mixed integer programming field. A landmark paper in the QUBO area
is the work of Boros et al. (2008), which uses roof duality and a max-flow algorithm
to provide useful model inferences. More recently, sets of logical tests have been
developed in Glover et al. (2018b) to learn relationships among variables in QUBO
applications which achieved a 45% reduction in size for about half of the problems
tested, and in 10 cases succeeded in fixing all the variables, exactly solving these
problems. The rules also identified implied relationships between pairs of variables
that resulted in simple logical inequalities to facilitate solving these problems.

Other types of machine learning approaches also merit a closer look in the future
for applications with QUBO. Among these are the Programming by Optimization
approach of Hoos (2012) and the Integrative Population Analysis approach of Glover
et al. (1998).

7 Concluding remarks

Thebenefits of re-casting problems into theQUBOframework, to enable a given binary
optimization problem to be solved by a specialized QUBO solver, strongly commend
this approach in the remarkable variety of settings where it can be implemented suc-
cessfully, as illustrated in this tutorial. We conclude by highlighting additional ideas
relevant to QUBO modeling and its applications in both classical and quantum com-
puting.

1. As previously noted, the National Academies of Sciences, Engineering and
Medicine have released a consensus study report on progress and prospects in
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quantum computing (2019) that discloses the relevance of marrying quantum and
classical computing, stating that “formulating an R&D program with the aim of
developing commercial applications for near-term quantum computing is critical
to the health of the field. Such a program would include…identification of algo-
rithms for which hybrid classical-quantum techniques using modest-size quantum
subsystems can provide significant speedup.” Studies devoted to this challenge
are currently underway at the Los Alamos National Laboratory to investigate the
possibilities for achieving such speedup by integrating quantum computing initia-
tives in conjunction with classical computing approaches such as those embedded
in the Alpha-QUBO system (2019).

2. Logical analysis to identify relationships between variables in the work of Glover
et al. (2018b) can be implemented in the setting of quantum computing to combat
the difficulties of applying current quantumcomputingmethods to scale effectively
for solving large problems. Approximation methods based on such analysis can
be used for decomposing and partitioning large QUBO problems to solve large
problems and provide strategies relevant to a broad range of quantum computing
applications.

3. In both classical and quantum settings, the transformation toQUBOcan sometimes
be aided considerably by first employing a change of variables. This is particularly
useful in settings where the original model is an edge-based graph model, as in
clique partitioning where the standard models can have millions of variables due
to the number of edges in the graph. A useful alternative is to introduce node-based
variables, by replacing each edge variable with the product of two node variables.
Such a change converts a linear model into a quadratic model with many fewer
variables, since a graph normally has a much smaller number of nodes than edges.
The resulting quadratic model, then, can be converted to a QUBO model by the
methods illustrated earlier.

4. Problems involving higher order polynomials arise in certain applications and can
be re-cast into a QUBO framework by employing a reduction technique follow-
ing the ideas of Rosenberg (1975), Rodriguez-Heck (2018) and Verma and Lewis
(2019). For example, consider a problem with a cubic term x1x2x3 in binary vari-
ables. Replace the product x1x2 by a binary variable, y1 and add a penalty to the
objective function of the form P(x1x2 − 2x1y1 − 2x2y1 + 3y1). By this process,
when the optimization drives the penalty term to 0, which happens only when
y1 = x1x2, we have reduced the cubic term to an equivalent quadratic term (y1x3).
This procedure can be used recursively to convert higher order polynomials to
quadratic models of the QUBO form.

5. The general procedure of Transformation #1 has similarities to the Lagrange Mul-
tiplier approach of classical optimization. The key difference is that our scalar
penalties (P) are not “dual” variables to be determined by the optimization. Rather,
they are parameters set a priori to encourage the search process to avoid candidate
solutions that are infeasible. Moreover, the Lagrange Multiplier approach is not
assured to yield a solution that satisfies the problem constraints except in the spe-
cial case of convex optimization, in contrast to the situationwith the QUBOmodel.
To determine good values for Lagrange multipliers (which in general only yield
a lower bound instead of an optimum value for the problem objective) recourse
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must be made to an additional type of optimization called subgradient optimiza-
tion, which QUBO models do not depend on.

6. Solving QUBO models: Continuing progress in the design and implementation
of methods for solving QUBO models will have an impact across a wide range
of practical applications of optimization and machine learning. The bibliography
gives references to many of the more prominent methods for solving these models.
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