
4OR (2019) 17:401–425
https://doi.org/10.1007/s10288-018-0394-2

RESEARCH PAPER

An exact algorithm for the minimum quartet tree cost
problem

Sergio Consoli1 · Jan Korst1 · Gijs Geleijnse2 · Steffen Pauws1,3

Received: 10 July 2017 / Revised: 2 November 2018 / Published online: 27 November 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
Theminimumquartet tree cost (MQTC) problem is a graph combinatorial optimization
problemwhere, given a set of n ≥ 4 data objects and their pairwise costs (or distances),
one wants to construct an optimal tree from the 3 · (n4

)
quartet topologies on n, where

optimality means that the sum of the costs of the embedded (or consistent) quartet
topologies is minimal. The MQTC problem is the foundation of the quartet method
of hierarchical clustering, a novel hierarchical clustering method for non tree-like
(non-phylogeny) data in various domains, or for heterogeneous data across domains.
The MQTC problem is NP-complete and some heuristics have been already proposed
in the literature. The aim of this paper is to present a first exact solution approach
for the MQTC problem. Although the algorithm is able to get exact solutions only
for relatively small problem instances, due to the high problem complexity, it can be
used as a benchmark for validating the performance of any heuristic proposed for the
MQTC problem.

Keywords Combinatorial optimization · Quartet trees · Minimum quartet tree cost ·
Exact solution algorithms · Cluster analysis · Graphs

Mathematics Subject Classification 90C27 · 05A05 · 05A15 · 62H30 · 68R10 ·
05C30 · 92E10

B Sergio Consoli
Sergio.Consoli@philips.com; sergio.consoli@ec.europa.eu

1 Philips Research, High Tech Campus 34, 5656 AE Eindhoven, The Netherlands

2 Netherlands Comprehensive Cancer Organisation (IKNL), Zernikestraat 29, 5612 HZ
Eindhoven, The Netherlands

3 TiCC, Tilburg University, Warandelaan 2, 5037 AB Tilburg, The Netherlands

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10288-018-0394-2&domain=pdf
http://orcid.org/0000-0001-7357-5858

402 S. Consoli et al.

1 Introduction

Theminimumquartet tree cost (MQTC) problem is a graph combinatorial optimization
problem having strong implications in hierarchical clustering contexts. Hierarchical
clustering methods are generally represented by a two dimensional diagram known
as dendrogram (Diestel 2000), which illustrates the fusions or divisions made at each
successive stage of analysis. A dendrogram, or tree diagram, is a mathematical way
to represent a complete clustering process by means of a tree structure. A dendrogram
has the objects attached as leaves (i.e. nodes at the bottom-most level of the tree; they
are connected with only one other node), the internal nodes (i.e. nodes at the inner
level of the tree; they are connected with more than one other node) representing the
structure of the clusters, and the length of the stems (i.e. path lengths) representing the
distances among the clusters. The arrangement of leaves, internal nodes, and stems
determines the topology of the dendrogram, whose branches show the relationships
among the clustered objects. The clustering level of an object with respect to another
is determined by the number of stems between the corresponding leaves. There are
many different types of dendrograms (Diestel 2000). In some there are limits placed
on the degrees of the internal nodes. In others, additions are made to the structure,
by labelling the nodes, or by orienting, ordering or assigning lengths to the edges.
In particular, unordered trees are of dominant interest in clustering contexts because
edge orderings have no effect on the path lengths between the nodes in the tree.

Given a set N of n ≥ 4 objects, theMQTCproblemdealswith a full unrooted binary
treewith n leaves, a special topology dendrogram having all internal nodes connected
exactly with three other nodes, the objects of N assigned to the leaf nodes, and without
any distinction between parent and child nodes (Furnas 1984). A full unrooted binary
tree with n ≥ 4 leaves has exactly n−2 internal nodes, and consequently it has a total
of 2n − 2 nodes. This dendrogram is sometimes called boron tree (or ternary tree),
since such a tree, with 2n − 2 total nodes, has n − 2 nodes connected with other three
nodes (corresponding to boron atoms) and n nodes connected with only one other
node (corresponding to hydrogen atoms).

A full unrooted binary tree with exactly n = 4 leaves is also referred to as simple
quartet topology, or just as quartet (Furnas 1984; Diestel 2000). Given a set N of
n ≥ 4 objects, the number of sets of four objects from the set N is given by:

(
n

4

)
= n!

4!(n − 4)! = n(n − 1)(n − 2)(n − 3)

24
. (1)

Given four generic objects {a, b, c, d} ∈ N , there exist exactly three different quartets:
ab|cd, ac|bd, ad|bc, where the vertical bar divides the two pairs of leaves, with each
pair labelled by the corresponding objects and attached to the same internal node
(Fig. 1).
Thus, considering the set N of n ≥ 4 objects, the total number of possible simple
quartet topologies is:

3 ·
(
n

4

)
= n(n − 1)(n − 2)(n − 3)

8
. (2)

123

An exact algorithm for the minimum quartet tree cost… 403

Definition 1 (Consistency) A full unrooted binary tree is said to be “consistent” with
respect to a simple quartet topology, say ab|cd, if and only if the path from a to b
does not cross the path from c to d (Felsenstein 1981). This quartet ab|cd is also said
to be “embedded” in the given full unrooted binary tree.

In order to visually represent the distances among the set N of n ≥ 4 objects as
well as possible, the MQTC problem considers all 3 · (n4

)
possible quartet topologies,

each with a given cost (as it will be formally defined in Sect. 3), and looks for the
full unrooted binary tree such that the summed costs of the embedded (or consistent)
quartet topologies is minimal.

Cilibrasi and Vitányi (2011) proved that the MQTC problem is an NP-hard combi-
natorial optimization problem by reduction from the more general maximum quartet
consistency (MQC) problem (Steel 1992). In (Cilibrasi and Vitányi 2011) it is also
demonstrated that a polynomial time approximation scheme for the MQTC problem
is not possible.

The aim of this paper is to present the details of an exact solution algorithm for
the MQTC problem. As it will be shown, this algorithm is able to provide the first
gold standard for the MQTC problem which can be used as a benchmark for vali-
dating the performance of any heuristic proposed for the problem. In addition, the
proposed algorithm contains some very interesting insights which may be useful, e.g.,
to hybridize (Consoli and Moreno-Pérez 2012) and enhance the MQTC heuristics to
date in the literature (Cilibrasi and Vitányi 2005, 2011; Consoli et al. 2010), or in
general to foster further research on the subject. The rest of the paper is organized
as follows. In Sect. 2, the literature related to the MQTC problem and to the quartet
method of hierarchical clustering is described. TheMQTC problem is then formulated
in Sect. 3. In Sect. 4, we present the details of the exact solution approach that we
propose for the MQTC problem. Section 5 includes our computational experience
related to the creation of a gold standard for the problem, and finally the paper ends
with some conclusions and suggestions for possible future research (Sect. 7).

2 Related literature

The MQTC problem was originally proposed in (Cilibrasi et al. 2004; Cilibrasi and
Vitányi 2005). There the main focus was on compression-based distances, but the
authors visually presented the tree reconstruction results by full unrooted binary trees
deriving by their MQTC problem formulation. Hence, they developed the quartet

Fig. 1 The three different simple quartet topologies of the generic set {a, b, c, d} of objects

123

404 S. Consoli et al.

method for hierarchical clustering, a new approach aimed at general hierarchical clus-
tering of data from different domains, not necessarily biological phylogenies.

Several practical applications of the quartet method have been explored so far in
the literature. In particular, Cilibrasi et al. (2004) proposed a robust automatic music
classification procedure consisting of two steps. The first step consisted of extracting
the Normalized Compression Distances (NCD) (Li and Vitányi 1997) among some
considered pieces ofmusic. TheNormalizedCompressionDistance is a similaritymet-
ric based on string compression which mimics the ideal performance of Kolmogorov
complexity (Li and Vitányi 1997). The second step consisted of creating an efficient
visualization of the extracted pairwise distances by means of the quartet method of
hierarchical clustering. To substantiate the claims of universality and robustness of this
automatic classification method, evidence of other successful applications in areas as
diverse as genomics, virology, languages, literature, handwriting, astronomy and com-
binations of objects from completely different domains, were reported in (Cilibrasi
and Vitányi 2005). In addition, Cilibrasi and Vitányi (2007) reported an interesting
application of this theory, consisting of the automatic extraction of similarities among
words and phrases from the WWW using Google page counts. Granados et al. (2011)
studied the impact of several kinds of information distortion on compression-based
text clustering, showing their results as ternary trees by means of the quartet method
of hierarchical clustering. In a recent application, a quartet method based on vari-
able neighborhood search was used for biomedical literature extraction and clustering
(Consoli and Stilianakis 2015, 2017).

In (Cilibrasi and Vitányi 2011), the authors presented the MQTC problem in a
more formal way. They showed the main concepts, components, advantages and dis-
advantages of the quartet method of hierarchical clustering, particularly underlining
the similarities and differences with respect to other methods from biological phy-
logeny.Cilibrasi andVitányi (2011) also showed that theMQTCproblem isNP-hardby
reduction from the MQC problem, and provided a Randomized Hill Climbing heuris-
tic to obtain approximate problem solutions. Several other efficient metaheuristics
(Greedy Randomized Adaptive Search Procedure, Simulated Annealing, and Vari-
able Neighbourhood Search) were proposed and compared for the MQTC problem
in (Consoli et al. 2010). Thesemetaheuristics performedwell for the problem, although
a proper solution quality evaluation was not possible as no benchmarks on the exact
solutions of the MQTC problem exist. In this paper we propose an exact algorithm for
the MQTC problem.

3 Problem formulation

Considering a set N of n ≥ 4 objects, the MQTC problem accepts as input a distance
matrix, D, which is a matrix containing the distances (or, in general, costs, or dis-
similarities), taken pairwise, among the n objects. It is therefore a symmetric n × n
matrix containing non-negative rationals, normalized between 0 and 1, as entries. The
value 1 represents the largest distance between two objects; the closer to 1 the distance
between two objects is, the further the objects will be apart. Obviously, all the elements
in the diagonal of the distance matrix are equal to 0.

123

An exact algorithm for the minimum quartet tree cost… 405

To extract a hierarchy of clusters from the distance matrix, the MQTC problem
determines a full unrooted binary tree with n leaves that visually represents the sym-
metric n × n distance matrix as well as possible according to a cost measure. This
representation allows useful information to be extracted from the data and clusters of
data to be related to each other (Cilibrasi and Vitányi 2005). Considering the set N of
n ≥ 4 objects, and the set Q of all possible 3 · (n4

)
quartets, let C : Q → Q+ be a cost

function assigning a positive rational valued cost C(ab|cd) to each quartet topology
ab|cd ∈ Q. The cost assigned to each simple quartet topology is defined as the sum
of the distances (taken from the distance matrix) between each pair of neighbouring
leaves (Cilibrasi and Vitányi 2011). For example, the cost associated with the quartet
ab|cd is C(ab|cd) = D(a, b) + D(c, d), where D(a, b) and D(c, d) indicate, respec-
tively, the distances between the two neighbouring objects (a and b) and (c and d),
obtained from the distance matrix.

Consider the set Γ of all full unrooted binary trees with 2n − 2 nodes (i.e. n leaves
and n − 2 internal nodes), obtained by placing the n objects to cluster as leaf nodes of
the trees. For each full unrooted binary tree t ∈ Γ , precisely one of the three possible
simple quartet topologies for any set of four leaves is consistent (Cilibrasi and Vitányi
2005). Thus, for each t ∈ Γ , there exist precisely

(n
4

)
consistent quartet topologies

(one for each set of four objects) embedded in t . Then, the cost associated with a full
unrooted binary tree t ∈ Γ is defined as the sum of the costs of its

(n
4

)
consistent

quartet topologies, that is

C(t) =
∑

∀ab|cd∈Qt

C(ab|cd), (3)

where Qt is the set of such
(n
4

)
quartet topologies embedded in t . In most cases,

it is not possible to create a full unrooted binary tree which embeds all the simple
quartet topologies with the minimum cost for all the sets of four objects (especially
for a large number of objects n), due to inconsistency. Thus, it is a matter of making
the most balanced choice of the quartet topologies to embed. This is the goal of the
MQTCproblem: trying to find (or approximate as closely as possible) the full unrooted
binary tree t ∈ Γ with the minimum total cost. The MQTC optimization problem can
be formally defined as follows (Cilibrasi and Vitányi 2005, 2011). Given a set N of
n ≥ 4 objects, a symmetric distance matrix n × n containing their pairwise distances,
and a cost function C : Q → Q+ assigning a positive rational valued cost to each
quartet topology, find the full unrooted binary tree t ∈ Γ with the minimum total cost
C(t), i.e. C(t) = min(

∑
∀ab|cd∈Qt

C(ab|cd)).

4 Exact solution approach

Although several heuristics for the MQTC problem have been proposed in the lit-
erature (Cilibrasi and Vitányi 2005, 2011; Consoli et al. 2010), an exact solution
approach for the problem does not exist yet. Despite the high complexity of the prob-
lem, in this paper it is presented an exact algorithm, which is able to get exact solutions
for relatively small instances of the MQTC problem.

123

406 S. Consoli et al.

The exact algorithm consists of enumerating all possible solutions of the MQTC
problem, and then extracting the solutionwith the overall minimumcost. The approach
can be dissected into the following two main tasks:

T1. Given n objects, generate all different full binary trees topologies with n leaves
(n − 2 internal nodes);

T2. For each different full binary tree topology, perform all possible different per-
mutations of its leaves, and find the solution with the minimum cost for each
considered topology.

The global optimum solution is then the solution with the minimum cost among the
set of best solutions of all full binary trees topologies.

While the second algorithm’s task can be intuitively obtained by enumerating and
comparing all permutations of leaves for a given topology, the first task is quite com-
plex. The first enumeration of boron trees, or ternary trees, has been given by Cyvin
et al. (1995). Successively Cameron (2000a, b) provided the generating formula of this
enumeration,whose growth rate is exponential (Rains andSloane 1999). This sequence
is referred in Sloane and Plouffe (1995)’s Encyclopedia of Integer Sequences to as
A000672. In particular, given n objects, the growth rate of item T1 is singly exponen-
tial, and more precisely of the form 2O(n), whereas the asymptotic growth of item T2
rises up to O(n!) = 2O(n log n).

In order to generate all different boron trees topologies of n objects attached as
leaves, and to meet then the first task of our algorithm, we use a new methodology
which allows to easily compare boron trees topologies, and to discard a topology
already evaluated. This procedure is possible by associating to each dendrogram a
particular matrix representation, as it will described next, and it allows a uniform
random generation of the different boron trees topologies of n objects, i.e. in an
equiprobable way (Furnas 1984).

When all boron trees topologies are generated, all different permutations of the
leaves for each topology are evaluated and the relative minimum cost solution is
extracted. After evaluating all boron trees topologies along with their permutations of
leaves, it will be possible to produce the solution with the minimum cost among the
set of stored best solutions. This is the global best solution for the MQTC problem.

Before examining the details of our proposed algorithm, it is useful to specify some
notations related to full unrooted binary treew which will be used next.

Definition 2 (Degree of an internal node) The “degree of an internal node” of a full
unrooted binary tree is defined as the number of connections of the node with other
internal nodes.

As by definition a full unrooted binary tree has each internal node connected exactly
with three other nodes, therefore the degree of each internal node is bounded to lie in
the interval (1, 3).

Definition 3 (Classification of internal nodes) Given a full unrooted binary tree, its
internal nodes can be classified as:

– “terminal nodes”: connected to two leaves and another internal node (degree = 1));

123

An exact algorithm for the minimum quartet tree cost… 407

– “transition nodes”: connected to one leaf node and two other internal nodes (degree
= 2);

– “cross nodes”: connected to three other internal nodes (degree = 3).

Definition 4 (Boron degree) The “boron degree” of a full unrooted binary tree is
defined as its number of cross nodes.

Definition 5 (Flat structure) The “flat structure” of a full unrooted binary tree is its
structural topology having no cross node (i.e., having boron degree equal to zero).

Definition 6 (Branch) A “branch” of a full unrooted binary tree is any of its subgraphs
containing at most transition nodes and delimited either

– by two terminal nodes (in case of boron degree = 0, i.e. the flat structure);
– or by one terminal node and one cross node, or by two different cross nodes (case
boron degree > 0).

For example, Fig. 2 contains the six different boron tree topologies having nine
leaves. In particular, Fig. 2a shows the flat structure, which has boron degree = 0, and
just one branch; Fig. 2b shows the three topologies with boron degree = 1, and each
having exactly three branches; finally Fig. 2c shows the two topologies with boron
degree = 2, and each having exactly five branches.

4.1 Description of the algorithm

The building blocks of the proposed exact algorithm for the MQTC problem may be
summarized as the following:

1. definition of the initial topology structure (Sect. 4.1.1);
2. data representation (Sect. 4.1.2);
3. mechanism to compute efficiently the cost function value (Sect. 4.1.3);
4. procedure to evaluate all permutations of the leaves (Sect. 4.1.4);
5. way to generate all the different structural boron tree topologies (Sect. 4.1.5).

The overall algorithm which assembles all these fundamental parts is discussed in
Sect. 4.1.6, where a pseudo-code description is also given.

4.1.1 Initial topology structure

Given n objects and their pairwise distances stored in the n × n symmetric distance
matrix D, the algorithm starts by computing from the easiest possible full unrooted
binary tree topology, that is the flat structure (see Definition 5). This structure has
boron degree equal to zero, i.e. it does not contain any cross node but only transition
nodes and two terminal nodes. As an example consider the flat structure topology
for the case with nine leaves reported Fig. 2a. Proceeding with the computations, our
algorithm will increase the complexity of the topology structure in terms of boron
degree, discarding the topologies already evaluated. In this way the algorithm will be
able to generate all the possible full unrooted binary tree structural topologies for n
objects.

123

408 S. Consoli et al.

Fig. 2 The six different boron trees topologies with nine leaves. The nodes labelled with the notation ki are
the seven internal nodes

123

An exact algorithm for the minimum quartet tree cost… 409

4.1.2 Data representation

Givenn objects, each solution is represented by a (2n−2)×(2n−2)matrix thatwe refer
to as Complete Pseudo-Adjacency matrix, A = [A(i, j)] where i, j = 1, . . . , (2n −
2). Similarly to an usual adjacency matrix [see e.g. Diestel (2000)], in A we have
A(i, j) = 0 for each non-diagonal entry A(i, j), i �= j , where the two nodes i and j
are not directly connected each other. Conversely, when two nodes i and j are directly
connected we have A(i, j) > 0, but not the value 1 as in the usual adjacency matrix
representation (Diestel 2000). As it will be shown next, we use a different convention
also for the diagonal entries, which are used to store important information to speed-up
the computations.

The Complete Pseudo-Adjacency matrix can be also partitioned as

A(2n−2)×(2n−2) =
[
K (n−2)×(n−2) L(n−2)×n

L′n×(n−2) Cn×n

]

where K , referred to as Structure sub-matrix, is a (n− 2)× (n− 2) pseudo-adjacency
matrix for the internal nodes and it represents the structural topology of the given
solution; L, referred to as Leaves sub-matrix, is a (n − 2) × n adjacency matrix rep-
resenting the connections of the leaves with the internal nodes; C , called Coefficients
sub-matrix, is sized n × n and contains some useful coefficients used to compute the
cost associated to the given solution.

We can broaden the partitions of the Complete Pseudo-Adjacency matrix by
labelling its rows and columns as following:

k1 k2 . . . kn−2 l1 l2 . . . ln
k1 A(1, 1) A(1, 2) . . . A(1, n−2) A(1, n−1) A(1, n) . . . A(1, 2n−2)
k2 A(2, 1) A(2, 2) . . . A(2, n−2) A(2, n−1) A(2, n) . . . A(2, 2n−2)
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

kn−2 A(n−2, 1) A(n−2, 2) . . . A(n−2, n−2) A(n−2, n−1) A(n−2, n) . . . A(n−2, 2n−2)
l1 A(n−1, 1) A(n−1, 2) . . . A(n−1, n−2) A(n−1, n−1) A(n−1, n) . . . A(n−1, 2n−2)
l2 A(n, 1) A(n, 2) . . . A(n, n−2) A(n, n−1) A(n, n) . . . A(n, 2n−2)
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

ln A(2n−2, 1) A(2n−2, 2) . . . A(2n−2, n−2) A(2n−2, n−1) A(2n−2, n) . . . A(2n−2, 2n−2)

where k1, . . . , kn−2 are the internal nodes, and l1, . . . , ln are the leaves. In particular,
for the Structure sub-matrix K , in the diagonal are stored the degrees of the corre-
sponding internal nodes; for each non-diagonal entry A(i, j), i �= j , i, j ≤ (n − 2),
we have A(i, j) = 0 if nodes i and j are not directly connected each other; conversely,
if the nodes are directly connected, A(i, j) > 0, and in particular A(i, j) is equal to
to the number of leaves attached to the subgraph obtained by removing edge (i, j)
from the boron tree, and containing node j . For the Leaves sub-matrix L, we have
A(i, j) = 0, with i ≤ (n − 2) and j > (n − 2), if the node j (i.e. leaf l j−(n−2)) is
not connected to the node i (i.e. internal node ki), otherwise A(i, j) = 1. The entries
A(i, j), i, j = n − 1, . . . , 2n − 2 in the Coefficients submatrix C have to be derived
as specified in the paragraph that comes next.

123

410 S. Consoli et al.

Fig. 3 Flat structure with nine
leaves

For the example with nine leaves (i.e. seven internal node) the Complete Pseudo-
Adjacency matrix of the initial flat structure (Fig. 2a) has the following aspect:

k1 k2 k3 k4 k5 k6 k7 l1 l2 l3 l4 l5 l6 l7 l8 l9
k1 1 7 0 0 0 0 0 1 1 0 0 0 0 0 0 0
k2 2 2 6 0 0 0 0 0 0 1 0 0 0 0 0 0
k3 0 3 2 5 0 0 0 0 0 0 1 0 0 0 0 0
k4 0 0 4 2 4 0 0 0 0 0 0 1 0 0 0 0
k5 0 0 0 5 2 3 0 0 0 0 0 0 1 0 0 0
k6 0 0 0 0 6 2 2 0 0 0 0 0 0 1 0 0
k7 0 0 0 0 7 2 1 0 0 0 0 0 0 0 1 1
l1 1 0 0 0 0 0 0 A(8,8) A(8,9) A(8,10) A(8,11) A(8,12) A(8,13) A(8,14) A(8,15) A(8,16)
l2 1 0 0 0 0 0 0 A(9,8) A(9,9) A(9,10) A(9,11) A(9,12) A(9,13) A(9,14) A(9,15) A(9,16)
l3 0 1 0 0 0 0 0 A(10,8) A(10,9) A(10,10) A(10,11) A(10,12) A(10,13) A(10,14) A(10,15) A(10,16)
l4 0 0 1 0 0 0 0 A(11,8) A(11,9) A(11,10) A(11,11) A(11,12) A(11,13) A(11,14) A(11,15) A(11,16)
l5 0 0 0 1 0 0 0 A(12,8) A(12,9) A(12,10) A(12,11) A(12,12) A(12,13) A(12,14) A(12,15) A(12,16)
l6 0 0 0 0 1 0 0 A(13,8) A(13,9) A(13,10) A(13,11) A(13,12) A(13,13) A(13,14) A(13,15) A(13,16)
l7 0 0 0 0 0 1 0 A(14,8) A(14,9) A(14,10) A(14,11) A(14,12) A(14,13) A(14,14) A(14,15) A(14,16)
l8 0 0 0 0 0 0 1 A(15,8) A(15,9) A(15,10) A(15,11) A(15,12) A(15,13) A(15,14) A(15,15) A(15,16)
l9 0 0 0 0 0 0 1 A(16,8) A(16,9) A(16,10) A(16,11) A(16,12) A(16,13) A(16,14) A(16,15) A(16,16)

where the leaves have been assigned as in Fig. 3. As we may see from the figure,
each edge connecting every pair of internal nodes is labelled with two weights at
its extremities (in red), which represent the number of leaves contained in the two
subgraphs obtained by removing that edge from the boron tree (which are the non-
diagonal entries A(i, j), i �= j , i, j ≤ (n − 2), of the Structure sub-matrix K , also
depicted in the matrix in red). These weights will be useful in the determination of

123

An exact algorithm for the minimum quartet tree cost… 411

the coefficients A(i, j), i, j = n − 1, . . . , 2n − 2, of submatrix Cn×n , as it will be
explained in the next paragraph.

4.1.3 Computation of the cost function value

Given a full unrooted binary tree t with leaves assigned, to evaluate the cost of t we
should evaluate first all the

(n
4

) = n!
4!(n−4)! consistent quartet topologies embedded in

its configuration, and then summing the costs of all these quartets, which are taken
from the distance matrix D. That is, for the example of the flat structure with nine
leaves given in Fig. 3, we would need to enumerate first all the quartets embedded
in t :

(l1l2|l3l4), (l1l2|l3l5), (l1l2|l3l6), . . . , (l1l2|l3l9),
(l1l2|l4l5), (l1l2|l4l6), . . . , (l1l2|l4l9), . . . ,
(l2l3|l4l5), (l2l3|l4l6), . . . , (l1l2|l4l9), . . . , . . . ,
(l6l7|l8l9).

Then, to getC(t), we should sum the costs of all these embedded quartets (as expressed
in compact form in Eq. 3):

C(t) = C(l1l2|l3l4) + C(l1l2|l3l5) + C(l1l2|l3l6) + · · · + C(l1l2|l3l9)
+ C(l1l2|l4l5) + C(l1l2|l4l6) + · · · + C(l1l2|l4l9) + . . .

+ C(l2l3|l4l5) + C(l2l3|l4l6) + · · · + C(l1l2|l4l9) + · · · + · · ·
+ C(l6l7|l8l9)

that is, taking the costs from the distance matrix D:

C(t) = (D(l1, l2) + D(l3, l4)) + (D(l1, l2) + D(l3, l5)) + (D(l1, l2) + D(l3, l6)) + · · ·
+ (D(l1, l2) + D(l3, l9)) + (D(l1, l2) + D(l4, l5)) + (D(l1, l2) + D(l4, l6))

+ · · · + (D(l1, l2) + D(l4, l9)) + · · · + (D(l2, l3) + D(l4, l5)) + (D(l2, l3)

+ D(l4, l6)) + · · · + (D(l1, l2) + D(l4, l9)) + · · · + · · · + (D(l6, l7) + D(l8, l9)).

Summing all the common terms, for the particular case of the flat structure topology
with nine leaves, we would end up in something like:

C(t) = 21 · D(l1, l2) + 15 · D(l1, l3) + 10 · D(l1, l4) + · · ·
+ 10 · D(l6, l9) + 15 · D(l7, l9) + 21 · D(l8, l9),

that is:

C(t) = 1

2

n∑

a,b=1

coe f (a, b) · D(la , lb), (4)

with coe f (a, b) denoting the coefficient multiplying the distance D(la , lb). Note that
the 1/2 factor is included to the final result since the terms D(la , lb) and D(lb, la) are

123

412 S. Consoli et al.

equal, due to the symmetry of the distance matrix D, and thus the terms in the sum
are counted two times; therefore the result must be divided by two. We can store the
coe f (·, ·) factors in the Coefficients submatrix C , in particular they are set to A(i, j),
with i, j = n−1, . . . , 2n−2; coefficient values in the diagonal are set instead simply
to one (they are irrelevant because they are always multiplied by zero, since D(i,i) = 0
by definition of dissimilarity matrix). The Complete Pseudo-Adjacency matrix takes
the form of:

k1 k2 k3 k4 k5 k6 k7 l1 l2 l3 l4 l5 l6 l7 l8 l9
k1 1 7 0 0 0 0 0 1 1 0 0 0 0 0 0 0
k2 2 2 6 0 0 0 0 0 0 1 0 0 0 0 0 0
k3 0 3 2 5 0 0 0 0 0 0 1 0 0 0 0 0
k4 0 0 4 2 4 0 0 0 0 0 0 1 0 0 0 0
k5 0 0 0 5 2 3 0 0 0 0 0 0 1 0 0 0
k6 0 0 0 0 6 2 2 0 0 0 0 0 0 1 0 0
k7 0 0 0 0 7 2 1 0 0 0 0 0 0 0 1 1
l1 1 0 0 0 0 0 0 1 21 15 10 6 3 1 0 0
l2 1 0 0 0 0 0 0 21 1 15 10 6 3 1 0 0
l3 0 1 0 0 0 0 0 15 15 1 11 7 4 2 1 1
l4 0 0 1 0 0 0 0 10 10 11 1 9 6 4 3 3
l5 0 0 0 1 0 0 0 6 6 7 9 1 9 7 6 6
l6 0 0 0 0 1 0 0 3 3 4 6 9 1 11 10 10
l7 0 0 0 0 0 1 0 1 1 2 4 7 11 1 15 15
l8 0 0 0 0 0 0 1 0 0 1 3 6 10 15 1 21
l9 0 0 0 0 0 0 1 0 0 1 3 6 10 15 21 1

(5)

where in green are depicted the evaluated coefficients of C. In this way, the cost of
the full unrooted binary tree t can be simply obtained in compact form by multiplying
the transpose of the Coefficients submatrix C by the distance matrix D:

C(t) = 1

2
· CT · D. (6)

But the nicest thing is that, in addition,we have found an efficient and automaticway
to calculate the coefficients of C avoiding the burdensome procedure just illustrated,
i.e. without the need of evaluating each time all the

(n
4

) = n!
4!(n−4)! consistent quartet

topologies embedded in the boron tree t , and then summing the costs of all these
quartets. We discovered that the coefficient factors coe f (·, ·) stored in C (in green)
dependdirectly from theweights stored in theStructure sub-matrix K (in red) bymeans
of the formula of triangular numbers (Deza and Deza 2012). Triangular numbers are
those numbers which can be arranged in a compact triangular pattern, that is they count
the objects that can form an equilateral triangle (Deza and Deza 2012). The triangular
number of n, referred to as T (n), where n is any natural number, is the sum of the n
natural numbers from 1 to n, i.e. 1+2+3+4+5+6+7+· · ·+n. It can be obtained
by means of the following explicit formulas:

T (n) =
n∑

i=1

i = n(n + 1)

2
=

(
n + 1

2

)
, (7)

e.g., T (1) = 1; T (2) = 1+2 = 3; T (3) = 1+2+3 = 6; T (4) = 1+2+3+4 = 10.

123

An exact algorithm for the minimum quartet tree cost… 413

In other words, the sequence of triangular numbers (sequence A000217 in Sloane
and Plouffe (1995)’s Encyclopedia of Integer Sequences), starting at the 0th trian-
gular number, is: 0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153,
171, 190, 210, 231, 253, 276, 300, 325, 351, 378, 406,

The properties of such numberswere first studied by ancient Greekmathematicians,
particularly the Pythagoreans. Flocks of birds often fly in this triangular forma-
tion. Even several airplanes when flying together constitute this fascinating swarm
sequence (Deza and Deza 2012).

We found aparticular relation between the coefficients stored inC and theweights of
the Structure sub-matrix K . The coefficient multiplying D(la , lb), namely coe f (a, b),
is equal to the sum of the triangular numbers of the weights, subtracted by one, of
the outgoing edges linked to internal nodes which are excluded from the subgraph
obtained by connecting nodes a and b.1

We explain this statement with an example. Consider the full unrooted binary tree
with nine leaves depicted in Fig. 3. To get the coefficient multiplying D(l1, l4), i.e.
coe f (l1, l4), stored in position A(8, 11) in the Coefficients submatrix C , evaluate first
the path between l1 and l4; the resulting subgraph has the following nodes: {k1, k2, k3}.
Consider now the outgoing edges, linked to internal nodes only, which are excluded
from this subgraph; this set is composed in this case by edge (k3, k4) only. The outgoing
weight (k3, k4) is 5 [see Fig. 3 and the corresponding entry within the Structure sub-
matrix K given in (5)]. Consider now the triangular number of this weight minus one
(i.e. of 4); the resulting coefficient is 10, as you can see stored in C. To show another
instance, let’s consider the coefficient multiplying D(l5, l6), i.e. coe f (l5, l6), stored in
position A(12, 13) in the Coefficients submatrix C. The path between l5 and l6 is formed
by the nodes: {k4, k5}. The outgoing edges excluded from this subgraph, and linked to
internal nodes only, are the following edges: (k4, k3) and (k5, k6). The corresponding
outgoing weights are, respectively, 4 and 3. The triangular numbers of these weights
minus one (i.e. 3 and 2) are, respectively, 6 and 3. The sum of these triangular numbers
is 9, which is the resulting coefficient coe f (l5, l6) (i.e. A(12, 13)) stored in C .

This procedure can be easily automated for all coefficients, allowing to find them
in polynomial time, and avoiding the burdensome calculations of all the costs of the
consistent quartet topologies embedded in t . Then the overall cost of t is simply
obtained by Eq. 6. But this cost is that given by the particular assignment of the
leaves as illustrated in Fig. 3. To evaluate all the costs of a fixed full unrooted binary
tree topology, i.e. the flat structure topology in our example, we need to perform all
the permutations of its assigned leaves and, for each performed leaves permutation,
evaluate the correspondent tree cost. This will be explained in more detail in the next
section.

4.1.4 Evaluation of all permutations of the leaves

This section explains how to address the algorithm taskT2 stated in Sect. 4.Given a full
unrooted binary tree topology, to find its minimal possible cost we need to evaluate the

1 Note that by construction there is always one and only one path connecting two leaves of a full unrooted
binary tree.

123

414 S. Consoli et al.

costs of all the possible combinations of the leaves attached to that specific considered
topology. The combination which will give the minimum amongst these costs will be
the best possible solution for that specific topology.

To consider all the possible combinations of attached leaves, we need to perform all
the permutations of the leaves. Given a distance matrix D with n objects, considering
all the possible permutations of the leaves attached to a specific full unrooted binary
tree topology takes a factorial time with respect to n:

n!
2n_term

,

where n_term stands for the number of terminal nodes of the considered topology.
The factorial term n! is divided by 2n_term because we do not need to evaluate the
permutations of two leaves attached to the same terminal node, since this permutation
will not bring a change in the cost value; therefore we need to evaluate only one of
the two possibilities for each terminal node.

The factorial growth of this phase of the algorithm further confirms the high
computational complexity of the considered problem. To some extent the adopted rep-
resentation of data through the Complete Pseudo-Adjacency matrix provides us some
help. Indeed, to consider all these combinationswe canwork directly on A and perform
all the possible permutations of rows and columns with i, j = (n − 1), . . . , (2n − 2),
i.e. rows and columns of the Leaves sub-matrix, L. The permutations will involve also
commuting the elements of the Coefficients sub-matrix, providing us automatically
the corrected coefficient values for the new configuration, thus avoiding any additional
calculation at this purpose. For example, consider the case of the flat structure topology
with nine leaves, whose initial Complete Pseudo-Adjacency matrix is given in (5). For
instance, in order to perform the permutation of leaves l3 and l5, we need to swap the
rows and columns corresponding to those leaves, i.e. rows A(:, 10) and A(:, 12), and
columns A(10, :) and A(12, :). The resulting matrix A is the following:

k1 k2 k3 k4 k5 k6 k7 l1 l2 l5 l4 l3 l6 l7 l8 l9
k1 1 7 0 0 0 0 0 1 1 0 0 0 0 0 0 0
k2 2 2 6 0 0 0 0 0 0 0 0 1 0 0 0 0
k3 0 3 2 5 0 0 0 0 0 0 1 0 0 0 0 0
k4 0 0 4 2 4 0 0 0 0 1 0 0 0 0 0 0
k5 0 0 0 5 2 3 0 0 0 0 0 0 1 0 0 0
k6 0 0 0 0 6 2 2 0 0 0 0 0 0 1 0 0
k7 0 0 0 0 7 2 1 0 0 0 0 0 0 0 1 1
l1 1 0 0 0 0 0 0 1 21 6 10 15 3 1 0 0
l2 1 0 0 0 0 0 0 21 1 6 10 15 3 1 0 0
l5 0 0 0 1 0 0 0 6 6 1 9 7 9 7 6 6
l4 0 0 1 0 0 0 0 10 10 9 1 11 6 4 3 3
l3 0 1 0 0 0 0 0 15 15 7 11 1 4 2 1 1
l6 0 0 0 0 1 0 0 3 3 9 6 4 1 11 10 10
l7 0 0 0 0 0 1 0 1 1 7 4 2 11 1 15 15
l8 0 0 0 0 0 0 1 0 0 6 3 1 10 15 1 21
l9 0 0 0 0 0 0 1 0 0 6 3 1 10 15 21 1

where in yellow are depicted the swapped rows and columns.
To evaluate the cost associated to this new configuration we need just to multiply

the transpose of the new Coefficients submatrix C by the distance matrix D (Eq. 6).

123

An exact algorithm for the minimum quartet tree cost… 415

After evaluated all the possible permutations, and calculated the correspondent cost
values, the configuration providing the minimal overall cost will provide us the best
possible solution obtained by the considered full unrooted binary tree topology.

The global optimum solution of the MQTC problem is then the solution with the
minimum cost among the set of best solutions of all different full binary trees topolo-
gies. Given a distance matrix D among n objects, we need therefore a generation
mechanism of all the different boron tree topologies having n objects. This generation
procedure will be explained in the next section.

4.1.5 Generation of all different structural boron tree topologies

This section shows how to address the algorithm task T1 stated in Sect. 4, which
consists on the generation of all different boron trees topologies having n leaves.
The enumeration of non-isomorphic boron trees, see generating formula A000672
in Sloane and Plouffe (1995)’s Encyclopedia of Integer Sequences, has exponential-
growth rate (Rains and Sloane 1999), as shown in Fig. 4 and Table 1.

The procedure which we illustrate here is able to enumerate and to generate all
non-isomorphic boron tree topologies with n leaves, and to discard topologies already
evaluated, avoiding useless repetitions. To this aimwewillworkwith theStructure sub-
matrix K only, since we do not require any information on the particular connections
order of the attached leaves. Indeed K is a (n−2)×(n−2) pseudo-adjacencymatrix for
the internal nodes and it represents itself the structural topology of the corresponding
boron tree. To discard topologies already evaluated, we will make use of isomorphism
invariants of graphs. That is, given two graphs G1 and G2, with adjacency matrices
A1 and A2, these are isomorphic if and only if there exists a permutation matrix P
such that P · A1 · P−1 = A2. In particular A1 and A2 are similar and therefore
have the same minimal polynomial, characteristic polynomial, spectrum (i.e., the set
of its eigenvalues), determinant, and trace, which serve as isomorphic invariants of

Fig. 4 Plot of sequence A000672

123

416 S. Consoli et al.

Table 1 Enumeration of non-isomorphic boron trees given by the generating formula A000672 in Sloane
and Plouffe (1995)’s Encyclopedia of Integer Sequences

Number of different structural boron trees per number of leaves n (sequence A000672)

n 4 5 6 7 8 9 10 11 12 13 14 15

A000672 1 1 2 2 4 6 11 18 37 66 135 265

n 16 17 18 19 20 21 … 25 … 30 … 35

A000672 552 1132 2410 5098 11020 23 · 103 . . . 565 · 103 . . . 32 · 106 . . . 2 · 109

the graphs. Following this concept, it is possible to discard incumbent full unrooted
binary tree topologies if their isomorphic invariants coincide with those of the boron
tree topologies already evaluated before. In this way repetitions of topologies are
excluded.

The procedure used to generate all non-isomorphic full unrooted binary tree topolo-
gies with n leaves (i.e. n−2 internal nodes) is illustrated in Algorithm 1. The algorithm
starts by generating the initial topology structure (Line 1), which, as already specified
before, is chosen to be the flat structure (see Definition 5). This is indeed the simplest
possible full unrooted binary tree topology, having boron degree equal to zero (see
Fig. 2a). This first topology is stored in Θ (Line 3.1), which represents the set of non-
isomorphic full unrooted binary tree topologies already evaluated. To keep track of this
structure, its isomorphic invariants are calculated and stored in the Box set, as shown

Algorithm 1: Generation of all non-isomorphic topologies with n leaves

Input: The number n of leaves;

Output: The set Θ of non-isomorphic full unrooted binary tree topologies with n − 2 internal nodes
(i.e. n leaves);

0 Startup:

- Let Box ← ∅ be the array variable containing the isomorphic invariants of the already evaluated
boron tree topologies;

begin
1 · Set Θ ← ∅;
2 · Generate the initial topology structure: tstruct ←Initialization(n);

3 while tstruct is not null do //evaluate all topology structures

3.1 · Store the topology tstruct : Θ ← Θ ∪ tstruct ;

3.2 · Store the isomorphic invariants of tstruct : Box ← Box ∪ I nvar(tstruct);

//Find another non-isomorphic topology:

3.3 while (I nvar(tstruct) ∈ Box) AND (tstruct is not null) do
3.3.1 · Evaluate the next topology structure: tstruct ←Next-struct(tstruct);

end

end
4 ⇒ The set of non-isomorphic full unrooted binary tree topologies Θ .

end

123

An exact algorithm for the minimum quartet tree cost… 417

in Line 3.2. Then another full unrooted binary tree topology is selected from tstruct by
using the generation function referred to as Next − struct(tstruct) (Line 3.3.1). The
function is aimed at increasing by one the degree of the incumbent boron tree topology;
for every branch of the incumbent tree, iteratively if there are two transition nodes in
the same branch, they are transformed into one cross node and one leaf node, by modi-
fying consequently the corresponding Structure sub-matrix. For example, considering
the initial flat structure of Fig. 2a, the function would compute one branch only; from
this branch, it will select the first two consecutive transition nodes, namely k2 and k3,
and transform them into one cross node and one leaf node, yielding to the first graph
depicted in Fig. 2b which has a boron degree increased by one with respect to the
previous boron tree topology. This new topology will be is stored in Θ , along with its
isomorphic invariants in Box . The procedure is iterated also for the other successive
internal nodes, and eventually for other branches of the incumbent topology structure,
discarding each time isomorphic topologies (I nvar(tstruct) ∈ Box , see Line 3.3),
while storing the new non-isomorphic topologies and the corresponding isomorphic
invariants. The functions breaks when all full unrooted binary tree topologies have
been evaluated (i.e. tstruct is null, Line 3.3), giving in output the set of non-isomorphic
full unrooted binary tree topologies Θ with n leaves (Line 4).

At this point it is now possible to find the global optimum solution of the MQTC
problem. For each different full binary tree topology produced, we need performing
all possible permutations of its leaves, as specified in Sect. 4.1.4, and then finding the
solution with the minimum cost for each considered topology. Finally, the minimal
cost solution among this obtained set will provide the global MQTC best solution, as
described in more detail in the next section.

4.1.6 Resulting exact algorithm

The overall solution approach that we propose for theMQTC problem results from the
combination of the basic building blocks just described in the previous paragraphs.
It has been been implemented by using the C++ programming language under the
Microsoft Visual Studio .NET framework, version 4.6. The executables and source
codes of the algorithm are available to download upon request from the authors.
The details of our exact method are summarized in pseudo-code in the following
Algorithm 2.

Given n ≥ 4 objects to cluster, and an appropriate distance metric determining the
dissimilarities among those objects, the algorithm starts from a symmetric distance
matrix D containing the n×n pairwise distances, normalized between 0 and 1, among
the n objects. As explained in Sect. 4.1.1, the initial flat boron tree topology, tstruct , is
generated by the Initialization(·) procedure; successivelywewill generate and evaluate
all the other different boron tree topologies of n objects by following Algorithm 1,
already explained inSect. 4.1.5.We store the topology structure tstruct under evaluation
in Θ (Line 2.1), and its isomorphic invariants in the Box set (Line 2.2). Next, the n
objects are randomly placed to leaves of tstruct by means of the Assign-leaves(·, ·)
procedure, producing the incumbent solution t (Line 2.3). Considering all the objects
dissimilarities in D, the cost function value of this solution is evaluated as thoroughly

123

418 S. Consoli et al.

Algorithm 2: Exact algorithm for the MQTC problem

Input: A symmetric distance matrix D containing the n × n pairwise distances among n ≥ 4 objects;

Output: A full unrooted binary tree tbest with 2n − 2 nodes;

0 Startup:

- Let Γ be the class of full unrooted binary trees with 2n − 2 nodes (i.e. n leaves and n − 2 internal
nodes), obtained by placing the n ≥ 4 objects as leaves;

- For each x ∈ Γ , let C(x) > 0 be the cost function value associated to x ;

- Let t ∈ Γ be the full unrooted binary tree used as support solution at each iteration;

- Let Box ← ∅ be the array variable containing the isomorphic invariants of the already evaluated
boron tree topologies;

begin
1 · Generate the initial topology structure: tstruct ←Initialization(n);

2 while tstruct is not null do //evaluate all topology structures

2.1 · Store the topology tstruct : Θ ← Θ ∪ tstruct ;

2.2 · Store the isomorphic invariants of tstruct : Box ← Box ∪ I nvar(tstruct);

2.3 · Place the n leaves to tstruct at random: t ←Assign-leaves(tstruct , n);

2.4 · Evaluate the cost function value of t : C(t) ←Evaluate(t, D);
2.5 if tbest is null then //just in the initialization step

2.5.1 · Set tbest ← t and C(tbest) ← C(t);

end
//Perform all permutations of leaves:

2.6 for i ← 1 to n do
≈ for j ← 1 to i , i �= j do

2.6.1 · Permutation of leaves i and j : t ←Swap-leaves(t, i, j);

2.6.2 · Evaluate the cost function value of t : C(t) ←Evaluate(t, D);
2.6.3 if C(t) < C(tbest) then //store the best solution

2.6.3a · Move tbest ← t ;

2.6.3b · Set C(tbest) ← C(t);

end

end

end
//Find another non-isomorphic topology:

2.7 while (I nvar(tstruct) ∈ Box) AND (tstruct is not null) do
2.7.1 · Evaluate the next topology structure: tstruct ←Next-struct(tstruct);

end

end
3 ⇒ The full unrooted binary tree tbest ∈ Γ .

end

explained in Sect. 4.1.3 and, being this the first considered solution, it is saved as the
best solution to date, tbest (Lines 2.5–2.5.1).

Now we need to evaluate all the leaves permutations in order to get the best solu-
tion for the specific full unrooted binary topology that is considered. This involves
exchanging the position of each pair of leaves (procedure Swap − leaves(t, i, j),
∀i, j ∈ [1, n]), and saving the solution with the lowest cost function value as best

123

An exact algorithm for the minimum quartet tree cost… 419

solution to date tbest (Lines 2.6.3a–2.6.3b). Note that useless repetitions at this step
are avoided as explained in Sect. 4.1.4.

Afterwards another full unrooted binary tree topology tstruct is iteratively
constructed, following the generation routine already illustrated in Algorithm 1
(Sect. 4.1.5), and repeating the previous steps (Lines 2.1–2.6.3). The overall pro-
cedure is iterated and throughout the execution of the algorithm, the best solution to
date is stored as the binary tree tbest . The algorithm will stop when all full unrooted
binary tree topologies and their permutations have been evaluated (i.e. tstruct is null,
Line 2.7) producing as output the minimal cost solution tbest (Line 3), that represents
the global optimum for the MQTC problem.

5 Gold standard foundation

Table 2 provides the gold standard for the MQTC problem. To create the gold stan-
dard, we have randomly generated 10 problem instances for each configuration of
the number of internal nodes, n. In particular, given a specific n value, ten different
dissimilarity matrices D have been randomly generated, thus providing ten different
problem instances for each n configuration. Each matrix D contains the pairwise dis-
tances among the n objects. The dissimilarities are positive rational values which have
been taken randomly in [0, 1], with the dissimilarity value 1 representing the largest
distance between two objects. Note that in the process of generation of the distance
matrices it has been imposed both the symmetry constraint of each D, and the triangle
inequality (Diestel 2000), i.e.: ∀i, j, i �= j < n, D(i, j) ≤ D(i, k) + D(k, j), for any
k �= i, j . All the elements in the diagonal of each D have been set equal to 0. Although
we impose symmetry of D and holding of triangle inequality to refer to Euclidean
distances for the process of generation of the problem instances of the gold standard,
the algorithm is in principle generalizable to other kind of distances for which these
properties might not be valid or applicable.

After generating the problem instances, we executed the exact algorithm to solve
them, starting with the instances with the lowest number of internal nodes n = 4,
and then increasing it. The results are reported in Table 2, which shows the exact
solutions obtained by our algorithm on the considered MQTC problem instances. On
top are reported the computational results in terms of cost function values C(t) and on
bottom the running times in seconds. The first column specifies the number of internal
nodes n, the second column the number of different structural boron tree topologies
for the given n, and the third one the number of permutations n! to consider for each
of the boron tree topologies. The columns #1 …#10 provide the results for each of
the ten problem instances generated for each n. Our computational experiments were
conducted on an Intel Quad-Core i5 5300U CPU (2.3 GHz) with 16 GB of RAM.

The instances with a low n value, e.g. n = 4–8 were easily solved within few
seconds.However increasingn the computational time started to increase considerable,
becoming in the order of magnitude of minutes for n = 9–10. Afterwards, even
with a small increase of n, the computational time exploded confirming the high
computational complexity of the problem, and for each instance the exact method
required hours of computations. Instanceswith n = 12, which required the evaluations

123

420 S. Consoli et al.

Ta
bl
e
2

T
he

ta
bl
e
sh
ow

s
th
e
ex
ac
ts
ol
ut
io
ns

ob
ta
in
ed

by
ou

r
al
go

ri
th
m

on
th
e
co
ns
id
er
ed

M
Q
T
C
pr
ob

le
m

in
st
an
ce
s

C
os
tf
un

ct
io
n
va
lu
es

C
(t
)

n
A
00

06
72

n!
#1

#2
#3

#4
#5

#6
#7

#8
#9

#1
0

4
1

24
1.
25

62
1.
49

09
1.
45

76
1.
89

57
1.
41

54
1.
24

52
1.
69

34
1.
96

03
1.
04

32
1.
70

08

5
1

12
0

6.
51

22
5.
80

76
5.
67

84
6.
17

37
6.
35

38
5.
88

61
6.
58

46
6.
64

57
6.
06

96
7.
38

11

6
2

72
0

24
.0
30

3
19

.2
47

4
23

.2
27

3
21

.0
04

3
21

.0
21

4
19

.0
14

6
17

.2
77

0
17

.9
36

9
21

.2
39

5
19

.1
27

9

7
2

50
40

44
.9
92

1
44

.6
81

1
42

.3
67

0
46

.4
92

6
50

.2
48

4
43

.1
16

7
48

.8
85

9
50

.2
99

9
46

.3
15

8
48

.8
20

0

8
4

40
·1

03
91

.9
60

6
10

9.
90

54
86

.5
33

5
99

.3
84

4
10

5.
21

60
97

.3
84

5
77

.2
69

6
10

3.
97

52
83

.4
88

9
10

9.
40

40

9
6

36
2

·1
03

19
0.
88

28
15

4.
33

90
16

3.
59

98
22

2.
84

61
19

6.
31

94
18

2.
34

88
19

7.
67

58
17

1.
66

53
21

5.
18

05
18

8.
24

27

10
11

3.
6

·1
06

28
4.
00

47
30

9.
95

97
34

2.
08

03
32

0.
22

49
26

2.
74

39
28

0.
40

22
34

2.
75

56
34

3.
75

22
27

2.
35

72
31

9.
87

87

11
18

39
·1

06
44

7.
39

03
48

9.
27

08
43

3.
15

29
42

6.
72

13
52

7.
85

55
48

5.
89

53
53

5.
10

13
48

9.
31

20
50

6.
96

66
50

5.
06

29

12
37

47
9

·1
06

79
1.
30

53
58

1.
48

83
67

0.
50

00
75

3.
87

92
72

3.
51

95
81

8.
75

93
74

2.
67

02
76

8.
68

50
74

3.
34

66
72

8.
32

62

C
om

pu
ta
ti
on

al
ru
nn

in
g
ti
m
es

(s
)

n
A
00

06
72

n!
#1

#2
#3

#4
#5

#6
#7

#8
#9

#1
0

4
1

24
0.
00

5
0.
00

2
0.
00

3
0.
00

3
0.
00

4
0.
00

2
0.
00

5
0.
00

2
0.
00

2
0.
00

2

5
1

12
0

0.
01

5
0.
01

7
0.
01

4
0.
01

0
0.
01

7
0.
01

8
0.
01

5
0.
02

9
0.
02

2
0.
01

1

6
2

72
0

0.
01

4
0.
11

8
0.
01

8
0.
05

7
0.
10

4
0.
04

6
0.
04

3
0.
05

2
0.
01

3
0.
06

7

123

An exact algorithm for the minimum quartet tree cost… 421

Ta
bl
e
2

co
nt
in
ue
d

C
om

pu
ta
ti
on

al
ru
nn

in
g
ti
m
es

(s
)

n
A
00

06
72

n!
#1

#2
#3

#4
#5

#6
#7

#8
#9

#1
0

7
2

50
40

0.
32

6
0.
34

8
0.
35

2
0.
30

2
0.
32

4
0.
32

0
0.
30

4
0.
27

9
0.
26

9
0.
28

2

8
4

40
·1

03
3.
59

9
3.
19

6
3.
21

2
3.
22

4
3.
25

3
3.
27

2
3.
43

7
3.
24

7
3.
31

0
3.
24

7

9
6

36
2

·1
03

45
.1
43

45
.6
44

48
.2
53

41
.1
39

43
.6
78

48
.7
91

44
.4
54

45
.3
21

54
.4
39

46
.4
08

10
11

3.
6

·1
06

23
1.
61

8
24

0.
73

8
23

0.
57

6
23

0.
05

7
23

0.
56

9
23

0.
08

4
23

0.
22

8
23

0.
23

3
23

2.
96

4
23

0.
49

3

11
18

39
·1

06
4.
17

9
·1

03
4.
13

4
·1

03
4.
13

3
·1

03
4.
12

8
·1

03
4.
12

6
·1

03
4.
12

4
·1

03
4.
12

1
·1

03
4.
12

7
·1

03
4.
19

0
·1

03
4.
13

4
·1

03

12
37

47
9

·1
06

10
2.
44

2
·1

03
10

2.
91

6
·1

03
10

1.
95

3
·1

03
10

1.
88

5
·1

03
98

.8
77

·1
03

10
5.
69

2
·1

03
96

.0
52

·1
03

10
1.
51

2
·1

03
10

0.
53

4
·1

03
10

4.
95

1
·1

03

O
n
to
p
ar
e
re
po
rt
ed

th
e
co
m
pu
ta
tio

na
l
re
su
lts

in
te
rm

s
of

co
st
fu
nc
tio

n
va
lu
es

C
(t

)
an
d
on

bo
tto

m
th
e
ru
nn
in
g
tim

es
in

se
co
nd
s.
T
he

fir
st
co
lu
m
n
sp
ec
ifi
es

th
e
nu

m
be
r
of

in
te
rn
al

no
de
s,
w
hi
ch

ra
ng

e
fr
om

n
=

4
to

12
,t
he

se
co
nd

co
lu
m
n
th
e
nu

m
be
r
of

di
ff
er
en
t
st
ru
ct
ur
al

bo
ro
n
tr
ee

to
po

lo
gi
es

fo
r
th
e
gi
ve
n
n,

an
d
th
e
th
ir
d
on

e
th
e
nu

m
be
r
of

pe
rm

ut
at
io
ns

n!
to

co
ns
id
er

fo
r
ea
ch

of
th
e
bo

ro
n
tr
ee

to
po

lo
gi
es
.F

or
ea
ch

co
nfi

gu
ra
tio

n
of

n,
te
n
pr
ob

le
m

in
st
an
ce
s
ar
e
ge
ne
ra
te
d.
T
he

co
lu
m
ns

#1
…

#1
0
pr
ov
id
e
th
e
re
su
lts

fo
r
ea
ch

of
th
em

123

422 S. Consoli et al.

of millions of different candidate solutions, produced by 479 · 106 for each of the 37
different boron tree topologies, were solved in around 24 hours of computation for
each problem instance. Therefore we stopped our computations with this value of n,
producing an overall gold standard of 90 different problem instances.

Despite the factorial complexity growth on the number of candidate solutions to
evaluate, these results represent the first known gold standard for the MQTC prob-
lem. It can be freely downloaded from https://sites.google.com/site/quartetmethod/
GoldStandard.zip. This is a useful resource for any researcher in the field interested
in the MQTC problem and it allows the validation of the performance of any quartet
tree heuristic proposed for the MQTC problem.

6 Discussion

The implementation of the proposed exact algorithm contains some very interesting
insights and still few open questions, which we depict in the following.

– To represent the topology structure of each solution we use a particular Pseudo-
adjacency matrix representation, A, as explained in Sect. 4.1.2. This data
representation allows us to embed important information within A itself, avoiding
the cumbersome recalculation of its coefficients at every iteration, and speeding up
the overall algorithm computation. This data representation, for example, permits
the quick evaluation of the cost function value of a full unrooted binary tree t
simply by multiplying the transpose of its Coefficients submatrix C in A by the
distance matrix D given in input, as in Eq. 6.

– The particular relation that we discovered between the coefficient factors coe f (·, ·)
stored in C and the weights stored in the Structure sub-matrix K , expressed by
means of the formula of triangular numbers (Eq. 7) is very handful. We found that
the coefficient multiplying D(la , lb), namely coe f (a, b), is equal to the sum of the
triangular numbers of the weights, subtracted by one, of the outgoing edges linked
to internal nodes which are excluded from the subgraph obtained by connecting
nodes a and b. As explained is Sect. 4.1.3, this fascinating relationship permits the
calculation of the coefficients of C in a fast and automatic way, avoiding at each
iteration the burdensome enumeration procedure of the

(n
4

) = n!
4!(n−4)! consistent

quartet topologies embedded in a boron tree t , and the sum of the costs of all these
quartets.

– The adopted data representation through A provides us a shortcut in the evaluation
of all permutations of the leaves, which by default has an high factorial compu-
tational complexity with respect to the number of leaves. Indeed, to consider all
the leaves combinations we work directly on A and perform all the possible per-
mutations of rows and columns with i, j = (n − 1), . . . , (2n − 2), i.e. rows and
columns of the Leaves sub-matrix, L. These permutations involve also commuting
the elements of the Coefficients sub-matrix, providing us automatically the cor-
rected coefficient values for the new configuration, thus avoiding any additional
calculation at this purpose.

123

https://sites.google.com/site/quartetmethod/GoldStandard.zip
https://sites.google.com/site/quartetmethod/GoldStandard.zip

An exact algorithm for the minimum quartet tree cost… 423

Fig. 5 Plot of traces trk (n) of the Structure sub-matrices K which increase linearly with the number of
nodes n by a coefficient 2

Fig. 6 Plot of smallest eigenvalues min_λk (n) of the Structure sub-matrices K which decrease linearly
with the number of nodes n by a coefficient 1

– In addition, as explained in Sect. 4.1.4, given a boron tree t and its number of
terminal nodes, n_term, the factorial n! related to the evaluation of all the per-
mutations of the leaves of t is soften by the factor 2n_term , since we can skip the
computation of the permutations of two leaves attached to the same terminal node,
because this does not provide any change in the cost function value.

– We also found out experimentally that the traces, say trk(n), of all the possible
Structure sub-matrices K for a given number of nodes n are always equal. In

123

424 S. Consoli et al.

addition trk(n) linearly increases by a coefficient 2 with the respect to the number
of nodes n , i.e. trk(n + 1) = trk(n) + 2 with n > 4 and trk(4) = 2, as shown in
Fig. 5.

– Similarly, we found out experimentally that the smallest eigenvalues, say
min_λk(n), of all the possible Structure sub-matrices K for a given number of
nodes n are always equal. In addition min_λk(n) linearly decreases by a coeffi-
cient 1with respect to the number of nodes n , i.e.min_λk(n+1) = min_λk(n)−1
with n > 4 and min_λk(4) = −1, as shown in Fig. 6.

7 Conclusion

In this paper we considered the minimum quartet tree cost (MQTC) problem, a graph
combinatorial optimization problem suited for general hierarchical clustering. Given
a set of n ≥ 4 data objects and their pairwise costs (or distances), the goal of the
MQTC problem consists of finding the full unrooted binary tree having the n objects
as leaves and minimal sum of the costs of the

(n
4

)
embedded (or consistent) quartet

topologies. The MQTC problem is NP-complete and in the literature some heuristics
have been proposed in order to get approximate solutions to the problem.

This paper has presented an exact solution approach for the MQTC problem. The
algorithm is able to get exact solutions for relatively small problem instances, due to the
high problem complexity. These solutions represent the first known gold standard for
theMQTCproblem,which represents ameaningful resource to be used as a benchmark
for validating the performance of any approximate solution approach proposed for
the problem. In addition, the algorithm contains some very interesting concepts and
insights whichmay be useful for the construction of more efficient heuristics, obtained
either by improving the MQTC heuristics to date, or by hybridization of the exact
method with some other heuristic producing some advanced mat-heuristics.

Acknowledgements The author Dr. Sergio Consoli wants to dedicate this work with deepest respect to the
memory of Professor Kenneth Darby-Dowman, a great scientist, an excellent manager, the best supervisor,
a wonderful person, a real friend. He is also particularly grateful to Eng. Lucia Cantone, Prof. Fabrizio
Consoli, Prof. Pierpaolo Vivo, Prof. Diego Reforgiato Recupero, and Eng. Niccolo’ Nobile, for helpful
guidance and support, inspiring discussions, and precious advices during the development of this research
work.

References

Cameron PJ (2000a) Sequences realized by oligomorphic permutation groups. J Integer Seq 3. Article:
00.1.5

Cameron PJ (2000b) Some counting problems related to permutation groups.DiscreteMath 225(1–3):77–92
Cilibrasi R, Vitányi PMB (2005) Clustering by compression. IEEE Trans Inf Theory 51(4):1523–1545
CilibrasiR,Vitányi PMB(2007)The google similarity distance. IEEETransKnowlDataEng19(3):370–383
Cilibrasi R, Vitányi PMB (2011) A fast quartet tree heuristic for hierarchical clustering. Pattern Recognit

44(3):662–677
Cilibrasi R, Vitányi PMB, de Wolf R (2004) Algorithmic clustering of music based on string compression.

Comput Music J 28(4):49–67

123

An exact algorithm for the minimum quartet tree cost… 425

Consoli S, Darby-Dowman K, Geleijnse G, Korst J, Pauws S (2010) Heuristic approaches for the quartet
method of hierarchical clustering. IEEE Trans Knowl Data Eng 22(10):1428–1443

Consoli S, Moreno-Pérez JA (2012) Solving the minimum labelling spanning tree problem using hybrid
local search. In: Proceedings of the mini EURO conference XXVIII on variable neighbourhood search
(EUROmC-XXVIII-VNS), vol 39. Electronic notes in discrete mathematics, Hergeg Novi, Montene-
gro, pp 75–82

Consoli S, Stilianakis NI (2015) A VNS-based quartet algorithm for biomedical literature clustering. Elec-
tron Notes Discrete Math 47:13–20

Consoli S, Stilianakis NI (2017) A quartet method based on variable neighborhood search for biomedical
literature extraction and clustering. Int Trans Oper Res 24(3):537–558

Cyvin SJ, Brunvoll J, Cyvin BN (1995) Enumeration of constitutional isomers of polyenes. J Mol Struct
(Theochem) 357(3):255–261

Deza E, Deza MM (2012) Figurate numbers. World Scientific Publishing, Singapore
Diestel R (2000) Graph theory. Springer, New York
Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol

17(6):368–376
Furnas GW (1984) The generation of random, binary unordered trees. J Classif 1(1):187–233
Granados A, Cebrian M, Camacho D, Rodriguez FB (2011) Reducing the loss of information through

annealing text distortion. IEEE Trans Knowl Data Eng 23(7):1090–1102
Li M, Vitányi PMB (1997) An introduction to Kolmogorov complexity and its applications, 2nd edn.

Springer, New York
Rains EM, Sloane NJA (1999) On Cayley’s enumeration of alkanes (or 4-valent trees). J Integer Seq 2:1
Sloane NJA, Plouffe S (1995) The encyclopedia of integer sequences. Academic Press, San Diego
Steel MA (1992) The complexity of reconstructiong trees from qualitative characters and subtrees. J Classif

9:91–116

123

	An exact algorithm for the minimum quartet tree cost problem
	Abstract
	1 Introduction
	2 Related literature
	3 Problem formulation
	4 Exact solution approach
	4.1 Description of the algorithm
	4.1.1 Initial topology structure
	4.1.2 Data representation
	4.1.3 Computation of the cost function value
	4.1.4 Evaluation of all permutations of the leaves
	4.1.5 Generation of all different structural boron tree topologies
	4.1.6 Resulting exact algorithm

	5 Gold standard foundation
	6 Discussion
	7 Conclusion
	Acknowledgements
	References

