
4OR-Q J Oper Res (2017) 15:183–199
DOI 10.1007/s10288-016-0330-2

RESEARCH PAPER

Improved lower bounds for the online bin stretching
problem

Michaël Gabay1 · Nadia Brauner1 ·
Vladimir Kotov2

Received: 30 November 2015 / Revised: 13 July 2016 / Published online: 11 October 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract We use game theory techniques to automatically compute improved lower
bounds on the competitive ratio for the bin stretching problem. Using these techniques,
we improve the best lower bound for this problem to 19/14. We explain the technique
and show that it can be generalized to compute lower bounds for any online or semi-
online packing or scheduling problem.

Keywords Bin stretching · Scheduling · Online algorithms · Lower bounds

Mathematics Subject Classification 90B35 · 68W27 · 05B40

1 Introduction

In the online bin stretching problem, we are given a sequence of items defined by their
weights wi ∈ [0; 1]. They all have to be packed into m bins with infinite capacities.
We know in advance that all the items can be packed into m bins with unit size. The
items are available and packed in the order of the sequence, without any knowledge on
the number of remaining items and their weights. The value of a solution is equal to

B Nadia Brauner
nadia.brauner@g-scop.grenoble-inp.fr

Michaël Gabay
michael.gabay@g-scop.grenoble-inp.fr

Vladimir Kotov
kotovvm@bsu.by

1 Univ. Grenoble Alpes, CNRS, G-SCOP, 38000 Grenoble, France

2 FPMI DMA Department, Belarusian State University, 4 Nezavisimosti Avenue, 220030 Minsk,
Belarus

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10288-016-0330-2&domain=pdf
http://orcid.org/0000-0002-2890-4509

184 M. Gabay et al.

the size of the most stretched bin, which is the maximum between 1 and the size of the
largest bin. An algorithmwith stretching factor c for the online bin stretching problem
is an online algorithm which successfully packs intom bins of size c, any sequence of
items fitting into m unit sized bins. That is, for any instance I, the algorithm outputs
a solution with value at most c. The aim is to find an algorithm having a stretching
factor as small as possible.

This problem is equivalent to the scheduling problem Pm|online − list |Cmax

where we additionally know that the optimal makespan is smaller than or equal to a
given valueC (Pm|online− list, known−OPT |Cmax is a subcase of this problem).
The parameter online − list means that, as soon as a job is presented, all its charac-
teristics are known (its processing time in our case) and this job has to be scheduled
before the next job is seen. The reader can refer to Borodin and El-Yaniv (1998), Fiat
and Woeginger (1998) for more details about online algorithms and computation and
to Pruhs et al. (2004) for online scheduling problems.

The bin stretching problem has been introduced by Azar and Regev (2001). They
proposed an algorithm of stretching factor 1.625 and proved that 4/3 is the optimal
stretching factor with two bins. Other algorithms with improved stretching factor have
then been proposed by Kellerer and Kotov (2013), Gabay et al. (2013), Gabay et al.
(2015), Böhm et al. (2015) who respectively proposed algorithms with stretching
factors 11/7 ≈ 1.5714, 26/17 ≈ 1.5294 and then 1.5. The best known upper bound
with 3 bins is 1.375 and is due to Böhm et al. (2015).

The upper bound on the competitive ratio (the stretching factor) for this problem
has been improved while, in the meantime, the best known lower bound remained
the same: 4/3. In this paper, we present a computational approach to derive improved
lower bounds for this problem.We use this approach to obtain a new lower bound with
value 19/14 ≈ 1.3571. This lower bound has been proven for instances with 3 or 4
bins, leaving a gap of 1/56 ≈ 0.018 between the best known lower bound and upper
bound for this problem with 3 bins and 1/7 ≈ 0.143 with 4 or more bins.

In the following section, we define worst-case competitive analysis and present the
classical 4/3 lower bound.

1.1 A lower bound

An online algorithm A for a minimization problem is c-competitive if, for any instance
I, algorithm A provides a solution with value at most c times greater than the optimal
value, i.e. for all instance I, we have A(I) ≤ c × OPT (I). For the bin stretching
problem, this yields A(I) ≤ c (we are guaranteed that OPT (I) = 1).

Our objective is to improve lower bounds on c for a given problem. Ultimately,
the aim is to find the smallest competitive ratio c∗ among all online algorithms for
the problem. This corresponds to finding the largest value c∗ such that for any online
algorithm A, there exists an instance I for which A(I) ≥ c∗ × OPT (I).

We now present the classical online scheduling lower bound for makespan min-
imization, adapted to the bin stretching problem. Consider the problem with 2 bins
(m = 2) and the two following sequences of items in the input:

π =
(
1

3
,
1

3
,
2

3
,
2

3

)
π ′ =

(
1

3
,
1

3
, 1

)

123

Improved lower bounds for the online bin stretching problem 185

Obviously, both of these sequences of items can be packed into two unit sized bins.
Consider a c-competitive deterministic online algorithm A for the bin stretching prob-
lem. Algorithm A must pack both of these sequences of items with stretching factor
at most c.

Either A packs both of the first two items, of size 1
3 ,

1
3 , in the same bin or in different

bins. In the first case, with the sequence π , the smallest bin is filled to at least 4/3,
hence c ≥ 4

3 . Otherwise, with sequence π ′, the smallest bin is filled to at least 4/3,
hence c ≥ 4

3 . In both cases, c ≥ 4
3 . Therefore, the stretching factor of any online

algorithm is greater than or equal to 4
3 .

Azar and Regev (2001) generalized this bound to any number of bins. This bound,
however, has not been improved ever since.We remark that the lower bound fromAzar
and Regev (2001) can be extended to prove a lower bound of 7/6 for any randomized
algorithms for the bin stretching problem and with any number of bins larger than or
equal to two. This bound can be obtained by applying a uniformprobability distribution
on the two inputs considered by the authors.

Our aim is to improve the 4/3 lower bound. Obviously, one cannot work with all
possible algorithms and instances. Yet, in order to prove that a lower bound is valid,
it has to be proven for all deterministic algorithms. We remark that on a given input,
considering all assignments for all items is the same as considering all algorithms. In
the following, we model the problem of finding lower bounds as a game and restrict
the choices of the adversary. This restriction limits the set of considered instances.

1.2 Contribution

We derive a new worst-case lower bound, with value 19/14 ≈ 1.3571. In order
to obtain this bound, we model the problem as a request-answer game against an
adaptive off-line adversary (Ben-David et al. 1994). That is, the problem is modeled
as a two-player, zero-sum game. Then, we use the so-called adversarymethod inwhich
amalicious, omnipotent, adversary is playing against the algorithm to derive improved
lower bounds. In online scheduling literature, layering techniques are often used to
derive lower bounds for deterministic algorithms, see e.g. Albers (1999), Bartal et al.
(1994), Rudin and Chandrasekaran (2003). However, since the optimum is known in
advance in the bin stretching problem, this approach is very unlikely to work. We
use an automated approach based on the minimax algorithm (Neumann 1928), with
alpha-beta pruning (Pearl 1982) to solve the game where the adversary has restricted
choices on the weights of the items. Moreover, to comply with the known feasibility
of the corresponding bin packing problem with unit sized bins, we use constraint
programming to compute feasible decisions of the adversary.

The algorithm outputs a decision tree as a proof. All decisions of the adversary are
provided in this tree, for all decisions of any algorithm. The proof for the 19/14 lower
bound with 3 bins is provided in “Appendix”. The proof with 4 bins is not included in
this paper as it is much larger and does not seem to provide more insights on a possible
structure to prove the 19/14 lower bound for any number of bins.

Similar approaches have already been applied to other problems (Gormley et al.
2000). This computational approach relies on several classical tools of computer sci-

123

186 M. Gabay et al.

ence and combinatorial optimization and can be generalized and applied to any online
or semi-online problem. In this paper, we demonstrate how we apply it to the bin
stretching problem and how the different components are connected together.

1.3 Outline

In Sect. 2, wemodel the problem of finding lower bounds for bin stretching algorithms
as a game. Then, in Sect. 3, we present the algorithm and cuts we use to solve this
game and compute lower bounds. Further research directions are proposed in Sect. 4.
Eventually, the proof of the lower bound with 3 bins is included in the “Appendix”.

2 The bin stretching game

We model the problem of finding lower bounds for the bin stretching problem as the
following two-player, zero-sum infinite game:

BIN STRETCHING GAME

Player 1 chooses a positive integer m. Then, successively, until Player 1
chooses Stop:

1. Player 1 (the adversary) chooses a feasible weight defining an item or Stop.
2. Player 2 (the algorithm) selects an integer i ∈ {1, . . . ,m} and packs the item

into the bin Bi .

The payoff of Player 1 is equal to max(1, max
i=1,...,m

w(Bi)), wherew(Bi) = ∑
j∈Bi

w j .

Let w j be the weight selected by Player 1 on iteration j . The weight w j is feasi-
ble if and only if the bin packing problem with m bins of unit capacities and items
with weights w1, . . . , w j is feasible, i.e. the items can be packed into m bins of unit
capacities. The bin packing problem is stronglyNP-hard (Garey and Johnson 1979).
However, we can consider that the adversary is an oracle and can easily compute this
problem.

Additionally, this is a game with complete information which means that both
players know all the decisions taken and recall the history of the game.

The payoff of Player 1 is c, the stretching factor, while the payoff of Player 2 is−c.
This game is a minimax game where Player 1 aims at maximizing c while Player 2
aims at minimizing c. An algorithm for the bin stretching problem defines a behavior
for Player 2. Theworst-case competitive ratio of an algorithm is equal to the supremum
of c when Player 2 acts according to the algorithm. The supremum on the payoff of
Player 1 in this game is equal to the value c∗.

It is easy to see that this game is infinite since the adversary can provide the input
w j = 1/2 j , for j = 1, . . . ,∞. Hence, we cannot explore all feasible choices of the
adversary unless we restrain them. To cope with this issue, we actually consider that
Player 1 has the following behavior: at the beginning of a game, Player 1 chooses a
positive integer C . Then, all the weights chosen by Player 1 are in {1/C, 2/C, . . . , 1}

123

Improved lower bounds for the online bin stretching problem 187

(0, 0)
Next: 1/3

(0, 1/3)
Next: 1/3

(0, 2/3)
Next: 2/3

(2/3, 2/3)
Next: 2/3

(2/3, 4/3)(4/3, 2/3)

(0, 4/3)

(1/3, 1/3)
Next: 1

(1/3, 4/3)(4/3, 1/3)

(1/3, 0)
Next: 1/3

(2/3, 0)
Next: 2/3

(2/3, 2/3)
Next: 2/3

(2/3, 4/3)(4/3, 2/3)

(4/3, 0)

(1/3, 1/3)
Next: 1

(1/3, 4/3)(4/3, 1/3)

Fig. 1 4/3 lower bound decision tree. Player 1 decisions are the “Next: wi ”. The pairs (w1, w2) are
corresponding to the space used in the bins

(and he can choose Stop as well). Considering this subset of adversaries, the game
is finite: Player 1 has at most mC choices before the game is over.

In order to prove that a value c is a lower bound on c∗, it is “sufficient” to show that
for any algorithm, there is an instance such that the stretching factor of the algorithm is
greater than or equal to c. We cannot consider all algorithms but, on a given instance,
there is a finite number of decisions for Player 2 and considering all decisions is
actually the same as considering all algorithms. Hence, we only need to show that,
for any decision of Player 2, there is a sequence of decisions from Player 1 leading
to a solution with value at least c. Figure 1 illustrates this for the 4/3 lower bound.
All decisions from Player 2 are considered while only one decision for each branch is
provided for Player 1.

3 Implementation

In order to solve the game, that is, find a strategy for Player 1 maximizing c, we imple-
ment the minimax algorithm (depth-first search) for the game previously described.
We apply the alpha-beta pruning with several additional cuts. Remark that consider-
ing unit capacities and weights in {1/C, 2/C, . . . , 1} is the same as considering the
capacities of the bins to be C and weights in {1, . . . ,C}. Hence, we represent an item
by an integer in {1, . . . ,C} and a bin by a list of integers, corresponding to the items
in the bin.

3.1 Decisions on item weights and assignments

In order to decide whether an item can be proposed by the adversary, we use lower
and upper bounds on the corresponding bin packing problem, including the additional
new item. Some of these bounds are described in the following paragraphs.

123

188 M. Gabay et al.

Let w1, . . . , w j be the weights of the items, sorted in non-increasing order. We

verify that
∑ j

i=1 wi ≤ mC and wm + wm+1 ≤ C . Let k = max{i |wi > C/2} (k = 0
if there are no such items) and l = max{i |wi = C/2} (l = k if there are no such items),
we also ensure that 2k+l ≤ 2m. If any of the previous inequalities is not verified, then
theweight is infeasible. At this step, we can also compute refined lower bounds such as
L2 and L3 from Martello and Toth (1990). However, we choose to not compute these
bounds since, in our experiments, subproblems are small and it is computationally
more efficient to immediately solve these problems with an exact solver. With larger
number of bins, one should consider computing these bounds before computing the
exact solution of the problem.

Then, if the problem was not proven infeasible, we compute the best fit decreasing
heuristic on the input. If it is feasible, then the new item is accepted. Otherwise, we
need an exact approach to determine whether current item is feasible.

In our case, we use constraint programming to solve the bin packing problem. This
choice was motivated by the small sizes of the problems that have to be solved. We
did not implement a dedicated approach since the time spent checking feasibility is
dominated by the time spent in the rest of the algorithm.

In general, for a semi-online problem, one can use any approach, including integer
programming, branch and boundor any exact dedicated approach to determinewhether
a move for the adversary is feasible. We can also use heuristic approaches with the risk
of not being able to find a lower bound because of a missed feasible move. However,
when a move is validated, it has to be really feasible in order to ensure the correctness
of the results of the algorithm.

Eventually, it is not necessary to verify feasibility for all items: once an item is
proven feasible, all smaller items are feasible as well. Hence, by considering adver-
sary choices by decreasing order of the weights of the items, we only have to find
the first feasible item; then all other choices are smaller items, hence they are feasi-
ble.

3.2 Cuts

The size of the minimax tree is exponential in m and C . Hence, we have to find
a way to cut branches in order to be able to compute optimal solutions of the
restricted game. The first step to reduce the minimax tree is to break symmetries
on the game: permutations on the bins are actually corresponding to identical solu-
tions. Moreover, from Player 2 point of view, the items in the bins do not matter.
Only the bin sizes matter. So, the configuration ((6, 3), (4, 5),∅) is actually the same
as ((7, 1, 1),∅, (3, 6)). However, these two configuration are different from Player 1
point of view since he needs to ensure that the resulting bin packing problem is
feasible. Yet, to both Player 1 and Player 2, the following configurations are equiva-
lent: ((6, 5, 1, 2), (7, 7),∅), ((6, 1, 7), (5, 2, 7),∅). These two nodes can actually be
described as: ({(0, 1), (14, 2)}, {(1, 1), (2, 1), (5, 1), (6, 1), (7, 2)})which is the same
node to both players. The first set of the pairs gives the weights of the bins and their
multiplicities while the second set of pairs denotes the weights of the items and their
multiplicities. All nodes having the same encoding are equivalent.

123

Improved lower bounds for the online bin stretching problem 189

We use this encoding to represent a (partial) solution and we take advantage of this
encoding in two ways: when Player 2 packs an item, the number of edges to explore
is equal to the cardinality of the first set of the pairs, which is less than or equal to m.
Moreover, we use memoization (Michie 1968) to store and recall the results of the
nodeswe have already computed and of bin packing problemswhich have already been
non-trivially solved. Since we use an alpha-beta pruning, which is further described,
we also have to store the values of α and β on the node, in order to be able to determine
whether the value of a node shall be recomputed when it is recalled.

We apply an alpha-beta pruning to the minimax algorithm. The idea is to maintain
a lower bound α and an upper bound β on the stretching factor. The pruning works
as follows: on a maximizer node, once it is known that the solution of this node will
be better than the solution of another node having the same parent (this parent is a
minimizer), it is not necessary to explore any other choice. And similarly forminimizer
nodes.

Since the adversary is computing a solution against all algorithms, we can consider
several particular algorithms. Especially, we can consider the algorithm packing all
remaining items into the currently smallest bin. We do not know the remaining items,
but we know that the sum of their weights cannot exceed mC − ∑ j

k=1 wk . Let Bi be

the smallest bin, if w(Bi) + mC − ∑ j
k=1 wk ≤ α then we can immediately proceed

to a β cut-off.
Additionally, we are aiming at strictly improving known lower bounds andwe know

that some competitive ratio can be achieved by some deterministic algorithms. So, we
start the exploration with a lower bound which is equal to the best known lower bound
(α =
Cc̃�, where c̃ is the best known lower bound on c∗) and an upper bound which
is equal to the competitive ratio of the best algorithm: β = 26C/17 since 26/17 was
the best upper bound available at the time of computation.

For most values, the lower bound will not be increased, so we improve the approach
by dividing it into two steps: in the first step,we determinewhether the lower bound can
be improved. If so, in a second step,wedetermine the newbest lower bound.Otherwise,
we go on to the next value. Thus, we start with α =
Cc̃� and β =
Cc̃� + 1; such
close values allow very early cut-offs. When the algorithm is over, the value is either
α or β. In the first case, the lower bound cannot be improved for current values of m
and C . We then move on to the next set of parameters m, C . In the other case, we
know that
Cc̃�+1

C is a new, strictly larger lower bound. We re-run the algorithm with
β = 26C/17 to see if this new lower bound can be further improved.

3.3 Results

We implemented the algorithm in Python and used Choco (Jussien et al. 2008) as a
constraint programming solver to solve bin packing problems (we also implemented
approaches using integer programming). The source code of our implementation is
available online.1

1 https://github.com/mgabay/Bin-Stretching-Lower-Bounds.

123

https://github.com/mgabay/Bin-Stretching-Lower-Bounds

190 M. Gabay et al.

Ta
bl

e
1

N
um

er
ic
al
re
su
lts

on
fe
w
in
pu

ts

m
C

c
Fe
as
ib
il
it
y
ch
ec
k

O
ve
ra
ll

F
ir
st
st
ep

#c
al
ls

#e
xa

ct
T
im

e
(s

)
#n

od
es

T
im

e
(s

)
#n

od
es

3
10

–
46

87
37

0.
4

49
,0
55

1.
4

41
,7
53

11
–

14
,8
02

14
1

1.
2

16
8,
38

0
3.
4

14
1,
17

6

12
–

91
25

63
0.
5

11
8,
92

5
2.
2

98
,1
86

13
–

32
,5
38

20
9

1.
1

45
8,
18

3
5.
8

38
4,
05

2

14
∗

19
/
14

82
,8
68

64
4

2.
2

1,
24

0,
61

9
14

.0
28

6,
84

5

15
–

55
,9
29

34
4

1.
2

89
0,
29

1
10

.1
70

2,
44

9

16
–

19
6,
83

5
11

42
3.
3

3,
38

4,
14

4
35

.5
2,
90

1,
48

3

17
23

/
17

20
7,
13

3
18

04
4.
0

3,
72

8,
38

6
40

.8
1,
62

0,
46

8

18
–

30
3,
72

5
16

46
4.
3

5,
69

2,
38

3
57

.2
4,
65

2,
42

7

19
–

10
45

,6
92

49
58

21
.0

21
,2
62

,2
46

12
25

.1
18

,6
53

,8
70

20
27

/
20

97
7,
99

2
61

91
21

.9
20

,2
83

,0
70

10
46

.7
11

,4
46

,2
32

4
7

–
66

22
50

0.
4

50
,6
42

1.
6

39
,9
46

8
–

28
,0
99

18
2

1.
1

25
4,
34

4
4.
5

19
3,
47

4

9
–

30
,9
91

98
0.
8

33
1,
11

2
4.
8

26
6,
92

6

10
–

12
7,
06

3
72

1
2.
6

1,
44

2,
28

1
19

.5
1,
10

6,
14

7

11
–

50
3,
56

0
31

14
7.
5

6,
36

5,
82

2
81

.7
5,
19

5,
61

8

12
–

49
1,
49

7
19

74
5.
8

6,
71

8,
23

2
89

.7
5,
15

8,
80

5

13
–

1,
64

2,
94

9
81

03
19

.8
24

,2
77

,3
22

34
4.
6

–

14
∗

19
/
14

4,
13

9,
36

4
≈1

83
00

54
.0

69
,4
21

,2
82

15
03

.4
–

5
14

?
>
18

29
00

>
46

,9
62

,7
00

,0
00

>
1,
09

5,
06

0
–

B
ol
d
an
d
as
te
ri
sk

m
ea
ns

th
at
it
is
th
e
be
st
cu
rr
en
tv

al
ue

C
ol
um

n
3,
c
is
th
e
be
st
lo
w
er

bo
un

d
on

th
e
co
m
pe
tit
iv
e
ra
tio

ob
ta
in
ed

fo
r
th
e
in
st
an
ce
.“
–”

m
ea
ns

th
at
th
e
4/
3
lo
w
er

bo
un

d
w
as

no
ti
m
pr
ov
ed
.I
n
th
e
la
st
co
lu
m
n,
“–
”
m
ea
ns

th
at
on
ly

th
e
fir
st
st
ep

w
as

co
m
pu
te
d
(s
o
th
e
ac
tu
al
nu
m
be
r
of

no
de
s
in

th
e
fir
st
st
ep

is
in

co
lu
m
n
ov
er
al
l#

no
de
s)

123

Improved lower bounds for the online bin stretching problem 191

Running the program with parameters m = 3 and C = 14, we obtain the improved
lower bound 19/14 ≈ 1.357. We backtracked the results and verified them manually.
The proof is provided in “Appendix”. With m = 4 and C = 14, the algorithm also
finds the 19/14 lower bound and proves it. We suspect that 19/14 is a valid lower
bound for any number of bins but could not go further with the algorithm because of
the combinatorial explosion.

We used PyPy interpreter on a computer running Linux and equipped with an Intel
Core i7-2600K Processor (clock speed 3.40GHz) and 8GB of RAM to compute lower
bounds with our algorithm. Some experimental results are presented in Table 1. Using
our approach, we were able to compute the results for m = 3 and C up to 20, and
m = 4 and C up to 14. With larger values of m, we are only able to compute results
with small C and we do not get improved lower bounds. For larger values of C , the
number of nodes is too large. We remark that the limiting factor is the combinatorial
explosion (see column #nodes, Table 1) and not any algorithmic factor. Optimizing
the code or running it on faster computers would barely allow to compute solutions
for the next values of C .

The results presented in Table 1 (except the last column) concern the single step
approach, with pruning parameters initialized to α =
4C/3� and β = 26C/17. The
last column gives the number of nodes in the first stage of the two-steps approach,
with α =
Cc̃� and β =
Cc̃� + 1.

The column #calls corresponds to the number of times an item feasibility was
verified. The column #exact is the number of calls to the exact method (that is when
the itemwas not proven to be feasible or infeasible by a heuristic or a lower bound). The
combinatorial explosion is very well illustrated in column #nodes where we can see
that we would need significantly stronger cuts to tackle much larger problems. Table 1
also shows that the time spent verifying items feasibility is negligible compared to the
whole time spent. Time spent is approximately linear in the number of nodes.

Note that for the largest values of C (m = 4 and C = 13, 14), we limited the
amount of memoized data (using an LRU cache) and ran computations with the single
step approach only. So the number of nodes displayed in the table is actually larger
than the number of nodes that would be obtained with unlimited memory. For m = 5,
we used a server with 32GB of RAM and also limited the number of memoized nodes
(to 6 × 107 nodes).

In order to improve this algorithm, one could use a breadth-first search and for each
depth, use a heuristic to select a sample of least promising nodes. Exploring these
nodes in depth, will allow some early cut-offs. Another approach is to set C = 1 and
select random weights in]0; 1]. Then, we can run the algorithm on many random
samples of items, hopefully resulting in an improved lower bound. We ran several
tests using randomweights distributions but we did not obtain improved lower bounds
with this approach.

4 Conclusion

Bymodeling the bin stretching problemas a game and solving this gamewith computer
science techniques we provided a first improved lower bound and proved it is valid

123

192 M. Gabay et al.

with both 3 and 4 bins. For the case with 3 bins, the new 19/14 lower bound reduces
the gap between lower and upper bounds by more than a factor of two compared to
the 4/3 lower bound.

Very recently,Böhm(2016) obtainednew results by refining the algorithmpresented
in this paper. He improved the bound to 45/33 for m = 3 and extended the bound of
19/14 to m = 5.

Based on the tree, it is not obvious to find out whether this bound can be generalized
to any number of bins m ≥ 6. Yet, the bound is valid up to 5 bins so it is likely that it
remains valid with more bins.

The approach can be generalized and applied to many other packing or scheduling,
online or semi-online problems. Compared to layering techniques, for multiple bins
problem, there is however a trade-off on the generality of the bound: the lower bound
cannot easily be generalized to any number of bins.

Because of the initial knowledge that all items can be packed intom unit sized bins,
there is little hope that layering techniques could work. Future research could focus on
finding more general lower bounds. For instance, by trying to design a computational
approach whose results could be generalized for all values of m. One could also
consider reducing the search space by exploring the search tree for particular families
of algorithms.

Another subject for further research is to find good distributions of randomized
item weights. By imposing a structure on the distribution of the weights of the items
and running the algorithm on many inputs it is maybe feasible to improve the lower
bounds. A critical factor to improve lower bounds is that the chosen weights can sum
up to 1 in many different ways. This is best achieved with fractions of the same integer
but the whole range of numerators might not be needed.

Acknowledgements This research has been partially supported by Project ICS No 5379 and Belarusian
BRFFIGrant (Project F13K-078). The research of the first and the second author has been partially supported
by the LabEx PERSYVAL-Lab (ANR–11-LABX-0025).

Appendix: Proof of the lower bound

The following tree proves the 19/14 lower bound for the bin stretching problem with
3 bins. This lower bound was obtained using our algorithm with parameters m = 3
and C = 14.

In the proof, a single decision of the adversary is provided for each decision of the
algorithm. We do not explore branches where the algorithm packs the item in a bin,
making it larger than or equal to 19. Moreover, we stop exploring a branch when there
is a feasible item making all algorithms fail. We denote these latter nodes by “cut:
Wmin+w j>=UB”. We recall the input sequence on the leaves. The next items are
not added to this sequence. For instance, for a leaf “input: [2,1,7] / cut:
Wmin + 3 >= UB” the whole input sequence is (2,1,7,3).

In order to make the proof easier to read, we divide the tree in two levels: the first
level is a root tree and the second level is a set of subtrees, one for each leaf of the
root tree (Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13).

123

Improved lower bounds for the online bin stretching problem 193

Fig. 2 Root tree

Fig. 3 Subtree 1, layout
[6, 0, 0], items (2,1,3)

Fig. 4 Subtree 2, layout [7, 3, 0], items (2,1,3,4)

123

194 M. Gabay et al.

Fig. 5 Subtree 3, layout
[3, 3, 4], items (2,1,3,4)

123

Improved lower bounds for the online bin stretching problem 195

Fig. 6 Subtree 4, layout [7, 3, 0], items (2,1,1,2,4)

Fig. 7 Subtree 5, layout [3, 3, 4], items (2,1,1,2,4)

Fig. 8 Subtree 6, layout [5, 1, 0], items (2,1,1,2)

123

196 M. Gabay et al.

Fig. 9 Subtree 7, layout [7, 1, 2], items (2,1,1,2,4)

Fig. 10 Subtree 8, layout [3, 1, 6], items (2,1,1,2,4)

Fig. 11 Subtree 11, layout [2, 1, 1], items (2,1,1)

123

Improved lower bounds for the online bin stretching problem 197

Fig. 12 Subtree 9, layout
[3, 5, 2], items (2,1,1,2,4)

123

198 M. Gabay et al.

Fig. 13 Subtree 10, layout
[2, 2, 0], items (2,1,1)

123

Improved lower bounds for the online bin stretching problem 199

References

Albers S (1999) Better bounds for online scheduling. SIAM J Comput 29(2):459–473
Azar Y, Regev O (2001) On-line bin-stretching. Theor Comput Sci 268(1):17–41
Bartal Y, Karloff H, Rabani Y (1994) A better lower bound for on-line scheduling. Inf Process Lett

50(3):113–116
Ben-David S, Borodin A, Karp R, Tardos G, Wigderson A (1994) On the power of randomization in on-line

algorithms. Algorithmica 11(1):2–14
BöhmM (2016) Lower bounds for online bin stretching with several bins. In: Student Research and Forum

Papers and Posters at SOFSEM 2016, CEUR WP, vol 1548
Böhm M, Sgall J, van Stee R, Veselý P (2015) Better algorithms for online bin stretching. In: Bampis E,

Svensson O (eds) Approximation and online algorithms vol 8952 of lecture notes in computer science.
pp 23–34

Borodin A, El-Yaniv R (1998) Online computation and competitive analysis. Cambridge University Press,
Cambridge

Fiat A, Woeginger GJ (1998) Online algorithms: the state of the art. Springer, Berlin
Gabay M, Kotov V, Brauner N (2013) Semi-online bin stretching with bunch techniques. Les Cahiers

Leibniz 208:1–10
Gabay M, Kotov V, Brauner N (2015) Online bin stretching with bunch techniques. Theor Comput Sci

602:103–113
Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness.

WH Freeman and Company, New York
Gormley T, Reingold N, Torng E, Westbrook J (2000) Generating adversaries for request-answer games.

In: Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms. Society for
Industrial and Applied Mathematics. pp 564–565

Jussien N, Rochart G, Lorca X et al (2008) Choco: an open source java constraint programming
library. In: CPAIOR’08 Workshop on Open-Source Software for Integer and Contraint Programming
(OSSICP’08). pp 1–10

Kellerer H, Kotov V (2013) An efficient algorithm for bin stretching. Oper Res Lett 41(4):343–346
Martello S, Toth P (1990) Lower bounds and reduction procedures for the bin packing problem. Discrete

Appl Math 28(1):59–70
Michie D (1968) Memo functions and machine learning. Nature 218(5136):19–22
Neumann J (1928) Zur theorie der gesellschaftsspiele. Math Annal 100(1):295–320
Pearl J (1982) The solution for the branching factor of the alpha-beta pruning algorithm and its optimality.

Commun ACM 25(8):559–564
Pruhs K, Sgall J, Torng E (2004) Online scheduling. In: Leung JY (ed) Handbook of scheduling: algorithms,

models, and performance analysis. CRC Press, Boca Raton
Rudin J, Chandrasekaran R (2003) Improved bounds for the online scheduling problem. SIAM J Comput

32(3):717–735

123

	Improved lower bounds for the online bin stretching problem
	Abstract
	1 Introduction
	1.1 A lower bound
	1.2 Contribution
	1.3 Outline

	2 The bin stretching game
	3 Implementation
	3.1 Decisions on item weights and assignments
	3.2 Cuts
	3.3 Results

	4 Conclusion
	Acknowledgements
	Appendix: Proof of the lower bound
	References

