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Abstract In this paper we study the continuous-timeMarkov decision processes with
a denumerable state space, a Borel action space, and unbounded transition and cost
rates. The optimality criterion to be considered is the finite-horizon expected total cost
criterion. Under the suitable conditions, we propose a finite approximation for the
approximate computations of an optimal policy and the value function, and obtain the
corresponding error estimations. Furthermore, our main results are illustrated with a
controlled birth and death system.
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1 Introduction

Continuous-time Markov decision processes (CTMDPs) have wide applications to
many areas, such as queueing systems, epidemiology, and telecommunication; see,
for instance, Puterman (1994), Kitaev and Rykov (1995) and Guo and Hernández-
Lerma (2009). Since the time interval in the real-world applications is always finite,
it is meaningful to study the CTMDPs under the finite-horizon expected criterion. As
is well known, a common approach to prove the existence of optimal policies for the
finite-horizon expected total cost criterion is via the optimality equationwhich has been
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established under the different optimality conditions. More precisely, Miller (1968)
dealt with the case of finite states and finite actions. Yushkevich (1977) and Bäuerle
and Rieder (2011) discussed the case of a denumerable state space and bounded
transition rates. Pliska (1975) and Gihman and Skohorod (1979) considered the case
of a Borel state space and bounded transition rates. van Dijk (1988) and Guo et al.
(2015) investigated the case of a denumerable state space and unbounded transition
rates. Wei and Chen (2014) studied the case of a Borel state space and unbounded
transition rates. All the aforementioned works discussed the finite-horizon expected
total cost criterion in the class of all Markov policies except Yushkevich (1977) and
Guo et al. (2015) which deal with the finite-horizon CTMDPs in the more general
class of all history-dependent policies. They focus on showing that the value function
is a unique solution to the optimality equation and that there exists an optimal Markov
policy. Moreover, Guo et al. (2015) gave an example in which the precise forms of
an optimal policy and the value function were obtained for some special cases, and
solved an open problem proposed in Yushkevich (1977). However, the solution to the
optimality equation cannot be solved explicitly in most cases. Hence, it is desirable to
study the numerical methods for the approximate computations of an optimal policy
and the value function. van Dijk (1988, 1989) used a method of time discretization
to develop an approximation for the approximate computations of an optimal policy
and the value function for the case of the denumerable state and action spaces and
unbounded transition and cost rates, and obtained the orders of the accuracy of the
approximation. From the theoretical viewpoint, the approximation in van Dijk (1988,
1989) can be computed by the recursive discrete-time dynamic programming. From
the computational viewpoint, how to realize the approximation for the case of the
denumerable state and action spaces is not involved in van Dijk (1988, 1989). In view
of applications, it is of great importance to investigate the tractable numerical methods
for the case of a denumerable state space and an uncountable action space.

In this paper we further study the issue of the approximate computations of an
optimal policy and the value function for the finite-horizon expected total cost criterion
basing on the existence results in Guo et al. (2015). The state space is a denumerable
set and the action space is a Borel space. The transition and cost rates are allowed
to be unbounded. Under the suitable conditions, we propose a finite approximation
for the approximate computations of the value function and an optimal policy. To be
more specific, this approximation can be divided into the following two steps. (I) The
first step is to construct a sequence of the control models {Mn, n ≥ 1} satisfying
that the state space and the set of all admissible actions are finite sets, and that the
corresponding value functions converge to the value function of the original control
model M. To this end, we define the state space and transition rates of the control
model Mn by employing the finite truncation of the corresponding elements of the
original control model M, and choose the set of all admissible actions of the control
modelMn satisfying a certain condition. (II) The second step is to construct a suitable
value iteration for approximating the value function of the control model Mn . Since
there are uncountable points in the finite time interval, it is infeasible to compute the
value function directly from the computational viewpoint. Hence, we divide the time
interval into several equal parts, and present a value iteration using a technique of
time discretization and the optimality equation [see (4.11)]. Moreover, we can obtain
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an approximate optimal policy of the control model M as in the form of (4.12) from
executing the iteration procedure. It should be mentioned that the method of time
discretization in this paper is different from that in van Dijk (1988, 1989). More
specifically, van Dijk (1988, 1989) employed the technique of time discretization to
construct a discrete-time MDP with a fixed step size in the time parameter and then
gave an approximation for the approximate computations of an optimal policy and the
value function by solving the finite-horizon optimality equation of the discrete-time
MDP. We use the approach of time discretization to obtain a partition of the time
interval and directly provide a finite approximation for the approximate computations
of an optimal policy and the value function without introducing an auxiliary discrete-
time MDP as in van Dijk (1988, 1989).

Furthermore, we analyze the accuracy of the finite approximation. For the first step,
we obtain an error estimation between the value function of the control model Mn

and that of the original control model M by suitably choosing the set of all admis-
sible actions of the control model Mn (see Theorem 4.1). For the second step, we
give an error estimation between the values obtained from the iteration and the value
function of the control model Mn at the discrete time points, and an error estima-
tion of an approximate optimal policy of the control model M (see Theorem 4.2).
Finally, we use a controlled birth and death system to illustrate the application of the
finite approximation.

The rest of this paper is organized as follows. In Sect. 2, we introduce the control
model and optimality criterion. In Sect. 3, we give the optimality conditions for the
existence of optimal policies and preliminary results. In Sect. 4, we state and prove
our main results. In Sect. 5, we illustrate our main results with a controlled birth and
death system.

2 The control model

In this paper we consider the following model

M := {S, A, (A(i), i ∈ S), q( j |i, a), c(i, a)},

where the state space S is assumed to be the set of all nonnegative integers endowed
with the discrete topology and the action space A is assumed to be a Borel space with
the Borel σ -algebra B(A). A(i) ∈ B(A) represents the set of all admissible actions
when the state of the system is i ∈ S. Let K := {(i, a)|i ∈ S, a ∈ A(i)} be the set of
all the feasible state-action pairs. The transition rate q( j |i, a) is supposed to satisfy
the following properties:

• For each fixed i, j ∈ S, q( j |i, a) is measurable in a ∈ A(i);
• q( j |i, a) ≥ 0 for all (i, a) ∈ K and j �= i ;
• ∑

j∈S q( j |i, a) = 0 for all (i, a) ∈ K ;
• q∗(i) := supa∈A(i) |q(i |i, a)| < ∞ for all i ∈ S.

Finally, the real-valued cost rate function c(i, a) is measurable in a ∈ A(i) for each
i ∈ S.
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70 Q. Wei

A continuous-time Markov decision process evolves as follows. A decision-maker
observes continuously the state of the system. If the system occupies state i , he/she
chooses an action a ∈ A(i) according to some decision rule. As a consequence of
this, the following happens: (i) a cost takes place at the rate c(i, a); (ii) the system
remains in the state i for a random time following the exponential distribution with
the tail function given by eq(i |i,a)t , and then jumps to a new state j with the probability
− q( j |i,a)

q(i |i,a)
(we make a convention that 0

0 := 0).
To define the optimality criterion, we need to introduce the definition of a policy.

From Theorem 4.1 in Guo et al. (2015), we have that there exists an optimal Markov
policy over the class of all randomized history-dependent policies for the finite-horizon
expected total cost criterion.Thus,without loss of generality,we restrict the discussions
to the class of all randomized Markov policies throughout the paper.

Definition 2.1 ArandomizedMarkov policy is a familyπ := {πt , t ≥ 0} of stochastic
kernels that satisfy

(i) for each t ≥ 0, πt is a stochastic kernel on A given S such that πt (A(i)|i) = 1
for all i ∈ S;

(ii) for each i ∈ S and D ∈ B(A), πt (D|i) is Borel measurable in t ∈ [0,∞).

A policy π is called deterministic Markov if there exists a measurable function f on
S × [0,∞) with f (i, t) ∈ A(i), such that πt (·|i) is the Dirac measure concentrated at
f (i, t) ∈ A(i) for all (i, t) ∈ S × [0,∞).

We denote by � the set of all randomized Markov policies and by �D the set of
all deterministic Markov policies.

For any π ∈ � and any initial state i ∈ S, by Theorem 4.27 in Kitaev and
Rykov (1995), there exist a unique probability measure Pπ

i on somemeasurable space
(�,B(�)) and a state process {ξt , t ≥ 0}. Let Eπ

i be the corresponding expectation
operator with respect to Pπ

i .
Fix an arbitrary constant T > 0 denoting the horizon of the CTMDPs. For any

i, j ∈ S and π ∈ �, we define the finite-horizon expected total cost from time t to the
terminal time T as follows:

V π (t, i) := Eπ
j

[∫ T

t

∫

A
c(ξs, a)πs(da|ξs)ds

∣
∣
∣
∣ξt = i

]

. (2.1)

Since for each π ∈ �, {ξt , t ≥ 0} is a Markov jump process, the definition of V π (t, i)
is independent of the state j ∈ S. The corresponding value function is defined by

V ∗(t, i) := inf
π∈�

V π (t, i) for all (t, i) ∈ [0, T ] × S. (2.2)

Definition 2.2 A policy π∗ ∈ � is said to be optimal if V π∗
(0, i) = V ∗(0, i) for all

i ∈ S.
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Finite approximation for finite-horizon CTMDPs 71

3 Preliminaries

In this section, we give some basic assumptions and preliminary results.
The following conditions are used to avoid the explosion of the process {ξt , t ≥ 0}

and guarantee the finiteness of the finite-horizon expected total cost criterion V π (·)
and the value function V ∗(·); see, for instance, Guo and Hernández-Lerma (2009) and
Guo and Zhang (2014).

Assumption 3.1 There exist a nondecreasing functionw ≥ 1 on S with limi→∞ w(i)
= ∞, and constants ρ1 ∈ R := (−∞,+∞), d1 ≥ 0, Q > 0 and M > 0 such that

(i)
∑

j∈S w( j)q( j |i, a) ≤ ρ1w(i) + d1 for all (i, a) ∈ K ;
(ii) q∗(i) ≤ Qw(i) for all i ∈ S;
(iii) |c(i, a)| ≤ Mw(i) for all (i, a) ∈ K .

In addition to Assumption 3.1, we also need the following conditions.

Assumption 3.2 (i) There exist constants ρ2 ∈ R and d2 ≥ 0 such that

∑

j∈S
w2( j)q( j |i, a) ≤ ρ2w

2(i) + d2 for all (i, a) ∈ K ,

where w is as in Assumption 3.1.
(ii) For each i ∈ S, the set A(i) is compact.
(iii) For any i, j ∈ S there exist constants Li > 0 and Li j > 0 such that

|c(i, a) − c(i, b)| ≤ LidA(a, b) and |q( j |i, a) − q( j |i, b)| ≤ Li j dA(a, b)

for all a, b ∈ A(i), where dA denotes the metric of the space A.
(iv) For each i ∈ S, the function

∑
j∈S w( j)q( j |i, a) is continuous in a ∈ A(i).

Remark 3.1 Assumption 3.2(i) is used to obtain the Ito–Dynkin formula; see Theorem
3.1 in Guo et al. (2015). Assumption 3.2(ii) and (iv), the standard continuity and
compactness conditions, together with Assumption 3.2(iii), are used to ensure the
existence of optimal policies; see, for instance, Guo and Hernández-Lerma (2009),
Guo and Zhang (2014), Wei and Chen (2014) and Guo et al. (2015). Assumption
3.2(iii), the so-called Lipschitz continuity condition, is also used to give the error
estimations of the finite approximation.

Then we have the following results.

Lemma 3.1 Suppose that Assumptions 3.1 and 3.2 are satisfied. Then the following
statements hold.

(i) Eπ
j [wl(ξt )|ξs = i] ≤ eρl (t−s)wl(i) + dl

ρl
(eρl (t−s) − 1) for all i, j ∈ S, π ∈ �,

t ≥ s ≥ 0 and l = 1, 2 (if ρl = 0, the righthand term is wl(i) + dl(t − s)).
(ii) |V π (t, i)| ≤ G1w(i) for all (t, i) ∈ [0, T ] × S and π ∈ �, where G1 =

M[( 1
ρ1

+ d1
ρ2
1
)(eρ1T − 1) − d1

ρ1
T ] (if ρ1 = 0, G1 = M(T + 1

2d1T
2)).
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72 Q. Wei

(iii) The function V ∗ on [0, T ] × S satisfies the following equation:

− ∂V ∗

∂t
(t, i) = inf

a∈A(i)

⎧
⎨

⎩
c(i, a) +

∑

j∈S
V ∗(t, j)q( j |i, a)

⎫
⎬

⎭
(3.1)

for all (t, i) ∈ [0, T ] × S, where ∂V ∗
∂t denotes the derivative of V ∗ with respect

to the variable t . Moreover, there exists f ∗ ∈ �D with f ∗(i, t) ∈ A(i) attaining
the infimum in (3.1) and the policy f ∗ is optimal.

(iv) |V ∗(t1, i) − V ∗(t2, i)| ≤ [
M + G1(ρ1 I{ρ1>0} + d1 + 2Q)

]
w2(i)|t1 − t2| for all

i ∈ S and t1, t2 ∈ [0, T ], where ID denotes the indicator function of a set D.

Proof (i) Part (i) follows from Lemma 6.3 in Guo and Hernández-Lerma (2009).
(ii) Fix any i, j ∈ S, t ∈ [0, T ] and π ∈ �. Then using (2.1), Assumption 3.1(iii)

and part (i), we have

|V π (t, i)| ≤ M
∫ T

t
Eπ

j [w(ξs)|ξt = i]ds

≤ Mw(i)
∫ T

t

[

eρ1(s−t) + d1
ρ1

(eρ1(s−t) − 1)

]

ds

= M

[
1

ρ1
(eρ1(T−t) − 1) + d1

ρ2
1

(eρ1(T−t) − 1) − d1
ρ1

(T − t)

]

w(i)

≤ M

[
1

ρ1
(eρ1T − 1) + d1

ρ2
1

(eρ1T − 1) − d1
ρ1

T

]

w(i)

for ρ1 �= 0, which implies the desired assertion.
(iii) Part (iii) follows from the same techniques of Theorem 4.1 in Guo et al. (2015)

and Theorem 4.1 in Wei and Chen (2014).
(iv) By (2.2) and (3.1), we have

V ∗(t, i) =
∫ T

t
inf

a∈A(i)

⎧
⎨

⎩
c(i, a) +

∑

j∈S
V ∗(s, j)q( j |i, a)

⎫
⎬

⎭
ds

for all (t, i) ∈ [0, T ] × S. Thus, direct calculations give

|V ∗(t1, i) − V ∗(t2, i)| =
∣
∣
∣
∣
∣
∣

∫ t2

t1
inf

a∈A(i)

⎧
⎨

⎩
c(i, a) +

∑

j∈S
V ∗(s, j)q( j |i, a)

⎫
⎬

⎭
ds

∣
∣
∣
∣
∣
∣

≤ [
M + G1(ρ1 I{ρ1>0} + d1 + 2Q)

]
w2(i)|t1 − t2|

for all i ∈ S and t1, t2 ∈ [0, T ], where the inequality follows from part (ii) and
Assumption 3.1. This completes the proof of the lemma. 	
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4 Finite approximation

In this section, we present a finite approximation for the approximate computations of
an optimal policy and the value function. To do so, we need to introduce the following
notation.

For each integer n ≥ 1, we define the control model

Mn := {Sn, A, (An(i), i ∈ Sn), qn( j |i, a), c(i, a)}

with the following elements.

• The state space is Sn := {0, 1, . . . , jn}, where the sequence { jn, n ≥ 1} is increas-
ing and limn→∞ jn = ∞.

• The action space A is the same as in the model M.
• An(i), the set of all admissible actions in the state i ∈ Sn , is an arbitrary finite set.
Let Kn := {(i, a)|i ∈ Sn, a ∈ An(i)}.

• For each (i, a) ∈ Kn and j ∈ Sn , the transition rate qn( j |i, a) is given by

qn( j |i, a) :=
{
q( j |i, a), if j �= jn,∑

k≥ jn q(k|i, a), if j = jn .

• We still denote by c the restriction of the cost rate function c in the model M to
Kn .

We denote by �n the set of all randomized Markov policies and by �D
n the set of all

deterministic Markov policies for the control model Mn . Moreover, for any π ∈ �n

and any initial state i ∈ Sn , employingTheorem4.27 inKitaev andRykov (1995), there
exists a probability measure Pi,π

n on some measurable space (�n,B(�n)). Denote by
Ei,π
n the corresponding expectation operator with respect to Pi,π

n . As in (2.1) and (2.2),
we can also define the functions V π

n and V ∗
n on [0, T ] × Sn with Ei,π

n and �n in lieu
of Eπ

i and �, respectively.
Let C be the set of all closed subsets of A. The Hausdorff metric on C is defined as

dH (B1, B2) := max

{

sup
a∈B1

inf
b∈B2

dA(a, b), sup
b∈B2

inf
a∈B1

dA(a, b)

}

for all B1, B2 ∈ C.
In order to obtain the error estimations of the finite approximation, we also need to

impose the following condition.

Assumption 4.1 There exist constants δ > 2, ρδ ∈ R and dδ ≥ 0 such that

∑

j∈S
wδ( j)q( j |i, a) ≤ ρδw

δ(i) + dδ for all (i, a) ∈ K ,

where w comes from Assumption 3.1.
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74 Q. Wei

Below we state our first main result on the error estimation between the value
function of the control model Mn and that of the original control model M.

Theorem 4.1 Suppose that Assumptions 3.1, 3.2 and 4.1 hold. Let G1 be as in
Lemma 3.1. If there exists a constant M̃ > 0 such that for each n ≥ 1 and i ∈ Sn, the
set An(i) satisfies

dH (A(i), An(i)) ≤ M̃wδ(i)

wδ−2( jn)
[
Li + 2G1w( jn)

∑ jn−1
j=0 Li j

] , (4.1)

then we have

|V ∗(t, i) − V ∗
n (t, i)| ≤ Q1w

δ(i)

wδ−2( jn)

for all t ∈ [0, T ], where Q1 = [
M̃ + 2G1(|ρδ| + dδ + Q)

] × [( 1
ρδ

+ dδ

ρ2
δ

)(eρδT − 1)

− dδ

ρδ
T ] (if ρδ = 0, Q1 = [

M̃ + 2G1(dδ + Q)
]
(T + 1

2dδT 2)).

Proof Fix any n ≥ 1 and i ∈ Sn . Let f ∗ ∈ �D be as in Lemma 3.1(iii). Then we
have

− ∂V ∗

∂s
(s, i) = c(i, f ∗(i, s)) +

∑

j∈S
V ∗(s, j)q( j |i, f ∗(i, s))

= c(i, f ∗(i, s)) +
jn−1∑

j=0

(V ∗(s, j) − V ∗(s, jn))q( j |i, f ∗(i, s))

+
∑

j> jn

(V ∗(s, j) − V ∗(s, jn))q( j |i, f ∗(i, s)) (4.2)

for all s ∈ [0, T ]. Moreover, direct calculations give

∑

j> jn

(V ∗(s, j) − V ∗(s, jn))q( j |i, f ∗(i, s))

≥ −2G1

∑

j> jn

w( j)q( j |i, f ∗(i, s))

≥ − 2G1

wδ−2( jn)

∑

j> jn

wδ−1( j)q( j |i, f ∗(i, s))

≥ − 2G1

wδ−2( jn)

⎡

⎣
∑

j∈S
wδ−1( j)q( j |i, f ∗(i, s)) − wδ−1(i)q(i |i, f ∗(i, s))

⎤

⎦

≥ −2G1(|ρδ| + dδ + Q)
wδ(i)

wδ−2( jn)
(4.3)
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for all s ∈ [0, T ], where the first inequality follows from Lemma 3.1(ii), the second
one is due to the monotonicity ofw, and the last one follows from Assumptions 3.1(ii)
and 4.1. For each s ∈ [0, T ], there exists f̃ (i, s) ∈ An(i) satisfying

dA( f ∗(i, s), f̃ (i, s)) = min
a∈An(i)

dA( f ∗(i, s), a) ≤ dH (A(i), An(i)),

which together with Lemma 3.1(ii) and Assumption 3.2(iii) yields

c(i, f ∗(i, s)) − c(i, f̃ (i, s)) ≥ −LidA( f ∗(i, s), f̃ (i, s))

≥ −LidH (A(i), An(i)) (4.4)

and

jn−1∑

j=0

(V ∗(s, j) − V ∗(s, jn))
[
q( j |i, f ∗(i, s)) − q( j |i, f̃ (i, s))

]

≥ −2G1w( jn)
jn−1∑

j=0

∣
∣q( j |i, f ∗(i, s)) − q( j |i, f̃ (i, s))

∣
∣

≥ −2G1w( jn)
jn−1∑

j=0

Li j dA( f ∗(i, s), f̃ (i, s))

≥ −2G1w( jn)dH (A(i), An(i))
jn−1∑

j=0

Li j . (4.5)

Hence, by (4.2)–(4.5) we obtain

− ∂V ∗

∂s
(s, i) ≥ c(i, f̃ (i, s)) +

jn−1∑

j=0

(V ∗(s, j) − V ∗(s, jn))q( j |i, f̃ (i, s))

−
⎡

⎣Li + 2G1w( jn)
jn−1∑

j=0

Li j

⎤

⎦ dH (A(i), An(i))

−2G1(|ρδ| + dδ + Q)
wδ(i)

wδ−2( jn)

≥ c(i, f̃ (i, s)) +
∑

j∈Sn
V ∗(s, j)qn( j |i, f̃ (i, s)) − M̃wδ(i)

wδ−2( jn)

−2G1(|ρδ| + dδ + Q)
wδ(i)

wδ−2( jn)

= c(i, f̃ (i, s)) +
∑

j∈Sn
V ∗(s, j)qn( j |i, f̃ (i, s)) − Q̃wδ(i)

wδ−2( jn)
(4.6)
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for all s ∈ [0, T ], where Q̃ := M̃+2G1(|ρδ|+dδ +Q). Note that under Assumptions
3.1(i), (ii), 3.2(i) and 4.1, we have

q∗
n (i) := sup

a∈An(i)
|qn(i |i, a)| ≤ q∗(i) ≤ Qw(i) and (4.7)

∑

j∈Sn
wl( j)qn( j |i, a) =

∑

j∈Sn
wl( j)q( j |i, a) + wl( jn)

∑

j /∈Sn
q( j |i, a)

≤
∑

j∈S
wl( j)q( j |i, a) ≤ ρlw

l(i) + dl (4.8)

for all a ∈ An(i), which together with Lemma 6.3 in Guo and Hernández-Lerma
(2009) imply

E j,π
n [wl(ξt )|ξs = i] ≤ eρl (t−s)wl(i) + dl

ρl
(eρl (t−s) − 1) (4.9)

for all j ∈ Sn , π ∈ �n , t ≥ s ≥ 0 and l = 1, 2, δ (if ρl = 0, the righthand term of
(4.9) is wl(i) + dl(t − s)). Direct calculations give

E j,π
n

[∫ T

t

∣
∣
∣
∣
∂V ∗

∂s
(s, ξs)

∣
∣
∣
∣ ds

∣
∣
∣
∣ξt = i

]

≤ [
M + G1(ρ1 I{ρ1>0} + d1 + 2Q)

]

×E j,π
n

[∫ T

t
w2(ξs)ds

∣
∣
∣
∣ξt = i

]

≤ [
M + G1(ρ1 I{ρ1>0} + d1 + 2Q)

]

×
[(

1

ρ2
+ d2

ρ2
2

)

(eρ2T − 1) − d2
ρ2

T

]

w2(i) < ∞

(if ρ2 = 0, the last term is
[
M + G1(ρ1 I{ρ1>0} + d1 + 2Q)

]
(T + 1

2d2T
2)w2(i)) for

all j ∈ Sn , π ∈ �n and t ∈ [0, T ], where the first inequality follows from Lemma 3.1
and Assumption 3.1, and the second one is due to (4.9). Moreover, by (4.6) we
obtain

−E j, f̃
n

[∫ T

t

∂V ∗

∂s
(s, ξs)ds

∣
∣
∣
∣ξt = i

]

≥ E j, f̃
n

[∫ T

t
c(ξs, f̃ (ξs, s))ds

∣
∣
∣
∣ξt = i

]

+E j, f̃
n

⎡

⎣
∫ T

t

∑

j∈Sn
V ∗(s, j)qn( j |ξs, f̃ (ξs, s))ds

∣
∣
∣
∣ξt = i

⎤

⎦

− Q̃

wδ−2( jn)
E j, f̃
n

[∫ T

t
wδ(ξs)ds

∣
∣
∣
∣ξt = i

]

(4.10)
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for all j ∈ Sn and t ∈ [0, T ]. Employing Theorem 3.1 in Guo et al. (2015) we have

E j, f̃
n

⎡

⎣
∫ T

t

∑

j∈Sn
V ∗(s, j)qn( j |ξs, f̃ (ξs, s))ds

∣
∣
∣
∣ξt = i

⎤

⎦

= −V ∗(t, i) − E j, f̃
n

[∫ T

t

∂V ∗

∂s
(s, ξs)ds

∣
∣
∣
∣ξt = i

]

for all j ∈ Sn and t ∈ [0, T ]. Hence, the last equality, (4.9) and (4.10) imply

V ∗(t, i) ≥ V f̃
n (t, i) − Q̃

wδ−2( jn)
E j, f̃
n

[∫ T

t
wδ(ξs)ds

∣
∣
∣
∣ξt = i

]

≥ V ∗
n (t, i) − Q̃

[(
1

ρδ

+ dδ

ρ2
δ

)

(eρδT − 1) − dδ

ρδ

T

]
wδ(i)

wδ−2( jn)

(if ρδ = 0, the last term is V ∗
n (t, i) − Q̃(T + 1

2dδT 2)
wδ(i)

wδ−2( jn)
) for all j ∈ Sn and

t ∈ [0, T ]. On the other hand, using the similar arguments, we have

V ∗(t, i) ≤ V ∗
n (t, i) + Q̃

[(
1

ρδ

+ dδ

ρ2
δ

)

(eρδT − 1) − dδ

ρδ

T

]
wδ(i)

wδ−2( jn)

for all t ∈ [0, T ]. Therefore, we obtain the desired assertion. 	

For each integer m ≥ 1, a partition of the interval [0, T ] is as follows:

T =: t0 > t1 > · · · > tm := 0,

where tl := t0 − T
m l for all l = 0, 1, . . . ,m. For each n ≥ 1, we define the following

iteration

Wm(tl , i) := Wm(tl−1, i) + T

m
min

a∈An(i)

⎧
⎨

⎩
c(i, a) +

∑

j∈Sn
Wm(tl−1, j)qn( j |i, a)

⎫
⎬

⎭

with Wm(t0, i) = 0 (4.11)

for all i ∈ Sn and l = 1, . . . ,m. For each n ≥ 1, i ∈ Sn and l ∈ {1, . . . ,m}, letDn,l(i)
be the set of all the minimizers attaining the minimum in (4.11). For each n ≥ 1 and
m ≥ 1, denote by On,m the set of all the policies with the following form:

fn,m(i, t) :=
⎧
⎨

⎩

gn,m(i), if t ∈ [0, tm−1],
gn,l(i), if t ∈ (tl , tl−1](l = 1, . . . ,m − 1),
a∗, if t > T,

(4.12)

for all i ∈ Sn , where gn,l(i) belongs to Dn,l(i) and a∗ ∈ An(i) is arbitrarily fixed.
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Next, we give our second main result on the error estimations of the approximate
computations of the value function and an optimal policy for the control model M
using the above iteration defined by (4.11).

Theorem 4.2 Suppose that the conditions in Theorem 4.1 are satisfied. Let Q1 be as
in Theorem 4.1. Then the following statements hold: for each m ≥ 1 and n ≥ 1,

(i) |V ∗
n (tl , i) − Wm(tl , i)| ≤ M1Tw2( jn)

2Qm

(
e2QTw( jn) − 1

)
for all i ∈ Sn and l =

0, 1, . . . ,m, where M1 = [
M + G1(ρ1 I{ρ1>0} + d1 + 2Q)

]
(ρ2 I{ρ2>0} + d2 +

2Q).

(ii) |V ∗(0, i)−Wm(0, i)| ≤ Q1w
δ(i)

wδ−2( jn)
+ M1Tw2( jn)

2Qm

(
e2QTw( jn) − 1

)
for all i ∈ Sn.

(iii) Any policy fn,m ∈ On,m satisfies

|V ∗(0, i) − V
fn,m
n (0, i)| ≤ Q1w

δ(i)

wδ−2( jn)
+ M1Tw2( jn)

Qm

(
e2QTw( jn) − 1

)

for all i ∈ Sn.

Proof (i) Fix any n ≥ 1, i ∈ Sn , m ≥ 1 and l ∈ {1, . . . ,m}. By (4.7), (4.8) and the
description of the control model Mn , we see that Assumptions 3.1, 3.2 and 4.1 also
hold for the transition rate qn( j |i, a). Then it follows from Lemma 3.1 that

− ∂V ∗
n

∂t
(t, i) = min

a∈An(i)

{

c(i, a) +
∑

j∈Sn
V ∗
n (t, j)qn( j |i, a)

}

(4.13)

and

|V ∗
n (s, i) − V ∗

n (t, i)| ≤ [
M + G1(ρ1 I{ρ1>0} + d1 + 2Q)

]
w2(i)|t − s| (4.14)

for all s, t ∈ [0, T ]. Thus, direct calculations give

|V ∗
n (tl , i) − Wm(tl , i)|
=
∣
∣
∣
∣V

∗
n (tl−1, i) +

∫ tl−1

tl
min

a∈An(i)

{

c(i, a) +
∑

j∈Sn
V ∗
n (t, j)qn( j |i, a)

}

dt

−Wm(tl−1, i) − T

m
min

a∈An(i)

{

c(i, a) +
∑

j∈Sn
Wm(tl−1, j)qn( j |i, a)

}∣
∣
∣
∣

≤ |V ∗
n (tl−1, i) − Wm(tl−1, i)|+

∫ tl−1

tl
max

a∈An(i)

∣
∣
∣
∣
∣
∣

∑

j∈Sn
(V ∗

n (t, j)−Wm(tl−1, j))qn( j |i, a)

∣
∣
∣
∣
∣
∣
dt

≤ |V ∗
n (tl−1, i) − Wm(tl−1, i)|+

∫ tl−1

tl
max

a∈An(i)

∣
∣
∣
∣
∣
∣

∑

j∈Sn
(V ∗

n (t, j)−V ∗
n (tl−1, j))qn( j |i, a)

∣
∣
∣
∣
∣
∣
dt
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+
∫ tl−1

tl
max

a∈An(i)

∣
∣
∣
∣
∣
∣

∑

j∈Sn
(V ∗

n (tl−1, j) − Wm(tl−1, j))qn( j |i, a)

∣
∣
∣
∣
∣
∣
dt

≤ |V ∗
n (tl−1, i) − Wm(tl−1, i)| +

(
T

m

)2
M1w

3(i)

+ T

m
max

a∈An(i)

∑

j∈Sn
|(V ∗

n (tl−1, j) − Wm(tl−1, j))qn( j |i, a)|

≤ |V ∗
n (tl−1, i) − Wm(tl−1, i)| +

(
T

m

)2
M1w

3(i) + 2QT

m
max
j∈Sn

|V ∗
n (tl−1, j)

−Wm(tl−1, j)|w(i)

where M1 equals
[
M + G1(ρ1 I{ρ1>0} + d1 + 2Q)

]
(ρ2 I{ρ2>0} + d2 + 2Q), the first

equality is due to (4.11) and (4.13), and the third inequality follows from (4.7), (4.8)
and (4.14). Hence, employing the last inequality, we have

max
j∈Sn

|V ∗
n (tl , j) − Wm(tl , j)|

≤
(

1 + 2QT

m
w( jn)

)

max
j∈Sn

|V ∗
n (tl−1, j) − Wm(tl−1, j)| +

(
T

m

)2

M1w
3( jn)

=
(

1 + 2QT

m
w( jn)

)[

max
j∈Sn

|V ∗
n (tl−1, j) − Wm(tl−1, j)| + M1Tw2( jn)

2Qm

]

−M1Tw2( jn)

2Qm
,

which implies

max
j∈Sn

|V ∗
n (tl , j) − Wm(tl , j)| + M1Tw2( jn)

2Qm

≤ e
2QT
m w( jn)

[

max
j∈Sn

|V ∗
n (tl−1, j) − Wm(tl−1, j)| + M1Tw2( jn)

2Qm

]

.

Thus, it follows from the induction and the last inequality that

max
j∈Sn

|V ∗
n (tl , j) − Wm(tl , j)| ≤ M1Tw2( jn)

2Qm

(
e
2lQT
m w( jn) − 1

)

≤ M1Tw2( jn)

2Qm

(
e2QTw( jn) − 1

)
.

Therefore, part (i) follows from the last inequality.
(ii) Using the inequality |V ∗(0, i)−Wm(0, i)| ≤ |V ∗(0, i)−V ∗

n (0, i)|+|V ∗
n (0, i)−

Wm(0, i)|, we see that part (ii) follows directly from Theorem 4.1 and part (i).
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(iii) Fix any n ≥ 1, i, i ′ ∈ Sn , m ≥ 1, l ∈ {1, . . . ,m} and fn,m ∈ On,m . Then we
have

∫ T

t

∑

j∈Sn
V

fn,m
n (s, j)qn( j |i, fn,m(i, s))ds

=
∫ T

t

∑

j∈Sn

∫ T

s

∑

k∈Sn
c(k, fn,m(k, v))P

i ′, fn,m
n (ξv = k|ξs = j)dv

qn( j |i, fn,m(i, s))ds

=
∫ T

t

∑

k∈Sn
c(k, fn,m(k, v))

∫ v

t

∑

j∈Sn
P
i ′, fn,m
n (ξv = k|ξs = j)

qn( j |i, fn,m(i, s))dsdv

=
∫ T

t

∑

k∈Sn
c(k, fn,m(k, v))P

i ′, fn,m
n (ξv = k|ξt = i)dv−

∫ T

t
c(i, fn,m(i, v))dv

= V
fn,m
n (t, i) −

∫ T

t
c(i, fn,m(i, v))dv (4.15)

for all t ∈ [0, T ], where the first and fourth equalities are due to the definition of V fn,m
n ,

and the second and third ones follow from the Fubini theorem and the Kolmogorov
backward equation in Guo and Hernández-Lerma (2009, p. 211), respectively. Thus,
using (4.15) and following the similar arguments of part (i), we have

|V fn,m
n (0, i) − Wm(0, i)| ≤ M1Tw2( jn)

2Qm

(
e2QTw( jn) − 1

)
. (4.16)

Hence, the desired assertion follows from (4.16) and part (ii). 	

Remark 4.1 (a) For the original control modelM, Theorem 4.2 indicates that we can
compute numerically the value function by the iteration constructed as in (4.11) and
obtain an approximate optimal policy as in the form of (4.12).

(b) The method of time discretization is used to construct a discrete-time MDP
with a fixed step size in the time parameter, from which an approximation for the
approximate computations of an optimal policy and the value function is given in
van Dijk (1988, 1989) for the case of the denumerable state and action spaces and
unbounded transition and cost rates. To solve the finite-horizon optimality equation of
the constructed discrete-time MDP is a crucial step in the approximation in van Dijk
(1988, 1989). We employ the technique of time discretization to obtain a partition
of the time interval and directly provide a finite approximation for the case of a
denumerable state space, a Borel action space and unbounded transition and cost rates
without introducing an auxiliary discrete-time MDP as in van Dijk (1988, 1989).

(c) If the state and action spaces of the model M are both finite sets, there exist
positive constants Q and M such that q∗(i) ≤ Q and |c(i, a)| ≤ M for all i ∈ S and
a ∈ A(i). For this particular class of the CTMDPs, there is no need to construct a
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sequence of the control models {Mn, n ≥ 1}. Hence, using the similar arguments of
Theorem 4.2, we can obtain

|V ∗(tl , i) − Wm(tl , i)| ≤ MT (1 + 2QT )(e2QT − 1)

m

and

|V ∗(0, i) − V fm (0, i)| ≤ 2MT (1 + 2QT )(e2QT − 1)

m

for all i ∈ S, m ≥ 1 and l = 0, 1, . . . ,m, where the policy f m is as in (4.12).
Therefore, for this particular case, the last two inequalities imply that the accuracy of
the approximation given by (4.11) and (4.12) is of order m−1.

5 An example

In this section, we use a controlled birth and death system to illustrate the finite
approximation of the finite-horizon expected total cost criterion.

Example 5.1 (A controlled birth and death system) The control model is given as
follows: S := {0, 1, 2, . . .}, A(0) := [0, κ] × {0} (κ > 0), A(i) := [0, κ] × [ζ1, ζ2]
(ζ2 > ζ1 > 0) for all i ≥ 1, q(1|0, (a1, 0)) = −q(0|0, (a1, 0)) := a1 for all a1 ∈
[0, κ], and for each i ≥ 1, a = (a1, a2) ∈ A(i),

q( j |i, a) :=

⎧
⎪⎪⎨

⎪⎪⎩

λi + a1, if j = i + 1,
−(λ + μ)i − a1 − a2, if j = i,
μi + a2, if j = i − 1,
0, otherwise,

where the positive constants λ and μ denote the birth and death rates, respectively.

To ensure the existence of optimal policies, we consider the following conditions.

(C1) There exists a constant M > 0 such that |c(i, a)| ≤ M(i + 1) for all (i, a) ∈ K .
(C2) For each i ∈ S, there exists a constant Li > 0 such that |c(i, a) − c(i, b)| ≤

LidA(a, b) for all a = (a1, a2), b = (b1, b2) ∈ A(i), where dA(a, b) :=
|a1 − b1| + |a2 − b2|.

Proposition 5.1 Under conditions (C1) and (C2), the controlled birth and death sys-
tem satisfies Assumptions 3.1, 3.2 and 4.1.

Proof Let w(i) := i + 1 for all i ∈ S. Then direct calculations yield

q∗(i) ≤ (λ + μ)i+κ+ζ2 ≤ [λ + μ + (κ + ζ2 − λ − μ)I{κ+ζ2−λ−μ>0}]w(i),
∑

j∈S
w( j)q( j |i, a) = (λ − μ)i + a1 − a2 ≤ (λ − μ)w(i) + max{0, κ + μ − λ}, (5.1)
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∑

j∈S
w2( j)q( j |i, a) = 2(λ − μ)i2 + (3λ − μ + 2a1 − 2a2)i + 3a1 − a2

= 2(λ − μ)w2(i) + (2a1 − 2a2 − λ + 3μ)w(i) + a1 + a2 − λ − μ

≤ 2(λ − μ)w2(i) + (2κ − 2ζ1 − λ + 3μ)w(i) + κ + ζ2 − λ − μ

≤ [2(λ − μ) + (2κ − 2ζ1 − λ + 3μ)I{2κ−2ζ1−λ+3μ>0}]w2(i)

+max{0, 3κ + 2μ + ζ2 − λ},
∑

j∈S
w3( j)q( j |i, a) = 3(λ − μ)i3 + (9λ − 3μ + 3a1 − 3a2)i

2 + (7λ − μ + 9a1 − 3a2)i

+7a1 − a2
= 3(λ − μ)w3(i) + (6μ + 3a1 − 3a2)w

2(i)

+(3a1 + 3a2 − 2λ − 4μ)w(i) + μ − λ + a1 − a2
≤ [3(λ − μ) + (6μ + 3κ − 3ζ1)I{6μ+3κ−3ζ1>0}

+(3κ + 3ζ2 − 2λ − 4μ)I{3κ+3ζ2−2λ−4μ>0}]w3(i)

+μ − λ + κ − ζ1

≤ [3(λ − μ) + (6μ + 3κ − 3ζ1)I{6μ+3κ−3ζ1>0}
+(3κ + 3ζ2 − 2λ − 4μ)I{3κ+3ζ2−2λ−4μ>0}]w3(i)

+max{0, 7κ + 3μ − λ}

for all i ≥ 1 and a = (a1, a2) ∈ A(i), and

q∗(0) ≤ κw(0) ≤ [λ + μ + (κ + ζ2 − λ − μ)I{κ+ζ2−λ−μ>0}]w(0),
∑

j∈S
w( j)q( j |0, a) = a1 ≤ (λ − μ)w(0) + max{0, κ + μ − λ}, (5.2)

∑

j∈S
w2( j)q( j |0, a) = 3a1≤[2(λ−μ)+(2κ−2ζ1−λ + 3μ)I{2κ−2ζ1−λ+3μ>0}]w2(0)

+3κ − 2(λ − μ)

≤ [2(λ − μ) + (2κ − 2ζ1 − λ + 3μ)I{2κ−2ζ1−λ+3μ>0}]w2(0)

+max{0, 3κ + 2μ + ζ2 − λ},
∑

j∈S
w3( j)q( j |0, a) = 7a1 ≤ [3(λ − μ) + (6μ + 3κ − 3ζ1)I{6μ+3κ−3ζ1>0}

+(3κ+3ζ2−2λ − 4μ)I{3κ+3ζ2−2λ−4μ>0}]w3(0)

+7κ−3(λ−μ)

≤ [3(λ − μ) + (6μ + 3κ − 3ζ1)I{6μ+3κ−3ζ1>0}
+(3κ + 3ζ2 − 2λ − 4μ)I{3κ+3ζ2−2λ−4μ>0}]w3(0)

+max{0, 7κ + 3μ − λ}

for all a = (a1, a2) ∈ A(0). Thus, Assumptions 3.1(i), (ii), 3.2(i) and 4.1 hold with
Q := λ+μ+ (κ +ζ2−λ−μ)I{κ+ζ2−λ−μ>0}, ρ1 := λ−μ, d1 := max{0, κ +μ−λ},
ρ2 := 2(λ−μ)+(2κ−2ζ1−λ+3μ)I{2κ−2ζ1−λ+3μ>0},d2 := max{0, 3κ+2μ+ζ2−λ},
δ := 3, ρδ := 3(λ − μ) + (6μ + 3κ − 3ζ1)I{6μ+3κ−3ζ1>0} + (3κ + 3ζ2 − 2λ −
4μ)I{3κ+3ζ2−2λ−4μ>0} and dδ := max{0, 7κ + 3μ − λ}. Moreover, it follows from
the description of the model, condition (C1), (5.1) and (5.2) that Assumptions 3.1(iii),
3.2(ii) and (iv) hold. Finally, for each i, j ∈ S, we have
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|q( j |i, a) − q( j |i, b)| ≤ |a1 − b1| + |a2 − b2|

for all a = (a1, a2), b = (b1, b2) ∈ A(i). Hence, Assumption 3.2(iii) follows from
the last inequality with Li j = 1 and condition (C2). This completes the proof of the
proposition. 	


Next, we take c(i, a) = (|a1−η1|+ |a2 −η2|)i (η1 > 0, η2 > 0) for all (i, a) ∈ K .
Then direct calculations give

|c(i, a)| ≤ (max{η1, |η1 − κ|} + max{|ζ1 − η2|, |ζ2 − η2|})(i + 1) and

|c(i, a) − c(i, b)| ≤ (|a1 − b1| + |a2 − b2|)i

for all i ∈ S and a = (a1, a2), b = (b1, b2) ∈ A(i). Hence, conditions (C1) and (C2)
are satisfied with M := max{η1, |η1 − κ|} + max{|ζ1 − η2|, |ζ2 − η2|} and Li = i .

For each n ≥ 1, choose the control model Mn with Sn = {0, 1, . . . , n}, An(0) =
{ κl
n3

: l = 0, 1, . . . , n3} × {0}, An(i) = { κl
n3

: l = 0, 1, . . . , n3} × {ζ1 + (ζ2−ζ1)l
n3

: l =
0, 1, . . . , n3} for all i = 1, . . . , n. Then for each n ≥ 1 and i ∈ Sn , we have

w(n)

⎡

⎣Li + 2G1w(n)

n−1∑

j=0

Li j

⎤

⎦ = (n + 1)(i + 2G1n(n + 1)) ≤ 2(1 + 4G1)n
3,

which together with the definition of the Hausdorff metric yields

dH (A(i), An(i)) ≤ κ + ζ2 − ζ1

n3
≤ 2(1 + 4G1)(κ + ζ2 − ζ1)w

3(i)

w(n)
[
Li + 2G1w(n)

∑n−1
j=0 Li j

] .

2000 3000 4000 5000 6000 7000 8000 9000 10000
16.649

16.6495

16.65

16.6505
n=60
n=80
n=100

Fig. 1 Value Wm (0, 2) of the modelMn for n = 60, 80, 100 and m = 2000, . . . , 10,000
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Hence, (4.1) holds with M̃ := 2(1 + 4G1)(κ + ζ2 − ζ1).
For a numerical experimentation of Example 5.1, we choose the following values

of the parameters: T = 10, λ = 0.9, μ = 1, κ = 1, ζ1 = 0.5, ζ2 = 1, η1 = 2,
η2 = 3. Then for n = 60, 80, 100 and m = 2000, . . . , 10000, employing the iteration
constructed as in (4.11), we obtain the corresponding value Wm(0, 2) as shown in
Fig. 1. Empirically, the convergence is faster than that given in Theorem 4.2. This is
due to the fact that the bounds used to obtain the error estimations in Theorem 4.2 are
very conservative. Moreover, from Fig. 1, we get the approximate value V ∗(0, 2) �
16.6493.
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