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Abstract Considering geometry based on the concept of distance, the results found
by Menger and Blumenthal originated a body of knowledge called distance geometry.
This survey covers some recent developments for assigned and unassigned distance
geometry and focuses on two main applications: determination of three-dimensional
conformations of biological molecules and nanostructures.
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1 Introduction

Distance Geometry (DG) is the study of geometry based on the notion of distance,
where its mathematical foundations were established by Menger (1928) and Blumen-
thal (1953). In the majority of applications, the input data of the related problem
consists of an incomplete list of distances between object pairs, and the output is a set
of positions in some Euclidean space realizing those given distances. In some appli-
cations, distances are pre-assigned to pairs of objects; in others, this information must
be found and is part of the output.

Let V be a set of n objects and

x : V → R
K

be the function that assigns positions (coordinates) in a Euclidean space of dimension
K > 0 to the n objects belonging to the set V , whose elements are called vertices.
The function x is referred to as a realization function.

Let D = (d1, d2, . . . , dm) be a finite sequence consisting of m distances, called a
distance list, where repeated distances, di = d j , are allowed. Distances in D can be
represented either with a nonnegative real number (when the distance is exact) or by
an interval [d, d̄], where 0 < d < d̄ .

Considering the set of all possible unordered pairs {u, v} of vertices in V , called
Ê , we define an injective function �, called assignment function, given by

� : {1, 2, . . . ,m} −→ Ê

that relates an index of an element of the distance listD to an unordered pair of vertices
of V . Thus, �( j) = {u, v} means that the j-th entry of D is assigned to {u, v} and we
denote its corresponding edge weight by d(u, v) = d�−1({u,v}) = d j .

From the assignment function �, we can define the edge set E as the image of �,
that is E = �({1, . . . ,m}) ⊂ Ê . The edge weight function d : E → {d1, . . . , dm} is
given, also from the assignment function, by

d(u, v) = d�−1({u,v}).

Using V, E, d we define a simple weighted undirected graph G = (V, E, d).

Definition 1 (Duxbury et al. 2016) Given a list D of m distances, the unassigned
Distance Geometry Problem (uDGP) in dimension K > 0 asks to find an assignment
function � : {1, . . . ,m} → Ê and a realization x : V → R

K such that

∀{u, v} ∈ �({1, . . . ,m}) : d(u, v) = d�−1({u,v}), ‖x(u) − x(v)‖ = d(u, v). (1)
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Let duv be the short notation for d(u, v). Since precise values for distances may not
be available, the equality constraint in (1) becomes

duv ≤ ‖x(u) − x(v)‖ ≤ d̄uv,

where duv and duv are, respectively, the lower and upper bounds on the distance duv

(duv = duv when duv is an exact distance).
When distances are already assigned to pairs of vertices, we can assume that the

associated graph G is known a priori. The following definition can be derived imme-
diately from Definition 1:

Definition 2 (Liberti et al. 2014a) Given a weighted undirected graphG = (V, E, d),
the assigned Distance Geometry Problem (aDGP) in dimension K > 0 asks to find a
realization x : V → R

K such that

∀{u, v} ∈ E, ‖x(u) − x(v)‖ = duv. (2)

As in Definition 1, the equality constraint in (2) is actually an inequality constraint
when interval distances are considered.

We point out that several methods for uDGP and aDGP are based on a global
optimization approach, where a penalty function is defined with the aim of having all
distance constraints satisfied (Liberti et al. 2014a). When all distances are exact, one
possible penalty function related to the constraints (2) is

L(x ; d, �) =
∑

{u,v}∈E

(
‖x(u) − x(v)‖2 − d2uv

)2
. (3)

In the following, we will employ the acronym DGP when referring to the general
problem, and we will use the acronyms uDGP and aDGP when it will be important to
specify the class of DGP we are referring to.

A recent and wide survey on the DGP is given in Liberti et al. (2014a); an edited
book and a journal special issue completely devoted to DGP solution methods and
its applications can be found in Mucherino et al. (2013) and Mucherino et al. (2015),
respectively. The reader can find a discussion on the history of the DGP in Liberti and
Lavor (2015).

TheDGP has several interesting applications (see Liberti et al. (2014a) and citations
therein, and Juhás et al. (2006)). In dimension K = 2, the sensor network localization
problem is the one of finding the positions of the sensors of a given network by using
the available relative distances. Such distances can be estimated by measuring the
power for a 2-way communication between pairs of sensors. In dimension K = 3,
molecular conformations can be obtained by exploiting information about distances
between atom pairs. In many cases, distances can be either derived from the chemical
structure of themolecule, or estimated byNuclearMagnetic Resonance (NMR) exper-
iments. This problem is also referred to as Molecular DGP (MDGP). X-ray or neutron
scattering experiments may be used to find a set of interatomic distances, though the
distances are not assigned to atom pairs. In Sect. 5, we will consider cases where it is
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Fig. 1 (Color online) Differences between uDGP and aDGP problems for a simple case. Image from PhD
thesis of Saurabh Gujarathi

necessary to identify conformations of biological molecules or nanostructures using
lists of interatomic distances.

The aDGP is NP-hard (Saxe 1979). The uDGP class is particularly challenging
because the graph structure and the graph realization both need to be determined at
the same time. In contrast, the DGP usually solved in the context of molecular confor-
mations using NMR data starts from a known graph structure and proceeds to find a
graph realization. However, the information that is actually given by the NMR experi-
ments consists of a listD of distances, that are only subsequently assigned to atompairs
(Almeida et al. 2013). Therefore, theMDGPcan also be considered as a uDGP.Figure 1
gives a schematic illustration of the input data for a uDGP, as well as for an aDGP.

The uDGP is not new to mathematics and has been previously studied in various
contexts. In an early paper (Skiena et al. 1990) the problem of “reconstructing point
sets from interpoint distances” was discussed, though their work and the subsequent
literature focuses predominantly on one-dimensional integer problems (Jaganathan
and Hassibi 2013). Problems such as the turnpike problem and the beltway problem
are in this class and are motivated by DNA sequencing problems often called “digest”
problems.

This is one of the first literature surveys that is concerned with both uDGP and
aDGP (see Dokmanic et al. (2015), for a distance matrix approach to these problems).
Our survey will begin with an overview on graph rigidity and on the conditions for
unique realization in Sect. 2. Section 3 will present a state of the art on methods for the
uDGP. The discretization of the aDGP will be discussed in Sect. 4, and details about
some important implications of the discretization will be provided. Finally, Sect. 5 will
be devoted to two main applications of the DGP: identification of three-dimensional
conformations of biological molecules such as proteins and nanostructures. The dis-
cussion of nanostructures is more extensive as it has not been surveyed in the context
of DGPs before. Section 6 will conclude the survey.

2 Graph rigidity and unique embeddability

Our aim is to find a set of n positions for a given set of objects (vertices in V ), in the
Euclidean space having dimension K > 0, that are consistent with a given list D of
distances (see Introduction). In other words, we are interested in finding a realization
x for which a list of distances, pre-assigned or not to pairs of vertices, is satisfied. The
first question we may ask ourselves is related to the uniqueness of the solution to the
DGP. Given a list D, is there more than one realization?
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Fig. 2 (Color online) The hexagon has three distinct distances with degeneracies (6− grey, 6−blue, 3−
green). The two three-dimensional conformations in the figure are weakly homometric with the hexagon
(from Juhás et al. 2006)

Clearly, if only a few (compatible) distances are given, many solutions can be
found that are consistent with the distance constraints. The opposite extreme case is
the one where the full set of n(n−1)/2 distances is given. The number of translational
degrees of freedom of an embedding of n vertices in R

K is nK , while K (K + 1)/2
is the number of degrees of freedom associated with translations and rotations of a
rigid body in K dimensions. As a consequence, when all available distances are exact,
since n(n − 1)/2 � nK − K (K + 1)/2 for large values of n, it is a likely event to
have a unique realization.

A related question was raised by Patterson (1944) in his early work considering
the determination of crystal structures from scattering data, and there is a large subse-
quent literature (Gommes et al. 2012). An important result is that there is a subclass
of instances that are homometric, which means that elastic scattering data, and hence
the full set of interpoint vector distances, is not sufficient to determine a unique real-
ization (Jain and Trigunayat 1977; Schneider et al. 2010). Patterson’s original paper
discussed the vector separations x(u) − x(v), whereas the uDGP considers the dis-
tances ||x(u) − x(v)||. Two distinct point sets are weakly homometric when their
complete sets of interpoint distances are the same (Senechal 2008), where point sets
related by rigid rotations, translations or reflections are not distinct within the context
of this discussion. Weakly homometric point sets are of interest in the uDGP and in
a variety of contexts (Skiena et al. 1990; Boutin and Kemper 2007; Senechal 2008).
Figure 2 shows two three-dimensional conformations that are weakly homometric
with a hexagon. When the distance list has a large number of entries in comparison
to the number of degrees of freedom, the probability of having homometric variants
decreases rapidly, though no rigorous tests are available. We concentrate on distance
lists that are not weakly homometric (NWH), and hence have a unique realization.

A beautiful and rich literature on uniqueness of structures is based on the theory
of generic graph rigidity. The beauty of this theory is based on the fact that generic
graph rigidity is a topological property where the rigidity of all graph realizations that
are generic is dependent only on the graph connectivity and not on the specifics of the
realization (Connelly 1991; Hendrickson 1992; Graver et al. 1993). Conditions for a
unique graph realization have been determined precisely for generic cases, where it has
been proven that a unique solution exists if and only if the kernel of the stress matrix
has dimension K +1, theminimum possible (Connelly 1991; Hendrickson 1992; Con-
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nelly 2005; Jackson and Jordan 2005; Gortler et al. 2010). A second approach is to use
rigorous constraint counting methods that have associated algorithms based on bipar-
tite matching. Combinatorial algorithms of this type to test for generic global rigidity
(Hendrickson 1992; Connelly 2013), based onLaman’s theorem (Laman 1970; Lovász
and Yemini 1982) and its extensions (Tay 1984; Connelly 2013), are also efficient for
testing the rigidity of a variety of graphs relevant tomaterials science, statistical physics
and the rigidity of proteins (Jacobs and Thorpe 1995; Jacobs and Hendrickson 1997;
Moukarzel and Duxbury 1995; Moukarzel 1996; Thorpe and Duxbury 1999; Rader
et al. 2002; Whiteley 2005).

In the following, wewill concentrate on constructing graph realizations usingGlob-
ally Rigid Build-up (GRB) methods that have sufficient distance constraints to ensure
generic global rigidity at each step in the process; or on less constrained cases where a
binary tree of possible structures is developed using build up strategies and branch and
prune methods (iBP) (Lavor et al. 2013). These buildup procedures can be applied to
both generic and non-generic cases. GRBmethods have been developed for the aDGP
case (Dong and Wu 2002; Eren et al. 2004; Wu and Wu 2007; Voller and Wu 2013),
and more recently for the uDGP case (Gujarathi et al. 2014; Duxbury et al. 2016).
Both of these GRB methods iteratively add a site and K + 1 (or more) edges to an
existing globally rigid structure. In two dimensions this approach is called trilatera-
tion Eren et al. (2004). GRB methods for NWH problems are polynomial for the case
of precise distance lists satisfying the additional condition that all substructures are
unique, for both aDGP and uDGP (see Sect. 3), in contrast to the most difficult DGP
cases defined by Saxe (Saxe 1979), where the DGP is NP-hard. The NP-hard instances
of DGP with precise distances correspond to families of locally rigid structures that
are consistent with an exponentially growing number of different nanostructures as
the size of the structure grows (Liberti et al. 2014b). If global rigidity is only imposed
at the final step in the process, the algorithm must search an exponential number of
intermediate locally rigid structures from which the final unique structure is selected,
for example using the iBP algorithm (see Sect. 4). If globally rigid substructures occur
at intermediate steps however, the complexity of the search can be reduced, as has
been demonstrated in recent branch and prune approaches (Liberti et al. 2014a).

Significant extensions of GRBs are required to fully treat imprecise distance lists
that occur in experimental data. One promising approach, the LIGA algorithm, uti-
lizes a stochastic build-up heuristic with backtracking and tournament strategies to
mitigate experimental errors (Juhás et al. 2006, 2008). LIGA has been used to suc-
cessfully reconstruct C60 and several crystal structures using distance lists extracted
from experimental X-ray or neutron scattering data (Juhás et al. 2006, 2008; Juhas
et al. 2010).

Theorems 1–5 below summarize the results necessary for polynomial-time build-
up algorithms for the exact distance cases of the aDGP and the uDGP. This theory also
provides useful background in understanding other algorithms for finding nanostruc-
ture from experimental data (see Sect. 5.3), including simulated annealing methods
and the LIGA algorithm (see Sects. 3.2, 5.4), and algorithms for themolecular distance
geometry problem.

Before stating the theorems, we give key definitions.
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Definition 3 A bar-joint framework consists of rigid bars connecting point-like joints.
These bars impose distance constraints but they are freely rotatable around the joints.
For an embedding in K dimensions, each free joint has K translational degrees of
freedom.

Most of the discussion below is for structures represented by bar-joint frameworks. In
many models that are studied computationally, each bar is replaced by a simple spring
that has a natural length, x0 and a spring constant k, so that the energy of the spring is
1
2k||x − x0||2, where ||x − x0|| is the extension of the spring. For physical springs k
and x0 are positive.

Definition 4 A body-bar framework consists of rigid bars connecting extended rigid
objects called bodies. The bars impose distance constraints but they are freely rotat-
able around the joints, where the joints are located on the surfaces of the bodies.
An additional condition is that only one bar is incident to each joint in a body-bar
framework.

The restriction to at most one bar incident to a joint enables considerable mathematical
progress in the area of rigorous constraint counting. In contrast, bar-joint frameworks
may have many bars incident to a joint, and this leads to special cases which cause
difficulties for constraint counting methods. For an embedding in K dimensions, each
free body has K translational degrees of freedom and K (K − 1)/2 rotational degrees
of freedom, so that each free body has a total of K (K + 1)/2 degrees of freedom.

Definition 5 A flexible structure is a structure that allows at least one continuous
internal deformation of one or more of its vertices or bodies, under the application of
an infinitesimal general force.

A flexible structure has at least one zero eigenvalue in its dynamical matrix, D. For a
bar-joint framework with joints i (=1, 2, . . . , n) at position ri , the dynamical matrix
is found by replacing each bar in the framework by a simple spring, so that the elastic
energy, ES , of the framework is given by,

ES =
∑

{i, j}∈E
ki j

(||ri − r j || − di j
)2

, (4)

where ki j is a positive parameter characterizing the stiffness of the spring placed
between vertices i and j , and di j is the natural (unperturbed) length of that spring.
We consider a small distortion of each vertex, δri . A second order expansion of the
elastic energy yields a quadratic form in the small distortions

δES = δrT Dδr, (5)

where δr is a vector of length nK containing the small distortions of each vertex in
the framework, and δrT is its transpose. D is the dynamical matrix.

The eigenvalues of the dynamical matrix give the frequencies of the vibrational
modes of the structure. If there is a continuous distortion of the framework that has no
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restoring force, there is an associated zero frequency mode of the dynamical matrix.
In the physics literature, a zero eigenvalue of the dynamical matrix is called a “floppy”
mode or “soft” mode, and these modes play an important role in the analysis of
structural phase transitions.

Definition 6 A redundant bar can be removed from a structure without increasing
the number of floppy modes in the structure.

Definition 7 An isostatic or locally rigid structure has no floppymodes and no redun-
dant bars. Each bar in an isostatic structure removes one degree of freedom of the
vertices or bodies in the structure. An isostatic structure has a restoring force to a
general infinitesimal distortion, i.e. to any linear combination of the distortions δri .

Note however that an isostatic structure is in general not globally rigid as there
may be more than one realization consistent with its distance matrix (see Theorem
1 below). Locally rigid structures are not necessarily unique and in the worst case
the number of possible structures consistent with the distance matrix of an isostatic
structure grows exponentially in the number of vertices or bodies in the framework.

Definition 8 A globally rigid structure has no floppy modes and the distance matrix
of the structure has a unique realization.

In the applications to nanostructures and proteins, bar-joint models are common
where the joints usually correspond to the atoms in the structure. In sensor networks, the
joints correspond to sensors. The GRB methods described in Sect. 3 apply to globally
rigid bar-joint frameworks, while the branch and prune methods for the discretizable
DGPdescribed in Sect. 4 apply to bar-joint frameworks that can have isostatic domains.

The theory of graph rigidity leads to the following important results.

Theorem 1 (Connelly 1991; Hendrickson 1992; Connelly 2005; Jackson and Jordan
2005; Gortler et al. 2010) The following statements hold for generic graphs:

– A unique realization exists if and only if the graph is globally rigid.
– Each bar (edge) in a globally rigid graph is redundant.
– The stress matrix,�, of a globally rigid realization has kernel of dimension K +1.

The stress matrix, �, is derived from the coefficients appearing in the stress energy
(Connelly 1991; Hendrickson 1992; Connelly 2005; Jackson and Jordan 2005; Gortler
et al. 2010)

S(r) =
∑

i, j∈E
ωi j

(
ri − r j

)2
,

that satisfy the related force equations for each vertex at equilibrium

∑

j

ωi j
(
r j − ri

) = 0.

The elements of the stress matrix are �i j = −ωi j for off diagonal elements, and
the diagonal elements are �i i = ∑

j ωi j so that the row sum is zero for all rows of
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�. Furthermore, the stress matrix block diagonalizes into a separate block for each
dimension, as the force components in each dimension are independent. The energy
used in the calculation of the stressmatrix corresponds to a set of springs that have zero
natural length, and the coefficientsωi j that look like spring constants have the peculiar
property that they may be either positive (for tension) or negative (for compression).
It is remarkable that this construction yields general results about the global rigidity
of generic graphs. The minimum number of zero frequency modes of the stress matrix
are due to the fact that the stress energy is unaltered by a shift of the origin (leading to
K zero frequency modes), and by the fact that the unit vector is an eigenfunction of the
stress matrix, with zero eigenvalue. This leads to K + 1 trivial zero frequency modes
of the stress matrix. If other zero frequency modes exist they indicate non-uniqueness
of realizations of the distance list of the structure.

Theorem 2 (Hendrickson 1992; Jackson and Jordan 2005) Generic 3-connected
graphs in the plane are globally rigid.

For a restricted subclass of graphs satisfying the molecular conjecture (Whiteley
2005), this result extends to three dimensions.

Theorem 3 (Based onWhiteley 2005) Generic 4-connected graphs in spatial dimen-
sion 3 are globally rigid if they satisfy the molecular conjecture.

The molecular conjecture applies to molecular structures in three dimensions when
there is a strong restoring force to bond angle changes, as occurs for protein or polymer
backbones and in many nanostructures.

A GRB process that ensures global rigidity for systems that are not weakly homo-
metric at each step of the algorithm is stated in Theorems 4 and 5 below. We need the
following definition.

Definition 9 We say that a distance listD contains compatible distances if a solution
to the corresponding aDGP exists.

Theorem 4 (Follows from Dong and Wu 2002) A GRB algorithm in R
2 that adds

three compatible distances connecting a new site to an existing globally rigid structure
yields a structure that is globally rigid, if the three sites of the existing structure at
which the three added distances connect are not on the same line.

Theorem 5 (Dong and Wu 2002) A GRB algorithm in R
3 that adds four compatible

distances connecting a new site to an existing globally rigid structure yields a structure
that is globally rigid, if the four sites of the existing structure at which the four distances
connect are not in the same plane.

GRB algorithms using distances that satisfy Theorems 4 and 5 provide sufficient
conditions for generating globally rigid NWH structures, and hence a unique embed-
ding, by ensuring uniqueness at each step in the buildup. Section 3 discusses extension
of these results to the unassigned distance geometry problem.
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3 State of the art on algorithms for the uDGP

In some applications, the information about the pairs of vertices that corresponds to
a given known distance is not provided. In other words, while the distance is known,
the identity of the two vertices having such a relative distance is not. In this case,
the graph G is actually unknown, and the only input is the list D of distances (see
Definition 1 and Fig. 1). This is the uDGP and it has received much less attention than
the aDGP. In this section we survey two algorithms that have recently been developed
for uDGPs. The first is based on a GRB approach that is based on extensions of the
results of Theorems 4 and 5 to the uDGP case. The second algorithm is also a build-
up approach, however it is stochastic and relies on backtracking to resolve incorrect
structures generated during buildup. To develop the GRB approach, we start with a
definition and a theorem [full details are found in Duxbury et al. (2016)].

Definition 10 Let D be a distance list with m elements. Amongst all the possible
assignments of D to the set Ê of the underlying graph, � : {1, . . . ,m} → Ê , there
is one assignment that corresponds to the structure from which the distance list was
calculated. We call that assignment the true assignment (TA).

In general, for distance lists containing precise and compatible distances, assign-
ments different from the TA leading to a feasible aDGP may exist. However, for a
NWH distance list, the only assignment that leads to a aDGP having a solution is the
TA.

Theorem 6 The smallest generic graph that has a redundant edge and is globally
rigid in dimensions K = 2, 3 is the clique of size K + 2.

Proof Cliques in three dimensions satisfy the molecular conjecture so constraint
counting can be used (Laman 1970; Connelly 2013). By constraint counting, a generic
graphwith n vertices, having no floppymodes and n(n−1)/2 edges has one redundant
edge if:

n(n − 1)/2 = nK − K (K + 1)/2 + 1, (6)

which gives n = K + 2. nK is the number of degrees of freedom of the nodes in the
structure, while K (K + 1)/2 is the set of global degrees of freedom that occur for any
rigid body and is not affected by the edge constraints. 	


Theorem 6 states that the smallest globally rigid structure in two dimensions has
four vertices and in three dimensions has five vertices, as presented in Fig. 3. We call
these structures the core of the buildup, and in order to start a build-up procedure,
a core compatible with the input distance list must be found. This is the most time
consuming step in the reconstruction for uDGPs. If the distances are imprecise, larger
cores should be used for the buildup process to reduce the chances of incorrect starting
structures.
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Fig. 3 (Color online) Examples of cores in K = 2 (left) and K = 3 (right). A core is the smallest cluster
that contains a redundant bond in a generic graph rigidity sense. For the two dimensional case (left figure),
the horizontal bond is the base (in black), the bonds below it (in blue) make up the base triangle while those
above it (in red) make up the top triangle. The vertical bond is the bridge bond (in green). The extension to
K = 3 requires a base triangle (black), feasible tetrahedra compatible with the base triangle (blue, red) and
finally a bridging bond (green) that is consistent with the target distance list (from Duxbury et al. 2016)

3.1 GRB for uDGPs (TRIBOND)

The input to the TRIBOND algorithm consists of a distance list D and the number
n of vertices to be embedded. The first step in the algorithm is finding a core, and
from Theorem 6 we know that a core in two dimensions has four sites and in three
dimensions five sites. The procedures that TRIBOND uses to find cores are illustrated
in Fig. 3. Once a core has been found, build-up is carried out utilizing Theorems 4
or 5 to ensure that the conformation remains globally rigid at each step in the process.

A sketch of the TRIBOND algorithm is given in Algorithm 1. The framework F
is the structure that is built, starting with the CORE and increased in size by adding
one vertex position at a time. In this discussion, it is assumed that the distance list is
complete and precise, so that there are n(n − 1)/2 precise distances in D.

If TRIBOND runs to completion it generates the correct unique structure for dis-
tance lists that are NWH. However, during buildup, incorrect “decoy” positions may
be generated leading to failure of buildup. A decoy position is a vertex position that
is consistent with the input distance list at an intermediate stage of the buildup, but
which fails to be part of a correct completed structure. Although for cases that we have
studied decoy positions are unlikely, distance lists leading to decoy positions can be
constructed. A restricted set of distance lists has no intermediate decoy positions, and
we define such distance lists to be strongly generic.

Definition 11 A distance list is strongly generic if it is NWH and if all of the com-
patible globally rigid substructures that can be formed from this distance list are also
part of the final unique structure.
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Algorithm 1: The TRIBOND algorithm.
1: TRIBOND(D, n, K )
2: // Find a core.

Search in D for a set of (K + 2)(K + 1)/2 distances, and their TA, leading to a realizable
clique of size K + 2.
The set of vertex positions of the realized (K + 2)-clique is the starting framework F .

3: for i = K + 3, . . . , n do
4: // Add a new vertex

Find a set of K + 1 “connecting” vertices in F , such that their position vectors are affinely
independent. Search the interpoint distance list to find a set of K + 1 compatible distances
defining a unique position for the new vertex (the correctness of the new vertex position may be
verified by using redundant bond checks).
If a set of compatible distances cannot be found, find a new CORE (go to Step 1) and restart.

5: end for

Strongly generic distance lists have no decoy positions and for these cases, for a
list D of exact distances, TRIBOND runs deterministically to completion. Moreover,
we find that in practice distance lists of random point sets can be reconstructed in
polynomial time (see below), though random restarts are needed in some cases. Due
to the need for random restarts in general TRIBOND is a combinatorial heuristic
algorithm. For strongly generic distance lists, it is straightforward to find a polynomial
upper bound on TRIBOND by estimating the worst-case computational time for core-
finding and for buildup. Since the number of ways of choosing six distances from the
set of m = n(n − 1)/2 unique distances is

(m
6

)
, a brute force search would find a core

in computational time τcore <
(m
6

) ∼ n12, which demonstrates that the algorithm is
polynomial in two dimensions. Similar arguments show that TRIBOND is polynomial
in any embedding dimension for strongly generic distance lists, though the polynomial
exponent is large.

These arguments are useful to show that the computational complexity of TRI-
BOND is polynomial for strongly generic distance lists for any K (Gujarathi et al.
2014; Duxbury et al. 2016), however these upper bounds on the algorithmic efficiency
are loose. In practice, the scaling of the computational time with the size of random
point sets in the plane is approximately n3.3 (Fig. 4), and point sets with over 1000
sites have been reconstructed on a laptop. As can be seen from the figure, core-finding
is the most time consuming part of the procedure. Extensions to three dimensions look
promising, and strategies to treat imprecise distances have also been demonstrated.
For the case of imprecise distances it is especially important to find a reliable sub-
structure that has at least the size of the core in order to have a reliable buildup and
reconstruction. A large starting substructure increases the chances of having multiple
redundant bond checks (pruning distances) to validate any addition of a new vertex to
the conformation.

3.2 LIGA: a robust heuristic

The LIGA heuristic is efficient for precise and imprecise uDGPs with a relatively
low number of distinct distances. The input of the algorithm may only consist of the
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Fig. 4 Experimental results for a series of reconstructions from distance lists generated from random point
sets in two dimensions. The mean computational cost (bridge bond checks) for finding the core, performing
buildup and their total is presented as a function of the number of points in the structure. The plots for the
total and core finding steps are nearly indistinguishable because core finding takes an order of magnitude
more time than buildup. Each point on the plots is an average over 25 different instances of random point
sets. We find that the mean total computational time scales as τtotal ∼ N3.3. From Gujarathi et al. (2014)

distance list D. In some cases, the number of vertices, n, in the solution is given
as well; in other cases, only approximate information about the number of vertices
may be given. Using LIGA, the structure of C60 and a range of crystal structures
(Juhás et al. 2006, 2008; Juhas et al. 2010) have been solved using distances extracted
from X-ray or neutron scattering experiments (see Sect. 5.3). This algorithm uses
a combination of ideas from dynamic programming with backtracking, and tour-
naments as illustrated in Fig. 5, and in the pseudocode Algorithm 2. The input to
LIGA is the ordered distance list D, the number of vertices n, and the size of the
population s that is kept for each cluster size in the algorithm. LIGA builds up a
candidate structure by starting with a single vertex and adding additional vertices one
at a time. The algorithm keeps a population of candidate structures at each size and
uses promotion and relegation procedures to move toward higher quality nanostruc-
tures.

A key feature of the LIGA algorithm is the choice of a cost function. If we have n
vertices and m distances in D, with m ≤ n(n − 1)/2, then the cost of constructing a
model substructure with label i is the following:

ci = min
�

1

m

∑

{u,v}

(
dmodel
uv − t�−1({u,v})

)2
, (7)

where dmodel
uv is a distance in the model and t�−1({u,v}) is a distance inD. The minimum

is taken over all ways of assigning model distances to nearest distances and the sum
is over all distances in the model. A pseudocode for LIGA is given in Algorithm 2.

Promotion is the process of changing the level of a candidate substructure (also
called “cluster”) by adding one or more vertices to it. LIGA generates possible posi-
tions for new vertices using three different methods:
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Fig. 5 Schematic of the operation of the LIGA algorithm. A population of structures at all sizes is kept.
Smaller substructures are increased in size by addition of a vertex and edges. If the cost of a vertex addition is
low, then the addition is kept with a probability that depends on the cost. The substructure is then bigger and
is promoted to a higher level. This initiates demotion of an existing substructure of larger size by removing
a vertex from it, the most expensive vertex in the substructure. The process is carried out iteratively until
low cost structures of the target size are generated. From Juhás et al. (2008)

Algorithm 2: The LIGA algorithm.
1: LIGA(D, n, s, ns)
2: Start with an edge (distance) and its two vertices on the x-axis. One vertex is at the origin.
3: while number of sweeps is less than ns do
4: for each substructure size smaller than n do
5: while population size is smaller than s do
6: // PROMOTION PROCEDURE

Using vertex addition procedures one or more vertices may be added to a substructure.
Typically 10,000 random trials are generated.
Low cost trials are chosen with probability 1/cost .

7: // RELEGATION PROCEDURE
Choose a substructure with probability proportional to cost .
Each vertex has cost equal to its contributions to Eq. (7).
Remove highest cost vertex and relegate the substructure.

8: end while //End population loop
9: end for //End substructure size loop
10: end while //End sweeps loop
11: // Set of co-ordinates found for the lowest cost structure
12: Print current conformation;
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1. Line trials. This method places new sites in-line with two existing vertices in the
cluster.

2. Planar trials. Thismethod adds vertices in plane to account for occurrence of vertex
planes in crystal structures.

3. Pyramid trials. Three vertices in a subcluster are randomly selected based on
their fitness to form a base for a pyramid of four vertices. The remaining vertex
is constructed using three randomly chosen lengths from the list of distances.
As there are 3! ways of assigning three lengths to three vertices, and because a
pyramid vertex can be placed above or below the base plane, this method generates
12 candidate positions.

Each of these methods is repeated many times (typically, 10,000 times in our trials)
to provide a large pool of possible positions for a new vertex. For each of the generated
sites, LIGAcalculates the associated cost increase for the enlarged candidate and filters
the ‘good’ positions with the new cost in a low cost window. The positions outside
the cost window are discarded and the winner is chosen randomly from the remaining
possibilities with a probability proportional to 1/cost (the cost of a vertex is the
contribution to Eq. (7) of the edges incident to the vertex). The winner vertex is added
to the candidate substructure, and the distances it uses are removed from D. The
costs of other vertices in the pool are recalculated with respect to the new candidate
subcluster and the shortened distance table. If the candidate has fewer than n vertices
and there are any vertices inside the cost window, a new winner is selected and added.
This can lead to an avalanche of added vertices, potentially reducing the long-term
overhead associated with generating larger high-quality candidates.

Each level is set to contain a fixed number of candidates, but at the beginning they
are completely or partially empty. When a winner for promotion is selected from a
level that is not full it adds a copy of itself to that level in addition to being promoted.
Similarly, when a loser is selected for relegation from a division that is not full it
adds a copy of itself to that division before being relegated. Finally, after a winner
is promoted it checks to see if there are any empty levels below its new level. If
this is the case then it adds an appropriately relegated clone of itself to those empty
levels.

4 Discretizing aDGP instances without GRB

This section considers cases where the number of available distances is too small to
guarantee global rigidity at each step in the buildup procedure, as is typical in problems
such as protein structure determination. However, discretization of the search space is
still possible if the number of distances available ensures that isostatic conditions are
preserved during buildup.

As remarked in Sect. 2, GRB methods are able to find solutions to DGP instances
with exact distances in polynomial time. In fact, at every iteration of the related algo-
rithms, the unique position for the current vertex can be computed. In other words, the
search space is discretized and reduced to one singleton per vertex. In order to do that
in three dimensions, it is necessary that the current vertex has known distance from at
least four other non-coplanar vertices to which a position has already been assigned.
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Fig. 6 The two feasible arcs obtained by intersecting two spheres and one spherical shell

Thework inCarvalho et al. (2008) showed for the first time thatweaker assumptions
are actually necessary for performing a discretization of the search space. Theseweaker
assumptions make it possible to consider real-life instances of the aDGP relevant to
several applications, including determination of protein and othermolecular structures.
In this context, an important theoretical contribution consisted in formalizing the
concept of discretization orders (Lavor et al. 2012a; Cassioli et al. 2015b). We will
focus our discussion on the case K = 3.

aDGP instances need to satisfy the following assumptions in order to have a discrete
search space. The main requirement is that the vertices need to be sorted in a way that
there are at least three reference vertices for each of them, aside, obviously, from the
first three. This ensures that the isostatic condition is preserved. We say that a vertex
u is a reference for another vertex v when u precedes v in the given vertex order, and
the distance duv . In such a case, indeed, candidate positions for v belong to the sphere
centered in u and having radius duv (duv is called a reference distance).

The interval Branch and Prune (iBP) algorithm performs a recursive search on the
tree which represents the domain of the aDGP after the discretization (Lavor et al.
2013). Let us suppose that there exists an order for the vertices v ∈ V , so that we can
assign a numerical label i ∈ {1, 2, . . . , |V |} to each of them. At each recursive call of
the iBP algorithm, candidate positions for the current vertex i are computed using the
positions of and distances to the previously placed reference vertices.

The subproblemwhich needs to be solved at each iBP recursive call is the following.
Suppose there are three previous vertices, say {i3, i2, i1}, whose positions are already
available, as well as the distances between the current vertex i and these three reference
vertices.

When the distances between i and its references are exact, in order to determine xi ,
it is necessary to intersect three spheres centered at xi3 , xi2 and xi1 , and having radius
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di3,i , di2,i and di1,i , respectively. If the reference vertices {i3, i2, i1} are not collinear
(see assumption (b.3) in Definition (12)), then such an intersection results in at most
two points.When this situation is verified for all vertices i > 3, then the search domain
has the structure of a binary tree (Lavor et al. 2012b).

However, if one of the three reference distances, say di3,i , is an interval, then the two
spheres centered at xi1 and xi2 need to be intersected with a spherical shell centered
at xi3 . As a result, the intersection gives two candidate arcs (see Fig. 6). These arcs
are over the dashed circle C defined by the intersection of the two spheres. They
are symmetric with respect to the plane defined by {i3, i2, i1}. When the intersection
consists of two arcs, a finite number D of sample positions can be selected from each
arc (Lavor et al. 2013). This way, we still have a discrete set of possible positions for
the vertex i .

We give the following definition of discretizable DGP, in the case where the dis-
tances are supposed to be pre-assigned to pairs of vertices (i.e., the associated graph
G is known).

Definition 12 The interval Discretizable DGP in dimension 3 (iDDGP3).
Let G = (V, E, d) be a simple weighted undirected graph and E ′ be the set of

edges related to exact distances. We say that G represents an instance of the iDDGP3
if there exists a vertex order on V having the following conditions:

(a) GC = (C, EC ) ≡ G[{1, 2, 3}] is a clique and EC ⊂ E ′;
(b) ∀i ∈ {4, . . . , |V |}, there exists {i1, i2, i3} such that

1. i3 < i , i2 < i , i1 < i ;
2. {(i2, i), (i1, i)} ⊂ E ′ and (i3, i) ∈ E ;
3. di1,i3 < di1,i2 + di2,i3 .

Assumption (a) allows us to place the first 3 vertices uniquely, avoiding consideration
of congruent solutions that can be obtained by rotations and translations. Assump-
tion (b.1) ensures the existence of three reference vertices for every i > 3, and
assumption (b.2) ensures that at most one of the three reference distances may be
represented by an interval. Finally, assumption (b.3) prevents the references vertices
from being collinear. Under these assumptions, the aDGP can be discretized.

A sketch of the iBP algorithm is given in Algorithm 3. Given a vertex order on V
satisfying the assumptions in Definition 12, the algorithm calls itself recursively in
order to explore the tree of candidate positions. Every time a new position is computed,
it defines a new branch of the tree. This phase in iBP is named the branching phase.
For every computed position, its feasibility is verified by checking the constraints (2),
up to the current layer, or other additional feasibility criteria (Mucherino et al. 2011;
Cassioli et al. 2015a). This phase in iBP is named the pruning phase, and the criteria
are called pruning devices (see line 3 of Algorithm 3).

Even if the search tree grows exponentially in the worst case, the pruning devices
allow iBP to focus the search on the feasible parts of the tree. The easiest and probably
most efficient pruning device is the Direct Distance Feasibility (DDF) criterion (Lavor
et al. 2012b), which consists in verifying the ε-feasibility of constraints involving
distances between the current vertex i and previously placed vertices:

d(k, i) − ε ≤ ‖xk − xi‖ ≤ d(k, i) + ε, ∀(k, i) ∈ E\{i3, i2, i1}, with k < i. (8)
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Algorithm 3: The iBP algorithm.
1: iBP(i, n, d, D)

2: if (i > n) then
3: // one solution is found
4: print current conformation;
5: else
6: // coordinate computation
7: if (di3,i is an interval) then
8: compute the two candidate arcs and add them to the list L
9: else
10: compute the two candidate positions and add them to the list L
11: end if
12: for h = 1, . . . , |L| do
13: if (L(h) is an arc) then
14: take D samples from the arc; set N = D;
15: else
16: set N = 1;
17: end if
18: // verifying the feasibility of the computed positions
19: for k = 1, . . . , N do
20: if (xh,k

i is feasible) then
21: iBP(i + 1, n, d, D);
22: end if
23: end for
24: end for
25: end if

The distances defining the above constraints are called pruning distances.
In the algorithm call, i is the current vertex for which the candidate positions are

searched, n is the total number of vertices, d is the pre-assigned distance list, and D is
the discretization factor, i.e. the number of sample points that are taken from the arcs
in case the distance di3,i is represented by an interval. In the algorithm (see lines 3
and 3), we make use of a list L of positions and arcs, from which candidate positions
are extracted.

A necessary preprocessing step for solving aDGPs by this discrete approach is
finding suitable discretization orders. In previous works, discretization orders have
been either handcrafted (Lavor et al. 2013), or designed by exploring pseudo de Bruijn
graphs formed by cliques ofG (Mucherino 2015), or even automatically obtained by a
greedy algorithm (Lavor et al. 2012a; Mucherino 2013). In this work, we will consider
a discretization order particularly designed for protein backbones (see Sect. 5.1).

It is interesting to mention that if an instance of iDDGP3 has only exact distances
such that for each vertex i > 4 there are at least four reference distances to four
previous non-coplanar vertices then the iBP reduces to a variant of the Geometric
Build-up (Dong and Wu 2002; Wu and Wu 2007; Voller and Wu 2013), where a
vertex order is pre-defined.

A fundamental step in both methods is how to compute the candidate positions for
the next vertex i by solving a sphere intersection subproblem:

||xi − x j ||2 = d2i j , ∀ j ∈ J ⊂ {1, . . . , i − 1}.
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4.1 Computing Cartesian coordinates

While looking for candidate vertex positions for the vertex i (we use the notation
in Definition 12), it is supposed that the reference vertices {i3, i2, i1} are already
positioned and they define a local coordinate system centered at i1 (Gonçalves and
Mucherino 2014). Once this coordinate system has been identified, each candidate
position for the vertex i can be represented by two angles, to which we will refer with
the symbols θi and ωi .

In detail, we will use the symbol θi in order to refer to the angle formed by the two
segments (i, i1) and (i1, i2). When dealing with molecules, this angle is also referred
to as the bond angle. Moreover, we will use the symbol ωi for referring to the angle
formed by the two planes defined by the two triplets (i3, i2, i1) and (i2, i1, i). Similarly,
when the focus is on molecules, this angle is generally named the torsion angle. We
warn the reader that, even if we will use the terms “bond angle” and “torsion angle”
in the following, as in molecular biology, the angles that are used here may not be
equivalent to the ones generally considered for molecules such as proteins. The angles
θi and ωi can be computed by exploiting the positions of the previous vertices i1, i2
and i3, as well as the available distances di1,i , di2,i and di3,i (see Fig. 6).

When the three reference distances are all exact, three spheres can be defined,
whose intersection gives 2 points, with probability 1 (Lavor et al. 2012b). The two
points x+

i and x−
i for vertex i are symmetric with respect to the plane defined by the

reference vertices.When one of the three distances is instead represented by an interval
(see Definition 12), the third sphere becomes a spherical shell, and the intersection
yields two arcs (see Fig. 6). These two arcs correspond to two intervals, [ω+

i ,ω+
i ] and

[ω−
i ,ω−

i ], for the angle ωi . In order to discretize these intervals, a certain finite set of
points can be chosen from the two arcs. From a computational point of view, this can
be implemented by choosing a certain subset of distances from the available interval,
and by intersecting the three spheres several times, while the third one changes its
radius in the given interval: by selecting D equidistant angles in [ω+

i ,ω+
i ] and other

D equidistant angles in [ω−
i ,ω−

i ], 2 D positions for i can be computed. At each
recursive call of iBP, therefore, the main subproblem is the one of finding the points
given by one or several sphere intersections.

Suppose that we need to place the vertex i : let i1, i2 and i3 be the three reference
vertices for i . From the equations of the spheres in the three-dimensional space, we can
deduce that the intersection points can be obtained by solving the following system
of quadratic equations:

⎧
⎪⎨

⎪⎩

||xi − xi1 ||2 = d2i,i1
||xi − xi2 ||2 = d2i,i2
||xi − xi3 ||2 = d2i,i3

. (9)

Instead of attempting the solution of a quadratic system, another method can be
considered where the solutions to the quadratic system are found by solving two linear
systems. This method was implemented in conjunction with the iBP for instances
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consisting of exact distances only, but it was shown that it can lead to strong numerical
instabilities (Mucherino et al. 2012).

An alternative method for solving (9) which exploits internal coordinates is pro-
posed in (Gonçalves and Mucherino 2014). In order to avoid considering solutions
that can be obtained by translations and rotations, we can fix the vertices that belong
to the initial clique (see assumption (a) in Definition 12). The first vertex is placed
in the origin of the Cartesian system of coordinates, the second one is in the negative
x-axis, and the third vertex is placed on the 1st (or 2nd) quadrant of the xy-plane.

If we consider consecutive reference vertices, so that i3 = 1, i2 = 2 and i1 = 3, in
order to position the 4th vertex, we need to compute the torsion angleω4 defined by the
first four consecutive vertices. As described in Lavor et al. (2012b, 2015), the cosine
of ω4 can be computed from the distances between pairs of vertices in the quadruplet.
The cosine of the torsion angle, together with distances and angles between segments,
can be used for identifying the two positions given by the sphere intersections. For
a general vertex i > 3, candidate positions can be computed by multiplying 4 × 4
matrices, whose elements depend on distances, bond and torsion angles. If we assume
that i3 = i−3, i2 = i−2 and i1 = i−1, for each i > 3, then the Cartesian coordinates
of the candidate positions, for vertex i , can be obtained by:

xi =

⎡

⎢⎢⎢⎣

xi
yi
zi
1

⎤

⎥⎥⎥⎦ = B1B2B3 . . . Bi

⎡

⎢⎢⎢⎣

0

0

0
1

⎤

⎥⎥⎥⎦ , (10)

where the matrices Bi are defined inductively as:

B1 =

⎡

⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤

⎥⎥⎥⎦ , B2 =

⎡

⎢⎢⎢⎣

−1 0 0 −d12
0 1 0 0

0 0 −1 0

0 0 0 1

⎤

⎥⎥⎥⎦ ,

B3 =

⎡

⎢⎢⎢⎣

− cos θ3 sin θ3 0 −d23 cos θ3

sin θ3 − cos θ3 0 d23 sin θ3
0 0 1 0

0 0 0 1

⎤

⎥⎥⎥⎦ , (11)

Bi =

⎡

⎢⎢⎢⎣

− cos θi − sin θi 0 −di−1,i cos θi

sin θi cosωi − cos θi cosωi − sinωi di−1,i sin θi cosωi

sin θi sinωi − cos θi sinωi cosωi di−1,i sin θi sinωi

0 0 0 1

⎤

⎥⎥⎥⎦ . (12)

This procedure is very efficient and works well in practice (Mucherino et al. 2011;
Lavor et al. 2012b, 2013). It requires, however, that the reference vertices i3, i2 and
i1 are the ones that immediately precede i (this condition is named the consecutivity
assumption). In previous publications, therefore, orders on V satisfying this assump-
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tion were strongly required. However, finding an order satisfying this assumption
is NP-Hard (Cassioli et al. 2015b), while orders that do not satisfy the consecutiv-
ity assumption can be obtained automatically in polynomial time (see Lavor et al.
(2012a); Mucherino (2013)). More recently, in (Gonçalves and Mucherino 2014), the
procedure defined by Eqs. (10)–(12), has been generalized, so that the consecutivity
assumption is not necessary anymore. This procedure allows us to generate accurate
Cartesian coordinates, while orders satisfying weaker assumptions can be employed.

In order to present this generalized procedure, we start with analyzing the meaning
of the matrices Bi [see Eq. (12)]. The first three elements of the last column of the
matrix correspond to the spherical coordinates of a vertex position in a system of
coordinates described as follows. The vertex i1 is the center of this coordinate system.
The x-axis is defined in such away that i2 is on its negative side. The y-axis (orthogonal
to the x-axis) is defined such that the vertex i3 is on the xy-plane and has negative y
coordinate. We remark that this definition allows us to have a clockwise orientation
for torsion angles, in a way that the minimum distance between i3 and i is achieved
when ωi = 0 (equivalently, we have the maximal distance achieved when ωi = π).
Naturally, the z-axis is normal to the xy-plane (see Fig. 8). We will refer to this
coordinate system as the system defined in i1.

When it is supposed that the reference vertices i3, i2 and i1 are the ones that imme-
diately precede i in the total ordering, i.e. i3 = i − 3, i2 = i − 2 and i1 = i − 1, then
the Cartesian coordinates of a certain position in the system of coordinates defined
in i can be expressed in the system of coordinates defined in the vertex i1 = i − 1
through the equation:

⎡

⎢⎣
x ′

y′

z′

⎤

⎥⎦ =
⎡

⎢⎣
− cos θi − sin θi 0

sin θi cosωi − cos θi cosωi − sinωi

sin θi sinωi − cos θi sinωi cosωi

⎤

⎥⎦

⎡

⎢⎣
x

y

z

⎤

⎥⎦ +
⎡

⎢⎣
−di−1,i cos θi

di−1,i sin θi cosωi

di−1,i sin θi sinωi

⎤

⎥⎦ ,

or equivalently (x ′, y′, z′, 1)T = Bi (x, y, z, 1)T . In particular, the coordinates of the
vertex i in the system of coordinates defined in i1 = i − 1 is given by

⎡

⎢⎢⎢⎣

x ′
i

y′
i

z′i
1

⎤

⎥⎥⎥⎦ = Bi

⎡

⎢⎢⎢⎣

0

0

0

1

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

−di−1,i cos θi

di−1,i sin θi cosωi

di−1,i sin θi sinωi

1

⎤

⎥⎥⎥⎦ .

We can point out therefore that the role of each matrix Bi is to change the basis from
the coordinate system in the vertex i to the coordinate system in i − 1 = i1. Since
the canonical system of coordinates is defined by the vertex having rank 1, when the
vertices 1, 2, . . . , i − 1, i are placed consecutively, i.e. we have i3 = i − 3, i2 =
i − 2, i1 = i − 1 for each i , the matrix product B1B2 . . . Bi−1Bi plays the role of
changing the basis from the one in the vertex i to the canonical basis. This explains
Eq. (10).

Figure 7 shows how this procedure strongly depends on the consecutivity assump-
tion. In Fig. 7a, we have a path defined by the matrices Bi where the consecutivity
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Fig. 7 A tree of possible paths
for computing coordinates in the
canonical system
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assumption is always satisfied. In this case, as explained above, every matrix is able
to step from one coordinate system to another, by making reference to the coordinate
system defined by the previous vertex i − 1 in the order. In Fig. 7b, instead, we have
a path where the consecutivity assumption is broken at vertex 6, because the three
reference vertices are the vertices 4, 3 and 2. In this case, the matrix B6 should not be
multiplied by the previous cumulative product B1 . . . B5, because it is not necessary
to pass through the coordinate system defined at the vertex 5. In general, therefore,
in the absence of the consecutivity assumption, different paths for the matrices Bi
(i.e. different sequences of basis transformations) can be defined. This can lead to the
definition of a tree of possible paths (such as the one in Fig. 7b), which would make
the implementation of this procedure cumbersome.

The main idea for the generalized procedure for computing candidate vertex posi-
tions is to avoid to accumulate matrices every time we step from one vertex to another.
Instead, we introduce a new matrix that we will denote by the symbol Ui1 . If x̂ , ŷ and
ẑ are the three unit vectors describing the coordinate system defined in i1, then

Ui1 =
⎛

⎜⎝
x̂1 ŷ1 ẑ1
x̂2 ŷ2 ẑ2
x̂3 ŷ3 ẑ3

⎞

⎟⎠ . (13)

This matrix is able to convert directly vertex positions from the coordinate system
defined in i1 to the canonical system. This conversion is possible independently of
whether the reference vertices are consecutive or not.

Recall that, along the current branch of the iBP tree, the Cartesian coordinates for
the reference vertices i1, i2 and i3 are supposed to be already available. The coordinate
system in i1, and hence the matrixUi1 , can be defined as follows. Let v1 be the vector
from i2 to i1. Equivalently, let v2 be the vector from i2 to i3. The x-axis for the system
in i1 can be defined by v1: x̂ is the unit vector related to v1. Moreover, the vectorial
product v1 ×v2 gives another vector that defines the z-axis, whose corresponding unit
vector is ẑ. Finally, the vectorial product x̂ × ẑ provides the vector that defines the
y-axis (let the unit vector be ŷ). Figure 8 shows the coordinate system defined by the
three unit vectors (x̂, ŷ, ẑ).
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y Ui1 = [x̂ ŷ ẑ]
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Fig. 8 The reference vertices i3, i2 and i1 induce a system of coordinates

The three obtained vectors x̂ , ŷ and ẑ can be used for defining the columns of the
matrix Ui1 , as specified in Eq. (13), which is a unitary rotation matrix. Once Ui1 has
been computed, the canonical Cartesian coordinates for a candidate position for the
vertex i can be obtained by:

xi (ωi ) =
⎡

⎢⎣
xi
yi
zi

⎤

⎥⎦ =
⎡

⎢⎣
xi1
yi1
zi1

⎤

⎥⎦ +Ui1

⎡

⎢⎣
−di1,i cos θi

di1,i sin θi cosωi

di1,i sin θi sinωi

⎤

⎥⎦ . (14)

Recall that cos θi and cosωi can be computed by exploiting the available distances
di1,i , di2,i and di3,i , as well as the positions of the previous vertices i1, i2 and i3.

Notice that Eq. (14) is equivalent to Eq. (10), in the sense that they both depend on
bond angles and torsion angles, and they both provide the same result. However, there
is no need to accumulate products of matrices in Eq. (14), so that the consecutivity
assumption is not necessary.

As shown in Gonçalves and Mucherino (2014), the generalized procedure for the
computation of vertex coordinates in the iBP algorithm, based on Eq. (14), is very
stable when working on aDGP instances related to real proteins. Moreover, Eq. (14)
is also at the basis of an important technique that can be used to reduce the feasible
arcs obtained by the intersection of two spheres with one spherical shell (continuous
subsets of ωi are obtained, rather than two distinct real values). This technique for arc
reduction was firstly proposed in Gonçalves et al. (2014), and it is detailed in Sect. 4.2.

4.2 Reducing the feasible arcs by exploiting pruning distances

When candidate vertex positions, at each recursive call of the iBP algorithm, are
computed by intersecting two spheres with one spherical shell, a continuous set of
positions is obtained and generally corresponds to two disjoint arcs. In terms of torsion
angles ωi , these arcs correspond to two intervals for the torsion angle values. In
Lavor et al. (2013), it is simply selected a predefined number of samples from the
arcs (i.e., a certain number of torsion angle values from the available intervals). This
technique relies on at least one of such samples being able to fulfill the pruning distance
constraints on the current layer. This, however, may not be the case: pruning distances
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at the same layer could be infeasible with all selected positions. In practice, the region
on the arcs that can be compatible with other available distances may be contained
between two selected samples, but not cross any of them. The procedure detailed
below overcomes this issue for pruning distances at the current tree layer.

Let D be the predefined number of samples to be taken from the arcs obtained with
the sphere intersection. Naturally, the value given to D plays a critical role, because
the number of generated positions (and hence the number of branches added to the
tree) can be relatively large and lead to a combinatorial explosion. On the one hand,
too large D values can drastically increase the width of the tree; on the other hand,
too small values can generate trees where no solutions can be found (all branches
are pruned, because all positions, at a certain layer, are not compatible with pruning
distances).

During a typical run of the algorithm, every time the reference distance di3,i is
represented by an interval (it defines a spherical shell), D equidistant samples are
taken from each arc. As a consequence, 2 × D positions are generated in total, and
2× D new branches are added to the tree, at the current layer, for every branch at the
upper level. After their computation, the feasibility of each position is verified. There
are two extreme situations. All computed positions may be feasible: a smaller D value
might be considered without harming the computations. Otherwise, all positions may
be infeasible. In this case, since D samples on the arcs are taken, the latter information
does not allow us to discriminate between “the two arcs are infeasible” and “the chosen
samples are infeasible”. In Gonçalves et al. (2014), an adaptive scheme was proposed
for tailoring the branching phase of the iBP algorithm so that all computed candidate
positions are feasible at the current layer. The idea is to identify, before the branching
phase of the algorithm, the subset of positions on the two candidate arcs that is feasible
with respect to all pruning distances to be verified on the current layer.

Let us suppose that, at the current layer i , the distance di3,i is represented by the
interval [di3,i , di3,i ]. Two arcs on the circle C can be identified (see Fig. 6, and refer
to Eq. (14) in Sect. 4.1), which correspond to the two intervals of the torsion angles
[ω+,ω+] ⊂ [0,π] and [ω−,ω−] ⊂ [π, 2π] (from nowon, wewill omit the subscripts
of the angles θi andωi in order to simplify notation). All points in those two arcs satisfy
the interval distance [di3,i , di3,i ], as well as the two exact distances di2,i and di1,i , by
construction. However, there can be other distances between the already placed vertex
and i that we could exploit for tightening these two arcs. Let us suppose there is an
h ∈ { j < i | j /∈ {i3, i2, i1}} such that the distance dh,i is known. Solutions to the
equation

dh,i = ‖xh − xi (ω)‖ (15)

give the values for the angleω that are compatiblewith the distancedh,i . FromEqs. (15)
and (14) and using the fact that Ui1 is an orthogonal matrix, we obtain

d2h,i = ‖xh − xi (ω)‖2 = ‖v‖2 + d2i1,i
− 2

〈
v,

(−di1,i cos θ
)
x̂ + (

di1,i sin θ cosω
)
ŷ + (

di1,i sin θ sinω
)
ẑ
〉
,
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where 〈·, ·〉 denotes the inner product between two vectors, v = xh − xi1 and x̂, ŷ, ẑ
are the columns of Ui1 . If we define

A = 2〈v, ŷ〉 (
di1,i sin θ

)
, B = 2〈v, ẑ〉 (

di1,i sin θ
)
,

� = ‖v‖2 + d2i1,i + 2〈v, x̂〉 (
di1,i cos θ

)
, C = � − d2h,i ,

(16)

we obtain the following equation:

A cosω + B sinω = C. (17)

A discussion about how to solve Eq. (17) is presented in detail in Gonçalves et al.
(2014). Solutions to Eq. (17) provide the points where the sphere, centered at xh and
with radius dh,i , intersects the circle C in Fig. 6. When dh,i is given by an interval
[dh,i , dh,i ], we solve Eq. (17) for the bounds dh,i and dh,i :

A cosω + B sinω = � − d2h,i , (18)

A cosω + B sinω = � − d
2
h,i . (19)

The solutions of (18) and (19) are the extreme points of the feasible arcs: they define
feasible intervals for the angle ω.

The feasible positions for the vertex i can be therefore obtained by intersecting the
two previously computed arcs (in bold in Fig. 6) and several spherical shells, each of
them defined by considering one pruning distance between i and h < i . In order to
perform this intersection, the Eqs. (18) and (19) need to be solved for every pruning
distance dh,i .

When Eqs. (18) and (19) have solutions, values forω can be computed that are able
to identify new arcs on the circle C, which was previously obtained by intersecting two
spheres. If both equations admit solutions, two pairs of angle values can be identified:
ωl and ωl , using lower bound on the distance (Eq. 18), and ωu and ωu , using its upper
bound (Eq. 19). The two intervals [ωl ,ωl ] and [ωu,ωu] are able to identify two arcs
on C, which are compatible, evidently, with the considered pruning distance, as well
as with the two exact distances previously employed for defining C. These two arcs
need therefore to be intersected with the arcs related to the discretization distance di3,i .
Moreover, if other pruning distances are available, other pairs of Eqs. (18) and (19)
can be defined and new arcs on the circle C may be identified. The final subset of C
which is compatible with all available distances can be obtained by intersecting the
arcs obtained for each pruning distance with the arcs related to the distance di3,i .

For a given pruning distance dh,i , if both Eqs. (18) and (19) have no solutions, then
the final set of feasible positions on C is either empty, or it corresponds to the entire
C. It is sufficient to test any value of ω in one of the candidate arcs to state that

d2h,i < ‖xh − xi (ω)‖2 < d
2
h,i ,

or not.
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Moreover, for a given distance dh,i , only one of the two Eqs. (18) and (19) may
have solutions. In this case, only one arc can be identified on the circle C. In order to
find the right orientation of such an arc on the circle C, we define the function

F(ω) = ‖xh − xi (ω)‖2 = � − A cosω − B sinω,

and we consider its derivative

F ′(ω) = A sinω − B cosω. (20)

The correct orientation at an extreme point (solution of (18)) is the one for which
F(ω) increases, which can be obtained from Eq. (20). Notice that we might need to
add 2π to one of the extreme points in order to have ω > ω. The analysis for the case
in which only Eq. (19) has solutions is analogous.

After considering all pruning distances, i.e., after performing all intersections, the
final result provides a list of arcs on C that are feasible with all the distances that can
be verified at the current layer. All positions that can be taken from these arcs are
feasible at the current layer: all of them generate a new branch and may serve as a
reference for computing new candidate positions on deeper layers of the tree. In order
to integrate the iBP algorithm with this adaptive scheme, there are two main changes
to be performed. On line 3, the adaptive scheme needs to be invoked for taking into
consideration the information about the pruning distances. Moreover, if DDF is the
only pruning device employed, lines 3–3 may be removed, because this verification
becomes unnecessary.

5 Applications

5.1 DGP in biological molecules

The distance information from NMR experiments are distances between nuclei in
proteins (Almeida et al. 2013; Crippen and Havel 1988; Wuthrich 1989; Hendrick-
son 1995; Nilges and O’Donoghue 1998). Since they may contain errors, they are
treated as restraints rather than constraints (Clore and Gronenborn 1997; Brunger
et al. 1998; Nilges and O’Donoghue 1998; Berger et al. 2011). Recently, a variety of
other approaches to distance measurements in biological and inorganic materials have
been developed and there is considerable promise for continuing progress in this area
(Guerry and Herrmann 2011; Bouchevreau et al. 2013). Considerable experimental
work is carried out to determine the pair of nuclei assigned to each distance extracted
from theNMRdata, allowing the problem to be represented by a graphG = (V, E, d),
where V represents the set of atoms and E is the set of atom pairs for which a distance
is available.

As pointed out in Sect. 4, it is a fundamental pre-processing step for the solution
of aDGPs to identify a suitable discretization order for the vertices of G. We consider
a model for the protein backbone as depicted in Fig. 9. With the backbone atoms N ,
H , Cα, Hα and C , we have included only Cβ and Hβ to represent the side chain R
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Fig. 9 A model for the protein backbone and a possible discretization order

of each amino acid. The backbone model of Fig. 9 has only 3 amino-acids but it can
be extended for a longer protein chain, thanks to the regular pattern of the protein
backbone.

From Fig. 9, we can derive a discretization order, where the first three atoms N −
Cα − Hα of the first amino-acid can be used as initial clique (see assumption (a) in
Definition 12) because the involved distances are related to bond lengths that can be
considered as exact (Crippen and Havel 1988). Taking into account the peptide plane
distances and the distances between hydrogens provided by NMR, it is not hard to
verify that assumptions (b.1)–(b.2) of Definition 12 are satisfied by the order given in
Fig. 9. Other discretization orders are given in Lavor et al. (2011, 2013) and Costa
et al. (2014).

On the basis of the model in Fig. 9, it is possible to conceive other pruning devices
(Mucherino et al. 2011) to be integrated with DDF (see, Eq. (8)), based on chirality
constraints and rigid parts (peptide planes and tetrahedrons aroundCα’s) of the protein
chain.

Although, in general, the cost of exploring the search tree of a iDDGP3 after dis-
cretization grows exponentially, it is important to mention that this is not the case
for sets of exact distances with periodic pruning distances. In Liberti et al. (2013),
it is shown that this situation is likely to happen in proteins, where the iBP algo-
rithm presents a polynomial behavior, being able to find realizations for proteins with
thousands of atoms in less than a minute.

Additionally, the iBP algorithm can potentially enumerate all incongruent con-
formations of a molecular iDDGP3 instance. This is a clear advantage, allowing
exploration of different shapes that a protein can assume inside cells. In Fig. 10,
we present 2 incongruent realizations for the protein 2PPZ, whose distance informa-
tion was extracted from the PDB. For this instance, we assume that all distances below
4.4Å are exact. In fact, the iBP found 4 incongruent conformations, but 2 of themwere
pruned by chirality. Notice that the realizations in Fig. 10 differ by a partial reflection.

When interval distances come into play, the iBP algorithmmay become an heuristic
(for a fixed number of equidistant samples D). The main difficulties arise from the
discretization of the arcs (see Sect. 4) and the fact that interval pruning distances cannot
guide the search in a effective way. Some recent efforts, like the scheme presented in
Sect. 4.2, have been done in order to overcome these barriers (Gonçalves et al. 2014;
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Fig. 10 Two incongruent conformations for protein 2PPZ from PDB that differ by partial reflection. Only
distances below 4.4Å were considered

Fig. 11 Superimposition of a
conformation found by iBP
(red) and the target 2ERL from
PDB (blue). The RMSD
between the structures is 0.86Å

Gonçalves andMucherino 2014; Lavor et al. 2015), where preliminary results suggest
new investigations.

Figure 11 shows a conformation found by iBP for the protein instance 2ERL,
against the true conformation deposited in PDB. Here, only distances below 5Å are
considered, where the ones related to hydrogen pairs are represented by an interval
of width 1Å. Although the RMSD (Root Mean Squared Deviation) is 0.86Å, it seems
that the iBP could capture the global fold of the protein.

Improvements in handling interval distances may allow the use of iBP as an
exploratory tool for finding incongruent approximate conformations for proteins based
on NMR distance information.
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5.2 DGP in nanostructures

The Nanostructure Problem is the problem of finding, at high precision, the atomic
positions of molecular, biomolecular or solid state systems when it is difficult or
impractical to grow a single crystal or even a polycrystal sample (Billinge and Levin
2007). The meaning of high precision is context dependent, however a typical require-
ment in a solid state system is the determination of the positions of all atoms in a
nanostructure to better than 2% for each interatomic distance in the nanostructure,
and in some cases even higher resolution is necessary. High resolution is required
as the function of nanostructured materials and complex molecules is highly sensi-
tive to small changes in the interatomic distances, making it essential to determine
nanostructure to high precision to enable understanding and design of materials.
Nanostructure problems are encountered in a wide variety of materials, including
complex molecules, nanoparticles, polymers, proteins, non-crystalline motifs embed-
ded in a crystalline matrix and many others (see Fig. 12 for three examples). We
consider single phase problems where one nanostructure is dominant, though exten-
sions to multiphase nanostructures are possible once the single phase case can be
solved efficiently.

The pair-distribution function (PDF) method is a versatile and readily available
approach to probing the local atomic structure of nanostructured materials (Egami
and Billinge 2012). PDF results can be extracted from X-ray, neutron or electron
total scattering data and in many cases the data can be collected efficiently. The major

Fig. 12 (Color online) Examples of nanostructured materials. a Nanostructured bulk materials. b Inter-
calated mesoporous materials. c Discrete nanoparticles. In each case, ball-and-stick renditions of possible
structures are shown on the top, and TEM images of examples are shown on the bottom. From Billinge and
Levin (2007)
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bottleneck in PDF analysis is the extraction of nanostructures from the data, as standard
techniques are based on either refinement from a good initial guess (Farrow et al.
2007); or on simulated annealing (McGreevy and Pusztai 1988; Evrard and Pusztai
2005; Tucker et al. 2007).

A more systematic approach to finding good starting structures is a high prior-
ity in the field and provides the motivation for developing ab-initio DG approaches
(Gujarathi et al. 2014; Juhás et al. 2006). Alternative experimental approaches such as
high resolution transmission electronmicroscopy (seeFig. 12) are very useful for larger
scale morphological studies, but they do not yield the high precision atomic structures
available from diffraction and scattering approaches. Local structural information can
also be found using extended X-ray absorption fine-structure (EXAFS) and related
near-edge absorption spectroscopies, solid-state NMR, and scanning probe methods
at sample surfaces. An innovative emerging approach utilizes ultrafast X-ray laser
pump-probe “diffract and destroy” methods which require a separate suite of analysis
algorithms (Gaffney and Chapman 2007).

A longer term goal in the field is to develop modeling frameworks incorporating all
of the available experimental probes to yield consensus best local atomic structures
(see Fig. 13), and the most recent software packages are moving in this direction.
Here, we focus on the determination of local atomic structure from PDF data.

The ideal PDF contains a list of the interatomic distances in a material for both
crystalline or non-crystalline cases (see the next subsection). There is a very exten-
sive literature describing PDF experiments on a wide range of complex nanostructured
materials (Egami and Billinge 2012). Nanostructures consistent with the experimental
PDF data are usually discovered using one of two approaches: (1) By using physical
intuition or theoretical modeling to propose a starting structure, followed by struc-
ture refinement (Farrow et al. 2007) or (2) Use of global optimization methods to
find structures, most often using a simulated annealing approach that in this liter-
ature is called Reverse Monte Carlo (RMC) (McGreevy and Pusztai 1988; Tucker
et al. 2007). Nanostructures found to be consistent with the PDF data are then tested
further by checking their properties against known results from other experimen-
tal structural characterization approaches such as TEM, STM etc, and experimental
results for electrical,mechanical, thermodynamic, optical,magnetic and other physical
properties. Quantum mechanical calculations to predict the structure and properties
of complex materials are utilized in making these comparisons. Though the RMC
method is a global optimization approach it is of limited use in finding unique nanos-
tructures, due to the strong metastability of the nanostructure optimization problem.
However, RMC is widely utilized to find populations of local nanostructures consis-
tent with materials with varying local atomic structures, such as structural glasses and
liquids.

Attempts at finding unique global minimum nanostructures of solid state materials
using DG approaches is recent (see Sect. 3), despite the long history of finding global
minimum atomic structures using Bragg diffraction from single crystals. This is partly
due to the fact that only recently PDF methods have become sufficiently refined to
provide distances lists of sufficient quality to enable extraction of high quality distance
lists.
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Fig. 13 (Color online) Schematic of the concept of combining experimental data and ab-initio modeling
to deduce a consensus best atomic structure. From Billinge (2010)

5.3 The pair distribution function

The distances between atoms in a material are contained in the pair distribution func-
tion (PDF). The PDF is found by taking a Fourier transform of the structure factor (see
Eq. 22 below) which is extracted from the experimentally measured total scattering of
X-rays, neutrons or electrons from a sample (Egami and Billinge 2012; Billinge and
Kanatzidis 2004). The PDF method is widely used to study nanostructures (Egami
and Billinge 2012; Billinge and Kanatzidis 2004; Billinge and Levin 2007) and sev-
eral software packages to find atomic structures that are consistent with PDF data are
available (Evrard and Pusztai 2005; Farrow et al. 2007; Tucker et al. 2007). Despite
the successes of these methods, finding high quality nanostructures from experimen-
tal PDF data remains challenging and subject to interpretation. There is a need for
efficient computational methods that have a stronger mathematical foundation and
performance guarantees. DG methods provide one avenue to achieve these more rig-
orous approaches to nanostructure determination. As we show below, a perfect PDF
would yield all of the interatomic distances in the sample. However there are many
limitations in the real PDF data. First, the data is truncated at an upper interatomic
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distance that is typically 3.5nm or less, and the data is imprecise leading to overlap
of peaks and hence difficulty in extracting distances that are close in length.

The ideal pair distribution function is defined by

g(r) = 1

r

1

N (〈 f 〉)2
∑

j �=l

f ∗
j flδ

(
r − r jl

)
. (21)

The delta function in this expression yields a set of peaks in g(r), that are located at
the values of the interatomic distances. Here, r jl is the distance between atoms j and l
located at positions r j and rl so that r jl = ||rl −r j ||. N is the total number of atoms in
the structure, where j = 1, . . . , N and l = 1, . . . , N . f j is the scattering power of the
atom at position r j , and f ∗

j is its complex conjugate. The scattering power is found
by taking a Fourier transform of the electron charge density (for X-ray or electron
scattering) or the nuclear potential (neutron scattering) (see Sivia (2011) for details).

The measured structure factor, extracted from scattering experiments in the kine-
matical limitwheremultiple scattering is ignored, is given by (see Sivia (2011)Chapter
3)

S(Q) ∝
∑

j,l

f ∗
j fl e

iQ·(r j−rl), (22)

where Q = k−k′ is the scattering wavevector which is the difference of the incoming
and outgoing wavevectors of the particle that is scattered. For elastic scattering, the
magnitudes of the scattering wavevectors are the same, k = k′, where k is the mag-
nitude of k. The term j = l is called the self-scattering term, and is usually treated
separately and normalized in the following way,

S(Q) = 1 + 1

N (〈 f 〉)2
∑

j �=l

f ∗
j fl exp

(
iQ · r jl

)
. (23)

(〈 f 〉)2 is the mean square averaged scattering power, where the average is taken over
all scatterers in the system. PDF analysis is usually used when the material samples
are amorphous or powders so that the scattering is independent of sample orientation
and an average over the scattering angles yields

S(Q) = 1 + 1

N (〈 f 〉)2
∑

j �=l

f ∗
j fl

sin
(
Q r jl

)

Qr jl
, (24)

where Q is the magnitude of Q and r jl is the magnitude of r jl .
For convenience in comparing different materials, the PDF above is often normal-

ized so that it approaches one at large distances. From the relations (21) and (24), it is
easy to see that the structure factor (the experimentally measured quantity) is related
to the pair distribution function through
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g(r) = 2
π

∫ ∞

0
Q[S(Q) − 1]sin(Qr)dQ. (25)

From the point of view of DG, the key feature of the pair distribution function as
defined in Eq. (21) is that it contains a list of interatomic distances without any specific
reference to the particular atoms at the endpoints of each distance, so finding atomic
structure from the PDF requires solution to a uDGP.

The experimental PDF does not have delta function peaks as occurs in the ideal PDF
of Eq. 21. The experimental peak width is determined by both physical processes and
experimental resolution (Egami and Billinge 2012). A high resolution X-ray PDF for
a crystalline sample of Ni is presented in Fig. 14, and interatomic distances extracted
from this PDF are indicated. In structures with high symmetry, such as Ni which
crystallizes into a face-centered cubic structure, distances of the same length occur
frequently and the degeneracy of each distance can be estimated from the area of
each peak. Extraction of high quality distance lists requires high purity samples, high
resolution detectors and careful data analysis.

5.4 Reverse Monte Carlo (RMC) and structure refinement (PDFGui)

Reverse Monte Carlo (RMC) methods (McGreevy and Pusztai 1988; Tucker et al.
2007) consider models with atomic positions ri , i = 1, . . . , n. The starting model is
a configuration of these points that are often chosen to be either random or ordered,
and it is a good practice to check that the final results are robust to the choice of the
initial model. Monte Carlo based methods, such as simulated annealing, are used to
move the atomic positions of the model in order to minimize the residual,

R =
P∑

i

(
pmodel
i − pexp.i

)2
, (26)

where pmodel
i is the PDF calculated from the model positions, using Eq. 21 convolved

with a Gaussian to represent the experimental uncertainty in the distances. pexp.i is
the experimental data that may be extracted from X-ray, neutron or electron scattering
experiments. P is the number of data points used to represent the PDF. The PDF is
calculated from distance r = 0 to a maximum rmax , so the resolution in real space is
δr = rmax/P . The experimental resolution in reciprocal space is δq and it is important
to take account of any oversampling issues in interpreting features in the PDF. The
simulated annealing algorithm used in RMC is a global optimizer, though convergence
inefficiencies mean that in many RMC studies, particularly on crystalline materials
using RMC-profile, it is being used as a local optimizer. Additional terms can be added
to the expression for R above to treat other experimental data.

RMC was developed to capture populations of local atomic structures occurring
in glasses and liquids (McGreevy and Pusztai 1988), and the number of degrees of
freedom in the models used for that purpose is typically much higher than the number
of points used in the residual, so the model is underconstrained. Unless further con-
straints are applied, the models found by RMC using underconstrained models may fit
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Fig. 14 (Color online) High quality PDF for FCC Ni. The bottom figure indicates distances that have been
extracted from this experimental PDF (G(r)). The radial distribution function R is especially useful for
extracting distance lists, and it is related to G(r) through R(r) = r(G(r) − Gbg(r)), where Gbg(r) is a
background subtraction that depends on the shape of the sample. The experiments actually measure the
structure factor S(Q), and the experimental PDF, G(r), is found by carrying out the integral Eq. 25. Since
the experimental data is over a bounded range of Q, and it has finite resolution δQ, the experimental PDF
has ripples and other artifacts that have to be understood. The LIGA algorithm efficiently reconstructs the
local FCC structure from the distances extracted from this experimental data (Juhás et al. 2006)

the experimental data extremely well, yet be non-unique and not necessarily correct.
Physical or chemical constraints should be added to the RMC procedure to capture
known properties of the target nanostructure. A new RMC code, called RMCProfile,
is public and maintained predominantly by the theory group at ISIS in the Rutherford
labs (Tucker et al. 2007). It has the capability to include a variety of constraints, a
variety of experimental data, and in the case of crystalline systems it has different
procedures to treat both the total scattering and the Bragg peaks.

PDFGui requires the assumption of a reference structure, and the residual Eq. 26 is
minimized with respect to candidate distortions that are also input by the user. PDFGui
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is maintained predominantly by the Billinge group at Brookhaven and Columbia
(Farrow et al. 2007). Distortions of the reference structure are described by a set
of parameters, and a minimization of the residual Eq. 26 is taken over the parameter
set. The number of parameters used in the minimization is usually much smaller than
the number of degrees of freedom in the data, so the models are overconstrained.
Minimization is often taken using standard downhill methods such as Levenberg–
Marquardt. PDFgui is part of the Diffpy complex modeling package, Diffpy-CMI
(http://diffpy.org), which does contain global optimization methods and is a software
implementation of a complex modeling paradigm, illustrated in Fig. 13. In the case
of nanoparticles, assumptions must also be made about the reference structure of the
surface and other defects.

5.5 Solution to uDGP for a fullerene molecule

An illustration of the solution to the C60 fullerene using the LIGA algorithm for
uDGP is presented in Fig. 15, showing that it is possible to reconstruct interesting
nanostructures from unassigned distance lists extracted from real experimental PDF
data. A large number of other structures have been reconstructed using LIGA using
precise distance lists and also from experimental data (Juhas et al. 2010). LIGAworks
well when structures have high symmetry leading to a limited number of unique
distances. However, LIGA has difficulty with structures that have a large number of
different distances due to the stochastic nature of its vertex addition procedures. The
emergence of DGP GRB methods, such as those used in TRIBOND, provide new
avenues for improving LIGA (see Sect. 3.2).

When the distance list D is obtained from experimental PDF data (see Sect. 5.3),
they may contain significant errors in the multiplicity and values of the distances
(see Fig. 15). This is a problem especially because underestimated multiplicities may
greatly increase the cost of the correct structure. Under such circumstances it is advan-
tageous to relax or even ignore multiplicities altogether. In the first case, the distance
table is constructed with distance multiplicities increased by a fixed percentage, and
thus it contains more lengths than actually present in the searched structure. In the
second case, the program allows any distance to be compared with the model structure
an arbitrary number of times. This is in effect the same as setting infinite multiplicities
for all lengths in the target set. It is also possible to relax the condition of a fixed
target size N , in which case the largest cluster size keeps growing. However since
the distances have a fixed maximum length, the cost of the large structures grows
significantly, indicating the true largest cluster consistent with the input distance list.

One clear lesson emerging from experiences with the TRIBOND and LIGA algo-
rithms, and which has also been emphasized in recent work on BP methods for DGPs,
is that the ordering of vertices used in reconstruction from distance information is
very important. In TRIBOND this is illustrated in Fig. 4 which shows that finding a
reliable core is the most time consuming step in reconstruction. This leads to the view-
point that it is more effective to find a smaller number of high precision distances in a
core, than it is to find a larger number of low precision distances that are not closely
related.
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Fig. 15 Reconstruction of a buckeyball from experimental neutron scattering data. a–c Various forms of
the experimental data, starting with the raw structure factor data. The imprecise distance list of d extracted
from this data is the only information that is used to find the correct structure. From Juhás et al. (2006,
2008)

6 Conclusion

We reviewed some methods for the assigned and the unassigned DGP (aDGP and
uDGP) that determine graph embeddings by iteratively growing substructures. Start-
ingwith a general discussion on graph rigidity,we have presented twomain approaches
to theDGP.Thefirst approach, for the uDGP, is strongly based on the concept of finding
unique substructures during iterative growth of a final unique realization. The second,
initially conceived for the aDGP, reduces the search space to a discrete one having the
structure of a tree, for systems that do not have a unique realization at each step in the
build up. We focused our attention on two particular applications: the identification of
conformations of biological molecules and determining the nanostructures of complex
materials.
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It is worth emphasizing that globally rigid substructures should be used if possible,
as each redundant bond in such a substructure provides a check on the correctness
of the reconstruction. This is not true of substructures that are not globally rigid.
For precise distance lists, the smallest substructure in three dimensions containing a
redundant bond is a clique with five vertices. One strategy to solve macromolecular
structure from a set of distance constraints is then to identify and reconstruct the
most redundant, in a graph rigidity sense, substructures first. Moreover, concentrating
experimental and theoretical efforts on finding the precise structure of small subunits
of a large protein or nanostructure will enable a solid base from which to build larger
structures, using for example tree search methods such as iBP. This approach will also
help to mitigate the effects of errors and uncertainties in the distance lists while taking
advantage of problem structure. An important theoretical challenge is to extend the
understanding of a core size to caseswhere the distances are imprecise. In the imprecise
case, it would be very useful to have bounds on the probability that a substructure is
unique, given the substructure size, the number of distances used and the errors in
those distances.

As this survey shows, two emerging research lines, one originally developed for the
aDGP and the other for the uDGP, have several common and several complementary
features. Utilization of these two approaches in combination should yield interesting
methods for tackling the general DGP and its many applications.
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