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Abstract This work is an attempt to develop multiobjective versions of some well-
known single objective quasi-Newton methods, including BFGS, self-scaling BFGS
(SS-BFGS), and the Huang BFGS (H-BFGS). A comprehensive and comparative
study of these methods is presented in this paper. The Armijo line search is used for
the implementation of these methods. The numerical results show that the Armijo rule
does not work the sameway for themultiobjective case as for the single objective case,
because, in this case, it imposes a large computational effort and significantly decreases
the speed of convergence in contrast to the single objective case. Hence, we consider
two cases of all multi-objective versions of quasi-Newton methods: in the presence of
the Armijo line search and in the absence of any line search. Moreover, the conver-
gence of these methods without using any line search under some mild conditions is
shown.Also, by introducing amultiobjective subproblem for finding the quasi-Newton
multiobjective search direction, a simple representation of the Karush–Kuhn–Tucker
conditions is derived. TheH-BFGS quasi-Newtonmultiobjective optimizationmethod
provides a higher-order accuracy in approximating the second order curvature of the
problem functions than the BFGS and SS-BFGSmethods. Thus, this method has some
benefits compared to the other methods as shown in the numerical results. All men-
tioned methods proposed in this paper are evaluated and compared with each other in
different aspects. To do so, some well-known test problems and performance assess-
ment criteria are employed. Moreover, these methods are compared with each other
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with regard to the expended CPU time, the number of iterations, and the number of
function evaluations.

Keywords Quasi-Newton methods · Multiobjective optimization · Nonparametric
methods · Nondominated points · Performance profiles

Mathematics Subject Classification 90C29 · 90C30 · 90C53

1 Introduction

As an important area of optimization, multiobjective optimization is dealing with
problems in which some objective functions are required to be simultaneously opti-
mized. It has attracted attention in many applied sciences in the presence of trade-off
analysis, such as: medicine, economics, engineering, transportation, and logistics opti-
mization. In these fields, the multiobjective optimization is the best strategy to make
a desired decision. For example, the problem of buying a car can be considered as a
multiobjective optimization problem (MOP) where minimizing cost and maximizing
comfort are two conflicting objectives. In practical optimization problems, the num-
ber of objective functions is larger than one objective. Due to the inherent conflict
among objective functions, there exists no solution that could simultaneously opti-
mize all objectives. There are a large number of solutions for these problems called
efficient (Pareto optimal) solutions. An efficient or Pareto optimal solution is a solution
in which the improvement of any objective function leads to a decline in at least one
objective function. The value of the objective functions at an efficient solution is called
a nondominated point. The set of all nondominated points and the set of all efficient
solutions are called the nondominated and efficient sets, respectively. As shown in
proposition 2.4 in Ehrgott (2005), each nondominated point belongs to the boundary
of the feasible set in the objective space. Thus, the set of all nondominated points
is usually called nondominated frontier. In contrast to single objective optimization,
there are many concepts of solution in MOP. Researchers can find a representation
of efficient solutions (nondominated points) or employ a trade-off analysis to find
the most preferred solution in the decision maker point of view (Sayadi-Bander et al.
2015; Sayadi-bander et al. 2017a, b; Basirzadeh et al. 2014; Eskelinen and Miettinen
2012; Sakawa and Yano 1990; Kuk et al. 1997).

One of the interesting fields in multiobjective optimization is the approximation
of the entire nondominated frontier. Computing an approximation of the whole non-
dominated frontier enables decision makers to have a deep insight into the problem
structure and information about trade-off. A trade-off denotes the amount of giving up
on one of the objective functions, which leads to the improvement of other objective
functions. In multiobjective optimization problems, having a good approximation of
the entire nondominated frontier enables us to employ some secondary preferences
over the nondominated frontier so as to choose the most preferred solution. Motivated
by this important application, nowadays there is an increasing interest in the methods
of approximating the whole nondominated frontier. This fact is demonstrated bymany
published papers related to this topic (Benson and Sayin 1997; Das and Dennis 1998;
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Fliege 2004, 2006; Basseur 2006; Fliege and Heseler 2002; Segura et al. 2013; Da
Silva 2010; Schandl et al. 2001).

One of the most important classes of algorithms for solving an MOP is the class
of scalarization methods. Some parameters are usually needed to be determined for
scalarizing an MOP, but obtaining a suitable scalarization function with parameters
needs a great insight into the problem structure, which is a very difficult task and
in some cases almost impossible. The weaknesses of the scalarization method are
illustrated explicitly in detail in Sect. 7 of the work of Fliege et al. (2009). Hence,
developing some methods which do not need this prior information can be of special
interest. In this regard, recently a new class of multiobjective optimization algorithms
has been developed which does not depend on any parameter (Fliege and Svaiter
2000; Drummond and Iusem 2004; Drummond and Svaiter 2005; Fliege et al. 2009;
Qu et al. 2011; Povalej 2014; Morovati et al. 2016; Qu et al. 2013; Villacorta et al.
2014). Indeed, these methods are generalizations of optimization algorithms for single
objective problems.

Fliege et al. (2009) have proposed an a priori parameter-free Newton-type opti-
mization method for obtaining a point that satisfies the first order necessary condition
for multiobjective optimization. Similar to the classical Newton method in each itera-
tion, they considered some quadratic approximations related to the original objective
functions. They used a quadratic subproblem to find a search direction.

Newton’s method is a well-known method for solving single objective optimiza-
tion problems, because it uses the Hessian which offers useful curvature information.
However, for various practical problems, the computing efforts of theHessianmatrices
are very expensive or the Hessian is not available analytically.

These difficulties lead to some methods that only use the function values and the
gradients of the objective functions in ways closely related to Newton’s method. Some
of thesemethods are quasi-Newtonmethodswhich donot need to compute theHessian,
but generate a series of Hessian approximations and at the same time maintain a
fast rate of convergence (Sun and Yuan 2006). Recently, the BFGS quasi-Newton
multiobjective optimization (QNMO) method has been proposed by some authors Qu
et al. (2011), Povalej (2014).

Asmentioned, the approximation of the Hessianmatrix is used in the quasi-Newton
methods instead of theHessianmatrix. There aremanymethods for approximating this
matrix. In the QNMO method proposed by Povalej (2014), the BFGS method is used
to approximate the Hessian matrix. It is well-known that the BFGS method belongs to
the Broyden class (Nocedal andWright 2006). In the quasi-Newtonmethods proposed
in this paper for the MOP, besides the BFGS method which is the most well-known
and important among the methods of the Broyden class, the self-scaling BFGS (SS-
BFGS) method from the self-scaling Broyden class and the Huang BFGS (H-BFGS)
method from the Huang class are used. We tested the methods on several well-known
test problems in two points of view. The first point of view contains CPU times and
the computational effort and the second one, which deals with the quality of the
nondominated frontiers, contains such criteria as the number of nondominated points,
the value of the purity metric, spread metric, and the epsilon indicator. In order to have
a good comparison, an approximated nondominated frontier for each test problem,
namely a reference frontier, was determined by using the numerical results of all
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proposed methods. Then, the obtained approximated nondominated frontier of any
algorithm was compared with the reference frontier. All of the numerical results are
explicitly represented in some appropriate figures. Each of these figures contains some
curves called performance profiles which correspond to some methods. These profiles
can be used to compare the computational performances of the methods (Dolan and
More 2002). Also, the number of iterations and function evaluations corresponding to
each of the methods is reported.

Unlike the methods of Broyden and self-scaling Broyden classes, the methods of
the Huang class not only use the gradient information, but also employ function values
to approximate the Hessian matrix. For this reason, the methods of the Huang class
provide a higher-order accuracy in approximating the second-order curvature of the
problem functions than the methods of the Broyden and self-scaling Broyden classes
(See Theorem 2). The numerical results show that the H-BFGS and the SS-BFGS
methods have a better performance than the BFGS method in different points of view.

As given in Fliege et al. (2009) and Povalej (2014), in the QNMOmethods a scalar
quadratic subproblem is required to find the search direction in each iteration. In this
paper, first, a quadratic multiobjective subproblem is introduced. Then, comparing the
solution sets of this subproblem and the scalar subproblem, some theoretical results
are derived. Particularly, using these theoretical results and the known results from the
theory of multiobjective optimization, a simple representation of the Karush–Kuhn–
Tucker (KKT) conditions is presented.

In the BFGS QNMO method developed by Qu et al. (2011) and Povalej (2014),
similar to the single objective case, an Armijo-like rule is used for line search. In this
paper, we use the Armijo-like rule to find a step length in a similar manner. When
employing the Armijo-like rule in multiobjective problems, more than one inequality
should be simultaneously satisfied. Thus, this rule imposes a large computational effort
and yields a small step length. Consequently, using the Armijo-like rule for finding a
step length decreases the speed of convergence. Based on this fact, in this paper all
methods are considered in two cases: in the presence of the Armijo line search and
in the absence of any line search. Similar to Fliege et al. (2009), Povalej proved the
convergence of the QNMOmethods in the presence of the Armijo line search (Povalej
2014). In this paper, we extend this proof to the case where no line search was used.

This paper is organized as follows. Section 2 contains some notations, definitions,
and preliminaries that are used in the remainder of the paper. Section 3 is devoted
to the quasi-Newton optimization methods. First, a brief description of the quasi-
Newton directions for single objective optimization problems is presented. Then, the
quasi-Newton subproblem for the search direction in the MOP is investigated and
some propositions are provided. Section 4 proceeds with the convergence analysis.
Section 5 deals with the performance assessment. In this section, we review some
well-known standard criteria for comparing the quality of the obtained nondominated
frontiers. In Sect. 6, the three mentioned quasi-Newton optimization methods for the
MOP are implemented for several well-known test problems. Moreover, in this sec-
tion the obtained numerical results are explicitly evaluated by some standard criteria.
Finally, the paper concludes with some discussions on comparing the QNMO meth-
ods.
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2 Preliminaries

In this section, some notations that are used in the remainder of the paper are intro-
duced. Throughout the paper, R, R≥, and R> stand for the sets of real numbers,
non-negative real numbers, and strictly positive real numbers, respectively. V ⊂ R

n

denotes an open set and F : V → R
m is an arbitrary vector function. For this vector

function, Rn and R
m are called the decision and objective spaces, respectively. We

assume that F ∈ C2(V,Rm); i.e. F = (F1, . . . , Fm) is twice continuously differ-
entiable on V . For x ∈ V , we will use symbols J F(x) ∈ R

m×n , ∇Fj (x) ∈ R
m ,

HFj (x) ∈ R
n×n , and B j (x) ∈ R

n×n to denote the Jacobian matrix of F , the gradient
of Fj , the Hessian matrix of Fj , and the approximation of the Hessian matrix of Fj

at x , respectively. We denote the range or image space of matrix A by S(A). Also,
the notation B � C (B ≺ C) means that C − B is a positive semidefinite (definite)
matrix.

In this paper, the following unconstrained MOP is considered:

min
x∈V F(x). (1)

V and Y = F(V ) are called the feasible set in the decision and objective spaces of
Problem (1), respectively. In the following, related to Problem (1), some preliminary
definitions, a lemma, and a theorem are presented.

Definition 1 (Ehrgott 2005) A feasible solution x∗ ∈ V is called an (a weakly) effi-
cient solution of Problem (1), if there is no other x ∈ V such that F(x) ≤ F(x∗) and
F(x) 
= F(x∗) (F(x) < F(x∗)). If x∗ is an (a weakly) efficient solution, F(x∗) is
called a (weakly) nondominated point.

The set of all nondominated points and efficient solutions are called the nondomi-
nated and efficient sets, respectively. As shown in proposition 2.4 in Ehrgott (2005),
each nondominated point belongs to the boundary of the feasible set in the objective
space (Y ). Thus, the set of all nondominated points is usually called nondominated
frontier. We denote the nondominated frontier or nondominated set by YN .

Numerical algorithms usually find a local solution. Definition 2 deals with the
locally (weakly) efficient solutions.

Definition 2 (Fliege et al. 2009) A feasible solution x∗ ∈ V is called a locally
(weakly) efficient solution, if there is a neighbourhood W ⊆ V of x∗ such that x∗ is
an (weakly) efficient solution onW . If x∗ is a locally (weak) efficient solution, F(x∗)
is called a locally (weakly) nondominated point.

Definition 3 (Ehrgott 2005) Let V ⊂ R
n be a convex set. F : V → R

m is called
R
m-convex if F is componentwise-convex.

In convex problems, globally optimal treatment can be derived from a local treat-
ment as given in Lemma 1.

Lemma 1 (Fliege et al. 2009) Let V ⊂ R
n be a convex set and F : V → R

m be an
R
m-convex function. Then, any locally efficient solution is an efficient solution.
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In the presence of some assumptions and R
p
≥-compactness, the objective functions

satisfy some nice properties which are useful for the theoretical and computational
aspects. In the following Rp

≥-compactness is defined.

Definition 4 (Ehrgott 2005) A set Y ⊂ R
p is called R

p
≥-compact if for all y ∈ Y the

section (y − R
p
≥) ∩ Y is compact.

Definition 5 (Ehrgott 2005) The nondominated set YN is said to be externally stable
if for each y ∈ Y\YN there is ŷ ∈ YN such that y ∈ ŷ + R

p
≥.

A necessary condition for a given point x ∈ R
n to be a locally weakly efficient

solution for function F : V → R
m is S(J F(x)) ∩ (−R

m
>) = ∅ (Gopfert and Nehse

1990; Luc 1988). Motivated by this fact, a critical point is defined as follows.

Definition 6 (Fliege and Svaiter 2000) Point x ∈ R
n is said to be a locally critical

point of vector function F : V → R
m if S(J F(x)) ∩ (−R

m
>) = ∅.

From Definition 6, it is clear that if x is not critical, then there exists d ∈ R
n such that

∇Fj (x)d < 0 for all j ∈ {1, . . . ,m}.
In Theorem 1, the relation between a critical point and a (weakly) efficient solution

is explained (Fliege et al. 2009).

Theorem 1 (Fliege et al. 2009) Let F ∈ C1(V,Rm),

1. If x̄ is a locally weakly efficient solution, then x̄ is a critical point for F.
2. If V is convex, F is Rm-convex and x̄ ∈ V is critical for F, then x̄ is a weakly

efficient solution.
3. If V is convex, x̄ ∈ V is a critical point of F, F ∈ C2(V,Rm) and HFj (x) � 0

for all x ∈ V and j ∈ {1, 2, . . . ,m}, then x̄ is an efficient solution.

We refer interested readers to Fliege et al. (2009) for the proof of Theorem 1.
In Sect. 3, first, a brief exposition of the quasi-Newton direction for single objective

optimization is presented and then it will be extended for multiobjective optimization
(Qu et al. 2011; Povalej 2014). Finally, we will give some algorithms of quasi-Newton
methods for multiobjective optimization, both with line search (Qu et al. 2011; Povalej
2014) and without any line search.

3 Quasi-Newton optimization methods

Newton’s method is a well-known method that uses the Hessian matrix and consid-
ers curvature for solving single objective nonlinear optimization problems. However,
the analytical computing of the Hessian matrix is a difficult or impossible task in
many problems. In order to overcome this difficulty, the quasi-Newton methods are
introduced, which use the gradients of objective functions and function values. In
these methods, approximations of the Hessian matrices are considered and a fast rate
of convergence is provided at the same time. The quasi-Newton methods generate a
sequence of approximated Hessian matrices {Bk} and a sequence of related directions
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{dk} where dk = −B−1
k ∇ f (xk). We hope that {Bk} possesses positive definiteness

and the algorithm behaves like Newton’s method.
In this section, first, a brief description of the quasi-Newton direction for single

objective optimization problems is presented and some of the well-known update
formulas are introduced. Then, in the subsequent subsection, these update formulas
and the quasi-Newton direction are extended to the multiobjective case.

3.1 Quasi-Newton methods for single objective optimization

Let f : V ⊂ R
n → R be a twice continuously differentiable function on an open set

V ⊂ R
n . Suppose, we want to solve the problem minx∈V f (x) by a quasi-Newton

method. The quasi-Newton search direction at a point xk (dk := d(xk)) can be obtained
by solving the following quadratic subproblem:

min
dk∈Rn

∇ f (xk)
T dk + 1

2
dTk Bkdk, (2)

where Bk := B(xk) is an approximation of the Hessian matrix of f at xk . An easy
computation shows that the unique solution of Subproblem (2) is dk = B−1

k ∇ f (xk).
Thus, the new iteration derives from xk+1 = xk + tkdk with the step length tk ∈ R≥.

Two important classes for the approximation of the Hessian matrices are the Broy-
den class and the self-scaling Broyden class. These two classes just use gradient
information. All approximate matrices obtained from these classes are symmetric
and satisfy the following equation, namely, the secant equation or the quasi-Newton
equation:

Bk+1sk = yk, (3)

where sk := xk+1 − xk = tkdk , yk := ∇ f (xk+1) − ∇ f (xk), Bk+1 := B(xk+1), and
{xk} is supposed to be the sequence generated by a quasi-Newton method. Indeed,
the secant equation is derived from the gradient information of the objective function
at points xk and xk+1. In what follows, the updating formulas related to the BFGS
method of the Broyden class and the self-scaling BFGS (SS-BFGS) method of the
self-scaling Broyden class are explained with their required conditions for preserving
the positive definiteness property (Nocedal and Wright 2006; Sun and Yuan 2006). It
should be noted that the initial matrix B0 for all updating formulas presented in this
section is assumed to be the identity matrix.

The updating formula for BFGS is (Nocedal and Wright 2006)

Bk+1 = Bk − BksksTk Bk

sTk Bksk
+ yk yTk

sTk yk
. (4)

The updating formula for SS-BFGS is (Sun and Yuan 2006)

Bk+1 = sTk yk

sTk Bksk

(
Bk − BksksTk Bk

sTk Bksk

)
+ yk yTk

sTk yk
. (5)
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As mentioned before, the matrix Bk+1 obtained from the above updating formula
satisfies the secant equation. Thus, for preserving the positive definiteness property of
Bk+1, the following curvature condition is a sufficient condition:

sTk yk > 0. (6)

Unlike the Broyden and the self-scaling Broyden classes that employ only the
gradients and ignore the function value information, the Huang class uses both gra-
dient information and function evaluations for approximating the Hessian matrix. All
approximate matrices obtained from the Huang class should satisfy the following
equation, namely, the Huang quasi-Newton equation instead of the secant equation
(3) (Zhang and Xu 2001; Sun and Yuan 2006):

Bk+1sk = ŷk, ŷk = yk + θk

sTk yk
yk, (7)

where θk := 6( fk − fk+1) + 3(∇ fk + ∇ fk+1)
T sk . In this case, the Huang BFGS

(H-BFGS) updating formula is as follows:

Bk+1 = Bk − BksksTk Bk

sTk Bksk
+ ŷk ŷTk

sTk ŷk
. (8)

Theorem 2 (Zhang et al. 1999) Assume that f (.) is a sufficiently smooth function. If
‖sk‖ is small enough then we have:

sTk
[
H f (xk+1)sk − ŷk

] = O(‖sk‖4),
sTk

[
H f (xk+1)sk − yk

] = O(‖sk‖3).
(9)

Assume that Bk+1 and B̂k+1 satisfy Eqs. (3) and (7), respectively. In this case, by
the above theorem, the following relations hold:

sTk B̂k+1sk = sTk H f (xk+1)sk + O(‖sk‖4),
sTk Bk+1sk = sTk H f (xk+1)sk + O(‖sk‖3). (10)

The two relations shown in (10) show that in the presence of the assumptions of
Theorem 2, sTk B̂k+1sk approximates the second-order curvature sTk H f (xk+1)sk with
a higher precision than sTk Bk+1sk .

The following result can be obtained from Relations (10) and Theorem 2.

Corollary 1 (Zhang and Xu 2001) If f is a cubic function then sTk B̂k+1sk =
sTk H f (xk+1)sk .

In the class ofHuang, for preserving the positive definiteness instead of the curvature
condition, the following condition should be satisfied:

sTk ŷk = sTk yk + θk > 0. (11)
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In order for condition (11) to hold, two methods are suggested in Zhang and Xu
(2001). In the firstmethod, using theWolfe line search and, in the second one, imposing
the following condition on θk are offered.

θk := (ε − 1)sTk yk, i f θk < (ε − 1)sTk yk, ε ∈ (0, 1). (12)

Clearly, condition (12) implies relation sTk ŷk � εsTk yk . Thus, by considering condition
(12) and the curvature condition, the updating formula of the Huang class preserves
positive definiteness. Since the first method (using the Wolfe line search) imposes a
large computational effort, in this paper, we use the second method to preserve the
positive definiteness property of the matrix obtained from the updating formula of the
Huang class.

Based on the above statements, if f (.) is a strongly convex function, then thematrix
Bk+1 obtained from each of the mentioned updating formulas for approximating the
Hessian matrix always preserves positive definiteness. Thus, in the rest of this paper,
we assume that all components of the vector function F in Problem (1) are strongly
convex.

3.2 Quasi-Newton methods for multiobjective optimization

Recently, the BFGS quasi-Newton method for single objective optimization problems
has been extended to multiobjective optimization by Qu et al. (2011) and Povalej
(2014). In a similar manner, all of the quasi-Newton methods can be generalized to
multiobjective problems. In this paper, besides the BFGS QNMO method, we further
consider the SS-BFGS and H-BFGS QNMO methods. In this subsection, we briefly
explain an extension of the quasi-Newton methods to multiobjective problems.

As seen in the previous subsection, in order to find the search direction at x , we
have to solve Subproblem (2). The direct extension of this idea to a vector valued
function F : V → R

m leads to the following multiobjective subproblem for finding a
search direction at x :

min
d∈Rn

∇F1(x)T d + 1
2d

T B1(x)d

min
d∈Rn

∇F2(x)T d + 1
2d

T B2(x)d

...

min
d∈Rn

∇Fm(x)T d + 1
2d

T Bm(x)d,

(13)

where B j (x) is an approximation of the Hessian matrix of j th objective function Fj

at x .
Subproblem (13) is a nice quadratic multiobjective optimization subproblem

because it has some properties as given in Theorem 3. Any objective function of
(13) is a bounded-below quadratic strictly convex function. The following theorem
holds for Subproblem (13).

Theorem 3 Let Y and YN denote the feasible set in the objective space and the set
of all nondominated points of Subproblem (13), respectively. Suppose that B j (x) � 0
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for all j ∈ {1, 2, . . . , } and x ∈ V . Then Subproblem (13) satisfies the following
properties:

1. Y is an Rm≥-compact set.
2. The efficient set of (13) is nonempty.
3. YN is externally stable.
4. YN is connected.

Proof 1. B j (x) is a positive definite matrix, thus the j th objective function of (13)
is bounded below. Hence, Y is Rm≥-compact.

2. Since Y is Rm≥-compact, by Corollary 2.15 in Ehrgott (2005), YN 
= ∅.
3. External stability of YN is concluded from Part (1).
4. This part is a direct consequence of Theorem 3.35 in Ehrgott (2005).

��
In what follows, the relation between Subproblem (13) and the criticality of a given

point x ∈ V is investigated.

Theorem 4 Let B j (x) � 0 for all x ∈ V and j ∈ {1, . . . ,m}. Then for F : V → R
m

the following propositions are equivalent:

1. x is a critical point for F;
2. d̂ = 0 is a weakly efficient solution of Subroblem (13);
3. There is a vector λ̂ ∈ R

m≥ with
∑m

j=1 λ̂ j = 1 such that

∀d ∈ R
n \ {0},

m∑
j=1

λ̂ j

(
∇Fj (x)

T d + 1

2
dT B j (x)d

)
> 0,

4. There is a vector λ̂ ∈ R
m≥ with

∑m
j=1 λ̂ j = 1 such that

m∑
j=1

λ̂ j∇Fj (x) = 0.

Proof 1. (1 �⇒ 2)
By contradiction, assume that d̂ = 0 is not a weakly efficient solution of Subprob-
lem (13). Hence there exists d ∈ R

n such that

∇Fj (x)
T d ≤ ∇Fj (x)

T d + 1

2
dT B j (x)d < 0, ∀ j ∈ {1, . . . ,m}.

Thus, x is not critical, which contradicts (1).
2. (2 �⇒ 3)

Because d̂ = 0 is a weakly efficient solution and (13) is a strictly convex multiob-
jective subproblem, there is a vector λ̂ ∈ R

m≥ with
∑m

j=1 λ̂ j = 1 such that d̂ = 0 is
the unique optimal solution of the single objective problem mind∈Rn f

λ̂
(d), where
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f
λ̂
(d) :=

m∑
j=1

λ̂ j

(
∇Fj (x)

T d + 1

2
dT B j (x)d

)
.

This completes the proof.
3. (3 �⇒ 4)

Since f
λ̂
(d) is a strictly convex function, d̂ = 0 is the minimizer of f

λ̂
(d) if and

only if

∇d fλ̂(0) =
m∑
j=1

λ̂ j∇Fj (x) = 0.

4. (4 �⇒ 1)
By contradiction, assume that Part (4) holds, but x is not critical. Then there exists
d ∈ R

n such that∇Fj (x)T d < 0 for all j ∈ {1, . . . ,m}. Therefore, for anyλ ∈ R
n≥

with
∑m

j=1 λ j = 1, we have
∑m

j=1 λ j∇Fj (x)d < 0 which is a contradiction to
the assumption.

��
As mentioned in Povalej (2014), the quasi-Newton search direction at x ∈ V is the

unique minimizer of the following minimax subproblem which is a weakly efficient
solution of the multiobjective optimization Subproblem (13).

min
d∈Rn

max
j∈{1,..,m} ∇Fj (x)

T d + 1

2
dT B j (x)d. (14)

This suproblem is evidently equivalent to the following subproblem:

min h(t, d) = t

s. t

{∇Fj (x)T d + 1
2d

T B j (x)d ≤ t, (1 ≤ j ≤ m),

(t, d) ∈ R × R
n,

(15)

Subproblem (15) is a convex subproblemwith quadratic constraints. From now on, for
each x ∈ V , we assume that d(x) and α(x) are the optimal solution and the optimal
value of Subproblem (14), respectively; that is

α(x) := inf
d∈Rn

max
j=1, ...,m

(∇Fj (x)
T d + 1

2
dT B j (x)d), (16)

and

d(x) := arg min
d∈Rn

max
j=1,...,m

(∇Fj (x)
T d + 1

2
dT B j (x)d). (17)

For completeness, Theorem 5 from Fliege et al. (2009), Povalej (2014) is given, which
states some properties of α(x) and d(x).

Theorem 5 Consider α(x) and d(x) as defined by (16) and (17), respectively. Let
B j (x) � 0 for all x ∈ V . Then
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1. For each x ∈ V , α(x) ≤ 0
2. The following conditions are equivalent:

(a) Point x is not critical,
(b) α(x) < 0,
(c) d(x) 
= 0.

3. The function d : V → R
n is bounded on compact sets and α : V → R is

continuous.

The interested readers are referred to Fliege et al. (2009), Povalej (2014) for the proof
of Theorem 5.

Here, at first, a brief review of the Karush–Kuhn–Tucker (KKT) conditions is given
(Fliege et al. 2009; Povalej 2014). At the end of this section, a simple representation of
these conditions is proposed, which is based on the multiobjective Subproblem (13).
Using the Lagrangian function of Subproblem (15), an explicit representation of d(x)
in terms of ∇Fj (x) and B j (x) is stated. To this aim, consider the Lagrangian function
of Subproblem (15) as

L((t, d), λ) = t +
m∑
j=1

λ j

(
∇Fj (x)

T d + 1

2
dT B j (x)d − t

)
.

Subproblem (15) has the unique optimal solution (t∗, d∗) := (α(x), d(x)) and a
Slater point (t, d) = (1, 0). Hence, there exists a KKT multiplier λ := λ(x), that, for
d := d(x) and α := α(x) satisfies the following conditions:

m∑
j=1

λ j = 1,
m∑
j=1

λ j

(
∇Fj (x) + B j (x)d

)
= 0, (18)

λ j

(
∇Fj (x)

T d + 1

2
dT B j (x)d − t

)
= 0, (1 ≤ j ≤ m), (19)

λ j ≥ 0, ∇Fj (x)
T d + 1

2
dT B j (x)d ≤ t, (1 ≤ j ≤ m). (20)

In particular, from (18) we have

d(x) = −
⎛
⎝ m∑

j=1

λ j (x)B
j (x)

⎞
⎠

−1 ⎛
⎝ m∑

j=1

λ j (x)∇Fj (x)

⎞
⎠ . (21)

The existence of the KKT multipliers for the convex Subproblem (15) implies that
there is no duality gap, and so

α(x) = sup
λ≥0∑
λ j=1

inf
d∈Rn

L((t, d), λ)

= sup
λ≥0∑
λ j=1

inf
d∈Rn

m∑
j=1

λ j

(
∇Fj (x)

T d + 1

2
dT B j (x)d − t

)
. (22)
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Theorem 23 shows that the KKT conditions (18) can be obtained easily using the
multiobjective Subproblem (13).

Theorem 6 Let d̂ be the quasi-Newton direction of function F at x. Then there exists
λ̂ ∈ R

m≥ such that

m∑
j=1

λ̂ j = 1,
m∑
j=1

λ̂ j

(
∇Fj (x) + B j (x)d̂

)
= 0. (23)

Proof Assume that d̂ is the quasi-Newton direction of F in x . Then, there is a
scalar t̂ such that (t̂, d̂) is an optimal solution of Subproblem (15). Thus, d̂ is a
weakly efficient solution of the convex multiobjective Subroblem (13). Therefore,
there exists λ̂ ∈ R

m≥ with
∑m

j=1 λ̂ j = 1 such that d̂ is the minimum of function

f
λ̂
(d) := ∑m

j=1 λ j
(∇Fj (x)T d + 1

2d
T B j (x)d

)
. Hence

∇d fλ̂(d̂) =
m∑
j=1

λ̂ j

(
∇Fj (x) + B j (x)d̂

)
= 0,

and this is precisely the assertion of the theorem. ��

Assume that d(x) ∈ R
n is a direction with J F(x)d(x) < 0. To compute a step

length t > 0, an Armijo-like rule is used. Let σ ∈ (0, 1) be a prescribed constant. The
condition to accept t is

Fj (x + td(x)) ≤ Fj (x) + σ tα(x), for all j ∈ {1, . . . ,m}.

Start with t = 1 and, while this condition is not satisfied, set t := t
2 . Using this line

search, we find the appropriate step length in Algorithm 1.
Povalej (2014) and Qu et al. (2011) used the Armijo line search in the imple-

mentation of the BFGS quasi-Newton method for multiobjective optimization. The
convergence of this method was proven in Povalej (2014) and Qu et al. (2011). In
this paper, besides the BFGS quasi-Newton method, some other well-known quasi-
Newton methods are implemented for MOP in two cases: with line search (BFGSLS,
SS-BFGSLS and H-BFGSLS) and without any line search (BFGS, SS-BFGS and H-
BFGS). Related to these two cases, two algorithms are given below.

Algorithm 1. QNMO with Armijo line search

1. (Initialization)
(a) Choose ε > 0, x0 ∈ V , σ ∈ (0, 1) and set B j

0 = I for all j ∈ {1, 2, . . . ,m}.
(b) Solve Subproblem (15) for x0 to obtain d0 = d(x0) and α0 = α(x0). If

|α0| ≤ ε, then stop. Otherwise, set x1 = x0 + d0, k = 1 and go to the Main
loop.
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2. (Main loop)
(a) Solve Subproblem (15) for xk to obtain dk = d(xk) and αk = α(xk).
(b) If |αk | ≤ ε then stop. Otherwise, find the largest tk = 1

2n for n = 1, 2, 3, . . .
that satisfies the following conditions

xk + tkdk ∈ V

Fj (xk + tkdk) ≤ Fj (xk) + σ tkαk
(24)

and set xk+1 := xk + tkdk .
(c) Update B j

k (for j ∈ {1, 2, . . . ,m}) using one of the update formulas (4), (5)
or (8). Set k = k + 1 and go to Step 2(a).

Algorithm 2. QNMO without any line search

1. (Initialization)
(a) Choose ε > 0, x0 ∈ V , σ ∈ (0, 1) and set B j

0 = I for all j ∈ {1, 2, . . . ,m}.
(b) Solve Subproblem (15) for x0 to obtain d0 = d(x0) and α0 = α(x0). If

|α0| ≤ ε, then stop. Otherwise, set x1 = x0 + d0, k = 1 and go to the Main
loop.

2. (Main loop)
(a) Solve Subproblem (15) for xk to obtain dk = d(xk) and αk = α(xk).
(b) If |αk | ≤ ε then stop. Otherwise, set xk+1 = xk + dk .
(c) Update B j

k (for j ∈ {1, 2, . . . ,m}) using one of the update formulas (4), (5)
or (8). Set k = k + 1 and go to Step 2(a).

The convergence analysis for Algorithm 1 (with Armijo line search) has been pre-
sented in Povalej (2014) and the proof of Algorithm 2 is similar to it. However, to
facilitate access and make our exposition self-contained, the proof of Algorithm 2 is
rendered in the next section.

4 Convergence analysis

At the beginning of this section, we state some lemmas from Fliege et al. (2009) and
Povalej (2014), which are needed to prove the convergence theorem.

Lemma 2 (Fliege et al. 2009) Suppose that U ⊂ V is a convex set. Consider ε > 0
and δ > 0 such that for any x, y ∈ U with ‖y − x‖ < δ,

∥∥HFj (y) − HFj (x)
∥∥ < ε f or all j ∈ {1, . . . ,m}. (25)

Under this assumption, for any x, y ∈ U such that ‖y − x‖ < δ, we have

∥∥∇Fj (y) − [∇Fj (x) + HFj (x)(y − x)]∥∥ < ε ‖y − x‖ , (26)

for all j ∈ {1, . . . ,m}.
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Lemma 3 (Povalej 2014) Let U ⊂ V be a convex subset and ε, δ ∈ R≥ be small
constants such that for any x, y ∈ U, with ‖y − x‖ < δ, (25) holds. Let {xk} be a
sequence generated by a quasi-Newton method and {B j

k } ( j = 1, 2, . . . ,m) be the
sequence generated by one of the update formulas (4), (5) or (8). Also, assume that
for ε > 0 there exists k0 ∈ N such that for all k ≥ k0∥∥∥(

HFj (xk) − B j
k

)
(y − xk)

∥∥∥
‖y − xk‖ <

ε

2
f or all j = 1, . . . ,m. (27)

Under these assumptions, for any k ≥ k0, and any y ∈ U such that ‖y − xk‖ < δ, we
have ∥∥∥∇Fj (y) −

(
∇Fj (xk) + B j

k (y − xk)
)∥∥∥ < ε ‖y − xk‖ , (28)

for all j ∈ {1, . . . ,m}.
Lemma 4 (Fliege et al. 2009; Povalej 2014) Let x ∈ V and a, b ∈ R> such that
a ≤ b. Also, consider B j (x) as an approximation of H Fj (x). If

a I � B j (x) � bI, f or all j = 1, 2, . . . , m, (29)

then the following two inequalities hold,

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

i) a
2‖d(x)‖2 ≤ |α(x)| ≤ b

2‖d(x)‖2,

i i) |α(x)| ≤ 1
2a

∥∥∥∥∥
m∑
j=1

λ j∇Fj (x)

∥∥∥∥∥
2

f or all λ j ≥ 0,

j = 1, 2, . . . ,m, wi th
m∑
j=1

λ j = 1,

(30)

where α(x) and d(x) are defined in (16) and (17), respectively.

During the following theorem and its corollary, using Lemmas 2-4 presented in this
section, we will prove the convergence of Algorithm 2.

Theorem 7 Suppose {xk} is an arbitrary sequence generated by Algorithm 2 and
x0 ∈ V is the initial point of it. Take B j

k := B j (xk) as an approximation of the
Hessian matrix at xk corresponding to j th objective function of F. Let there be r > 0
such that G[x0, r ] ⊂ V in which G[x0, r ] is a closed ball with radius r centered at
x0. If we have a, δ, ε > 0, with a > ε such that

1. a I � B j (x) and aI � HFj (x) for all j = 1, 2, . . . ,m and x ∈ G[x0, r ],

2.
∥∥HFj (y) − HFj (x)

∥∥ < ε, for all j = 1, . . . ,m and x, y ∈ G[x0, r ] with
‖y − x‖ < δ,
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3.

∥∥∥(
HFj (xk)−B j

k

)
(y−xk )

∥∥∥
‖y−xk‖ < ε

2 , for all j = 1, . . . ,m, y ∈ G[x0, r ] and k ≥ k0,

4. ‖d0‖ < min{δ, r(1 − ε
a )},

then, for any k ∈ N,

a. xk ∈ G[x0, r ],
b. ‖dk‖ <

(
ε
a

)k ‖d0‖ .

Proof The proof is based on induction. Clearly, the proposition holds for k = 0. Now,
assume that the proposition holds for k ∈ N. We show that it also holds for k + 1. {xk}
is a sequence generated by Algorithm 2. Thus, xk+1 = xk + dk . Since the proposition
holds for k ∈ N, we have

‖dk‖ ≤ ‖d0‖
( ε

a

)k
and xk ∈ G[x0, r ]. (31)

Consequently, by the triangular inequality, and with the sum of the first k + 1 terms
of a geometric series and the assumption a > ε, it is concluded that

‖xk+1 − x0‖ ≤
k∑

i=0

‖xi+1 − xi‖ ≤ ‖d0‖
1 − (

ε
a

)k+1

1 − ε
a

< r, (32)

and this completes the proof of Part (a); that is xk+1 ∈ G[x0, r ].
It is obvious that

‖xk+1 − xk‖ ≤ δ. (33)

According to (33), the assumptions (2) and (3), and Lemma 3, it follows immediately
that∥∥∥∇Fj (xk+1) −

(
∇Fj (xk) + B j

k dk
)∥∥∥ < ε ‖xk+1 − xk‖ , ∀ j ∈ {1, 2, . . . ,m}.

(34)
Let λ

j
k ( j = 1, . . . ,m) be the KKT multipliers of Subproblem (15) at xk . Hence,

applying (34) yields

m∑
j=1

λ
j
k

∥∥∥∇Fj (xk+1) −
(
∇Fj (xk) + B j

k dk
)∥∥∥ <

m∑
j=1

λ
j
kε ‖dk‖ . (35)

According to the properties of the KKT multipliers, including
∑m

j=1 λ
j
k = 1 and

λ
j
k ≥ 0 for all j = 1, 2, . . . ,m and from (35), we have

m∑
j=1

∥∥∥λ
j
k∇Fj (xk+1) −

(
λ
j
k∇Fj (xk) + λ

j
k B

j
k dk

)∥∥∥ < ε ‖dk‖ . (36)
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Using triangular inequality, we can rewrite (36) as∥∥∥∥∥∥
m∑
j=1

λ
j
k∇Fj (xk+1) −

⎛
⎝ m∑

j=1

λ
j
k∇Fj (xk) +

⎛
⎝ m∑

j=1

λ
j
k B

j
k

⎞
⎠ dk

⎞
⎠

∥∥∥∥∥∥ < ε ‖dk‖ . (37)

(21) makes it obvious that

dk = −
⎛
⎝ m∑

j=1

λ
j
k B

j
k

⎞
⎠

−1 ⎛
⎝ m∑

j=1

λ
j
k∇Fj (xk)

⎞
⎠ . (38)

Substituting (38) into (37) yields∥∥∥∥∥∥
m∑
j=1

λ
j
k∇Fj (xk+1)

∥∥∥∥∥∥ < ε ‖dk‖ . (39)

According to Part (ii) of Lemma 4 and (39), we deduce that

|α(xk+1)| <
ε2

2a
‖dk‖2. (40)

By (40) and Part (i) of Lemma 4, it is obvious that

‖dk+1‖ <
ε

a
‖dk‖ , (41)

and, consequently, we have

‖dk+1‖ <
( ε

a

)k+1 ‖d0‖ , (42)

which completes the proof. ��
Corollary 2 Under the assumptions of Theorem 7, the sequence generated by Algo-
rithm 2 converges to a critical point.

Proof Suppose {xk} is the obtained sequence from Algorithm 2. Then, from Theorem
7, for ε > 0 there exists m0 ∈ N such that for all n and m, where n > m ≥ m0 we
have:

‖xn − xm‖ ≤
n−m∑
i=m

‖xi+1 − xi‖ =
n−m∑
i=m

‖di‖ ≤ ‖d0‖
n−m∑
i=m

( ε

a

)i
. (43)

Since a > ε (from the assumptions of Theorem 7), (43) shows that {xk} is a Cauchy
sequence. Thus, it is clear that {xk} is a convergent sequence and there exists x̂ ∈ R

n ,
such that

lim
k→∞ xk = x̂ .
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Besides, from Part (b) of Theorem 7 it is evident that

lim
k→∞ dk = 0 (44)

By Part (i) of Lemma 4, we get that limk→∞ α(xk) = 0. According to Part (3) of
Theorem 5, α(x) is a continuous function. Hence, α(x̂) = 0. Thus, from Part (2) of
Theorem 5 it is obvious that x̂ is a critical point. ��

In Corollary 2, we show that every initial point of Algorithm 2 converges to a critical
point. To find the relations between critical point and (weakly) efficient solution, one
can use Theorem 1.

5 Performance assessment

Unlike single objective methods, comparing the performance of different multiobjec-
tive optimization methods is a difficult task. This difficulty is due to the evaluation
of the quality of the approximated nondominated frontier. There are several criteria
that indicate the quality of the approximated nondominated frontier. In this paper, we
use three criteria: the purity metric, the spread metric, Custodio et al. (2011), Bandy-
opadhyay et al. (2004) and the epsilon indicator (Knowles et al. 2006). Moreover,
in order to have a good visual comparison, the numerical results are depicted using
performance profiles (Dolan and More 2002). To this aim, in what follows we present
a brief description of performance profiles and some performance assessment criteria.

5.1 Performance profiles

In order to compare different algorithms on a set of test problems, one can run these
algorithms on given test problems and record such information as the number of
iterations, the number of function evaluations, expendedCPU time, andquality criteria.
Considering these criteria, the performance of algorithms can be compared with each
other using some tables. If the set of problems or the set of algorithms is suitably large,
comparing these criteria using tables can be very difficult for readers. In 2002, Dolan
and More introduced performance profiles as a means to evaluate and compare the
performance of a set of algorithms S on a set of test problems P (Dolan and More
2002). In what follows, we briefly explain this method.

Let tp,s denote the performance of the algorithm s ∈ S in solving the problem
p ∈ P . This performance (tp,s) must have the property in which better performances
correspond to lower values of tp,s . If the intended performance (t̄ p,s) did not have
this property, we would have to use tp,s = 1/t̄ p,s instead of t̄ p,s as the performance.
For example, one can consider tp,s as the expended CPU times in solving problem p
by algorithm s. However, if t̄ p,s is the number of the obtained nondominated points
in solving problem p by algorithm s, in order to plot the performance profiles, we
have to consider tp,s = 1/t̄ p,s instead of t̄ p,s as the performance. Accordingly, the
performance ratio for the algorithm s ∈ S in solving the problem p ∈ P is defined as
follows:
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rp,s = tp,s
min{tp,s : s ∈ S} . (45)

If the denominator in (45) is zero, we instead select the smallest positive value greater
than zero in {tp,s : s ∈ S}. Using the performance ratio, one can compare the per-
formance of algorithm s on problem p with the best performance compared to the
performance of the other algorithm for this problem. The performance of algorithm
s on any given problem can be of interest, but we would like to obtain an overall
assessment of the performance of the algorithm. Thus, ρs(τ ) is defined as follows

ρs(τ ) = 1

|P|
∣∣p ∈ P : rp,s ≤ τ

∣∣ . (46)

ρs(τ ) is the probability for algorithm s ∈ S whose performance ratio is within the
interval [1, τ ]. Indeed, ρs is the (cumulative) distribution function for the performance
ratio. The performance profiles depict the function ρs(τ ) for each algorithm s ∈ S.

The value of ρs(1) is the probability that the algorithm s will win over the rest of
the algorithms. Thus, if we are interested only in the number of wins, we need only
to compare the values of ρs(1) for all of the algorithms. For example, ρs0(1) = 0.6
means that the algorithm s0 has the best performance in solving 60 percent of the
test problems in contrast to the rest of the algorithms. Moreover, algorithms with the
largest probabilities ρs(τ ) for large values of τ have a better performance than the
other algorithms.

5.2 Purity metric

The purity metric is an important criterion for comparing the nondominated frontiers
obtained by different algorithms (Custodio et al. 2011; Bandyopadhyay et al. 2004).
The approximated nondominated frontier obtained by algorithm s ∈ S for problem
p ∈ P is denoted by Fp,s . After removing the dominated elements from set ∪s∈S Fp,s ,
a set, namely the reference nondominated frontier which is denoted by Fp is obtained.

The puritymetric for algorithm s ∈ S and problem p ∈ P is defined as t̄ p,s = c
Fp
p,s/cp,s

where c
Fp
p,s = ∣∣Fp,s ∩ Fp

∣∣ and cp,s = ∣∣Fp,s
∣∣. Higher values of t̄ p,s show that algorithm

s ∈ S yields a higher percentage of the nondominated points for problem p ∈ P . Thus,
we have to consider tp,s = 1/t̄ p,s instead of t̄ p,s as the performance. Clearly, t̄ p,s = 0
or tp,s = ∞ shows that the set of points obtained by algorithm s in solving problem
p does not have any intersection with the reference nondominated frontier (Fp).

5.3 Spread metric

The spread metric is another metric to measure the spread of the obtained nondomi-
nated frontiers (Custodio et al. 2011; Bandyopadhyay et al. 2004). Naturally, we are
interested in computing a set of points which spans the entire exact nondominated
frontier. The spread metric is an attempt to measure the largest gap in the obtained
nondominated frontiers. In the following, we explain how one can compute the value
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of the spread metric for each algorithm s in solving the problem p. First, we have
to compute the extreme points of the reference nondominated frontier (Fp) in the
objective space of the problem p. There is an extreme point corresponding to each
component of the objective function. In other words, we have k extreme points for
a k dimensional problem. The extreme point corresponding to the kth component is
a point in the reference nondominated frontier whose kth component has the largest
value. Assume that algorithm s has obtained a set of N points indexed by 1, . . . , N as
the approximated nondominated set. Add the extreme points to these points indexed
by N + 1, . . . , N + k (in k dimensional objective space). Let f p,si, j denote the j th

component of the i th point of this collection. It is obvious that f p,si, j is a scalar value.

Suppose that the values of f p,si, j were sorted by an increasing order in i for each j .
Then, the spread metric of the algorithm s in solving the problem p is denoted by �p,s

and is defined as follows:

�p,s = max
j∈{1,...,m}

(
max

i∈{1,...,N+k}{δ
p,s
i, j }

)
,

where δ
p,s
i, j = ( f p,si+1, j − f p,si, j ).

5.4 Epsilon indicator

The epsilon indicator is a criterion for representing the quality of the obtained nondom-
inated frontiers. The epsilon indicator has two versions, multiplicative and additive.
In this paper, we use the additive version. The additive epsilon indicator Iε+(A) is
defined with respect to the nondominated reference set Fp as:

Iε+(A) = Iε+(A, Fp) = inf{ε|∀y ∈ Fp ∃z ∈ A : z �ε+ y},

where A is the obtained nondominated set for the specified algorithm and �ε+ is the
additive ε-dominance inequality which is defined as follows:

z1 �ε+ z2 ⇔ ∀i ∈ {1, . . . ,m}, z1i ≤ ε + z2i ,

For simplicity of the notation, from now on, BFGS, self-scaling BFGS, and
Huang BFGS quasi-Newton methods for multiobjective optimization without any
line search are denoted by BFGS, SS-BFGS, and H-BFGS, respectively. In addition,
BFGS, self-scaling BFGS, and Huang BFGS quasi-Newton methods for multiob-
jective optimization equipped with the Armijo line search are denoted by BFGSLS,
SS-BFGSLS, and H-BFGSLS, respectively. In the following, we use the above men-
tioned performance assessment criteria, the number of iterations, the number of
function evaluations, expended CPU time, and some other criteria to compare the
BFGS, BFGSLS, SS-BFGS, SS-BFGSLS, H-BFGS, and H-BFGSLS methods.
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6 Numerical results

A MATLAB implementation of the proposed QNMO methods was tested on some
well-known test problems from the literature. Table 1 describes these test problems.
The first column of this table contains the names of these problems. The dimensions
of the test problems are given in Column 2. The notations xL and xU in Columns 2
and 3 stand for the lower and upper bounds of the decision variables. The last column
provides a literature reference. All tests were executed within MATLAB R2013a and
were solved 100 times using 100 initial points from a uniform random distribution
between the given lower and upper bounds specified in Table 1. Therefore, all results
reported in Tables 2, 3 and 4 and depicted in Figs. 1, 2, 3, 4, 5 and 6 are the aver-
age number of the obtained results from these 100 initial points. The corresponding
approximations of the nondominated frontier of all methods are plotted in Figs. 7, 8,
9 and 10 for some of the test problems. In order to have a good approximation of the
nondominated frontiers in these figures, the test problems with two and three objective
functions are solved for 500 and 300 initial points, respectively. As mentioned before,

Table 1 Description of all problems used in numerical implementations

Name n xL xU References

Hil 2 [0, 0] [5, 5] Hillermeier (2001)

DD1a 5 −[1, . . . , 1] [1, . . . , 1] Das and Dennis (1998)

DD1b 5 −[5, . . . , 5] [5, . . . , 5] Das and Dennis (1998)

DD1c 5 −10[1, . . . , 1] 10[1, . . . , 1] Das and Dennis (1998)

DD1d 5 −20[1, . . . , 1] 20[1, . . . , 1] Das and Dennis (1998)

KW2 2 [−3,−3] [3, 3] Kim and De Weck (2005)

JOS1a 50 −[2, . . . , 2] [2, . . . , 2] Ex. 1 Jin et al. (2001)

JOS1b 100 −[2, . . . , 2] [2, . . . , 2] Ex. 1 Jin et al. (2001)

JOS1c 200 −[2, . . . , 2] [2, . . . , 2] Ex. 1 Jin et al. (2001)

JOS1d 500 −[2, . . . , 2] [2, . . . , 2] Ex. 1 Jin et al. (2001)

JOS1e 100 −10[1, . . . , 1] 10[1, . . . , 1] Ex. 1 Jin et al. (2001)

JOS1f 100 −50[1, . . . , 1] 50[1, . . . , 1] Ex. 1 Jin et al. (2001)

JOS1g 100 −100[1, . . . , 1] 100[1, . . . , 1] Ex. 1 Jin et al. (2001)

JOS1h 200 −100[1, . . . , 1] 100[1, . . . , 1] Ex. 1 Jin et al. (2001)

PNR 2 −[2, 2] [2, 2] Preuss et al. (2006)

ZDT6a 3 [0, 0, 0] [1, 1, 1] Ex. 6 Zitzler et al. (2000)

ZDT6b 10 [0, . . . , 0] [1, . . . , 1] Ex. 6 Zitzler et al. (2000)

LTDZ 3 [0, 0, 0] [1, 1, 1] Laumanns et al. (2002)

TR1 3 [0, 0, 0] [1, 1, 1] Tappeta and Renaud (1999)

FDSa 10 −[2, . . . , 2] [2, . . . , 2] Fliege et al. (2009)

FDSb 50 −[2, . . . , 2] [2, . . . , 2] Fliege et al. (2009)

FDSc 100 −[2, . . . , 2] [2, . . . , 2] Fliege et al. (2009)

FDSd 200 −[2, . . . , 2] [2, . . . , 2] Fliege et al. (2009)
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Table 2 The average number of iterations (Iter) and function evaluations (Feval) forBFGSLS,SS-BFGSLS,
and H-BFGSLS QNMO methods in solving some test problems for all initial points are compared

Name BFGSLS SS-BFGSLS H-BFGSLS

Iter Feval Iter Feval Iter Feval

Hil 24.57 207.93 24.47 207.07 2.25 4.06

DD1a 6.34 6.53 11.27 55.28 6.29 6.38

DD1b 8.32 8.32 32.70 251.06 8.28 8.28

DD1c 66.85 544.26 54.24 426.94 7.71 8.15

DD1d 18.65 135.86 135.57 1202.29 3.38 3.39

KW2 7.48 52.45 7.35 52.33 2.37 3.15

JOS1a 42.68 280.20 28.53 130.62 14.25 15.18

JOS1b 43.17 293.24 13.89 13.89 14.04 14.59

JOS1c 47.11 306.70 33.39 174.36 15.34 16.56

JOS1d 26.26 95.83 13.95 13.95 17.58 18.41

JOS1e 89.53 701.14 89.41 749.69 16.50 17.88

JOS1f 186.00 1629.84 232.42 2105.45 20.00 23.89

JOS1g 257.03 2341.36 273.96 2406.39 21.04 25.68

JOS1h 240.16 2146.27 191.13 1694.08 21.41 23.80

PNR 11.04 58.87 15.97 106.64 2.09 2.96

ZDT6a 1.92 1.92 1.92 1.92 1.92 1.92

ZDT6b 1.91 1.91 1.91 1.91 1.91 1.91

LTDZ 2.00 2.00 2.00 2.00 2.00 2.00

TR1 2.00 2.00 2.00 2.00 2.00 2.00

FDSa 473.47 823.00 408.82 594.41 371.58 373.28

FDSb 69.07 458.04 70.76 549.14 25.07 27.97

FDSc 128.93 1042.23 203.37 1869.70 26.60 30.55

FDSd 227.41 2020.30 217.11 2011.50 27.63 32.33

For each test problem the numbers with the least amount of Iter and CIter are in bold

the initial points for all methods are selected uniformly in the feasible set in the deci-
sion space. For instance, see the scatter plot in Fig. 7 which depicts 300 initial points
selected to obtain the nondominated frontiers of test Problem PNR by the proposed
QNMO methods.

The stop rule is |α(x)| < ε, where ε = 5
√
eps and eps ∼= 2.2204 × 10−16.

The maximum number of iterations was set to 500. To avoid repetition from now on,
an initial point which converges before 500 iterations is called (initial) convergent
point and an initial point which does not converge in 500 iterations is called (initial)
non-convergent point.

As seen in the Table 1, for each test problem we have box constraints of the form
xL ≤ x ≤ xU . These constraints are considered under the direction search Subproblem
(15) in the way that the new point lies in the same box, i.e., xL ≤ x + d ≤ xU holds.
Accordingly, in order to find a new direction in x , we practically use Subproblem (47)
instead of Subproblem (15).
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Table 3 Comparing the average number of iterations for the BFGS, SS-BFGS, and H-BFGS QNMO
methods in solving all test problems for all initial points (Iter) and initial points that are converged during
less than 500 iterations (CIter)

Name BFGS SS-BFGS H-BFGS

Iter CIter Iter CIter Iter CIter

Hil 3.81 3.81 3.97 3.97 2.89 2.89

DD1a 6.32 6.32 6.41 6.41 6.29 6.29

DD1b 8.32 8.32 8.77 8.77 8.28 8.28

DD1c 10.64 10.64 11.54 11.54 7.86 7.86

DD1d 4.78 4.78 14.38 14.38 3.42 3.42

KW2 4.62 4.62 2.83 2.83 3.1 3.1

JOS1a 15.30 15.30 24.06 19.25 15.30 15.30

JOS1b 14.43 14.43 13.89 13.89 14.43 14.43

JOS1c 16.56 16.56 33.39 13.95 16.56 16.56

JOS1d 17.80 17.80 13.95 13.95 17.80 17.80

JOS1e 20.22 20.22 74.26 16.20 19.87 19.87

JOS1f 62.57 39.55 122.51 22.16 66.44 43.62

JOS1g 132.78 40.97 257.00 32.69 132.06 40.07

JOS1h 108.4 55 134.47 25.28 101.93 57.7

PNR 11.16 6.22 9.40 4.44 3.44 3.44

ZDT6a 1.92 1.92 1.92 1.92 1.92 1.92

ZDT6b 1.91 1.91 1.91 1.91 1.91 1.91

LTDZ 2.00 2.00 2.00 2.00 2.00 2.00

TR1 2.00 2.00 2.00 2.00 2.00 2.00

FDSa 481.33 126.60 404.98 193.48 451.71 155.07

FDSb 26.19 26.19 17.97 17.97 25.86 25.86

FDSc 28.31 28.31 19.69 19.69 27.48 27.48

FDSd 29.19 29.19 19.92 19.92 28.80 28.80

Note that the number of function evaluations for all mentioned methods beside H-BFGS (for H-BFGS is
equal to the number of iterations.) are zero
For each test problem the numbers with the least amount of Iter and CIter are in bold

min h(t, d) = t

s.t

⎧⎨
⎩

∇Fj (x)T d + 1
2d

T B j (x)d ≤ t, (1 ≤ j ≤ m),

xL − x ≤ d ≤ xU − x,
(t, d) ∈ R × R

n .

(47)

In this paper, we have used the TOMLAB package for solving Subproblem (47).
In this section, all QNMO methods mentioned in Sect. 3 are compared from two

points of view: (i) CPU times and the computational effort; (ii) The quality of the
approximated nondominated frontiers. Tables 2, 3, 4 and Figs. 2, 3, 4 and 5 are devoted
to compare our 6 methods from the first point of view and Figs. 1 and 6, 7, 8, 9, 10
are dedicated to compare all methods from the second point of view. In Tables 2, 3
and 4, corresponding to all test problems, the algorithms with the best performance
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Table 4 Comparing the average number of iterations (Iter) and function evaluations (Feval) for BFGSLS,
SS-BFGSLS, and H-BFGSLS QNMO methods in solving some test problems only for initial points that
are converged during less than 500 iterations

Name BFGSLS SS-BFGSLS H-BFGSLS

Iter Feval Iter Feval Iter Feval

Hil 4.76 11.10 4.66 10.78 2.25 4.06

DD1a 6.34 6.53 6.33 6.33 6.29 6.38

DD1b 8.32 8.32 8.10 8.69 8.28 8.28

DD1c 13.31 35.59 15.48 46.38 7.71 8.15

DD1d 3.76 3.76 7.53 15.82 3.38 3.39

KW2 2.5051 3.3838 2.4137 3.25 2.37 3.15

JOS1a 18.61 38.32 13.95 13.95 14.25 15.18

JOS1b 14.01 14.02 13.89 13.89 14.04 14.59

JOS1c 23.27 73.93 13.95 13.95 15.34 16.56

JOS1d 21.47 56.49 13.95 13.95 17.58 18.41

JOS1e 22.71 62.35 22.57 81.49 16.50 17.88

JOS1f 31.34 129.00 22.18 59.93 20.00 23.89

JOS1g 23.59 26.86 19.06 19.06 21.04 25.68

JOS1h 27.56 56.67 45.78 274.48 21.41 23.80

PNR 6.10 10.02 6.09 10.07 2.09 2.96

ZDT6a 1.92 1.92 1.92 1.92 1.92 1.92

ZDT6b 1.91 1.91 1.91 1.91 1.91 1.91

LTDZ 2.00 2.00 2.00 2.00 2.00 2.00

TR1 2.00 2.00 2.00 2.00 2.00 2.00

FDSa 121.00 373.86 185.59 212.31 85.74 98.42

FDSb 51.11 277.71 38.45 225.23 25.07 30.01

FDSc 52.93 279.58 76.24 599.3 26.6 30.55

FDSd 80.63 549.57 77.78 616.04 27.63 32.33

For each test problem the numbers with the least amount of Iter and CIter are in bold
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Fig. 1 The left figure depicts the performance profiles of the average number of non-convergent points for
QNMOmethods and the right figure depicts the performanceprofiles of the average number of nondominated
points for QNMO methods
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Fig. 2 Comparison of the performance profiles of the average number of iterations for QNMO methods.
The left and right figures depict the performance profiles of the average number of iterations for all points
and convergent points, respectively
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Fig. 3 Comparison of the performance profiles of the average number of function evaluations for all
QNMO methods. The left and right figures depict the performance profiles of the average number of
function evaluations for all points and convergent points, respectively

are specified. The approximated nondominated frontiers of some test problems that
obtained by the proposed QNMO Methods are compared in Figs. 7, 8, 9 and 10.

As seen in Figs. 1, 2, 3 and 4, the variations of the profiles in the small values of τ

are more than their variations in the large values of τ . Moreover, from a large values
of τ onwards, the profiles nearly turn into a horizontal line. Thus, in order to have a
better comparison, we zoomed in on the smaller values of τ . As mentioned in Sect.
5.1, the value of ρs(1) in all profiles is more important than the other values. Thus,
in order to have a more convenient comparison among the profiles, in this article the
point is specified by a tiny circle that has the same color as the color of the related
profile.

Tow criteria that may be of interest in comparingQNMOmethods are the number of
non-convergent points and the number of obtained nondominated points. All proposed
QNMO methods are compared in these criteria in Fig. 1. According to this figure, in
the number of the nondominated points, the methods SS-BFGSLS, SS-BFGS, H-
BFGSLS, BFGS, H-BFGS, and BFGSLS have the best performance in a decreasing
order. As seen in Fig. 1, the H-BFGSLSmethod has a considerably better performance
than the other methods in the number of non-convergent points such that the value of
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Fig. 4 Comparison of the performance profiles of the average expended CPU times for QNMO methods.
For a better comparison, each of these methods, with line search and without any line search, are depicted
in individual figures

ρ(τ) for the H-BFGSLS method is almost equal to one for all values of τ . Moreover,
the worst performance in this regard is due to the SS-BFGSLS and BFGSLS methods.

Figures 2, 3, 4 and 5 and Tables 2, 3, 4 compare the methods in three aspects: the
speed of convergence, the number of iterations, and the number of function evaluations.
Looking at Figs. 2, 3, 4 and 5 andTables 2, 3, 4, it is evident that theH-BFGSLSmethod
has considerably a better performance than the other methods. The worst performance
in this regard is due to the BFGSLS method. In the three points of view mentioned
above, Figures 4 and 5 show that, besides the H-BFGSLS method, the other methods
in the absence of line search have a better performance than when Armijo line search
is used.

Figure 6 compares the methods in the purity metric, spread metric, and epsilon
indicator. These factors are used to compare the quality of the obtained nondominated
frontiers. Based on these factors, the best performance is due to the SS-BFGS and
SS-BFGSLS methods, and the worst performance is due to the H-BFGSLS, H-BFGS,
BFGSLS, and BFGS methods in a decreasing order.

In order to have a good comparison, the obtained nondominated frontiers related
to some of the test problems presented in Table 1 are depicted in Figs. 7, 8, 9 and 10.
Also, in Figs. 7, 8 and 9, the obtained nondominated frontiers are compared to the
reference frontier.
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Fig. 5 Performance profiles of the average number of iterations for QNMO methods with line search and
without any line search

7 Discussion and conclusion

In this paper, a newQNMOmethod in the self-scalingBroyden class and a newQNMO
method in the Huang class were presented. Based on the observed results in Sect. 6,
these methods have some advantages compared to the methods in the Broyden class.
In order to have a good comparison, all methods are compared both in the presence
of the Armijo line search rule and without any line search.

A comprehensive comparative study of QNMO methods has been presented. All
methods are compared from two general points of view: (1) The computational effort
and the speed of convergence (2) The quality of the obtained nondominated fron-
tiers. The obtained numerical results show that from the first point of view, the best
methods are the H-BFGSLS method followed by the SS-BFGS method. The worst
performance in this regard is due to the BFSGLS method. In the second case, the
factors of the number of the obtained nondominated points, the purity metric, spread
metric, and epsilon indicator are used. From the second point of view, the SS-BFGSLS
method followed by the SS-BFGS method have the best performance. Although the
SS-BFGSLS method has a better performance in obtaining the nondominated fron-
tier than the SS-BFGS method, it is considerably weaker than the SS-BFGS method
regarding the speed of the convergence. Moreover, although the H-BFGSLS method
has a weaker performance in terms of the quality of the obtained nondominated
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Fig. 6 Comparison of the performance profiles of the purity metric, spread metric, and epsilon indicator
for QNMO methods

frontier than the other methods, it has the best performance in the speed of con-
vergence.

The methods of the Broyden and the self-scaling Broyden classes, where no line
search was used (Algorithm 2), have a higher speed of convergence compared to
the case where the Armijo line search is used. Lack of any line search in these
methods reduces the quality of the obtained nondominated frontier. However, this
weakness is negligible when compared with the enhancement of the speed of con-
vergence. The increase in the speed of convergence in the case of no line search
is the result of the difference in using the Armijo line search for single objective
and multiobjective problems. In order to choose the step length in the Armijo rule,
we should find the largest number satisfying the Armijo inequality (or inequali-
ties). The number of inequalities in the Armijo rule for single objective problems
is only one, while for multiobjective case it equals to the number of objectives of
the problem. Thus, in the multiobjective case, the Armijo step length is a number
that simultaneously satisfies all of the inequalities. This fact shrinks the step length
and, as a result, the speed of convergence is significantly decreased in multiobjective
case.

In the methods of the Broyden and the self-scaling Broyden class only gradient
information was used for approximating the Hessian matrix, while in the method
of the Huang class, in addition to gradient information, function value information
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Fig. 7 Comparison between the nondominated frontiers obtained from QNMOmethods for Problem PNR
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Fig. 8 Comparison between the nondominated frontiers obtained fromQNMOmethods for ProblemDD1a

was also employed. As a result of this fact, according to Theorem 2, the method of
the Huang class has a higher accuracy in approximating the Hessian matrix than the
methods of the Broyden and the self-scaling Broyden classes. For this reason, the
number of function evaluations in the H-BFGSLS method is less than the BFGSLS
and SS-BFGSLS methods (see Table 2).

Unlike the methods of the Broyden and the self-scaling Broyden classes, using the
Armijo line search for the method of the Huang class has been useful compared to the

123



Quasi-Newton methods for multiobjective optimization… 291

0 0.05 0.1 0.15 0.2 0.25
2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2
BFGSLS

f1

f 2
Derived points
Approximation frontier
Reference frontier

0 0.05 0.1 0.15 0.2 0.25
2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2
BFGS

f1

f 2

Derived points
Approximation frontier
Reference frontier

0 0.05 0.1 0.15 0.2 0.25
2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2
SS−BFGSLS

f1

f 2

Derived points
Approximation frontier
Reference frontier

0 0.05 0.1 0.15 0.2 0.25
2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2
SS−BFGS

f1

f 2

Derived points
Approximation frontier
Reference frontier

0 0.05 0.1 0.15 0.2 0.25
2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2
H−BFGSLS

f1

f 2

Derived points
Approximation frontier
Reference frontier

0 0.05 0.1 0.15 0.2 0.25
2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2
H−BFGS

f1

f 2

Derived points
Approximation frontier
Reference frontier

Fig. 9 Comparison between the nondominated frontiers obtained fromQNMOmethods for Problem JOS1a

case where no line search is used in both aspects of the speed of convergence and the
quality of the obtained nondominated frontier.

As a result of the above discussions and the observed results, we can conclude that,
generally, the H-BFGSLS and SS-BFGS methods have a better performance than the
other methods proposed in this paper.
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Fig. 10 Comparison between the nondominated frontiers obtained fromQNMOmethods for Problem FDS
with 5 variable −2 ≤ xi ≤ 2
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