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Abstract
We consider the multicontainer loading problem of a company that has to serve its
customers by first putting the products on pallets and then loading pallets onto trucks.
When a large number of units of a product have to be shipped, the company requires
that homogeneous pallets, with only one product, are built first, then weakly heteroge-
neous pallets, in which each layer corresponds to a single product, and finally strongly
heterogeneous pallets with the remaining units of the products. To be useful in practice,
the solutions have to satisfy five types of constraints: geometric constraints, so that
pallets are completely inside the trucks and do not overlap; weight constraints, limiting
the total weight a truck can bear and the maximum weight supported by each axle;
constraints limiting the position of the centre of gravity of the cargo; dynamic stability
constraints, to avoid cargo displacement when the truck is moving; and constraints
ensuring that the delivery dates of products are respected.We have developed aGreedy
Randomized Adaptive Search Procedure, including some improvement methods tai-
lored to the problem, among them an adaptation of ejection chains. The approach has
been tested on a benchmark of real problems and it has been shown to be capable
of finding high-quality, realistic solutions in short computing times. We also provide
a comparison with an integer programming formulation that justifies the use of a
metaheuristic algorithm.
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1 Introduction

TheContainer Loading Problem (CLP) is one of themost extensively studied problems
in the field of Cutting and Packing, due to its many practical applications. Given a set
of boxes to be transported by trucks (or containers), the problem is how to pack the
boxes into the trucks so as to maximize the occupied volume. Loading trucks to full
capacity has not only clear economic advantages for the companies involved, but also
global environmental advantages derived from the reduction of traffic and its pollutant
emissions. When the number of products to be sent exceeds the truck capacity, more
than one truck has to be used, and the problem becomes a Multi Container Loading
Problem (MCLP).

Both problems have geometric constraints, preventing boxes from overlapping and
exceeding the truck’s dimensions, but there are also many practical constraints to be
satisfied. Concerning weight, not only the total weight but also its distribution on the
axles and the position of the centre of gravity of the cargo have to satisfy given limits.
There are also stability constraints, static stability when the vehicle is not moving and
dynamic stabilitywhen the vehicle ismoving and subjected to acceleration and braking
forces. These practical constraints are required for the solutions to the problems to be
useful in practice and have received increased attention in recent years.

The standard CLP and MCLP problems consider that the dimensions of the boxes
are given and the boxes are loaded directly into the trucks. However, this is not the case
inmany practical situations in which first the boxes have to be put onto pallets and then
these pallets have to be loaded into trucks. In some cases, the pallets are homogeneous,
composed of boxes of just one product, and the problem is simplified, but in others,
boxes of many different dimensions have to be combined to form heterogeneous
pallets. In this study we consider the problem of a big distribution company that has
to move large quantities of products between its central and regional logistics centres.
As the quantities to be sent are very large, it is a point-to-point transportation problem
usually involving several trucks from each origin to each destination, not requiring
any routing. The demanded products have a delivery date within a planning horizon,
usually 1 week. Products cannot be received later than their delivery date, but can
be received earlier, if that helps to fill up a truck partially occupied by products for
a previous day. This prevents us from solving the problem for each day separately,
because planning all the days in the horizon jointly can reduce the total number of
trucks required.

The composition of pallets is subject to some rules, aimed at simplifying their han-
dling at the warehouses. For each product, the company has decided the composition
of the layer, a two-dimensional arrangement of boxes of the product that matches the
dimensions of the pallet base with a small tolerance. Whenever possible, this layer
structure defined for each product has to be respected. Furthermore, if the demand
for a product is high enough to build a homogeneous pallet in which all the layers
are composed of the same product, this is the preferred option. These pallets, known
as stock pallets, are very easy to handle and store. Once the stock pallets have been
built, the remaining layers are used to build case pallets, which can be seen as weakly
heterogeneous, because each layer consists of a single product, although not all the
layers correspond to the same product. Finally, if the number of demanded units of a
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product is not a multiple of the number of units composing a layer, the remaining units
are packed into strongly heterogeneous pallets, called rest pallets. This pallet structure
is very general and can be adapted to the requirements of many other companies that
use all or just some of these pallet types.

In this study,wewill take the problemof this large company inEurope as a reference,
but the problem is common tomany other distribution companies around theworld.We
propose a metaheuristic solution procedure based on a GRASP algorithm, considering
not only the general pallet structure described above, but also the practical constraints
related to weight and stability that are needed to provide practical solutions. Previous
studies on simpler versions of the problem that proposed integer linear models have
shown that exact procedures are not adequate to solve large instances in the short
times required in practice. Therefore, we have adopted a metaheuristic approach,
including constructive procedures, randomization strategies and a set of improvement
moves specifically designed for this problem. The computational results on a set of
real instances show that the proposed approach is a very efficient way of solving the
problems, providing high quality solution in very short computing times.

The structure of the paper is as follows. The relevant literature is reviewed in Sect. 2.
Section 3 presents a detailed definition of the problem. The GRASP metaheuristic is
presented in Sect. 4 by describing its constructive algorithm, randomization strategies,
and improvement moves. Section 5 considers the case in which demands have delivery
dates. The computational experience carried out is summarized in Sect. 6. Finally,
conclusions and future work are highlighted and discussed in Sect. 7.

2 Related work

Container Loading Problems have been extensively studied due to their important
practical applications. Basic geometric constraints define an interesting and complex
combinatorial problem for which many exact and heuristic approaches have been pro-
posed. Concerning practical constraints, as early as 1995 Bischoff and Ratcliff (1995)
listed conditions to be taken into account when solving practical container loading
problems, but in most cases early studies on the CLP did not consider practical condi-
tions, with the result that the solutions were not useful for real world companies. These
conditions have been progressively considered in more recent papers. The reviews by
Bortfeldt andWäscher (2013) and Zhao et al. (2016) show the increasing trend toward
including these practical constraints in the development of algorithms.

In the problem considered in this study, two conditions are especially important,
concerning weight and stability. Many authors include a constraint limiting the max-
imum weight that can be loaded into the truck [see, for example, Bortfeldt (2012)
or Toffolo et al. (2018)] and several authors have also included constraints limiting
the weight supported by the axles (Lim et al. 2013; Pollaris et al. 2016; Alonso et al.
2016). Although the usual objective is to maximize the occupied volume, when the
cargo is heavy, weight is the more restrictive condition and loading trucks to their
maximum weight becomes the most important objective. In addition, the weight of
the load has to be evenly spread on the container floor. A good weight distribution
would place the centre of gravity near to the geometric centre of the truck, although in
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general some tolerance is allowed (Baldi et al. 2012;Moon andNguyen 2014; Queiroz
and Miyazawa 2013). Ramos et al. (2018) go further, considering load balance a hard
constraint and using the vehicle-specific technical characteristics to satisfy real-world
regulations when developing a new genetic algorithm for the CLP.

The other main condition is the stability of the cargo. Static, or vertical, stability
ensures the stability of the items being loaded or unloaded when the vehicle is not
moving. Usually this type of stability has been ensured by imposing full base support
on the items, meaning that their base has to be supported from below by the truck
floor or other items (Fanslau and Bortfeldt 2010; Junqueira et al. 2012). However, this
approach is too restrictive, even if full support is relaxed to a percentage of the base,
as Ramos et al. (2016) have shown. They have developed a more efficient approach
to static stability for the three-dimensional case, while Queiroz and Miyazawa (2014)
have done the same for the two-dimensional strip packing problem. Dynamic, or
horizontal, stability ensures that items will not move when the truck is moving and
subjected to acceleration, braking and turns. This type of stability has been less studied.
Ramos et al. (2015) propose new metrics, extending the ideas of Bischoff and Ratcliff
(1995) and Alonso et al. (2017) consider dynamic stability in their models for the
MCLP.

Very few papers consider the problem of packing goods on pallets and then pallets
on trucks. According to the typology for cutting and packing problems proposed by
Wäscher et al. (2007), the two problems can be classified as Single Stock Size Cutting
Stock Problems. Morabito et al. (2000) decompose the problem into two phases. First,
a maximum number of products have to be loaded on each pallet. Then, the pallets are
loaded in the minimum number of trucks. Both problems are solved by using the 5-
block algorithmdevelopedbyMorabito andMorales (1998). Takahara (2005) proposes
a heuristic in which solutions are represented by an ordered list of items and an ordered
list of pallets and containers in which the items have to be loaded. Permutations of
these lists, leading to good solutions, are obtained by local search techniques. Sheng
et al. (2016) first load pallets into containers but then allow individual boxes to be
used to fill the gaps between pallets to achieve a better use of the space. They use a
tree search procedure for loading the pallets and then a greedy algorithm for filling
the residual spaces. In the problem studied by Alonso et al. (2017), pallets are built by
packing horizontal layers that have been previously defined and these pallets have to be
loaded into the minimum number of trucks. The authors develop several integer linear
models, progressively including more constraints concerning the maximum weight
on the axles and the position of the centre of gravity, and test them on a large set of
benchmark instances provided by a distribution company. In a parallel study, Alonso
et al. (2016) consider the same problem and develop a GRASP algorithm producing
good solutions for large instances that could not be solved using integer models.

Problems involving pallet and truck loading also appear when packing and routing
are jointly addressed. Combined loading and routing problems first appeared as exten-
sions of theCapacitatedVehicleRoutingProblem, so a set of boxes had to be loaded and
sent to customers, satisfying two-dimensional (Iori et al. 2007) or three-dimensional
packing constraints (Gendreau et al. 2006). Iori and Martello (2010) review the field
of routing problems with loading constraints, so here we will focus on those studies in
which boxes are put onto pallets before placing them in trucks. Doerner et al. (2007)
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deal with a combined routing and packing problem in which the items are placed on
pallets and stacked one above the other, producing piles, and propose two metaheuris-
tic algorithms, a Tabu Search, and an ACO algorithm. Zachariadis et al. (2012) also
consider a routing and packing problem in which products have to be put into pallets
and develop a heuristic strategy for building routes. For each route, the feasibility of
the pallet packing is checked by using a set of simple packing rules. Pollaris et al.
(2016) combine a vehicle routing problem with the loading of homogeneous pallets.
Pallets are placed in two rows and cannot be stacked. They propose a mixed ILP for-
mulation to minimize the transportation cost, respecting the axle weight constraints
and the order in which customers are served. Moura and Bortfeldt (2017) also solve
a combined vehicle routing and pallet loading problem. In a first phase, they build
homogeneous pallets by using the GRASP algorithm by Moura and Oliveira (2005).
In a second phase, they load pallets into trucks using a tree search procedure.

The literature review shows that the problem addressed in this paper has not been
studied previously. On the one hand, concerning the pallets, some studies only consider
homogeneous pallets and most of those considering heterogeneous pallets build them
in afirst phase before solving the problemof packing them into the trucks.Herewehave
to take into account three types of pallets, ranging from homogeneous stock pallets to
strongly heterogeneous rest pallets, and including weakly heterogeneous case pallets
in which each layer is composed of a single product. The way in which the layers
are used to build case pallets has to be decided as well as the position of each pallet
in the trucks. On the other hand, constraints concerning axle weight distribution and
dynamic stability have not been considered yet for the case of different types of pallets.
The most closely related studies are those by Alonso et al. (2016) and Alonso et al.
(2017), which consider only case pallets and are therefore restricted to the particular
situation in which the demand for each product can always be accommodated in an
integer number of layers.

3 Problem description

The two main elements of the problem are the products to be served and the vehicles
used for delivering them. For each product j ∈ J , the demand for each day d of the
planning horizon is nd j . The dimensions of a unit of the product are (l j , w j , h j ) and
its weight is q j . The company has also decided beforehand the number of units of the
product that compose a layer, l j , and the number of layers composing a pallet, p j .

Concerning the trucks, the company uses one type of truck with dimensions
(L,W , H), maximum weight Q, and maximum weights supported by the front and
rear axles, Q1 and Q2. The distances from the front of the truck to the axles are δ1
and δ2. The main elements of the truck are shown in Fig. 1 and we assume that the
company has a set of available trucks large enough to meet all possible demands.

The company uses one type of pallet of dimensions (l p, w p). The number of pallets
that fit into the truck is

⌊ L
w p

⌋ ∗ ⌊W
l p

⌋
, with

⌊ L
w p

⌋
pallets along the truck’s length and⌊W

l p
⌋
across the truck’s width. The set P of positions of the pallets on the truck floor

defines a grid, as can be seen in Fig. 2 for the most common case in which two pallets
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Fig. 1 Dimensions and axles positions of the truck
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Position

|P|

Position

1

Position

2

Position

|P|/2

Fig. 2 Pallet positions on the truck floor

fit into the truck width. The |P| positions are arranged in two rows, with positions 1 to
|P| /2 on the upper row and positions |P| /2 + 1 to |P| on the lower row, and |P| /2
columns. The positions are defined starting from the front and going to the back of
the truck.

A feasible solution has to satisfy several types of constraints. Besides the basic
constraints of having each position on the truck floor occupied by at most one pallet,
and ensuring that pallets do not exceed the truck height H , they can be classified in
several categories:

3.1 Weight constraints

The total weight of the pallets in a truck cannot exceed Q. The weight on the axles
cannot exceed Q1 for the front axle and Q2 for the rear axle. The weight supported
by each axle depends on the position of the load in the truck and can be calculated if
we know the position and weight of each pallet, using the law of levers (Alonso et al.
2017). The centre of gravity of the cargo has to be positioned between the axles.

3.2 Stability constraints

The cargo has to be stable. Static stability when the truck is not moving is ensured by
the way in which the pallets are built. Dynamic stability when the truck is moving and
subjected to acceleration, braking, and turns has to be ensured when placing the pallets

123



A GRASP algorithm for multi container loading problems… 55

speeding − up braking

1 2 3 4 5 6
Longitudinally unstable solution
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speeding − up braking
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Fig. 3 Solutions with and without dynamic stability

in the truck.Longitudinal stability, in the length direction of the truck, requires avoiding
empty spaces between pallets. Lateral stability, in the width direction, requires having
pallets in both rows of the same column. If pallets are placed as in Fig. 3a, pallets 1,
5, and 6 will be displaced towards the back of the truck due to acceleration and pallets
2 and 6 towards the front when the truck brakes. Similarly, if the pallets are placed in
the truck as in Fig. 3b, pallets 2, 3, and 4 will be displaced when the truck turns right
or left.

Ensuring dynamic stability also requires that the heights of adjacent pallets are not
too different, to prevent tall pallets tipping over shorter ones. We impose the condition
that pallet heights have to be greater than or equal to the half the height of the truck.
As these stability constraints may be too strict in some cases, or even impossible to
satisfy, we relax them and allow at most one pallet in each truck with a height lower
than half the height of the truck and at most one columnwith only one pallet. Figure 3c,
d show these types of solutions.

3.3 Delivery dates

The delivery dates associated with the demand for the products have to be respected.
Products cannot be delivered after their delivery dates, although they can be delivered
before. In other words, products ordered for day 1 have to be served on day 1, while
products ordered for day 2 can be served on day 2, but also on day 1. Taking the
argument to the extreme, all the products ordered for the planning horizon could be
delivered on the first day. However, the company does not want to do that, for two
main reasons. First, it is advisable to spread the deliveries over the days to balance the
number of trucks required each day. Second, sending products throughout the days
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of the planning horizon makes it easier to accommodate last-minute changes in the
orders. Each pallet contains products for 1 day only.

The way in which the company takes advantage of the flexibility in the service is
to plan the deliveries in order. First, the products ordered for day 1 are considered and
the corresponding problem is solved, producing a solution requiring t1 trucks. If the
last of these trucks is not completely full, as is usually the case, it can be filled with
products for day 2, and these t1 trucks are sent on day 1. Then, the problem involving
the products for day 2 that were not sent in advance is solved, producing a solution
requiring t2 trucks. The last of these trucks is filled up with products for day 3, and
the process continues until all the days in the horizon have been considered.

Themain objective of the problem is tominimize the total number of trucks required
to send all the demanded products throughout the planning horizon.A second objective
is to minimize the load in the last truck. For two solutions with the same number of
trucks, a solution is better if the load in the last truck is lower. This load can be
measured by weight or by volume, depending on which of them is the more influential
factor in the solution. Minimizing the load of the last truck allows the user to decide
between two possibilities. He/she can decide not to send it if it contains just a few
units of non-urgent products. Alternatively, if the information is already available, the
truck can be filled with products demanded for the next planning horizon, usually the
following week.

In order to attain these objectives,we have to take two types of decisions, concerning
how to build pallets and how to place them in trucks. First, in a preprocessing phase,
some pallets are built according to the company’s requirements. For each product j
and day d the demand is nd j units and a layer is composed of l j units, so we will have
Ld j = ⌊

nd j/l j
⌋
layers of product j and rd j = nd j − l j Ld j remaining units. With

these Ld j layers we build stock pallets, homogeneous pallets in which all layers are
composed of the same product. As the number of layers in a pallet is p j , we can build
Pd j = ⌊

Ld j/p j
⌋
stock pallets of product j for day d, leaving sd j = Ld j − p j Pd j

remaining layers. The remaining units of the products for a day, rd j , j ∈ J , are
then taken to build rest pallets by using a three-dimensional bin packing algorithm
developed in a previous study (Parreño et al. 2010). So after this phase we have some
stock pallets, some rest pallets, and some layers that have to be combined to build
case pallets. The decisions about how to build these pallets and where to place all
the pallets built are considered jointly in the GRASP algorithm described in the next
section, avoiding the usual two-phase approach in which pallets are built first and their
position in the trucks decided later.

4 GRASP algorithm

In this section we describe the elements of the Greedy Randomized Adaptive Search
Procedure (GRASP) developed for this problem. First, we introduce the deterministic
constructive algorithm, then the randomizing strategies included to produce diverse
solutions in the iterative process, and finally the improvement phase. A schematic
representation of the complete procedure appears in Algorithm 1. In this section we
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consider the problem in which all products are served on 1 day. The extension to all
days of the planning horizon will be described later.

Algorithm 1 GRASP algorithm
K= Number of trucks generated by the deterministic constructive algorithm
N= Number of iterations used to set the statistical filter
T imeLimit , Nmax I terations, K , N
for (Iterations< Nmax I terations or T ime < T imeLimit) do

Solution=Generate a Randomized Solution with K − 1 trucks
Statistical filter(Solution)
if (Solution has passed the filter or Iterations< N ) then

Local Search(Solution)
end if
if (Solution has all the layers packed) then

K = K − 1
Re-start statistical filter

end if
end for

GRASP algorithms have been successfully applied to other related packing prob-
lems (Correcher et al. 2017; Moura and Bortfeldt 2017) as well as other hard
combinatorial problems in routing (Lopez-Sanchez et al. 2018), scheduling (Knopp
et al. 2017), or location (Contreras et al. 2017), among others. It provides a flexible
algorithmic framework in which constructive and local search procedures tailored to
the problem being solved can be combined in an iterative process that includes ran-
domization to provide diversity to the search. The GRASP algorithm developed in this
paper shares some basic ideas with that of our previous study (Alonso et al. 2016),
especially in the constructive algorithm and randomization strategy, but there are two
main differences: the existence of three types of pallets, producing special types of
layers and changing the criteria used in the randomized constructive procedure, and
the way in which the delivery dates are taken into account when building a complete
solution, requiring the development of completely new improvement moves.

4.1 Deterministic constructive algorithm

As explained in Sect. 3, the products ordered have been used to build stock pallets,
rest pallets, and a set of layers that will compose case pallets. In what follows, stock
and rest pallets are considered as layers, although they are special layers, because the
pallets which will be built using them will contain only one of these special layers.
This can be ensured by assigning them a height H , to prevent other layers from being
stacked above or below them. Hence, the constructive procedures will only consider
a set L of layers as the elements to be packed.

The constructive algorithm loads one truck at a time, using two lists, the list of
available positions on the truck floor and the list of the remaining layers to be packed.
The main steps of the algorithm are:
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• Step 1. Initialization
Let P be the list of positions on the truck, initially the complete list of positions
defined for the truck.
Let L be the list of layers not packed in previous trucks. If the first truck is being
packed, the list contains all demanded layers (including stock and rest pallets).
The layers on list L are ordered first by non-increasing order of height, to give
priority to layers composed of stock and rest pallets. As a tie-breaker, we consider
non-increasingweight, placing heavy layers first. If necessary, a second tie-breaker
is the density of the layer.

• Step 2. Selecting the position
We determine the point in the truck that can accommodate the maximum weight,
taking into account the maximum weight the axles can support. As usually Q1 >

Q2, this point is not exactly the geometric centre of the truck, but is slightly
displaced towards the front.
The positions are chosen starting from the position nearest to thismaximum-weight
point, and moving towards the front or the back, following two rules:

– The two positions in each column are considered consecutively.
– The next column to be considered will be one position backward or forward
of the columns already occupied and it is chosen depending on the position of
the centre of gravity. If it is currently displaced forwards, the next available
position further back is chosen, to move the centre of gravity towards its ideal
position. If the centre of gravity is displaced backwards, the next position
further forward is chosen.

• Step 3. Building a pallet suitable for the chosen position
Once a position has been chosen, we determine the maximum weight that can be
placed in that position without exceeding the total weight limit and the maximum
weight on the axles.
A new pallet is built by stacking layers from L in order, without exceeding the
truck height and the maximum weight previously calculated for the pallet.
If a pallet cannot be built in the selected position because putting any layer there
would exceed the maximum weight, no more pallets can be placed in other posi-
tions in the truck due to the stability constraints and the truck is closed. If some
layers can be placed but the resulting pallet height is lower than half the truck
height, it will be the last pallet that can be placed in the truck and the truck is also
closed.

• Step 4. Updating the lists
Lists P and L are updated with the remaining positions in the truck and the layers
remaining to be packed. The position of the centre of gravity and the weights
supported by the axles are also recalculated taking the new pallet into account. If
L = ∅ the packing is complete and the algorithm ends. Otherwise, if P = ∅ a
new truck is opened with its complete list of positions. The procedure goes back
to Step 2.
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4.2 Randomization strategies

At Step 2, the selection of the next backward or forward position is randomized, with
probabilities proportional to the remaining weight that each axle can support.

We also randomize the selection of the layers being taken to build the pallet at Step
3. We use the sample plus construction proposed by Resende and Werneck (2004). A
random sample is taken from among all products with layers on list L. The sample
size is controlled by a parameter δ, so each product has a probability δ of being part
of the sample. We go through the sample, ordered by the above-mentioned criteria of
height, weight and density, and the first product with a layer that satisfies all the height
and weight constraints is selected for the pallet being built at the chosen position. If
the list L contains more than one layer of the selected product, the number of layers
taken for building the pallet is chosen at random. If δ = 1, all products are included
in the sample and the first one on the list will always be chosen, making the selection
deterministic. If δ is closer to 0, the number of products in the sample is smaller and
the first ones on list L have less probability of being chosen for the sample. Therefore,
the layers finally selected may not be the best options for the position according to
its height and weight. In this sense, the procedure introduces diversity in the set of
solutions obtained by the constructive algorithm. However, it is possible that none of
the layers of the products in the sample satisfies all the constraints of the position. If
this is the case, we go through the complete list of layers L and the first layers that
satisfy the constraints are chosen.

In order to introduce even more diversity into the solutions, we use one more ran-
domizing procedure. We randomize the order in which the criteria—height, weight,
density—are considered. Also, instead of always ordering the layers by non-increasing
height, weight, and density, at each iteration we randomly choose between non-
increasing and non-decreasing orders.

The randomized constructive procedure as described, packing all the layers into
trucks, is only used in the first iteration of the GRASP algorithm. Once we have a
feasible solution with K trucks, in the subsequent iterations the objective is to obtain
a solution with K − 1 trucks. Step 4 is modified and when truck K − 1 is closed, the
algorithm ends and the solution will be composed of these K − 1 trucks and a list of
unpacked layers. The improvement phase will try to load these unpacked layers into
some of the K − 1 trucks.

4.3 Improvement phase

The solution built by the randomized constructive procedure will usually contain some
unpacked layers. The objective of the improvement moves is to reduce the total height
or weight of these layers, trying to obtain a solution with no unpacked layers. If a
solution with no unpacked layers is obtained, we have a new best solution with one
fewer truck. On the rare occasions on which the randomized constructive procedure
produces a solution in which all layers are packed using one truck fewer than the best
solution obtained so far, this solution is not improved and the procedure goes directly
to the next iteration, decreasing the target number of trucks by one.

123



60 M. T. Alonso et al.

Depending on the characteristics of the instance, we determine whether the more
influential factor in the solution is the weight of the products or their volume, and
therefore height (given the common surface of all pallets). We compute the average
percentage height and the average percentage weight of the pallets for all the trucks
in the best solution and the maximum of these values defines the secondary objective
function. For example, if we have a problem in which we have few layers in each
truck but they are very heavy, the objective will be the weight and we would want to
optimize the weight in each truck and to reduce the weight of the unpacked layers.
This is evaluated every time a new best solution is found. In order to introduce more
diversity, in each iteration we have a 20% probability of choosing randomly if we
consider height or weight as the secondary objective.

We have developed four types of improvement movements. The first consists of
removing some elements of the solution and filling the truck again using the con-
structive deterministic algorithm. The second consists of exchanging layers placed in
trucks with unpacked layers. The third is based on the idea of changing the position
of pallets inside a truck in order to reduce the weight on one axle, leaving room for
new pallets. Finally, the fourth movement is an adaptation of the ejection chains to
this packing problem.

In the description of the movements, we will consider that the secondary objective
function is to minimize the total height of the unpacked layers. A similar argument
would be used for minimizing the weight.

4.3.1 Unloading part of one truck

In this movement, we try to increase the load of the trucks whose average height of
pallets is lower than the average height of all the pallets in the solution. We choose
one of these trucks at random and randomly select a pallet in this truck among those
whose height is less than 90% of the truck height. We then have two alternatives: to
remove the complete pallet or to remove just some of its upper layers. We assign a
probability of 25% to the first option and 75% to the second. If the second option is
selected, we choose a value at random, Rh, between 0 and the truck height H , and
remove all layers totally or partially contained in the interval (Rh, H). Note that in
some cases removing a layer or a pallet can produce a solution that does not satisfy the
weight constraints. In these cases we do not remove them, because we always work
with feasible solutions.

After removing some layers or a pallet from one truck, we fill it again using the
deterministic constructive algorithm, considering the list of unpacked and removed
layers ordered by non-increasing height. Nevertheless, when there are few unpacked
layers, we can obtain better results by solving a subset sum problem (SSP): given the
set J of unpacked and removed layers, each with height h j , and the remaining height
H ′, find the subset of J whose total height is a maximum but does not exceed H ′. The
SPP can be formally stated by introducing a binary variable ξ j taking value 1 if and
only if layer j is in the selected subset, thus obtaining:
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Initial Solution After the exchange(a) (b)

Fig. 4 Exchanging layers

(SSP) max R =
∑

j∈J

h jξ j (1)

∑

j∈J

h jξ j ≤ H ′ (2)

ξ j ∈ {0, 1} j ∈ J (3)

The SPP is solved by using a knapsack algorithm (Pisinger 2000), but only when
the total height of the remaining layers is less than ten times the remaining height
of the stack. For large numbers of layers, the deterministic constructive algorithm is
used.

4.3.2 Exchanging layers

We try to exchange each layer of each pallet of each truck with one or more unpacked
layers in order to decrease the total height of the unpacked layers in the solution. The
exchange is made only if it produces an improved feasible solution. Figure 4 shows
an example. The large rectangle on the left-hand side represents one pallet in a truck
and the small red rectangles are unpacked layers. The yellow layer is exchanged with
two red layers, reducing the total height of the layers outside the trucks.

As there are no specific selection criteria, the order in which the layer, the truck, and
the position are selected is randomized to add diversity to the search. After making
the exchange, as the weights on the axles of the truck may have been reduced, we try
to pack more layers with the deterministic version of the constructive algorithm.

4.3.3 Levelling the weight of the truck

Sometimes the randomized constructive algorithm produces trucks in which the load
is unbalanced and the centre of gravity of the cargo is displaced towards the back of
the truck. It may happen then that the limit of the weight on the rear axle, which is
usually lower than the limit on the front axle, is reached and no more pallets can be
placed in the truck, but there is some margin in the weight supported by the front axle.
The improving movement consists of changing the position of one pallet to an empty
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(c)Placing new pallets into the truck

Fig. 5 Levelling the load of a truck

space on the other side of the truck or exchanging the positions of two pallets in order
to get a more balanced weight distribution that makes it possible to load new pallets.

In Fig. 5a, we can see that CG, the centre of gravity of the load, is displaced to the
right of CGI , the point which can bear more load in the truck, because light pallets
(in light blue) are placed to the front and heavy pallets (in dark blue) are placed to the
back of the truck. The weight limit on the rear axle is reached and no more pallets can
be loaded although there are still some empty positions.

By exchanging the positions of light and heavy pallets, the centre of gravity is
moved to the left. The weight on the front axle increases, without exceeding its limit,
and the weight on the rear axle decreases (Fig. 5b). Sometimes this makes it possible to
place new pallets in the empty spaces at the back of the truck.We check this possibility
by again applying the deterministic constructive algorithm, considering the list of the
empty positions in the truck and the list of unpacked layers (Fig. 5c).

4.3.4 Ejection chains

An ejection chain movement starts from a feasible solution by selecting an element
to undergo a change (Glover 1996; Peng et al. 2016). That produces a new structure,
called a reference structure, which is similar to a solution but is not feasible, because
some constraint is violated. Moves transforming a solution into a reference structure,
or one reference structure into another, are called ejectionmoves. Other types ofmoves,
transforming a reference structure into a solution, are called trial moves. An ejection
chain is composed of ejection moves and trial moves.

In our problem, we use two types of ejection moves. The first moves one unpacked
layer to a pallet placed in a truck. This move produces an unfeasible solution, a
reference structure in the terminology of ejection chains, because if this layer could
go into this pallet without violating any constraint, it would have been put there by the
constructive algorithm.Usually themaximumheight of the pallet is exceeded, although
some other constraints related to weight may also be violated. The other ejection move
changes the position of one layer to another pallet in the same truck, transforming one
reference structure into another. There are also two types of trial moves. One type
removes layers from a pallet and leaves them unpacked until feasibility is recovered.
The other moves layers from one pallet to another, recovering the feasibility of the
first pallet without making the second unfeasible.

An example can be seen in Fig. 6. In the initial feasible solution we have two pallets
(big rectangles) in a truck and two red unpacked layers (Fig. 6a). A first ejection move
takes one unpacked layer and moves it to the second pallet, producing a reference
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(a) (b) (c) (d)

Fig. 6 An example of ejection chains

structure (Fig. 6b). A second ejection move changes the yellow layer to the first pallet,
producing a new reference structure (Fig. 6c). Finally, a trial move changes the green
layer to the second pallet, producing an improved feasible solution (Fig. 6d).

As in previousmovements, we randomize the order inwhichwe select the unpacked
layer, the truck, the pallet and the layers in that pallet in order to add diversity to the
search.

4.3.5 Local search

The four improvements can be used in a sequential way, following the order in which
they have been described, using each of them while the solution is improved, going
to the next when it is not, and finishing when the fourth movement does not improve
the solution further.

However, the improvement movements can also be combined in a local search
procedure.We apply eachmovement once and after applying all of them, if the solution
has been improved, we repeat the procedure.

The complete flow of the local search procedure appears in Algorithm 2.

4.3.6 Statistical filter

Local search is often the phase of a GRASP algorithm requiring the largest computa-
tional effort. A way of reducing this effort is to apply a filter. Low-quality solutions
built by the randomized constructive algorithm that are unlikely to improve the best
current solution after applying local search are discarded without proceeding to the
improvement phase. This strategy is called GRASP filtering (Feo et al. 1994).

In order to obtain a filter, during the first N iterations of GRASP all solutions go
to the improvement phase. We save their objective function before and after the local
search and calculate the average improvement of the secondary objective function.
In subsequent iterations, a solution produced by the randomized constructive phase
goes into the improvement phase only if its secondary objective function minus the
calculated average improvement is lower than the value of the best current solution.
Every time the number of trucks required is decreased, this average is recalculated
using the next N iterations.
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Algorithm 2 Local Search
Ensure: Improvements ← (1, 2, 3, 4) S : Solution, Os : Objective f unction
while Stopping Criterion is not satisfied do

{S, Os }
while ImproveSolution==true do

ImproveSolution = f alse
for i ∈ Improvements do

switch (Improvements[i])
case 1:
{S, Os } ← ImproveRemoving()
if Solution has improved then

ImproveSolution = true
end if
case 2:
{S, Os } ← ImproveExchanging()
if Solution has improved then

ImproveSolution = true
end if
case 3:
{S, Os } ← ImproveLevelling()
if Solution has improved then

ImproveSolution = true
end if
case 4:
{S, Os } ← ImproveE jectionChain()

if Solution has improved then
ImproveSolution = true

end if
end switch

end for
end while

end while

5 Demand over time

In some practical situations delivery dates are associated with product demands. Some
products have to be received on day 1, some others on day 2, and so on, within
a planning horizon which usually corresponds to the working days of a week. As
previously explained, the way in which delivery dates are set allows the products to
be sent before their delivery date, but not later. Therefore, if there is some space left
in the trucks carrying the products for the first day, it can be used to load products for
the second day until the trucks are completely filled.

Productswith different delivery dates can be together in a truck, but the day structure
has to be maintained. If in truck k0 there are products with delivery date d0, in the
following trucks k > k0 we cannot load products with earlier delivery dates d < d0.
For example, if products with delivery date d = 1 need two complete trucks and part
of a third truck, then trucks 1 and 2 will only contain products with delivery date 1,
and truck 3 will contain the remaining products for day 1 plus some products for day
2.

The GRASP algorithm described in the previous section has been adapted to the
case of delivery dates in the following way: In the first iteration, we start running the
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randomized constructive algorithm only for the products for day 1. After that we do
the same for day 2, starting from the last truck used for day 1, and so on. Then we have
a number of trucks used for products for day 1 (K1), a number for products for days
1 and 2 (K2), and so on (Kd ). For the following iterations, we run the randomized
constructive algorithm for day 1, but only for a number of trucks K1−1. If we obtain a
solutionwith all these products in K1−1 trucks, we update the value of K1. Otherwise,
we have some unpacked layers of products for day 1, which are loaded into a new truck
with the deterministic constructive algorithm. Then we apply local search to reduce or
even eliminate the layers for day 1 on truck K1. After that, we start from this partially
loaded truck considering the products for day 2, and we repeat the process until the
end of the planning horizon.

Applying the local search to the partial solution of day 1 follows exactly the proce-
dure described in the previous section. Nevertheless, when applying it to the solution
involving other days, the day structure has to be maintained. If the first movement,
removing and refilling, is applied to a truck containing products for two different days
and products for the first of these 2 days are removed, these products are always con-
sidered the first when loading the truck again. The secondmove, exchanging unpacked
and packed layers, is only applied to products for the same day. The third move, lev-
elling, only involves pallets in one truck and can always be applied. The fourth move,
ejection chains, again involving unpacked and packed layers, is applied only to prod-
ucts for the same day. The statistical filter is only applied to the solution obtained by
the constructive algorithm for the products with the latest delivery date. All partial
solutions obtained by the randomized constructive algorithm go to the improvement
phase, with one exception: if the best current solution for products up to day r requires
Kr trucks plus some unpacked layers for day r , and the solution being built requires
Kr +1 plus some unpacked layers, it is discarded and we proceed to the next iteration.

Algorithm 3 GRASP for Days
1: Max I ter= Maximum number of Grasp iterations
2: for I ter = 1 to Max I ter do
3: for d = 1 to Days do
4: Randomized Constructive algorithm, starting from the last truck used in the previous day
5: Local Search on the layers of the last truck
6: Try to pack some layers of day d+1 in the last truck of day d if it is not the last day
7: end for
8: end for

6 Computational results

The benchmark used in this study is composed of 111 real instances taken from
the everyday distribution activity of a large company. The instances have been pro-
vided to us by ORTEC (2018), a company developing planning and optimization
solutions and services for manufacturing and logistics companies, and are avail-
able at the ESICUP web page (https://www.euro-online.org/websites/esicup/data-
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Table 1 Characteristics of the test instances

Products Units Stock pallets Layers Rest pallets

Minimum 1 241 10 145 0

Median 8 23,904 54 1004 1

Average 13.6 27382.0 70.7 1183.6 1.1

Maximum 142 114,570 299 4873 6

sets/#1535975694118-eedb4714-39e4). The same instances were used by Alonso
et al. (2016, 2017) in previous papers, labeled Demand over the time. The instances
exhibit wide variability. The distribution of the products ranges between 1 and
142 different types. The demands vary from 241 to 114,570 units. Nevertheless,
in order to ensure that the three types of pallets, stock, case, and rest, were
sufficiently represented, the original instances were slightly modified. The new
instances are available at (https://www.euro-online.org/websites/esicup/data-sets/#
1535975694118-eedb4714-39e4), labeled 4OR_GRASP_MC. The characteristics of
the instances are summarized in Table 1. The table includes minimum, maximum,
median, and average of the number of products, number of units, number of stock
pallets built, number of layers after building stock pallets, and number of rest pallets
built with remaining units not composing layers. Although in some cases there are
no rest pallets, in most cases a bin packing algorithm had to be used to compose rest
pallets.

The computational study has four parts. First, we study the contribution of each
element of the GRASP algorithm (constructive procedure, randomization, improve-
ments, local search, filtering) to the quality of the solutions obtained. Then, we study
the contribution of each type of improvement move in more detail. In a third part,
we study the effect of the stability constraints and the particular way in which the
company wants the pallets to be built. Finally, we compare GRASP with the integer
linear model developed in Alonso et al. (2017) for a closely related problem in which
neither stock pallets nor rest pallets are considered and each product makes up an
integer number of layers for building case pallets.

The tests of the GRASP algorithm were performed on a PC Intel Core 2 Quad at
2.93 Ghz with 4 GB of RAM in one thread. The integer linear model was solved on
the same computer using CPLEX 12.51 with 4 threads.

6.1 Studying the elements of the GRASP algorithm

Table 2 shows the number of trucks in the solutions obtained by progressively adding
the elements of the GRASP algorithm:

• The Constructive deterministic algorithm.
• The Randomized constructive algorithm, in which the value of the parameter δ is
randomly chosen in the interval (0.25, 0.75) at each iteration.

• The GRASP algorithm when each improvement move is used just once in the
Improvement phase, in the order described in Sect. 4.3.
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Table 2 Studying the effect of the elements of GRASP

Deterministic Randomized Improvement Local Search Filter Time

1 Day 1151 1146 1118 1117 1117 25.67

2 Days 1152 1147 1118 1117 1117 34.09

3 Days 1153 1148 1119 1118 1118 39.93

Average time 0.01 2.79 11.67 50.52 33.23 33.23

• The GRASP algorithm using Local Search in the improvement phase.
• TheGRASPalgorithmusing thefilter to select the solutions to be improved (Filter).

We set a maximum number of 700 iterations for all the versions with one delivery
date and 500 iterations when there is more than one delivery date, in order to have
similar computing times.

Table 2 also shows the effect of imposing different delivery dates for the products
being served. If not all the products are sent on the same day, the problem is less flexible
and the number of trucks required can increase. The table shows three cases, for one,
two, and three delivery dates. Columns 2–6 show the total number of trucks required by
the 111 test instances. The last row contains the average running times, while the last
column contains the average time for solving all versions of the algorithms, showing
the progressive complexity added by the delivery dates.

It can be seen in Table 2 that randomizing the constructive procedure has a small
effect on the quality of the solutions, while the improvement phase produces a clear
decrease in the number of trucks required. The more complex Local Search does
not produce a clear effect concerning the number of trucks and the filtering strategy
reduces the running time without worsening the solutions.

However, the number of trucks required is not the only criterion for measuring the
quality of the solution. For two solutions with the same number of trucks, a solution
is better if the last truck is less filled, in weight or volume. Table 3 shows the average
percentage in weight and volume of all the trucks but the last in solutions with the
same number of trucks for three versions of the GRASP algorithm. Solutions with
different number of trucks cannot be compared because if the number of trucks is
reduced the last truck will be filled almost to its full capacity, while in other solutions
with one more truck the last truck can be almost empty. Column 8, Same Value, of the
table indicates the number of instances for which the number of trucks is the same for
the three versions. The last two columns show the number of instances in which the
occupied volume and total weight in the last truck is lower than the 10% and 20% of
the capacity. Although the differences are quite small, it can be seen that the version
of GRASP using Local Search gets slightly better results, that is, it is able to leave
the last truck emptier. When the last truck is almost empty, with less that 10% or
20% of its capacity used, the user has to decide whether (a) to send the truck as it is,
(b) not to send it, holding the products back until the next plannign horizon, or (c)
to fill the rest of the truck with products which will be demanded in the subsequent
periods.
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Table 3 Comparing different algorithms in instances with the same number of trucks

Improvement Local search Filter Same Last truck

Weight Height Weight Height Weight Height Value < 10% < 20%

1 Day 93.80 93.98 94.15 94.27 94.08 94.21 108 14 28

2 Days 93.75 93.96 94.05 94.18 93.90 94.04 110 13 30

3 Days 93.89 94.09 93.79 94.03 93.77 94.01 110 13 28

Table 4 Number of times each move obtains the best solution

Randomized Remove part Levelling Exchange Ejection chains

1 Day 17 25 11 21 37

2 Days 15 26 8 30 32

3 Days 17 31 12 22 29

6.2 Studying the effect of the improvement moves

The improvement phase of the GRASP algorithm is composed of four improving
moves that work on the solution provided by the randomized constructive procedure.
Table 4 studies the contribution of each move to the quality of the solutions. For the
111 test instances, the table shows how many times the best solution was obtained
by the randomized constructive algorithm and how many times it was obtained when
applying the moves in the order in which they appear in the columns of the table. It is
remarkable that all moves contribute to obtaining the best solutions, even if they are
applied after other moves, indicating that they explore different regions of the solution
space. In particular, the adaptation of the ejection chains, although applied at the
end of the improvement phase, is able to improve a significant number of solutions,
confirming the power of its complex structure for obtaining solutions that simpler
moves are not able to achieve.

6.3 Studying the effect of constraints

In this part of the computational study we consider four variants of the problem. The
problem described in Sect. 3 considers three types of pallets, stock, case, and rest
pallets, with stability constraints, and is refered to as Stock Stable. The version in
which the three types of pallets are considered but the stability constraints are relaxed
is called Stocks, and the version inwhichwe consider stability constraints but layers are
taken individually, not building stock pallets, is called Stable. Finally, the most relaxed
version, with neither stability nor stock pallets, is called Unconstrained. Comparing
these four versions will allow us to assess the influence of each factor on the number
of trucks required.

Table 5 shows that although imposing the company’s condition of building stock
pallets whenever possible makes the problem less flexible, it does not significantly
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Table 5 Different variants of the
problem

Unconstrained Stable Stocks Stocks stable

1 Day 1107 1111 1111 1117

2 Days 1109 1112 1111 1117

3 Days 1110 1112 1111 1118

Table 6 Comparing with an integer linear model

Integer model GRASP GRASP versus IP

Opt. No sol. Time Trucks Opt. Time Trucks = < >

Unconstrained 103 0 277.1 1109 105 48.1 1107 109 2 0

Stable 105 0 230.3 1112 106 47.5 1111 110 1 0

Stocks 99 5 402.4 1118 102 33.0 1111 99 9 3

Stocks stable 93 11 474.5 1122 95 25.7 1117 101 8 2

increase the number of trucks required. Similarly, the stability constraints severely
limit the space of the feasible solutions, but this is not reflected in a dramatic increase
in the number of trucks. In conclusion, these practical constraints, which are absolutely
necessary in order to obtain useful solutions, do not significantly increase the cost of
the solutions, although they do increase the complexity of the solution procedures.

6.4 Comparing with an integer model

The model proposed by Alonso et al. (2017) considers that products are already
grouped into layers and that the pallets have to be built from the demanded set of
layers and then loaded into trucks. Therefore, for all four versions of the problem
defined above, the rest pallets built by using a bin packing algorithm have to be con-
sidered as layers of height H so as to prevent other layers being stacked above or
below them. For the versions of the problem considering stock pallets, each of these
stock pallets has to be considered as an individual layer of height H . Therefore, a
product j ∈ J with a demand of nd j units, composing Ld j = ⌊

nd j/l j
⌋
layers, and

with these layers Pd j = ⌊
Ld j/p j

⌋
stock pallets, will be decomposed into two prod-

ucts, j1 with Pd j layers of dimensions (l j , w j , H) and weight p j ∗ l j ∗q j , and j2 with
Ld j − ⌊

Ld j/p j
⌋
layers of dimensions (l j , w j , h j ) and weight l j ∗ q j . As the number

of products can be almost doubled, these versions of the problem will be harder to
solve for the integer linear model.

Table 6 shows the comparison between the integer linear model by Alonso et al.
(2017) and the proposed GRASP algorithm. The integer model has been solved using
CPLEX 12.51 with a time limit of 3600 s in four threads. The four columns corre-
sponding to the integer program show the number of optimal solutions, the number of
instances for which no feasible solution was found within the time limit, the average
running time in seconds and the total number of trucks required by the 111 instances.
When a feasible solution was not found, the solution of a simple constructive heuris-
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tic was provided. It can be seen that the use of stock pallets, duplicating products,
makes the model more difficult to solve. The number of optimal solutions decreases,
for some instances no solution was found, and the running time increases as well as
the number of trucks. Similarly, the three columns corresponding to GRASP show the
number of optimal solutions, the average running time, and the total number of trucks
required. It can be observed that GRASP is able to obtain most of the optimal solutions
in much shorter running times and with fewer trucks than the integer model. The last
three columns in Table 6 compare GRASP and IP on each of the 111 instances for
the four variants of the problem, indicating the number of times GRASP obtains the
same (column “=”), a better (column “>”), or a worse solution (column “>”) than the
integer model. GRASP obtains equal or better solutions in all but 5 cases of the 444
comparisons. Moreover, the integer model fails to obtain a feasible solution 16 times,
thus reducing its practical application.

7 Conclusions

Logistics companies, serving large quantities of products to their clients, involving
many trucks, require fast and high-quality solutions thatminimize the number of trucks
requiredwhile satisfyingmany practical constraints, especially concerningweight and
dynamic stability.

To solve this large-scale and highly constrained multicontainer loading problem,
we have designed a meta-heuristic GRASP algorithm. We have developed a new
constructive algorithm, adapting procedures which were successful for the container
loading problem, and have defined some new improvement moves, specific to the
problem, including an adaptation of ejection chains.

An extensive computational experiment using a benchmark of real problems pro-
vided by the company shows that the GRASP algorithm produces solutions that are
optimal or very near to optimality for most of the instances considered in the study,
with different characteristics. Some of these characteristics, such as stability, deal-
ing with delivery dates, or minimizing the load on the last truck, are very difficult to
implement with mathematical models.

Finally, we would like to mention that the algorithm is quite flexible and could be
adapted to accommodate other variants of the problem, including, for example, the
possibility of having a fleet of heterogeneous vehicles. Logistics constraints, such as
imposing the condition that a subset of the products must be on the same truck, or the
opposite, forbidding some classes of products from being on the same vehicle, can
also be included.
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