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Abstract An automatic method for constructing linear relaxations of constrained
global optimization problems is proposed. Such a construction is based on affine and
interval arithmetics and uses operator overloading. These linear programs have exactly
the same numbers of variables and inequality constraints as the given problems. Each
equality constraint is replaced by two inequalities. This new procedure for computing
reliable bounds and certificates of infeasibility is inserted into a classical branch and
bound algorithm based on interval analysis. Extensive computation experiments were
made on 74 problems from the COCONUT database with up to 24 variables or 17
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constraints; 61 of thesewere solved, and 30 of them for the first time, with a guaranteed
upper bound on the relative error equal to 10−8. Moreover, this sample comprises
39 examples to which the GlobSol algorithm was recently applied finding reliable
solutions in 32 cases. The proposed method allows solving 31 of these, and 5 more
with a CPU-time not exceeding 2min.

Keywords Affine arithmetic · Interval analysis · Linear relaxation · Branch and
bound algorithm · Global optimization

Mathematics Subject Classification 90C26 · 65H20 · 65G30 · 65G40 · 49M20

1 Introduction

For about thirty years, interval branch and bound algorithms are increasingly used to
solve global optimization problems in a deterministic way (Hansen andWalster 2004;
Kearfott 1996; Markot et al. 2006; Ratschek and Rokne 1988). Such algorithms are
reliable, i.e., they provide an optimal solution and its value with a guaranteed bound
on the error, or a proof that the problem under study is infeasible. Other approaches
of global optimization (e.g. Androulakis et al. 1995; Audet et al. 2000; Horst and
Tuy 1996; Lasserre 2001; Lebbah et al. 2005; Maranas and Floudas 1997; Mitsos
et al. 2009; Sherali and Adams 1999; Tawarmalani and Sahinidis 2004), while useful
and often less time-consuming than interval methods, do not provide such a guarantee.
Recently, the second author adapted and improved standard interval branch and bound
algorithms to solve design problems of electromechanical actuators (Fitan et al. 2004;
Fontchastagner et al. 2007;Messine 2005;Messine et al. 1998). This work showed that
interval propagation techniques based on constructions of computation trees (Messine
2004; Hentenryck et al. 1997; Vu et al. 2009) and on linearization techniques (Hansen
andWalster 2004; Kearfott 1996; Lebbah et al. 2005) improved considerably the speed
of convergence of the algorithm.

Another way to solve global optimization problems, initially outside the interval
branch and bound framework, is the reformulation-linearization technique developed
by Sherali and Adams (1999), see also Audet et al. (2000), Perron (2004) for methods
dedicated to quadratic non-convex problems. The main idea is to reformulate a global
optimization problem as a larger linear one, by adding new variables as powers or
products of the given variables and linear constraints on their values. Notice that in
Schichl and Neumaier (2005), Schichl and Neumaier proposed another linearization
technique based on the slopes of functions. This technique has the advantage of keeping
the same number of variables as the original optimization problem.

Kearfott (2006),Kearfott andHongthong (2005) andLebbah et al. (2005) embedded
the reformulation-linearization technique in interval branch and bound algorithms,
showing their efficiency on some numerical examples. However, it is not uncommon
that the relaxed linear programs are time-consuming to solve exactly at each iteration
owing to their large size. Indeed, if the problem has highly nonlinear terms, fractional
exponents or many quadratic terms, these methods will require many new variables
and constraints.
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In this paper, the main idea is to use affine arithmetic (Comba and Stolfi 1993; de
Figueiredo 1996; Figueiredo and Stolfi 2004; Stolfi and de Figueiredo 1997) to gen-
erate linear relaxations. This arithmetic can be considered as an extension of interval
arithmetic (Moore 1966) by converting intervals into affine forms. This has several
advantages: (i) keeping affine information on the dependencies among the variables
during the computations reduces the dependency problem which occurs when the
same variable has many occurrences in the expression of a function; (ii) as with inter-
val arithmetic, affine arithmetic can be implemented in an automated way by using
computation trees and operator overloading (Mitsos et al. 2009) which are available in
some languages such as C++, Fortran 90/95/2000 and Java; (iii) the linear programs
have exactly the same numbers of variables and of inequality constraints as the given
constrained global optimization problem. The equality constraints are replaced by
two inequality constraints. This is due to the use of two affine forms introduced by the
second author in a previous work (Messine 2002). The linear relaxations have to be
solved by specialized codes such as CPLEX. Techniques for obtaining reliable results
with such non reliable codes have been proposed by Neumaier and Shcherbina (2004),
and are used in some of the algorithms proposed below; (iv) compared with previous,
often specialized, works on the interval branch and bound approach (Kearfott 2006;
Lebbah et al. 2005), or which could be embedded into such an approach (Audet et al.
2000; Sherali and Adams 1999), the proposed method is fairly general and can deal
with many usual functions such as logarithm, exponential, inverse, square root.

The paper is organized as follows. Section 2 specifies notations and recalls basic
definitions about affine arithmetic and affine forms. Section 3 is dedicated to the pro-
posed reformulation methods and their properties. Section 4 describes the reliable
version of these methods. In Sect. 5, their embedding in an interval Branch and Bound
algorithm is discussed. Section 6 validates the efficiency of this approach by per-
forming extensive numerical experiments on a sample of 74 test problems from the
COCONUT website. Section 7 concludes.

2 Affine arithmetic and affine forms

Interval arithmetic extends usual functions of arithmetic to intervals, see Moore
(1966). The set of intervals will be denoted by IR, and the set of n-dimensional interval
vectors, also called boxes, will be denoted by IR

n . The four standard operations of
arithmetic are defined by the following equations, where x = [x, x] and y = [y, y]
are intervals:

x ⊕ y = [x + y, x + y], x � y = [min(x y, x y, x y, x y),max(x y, x y, x y, x y)],
x � y = [x − y, x − y], x � y = [x, x] � [1/y, 1/y], if 0 /∈ y.

These operators are the basis of interval arithmetic, and its principle can be extended
to many unary functions, such as cos, sin, exp, log, √. Kearfott (1996), Stolfi and de
Figueiredo (1997). We can also write inf(x) = x for the lower bound, sup(x) = x for
the upper bound and mid(x) = x+x

2 for the midpoint of the interval x.
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Given a function f of one or several variables x1, . . . , xn and the corresponding
intervals for the variables x1, . . . , xn , the natural interval extension f of f is an interval
obtained by substituting variables by their corresponding intervals and applying the
interval arithmetic operations. This provides an inclusion function, i.e., f : D ⊆ IR

n →
IR such that∀x ∈ D, range( f, x) = { f (x) : x ∈ x} ⊆ f(x), for details seeRatschek
and Rokne (1988, Sect. 2.6).

Example 1 Using the rounded interval arithmetic in Fortran double precision, such as
defined in Moore (1966, Chap. 3),

x = [1, 2] × [2, 6], f (x) = x1 · x22 − exp(x1 + x2),

f(x) = [1, 2] � [2, 6]2 � exp([1, 2] ⊕ [2, 6]) = [−2976.957987041728,

51.914463076812],
We obtain that: ∀x ∈ x, f (x) ∈ [−2976.957987041728, 51.914463076812].

Affine arithmeticwas introduced in 1993 byComba and Stolfi (1993) and developed
by De Figueiredo and Stolfi in de Figueiredo (1996), Figueiredo and Stolfi (2004),
Stolfi and de Figueiredo (1997). This technique is an extension of interval arithmetic
obtained by replacing intervals with affine forms. The main idea is to keep linear
dependency information during the computations. This makes it possible to efficiently
deal with a difficulty of interval arithmetic: the dependency problem, which occurs
when the same variable appears several times in an expression of a function (each
occurrence of the same variable is treated as an independent variable). To illustrate
that, the natural interval extension of f (x) = x − x , where x ∈ x = [x, x], is equal
to [x − x, x − x] instead of 0.

A standard affine form iswritten as follows,where x is a partially unknown quantity,
the coefficients xi are finite floating-point numbers (we denote this with a slight abuse
of notation as R) and εi are symbolic real variables whose values are unknown but
assumed to lie in the interval εi = [−1, 1], see Stolfi and de Figueiredo (1997):

x̂ = x0 +
n

∑

i=1

xiεi , (1)

with ∀i ∈ {0, 1, . . . , n}, xi ∈ R and ∀i ∈ {1, 2, . . . , n}, εi ∈ εi = [−1, 1].
Anaffine formcanalsobedefinedbyavector of all its components: (x0, x1, . . . , xn).
As in interval arithmetic, usual operations and functions are extended to deal with

affine forms. For example, the addition between two affine forms, latter denoted
by x̂ and ŷ, is simply the term-wise addition of their coefficients xi and yi . The
algorithm for the other operations and some transcendental functions, such as the
square root, the logarithm, the inverse and the exponential, can be found in Stolfi and
de Figueiredo (1997). Conversions between affine forms and intervals are done as
follows:
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Interval −→ Affine Form

x = [x, x] −→
x̂ = x + x

2
+ x − x

2
εk,

where εk ∈ εk is a new variable.

(2)

Affine Form −→ Interval

x̂ = x0 + ∑n
i=1 xiεi −→

x = x0 ⊕
(

n
∑

i=1

|xi |
)

� [−1, 1]. (3)

Indeed, using these conversions, it is possible to construct an affine inclusion func-
tion; all the intervals are converted into affine forms, the computations are performed
using affine arithmetic and the resulting affine form is then converted into an interval;
this generates bounds on values of a function over a box (Messine 2002; Stolfi and de
Figueiredo 1997). These inclusion functions cannot be proved to be equivalent or bet-
ter than natural interval extensions. However, empirical studies done by Stolfi and de
Figueiredo (1997), Messine (2002) and Messine and Touhami (2006) show that when
applied to global optimization problems, affine arithmetic is, in general, significantly
more efficient for computing bounds than the direct use of interval arithmetic.

Nevertheless, standard affine arithmetic such as described in Stolfi and de
Figueiredo (1997) introduces a new variable each time a non-affine operation is done.
Thus, the size of the affine forms is not fixed and its growth may slow down the solu-
tion process. To cope with this problem, one of the authors proposed two extensions
of the standard affine form which are denoted by AF1 and AF2 (Messine 2002). These
extended affine forms make it possible to fix the number of variables and to keep track
of errors generated by approximation of non-affine operations or functions.

– The first formAF1 is based on the same principle as the standard affine arithmetics
but all the new symbolic terms generated by approximations are accumulated in a
single term. Therefore, the number of variables does not increase. Thus:

x̂ = x0 +
n

∑

i=1

xiεi + xn+1ε±, (4)

with ∀i ∈ {0, 1, . . . , n}, xi ∈ R, xn+1 ∈ R
+, εi ∈ εi = [−1, 1] and ε± ∈ ε± =

[−1, 1].
– The second form AF2 is based on AF1. Again the number of variables is fixed but
the errors are stacked in three terms, separating the positive, negative and unsigned
errors. Thus:

x̂ = x0 +
n

∑

i=1

xiεi + xn+1ε± + xn+2ε+ + xn+3ε−, (5)

with ∀i ∈ {0, 1, . . . , n}, xi ∈ R and ∀i ∈ {1, 2, . . . , n}, εi ∈ εi = [−1, 1], and
(xn+1, xn+2, xn+3) ∈ R

3+, ε± ∈ ε± = [−1, 1], ε+ ∈ ε+ = [0, 1], ε− ∈ ε− =
[−1, 0].
In this paper, we use mainly the affine form AF2. Note that a small mistake was

recently found in the computation of the error of the multiplication between two AF2
forms in Messine (2002), see Vu et al. (2009).
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Fig. 1 Affine approximations by min-range methods and Chebyshev

Usual operations and functions are defined by extension of affine arithmetic, see
Messine (2002) for details. For example, the multiplication between two affine forms
of type AF1 is performed as follows:

x̂ · ŷ = x0y0 +
n

∑

i=1

(x0yi + xi y0)εi +
(

x0yn+1 + xn+1y0 +
(

n+1
∑

i=1

|xi | ·
n+1
∑

i=1

|yi |
))

ε±.

For computing unary functions in affine arithmetic, Stolfi and de Figueiredo (1997)
proposed two linear approximations: the Chebyshev and the min-range approxima-
tions, see Fig. 1. The Chebyshev approximation is the reformulation which minimizes
themaximal absolute error. Themin-range approximation is that one whichminimizes
the range of the approximation. These affine approximations are denoted as follows:

̂f(̂x) = ζ + α x̂ + δε±,

with x̂ given by Eq. (4) or (5) and ζ ∈ R, α ∈ R
+, δ ∈ R

+.
(6)

Thus on the one hand, the Chebyshev linearization gives the affine approximation
which minimizes the error δ but the lower bound is worse than the actual minimum of
the range, see Fig. 1. On the other hand, the min-range linearization is less efficient
in estimating linear dependency among variables, while the lower bound is equal to
the actual minimum of the range. In our affine arithmetic code, as in De Figueiredo
et al.’s one (1997), we choose to implement the min-range linearization technique.
Indeed, in experiments with monotonic functions, bounds were found to be better
than those calculated by the Chebyshev approximation when basic functions were
combined (because the Chebyshev approximations increase the range).

A representation of the computation of AF1 is shown in Fig. 2 (numbers are trun-
cated with 6 digits after the decimal point). In our implementation, the computation
tree is implicitly built by operator overloading (Mitsos et al. 2009). Hence, its form
depends on how the equation is written. The leaves contain constants or variables
which are initialized with the affine form generated by the conversion of the initial
interval. Then, the affine form of each internal node is computed from the affine form
of its sons by applying the corresponding operation of AF1. The root gives the affine
form for the entire expression. Lower and upper bounds are obtained by replacing the
εi variables by [−1, 1] and applying interval arithmetic.

123



A reliable affine relaxation method 253

1.5 + 0.5 1 x1

x1 x2

+

exp

−1476.52 − 2.04 1 − 16.17 2 + 1446.23 ±

x2

16 + 16 2 + 4 ±

·

4 + 2 2

1.5 + 0.5 1

sqr

1500.52 + 10.04 1 + 40.17 2 + 1430.22 ±

5.5 + 0.5 1 + 2 2

24 + 8 1 + 24 2 + 16 ±

4 + 2 2

−

Fig. 2 Visualization of AF1 by computation tree: f (x) = x1 · x22 − exp(x1 + x2) in [1, 2] × [2, 6]

Example 2 Consider the following function:

f (x) = x1 · x22 − exp(x1 + x2) in [1, 2] × [2, 6].

First, using Eq. (2), we transform the intervals [1, 2] and [2, 6] into the following affine
forms (at this stage it is equivalent to use AF1 or AF2):

x1 = [1, 2] → x̂1 = 1.5 + 0.5ε1 and x2 = [2, 6] → x̂2 = 4 + 2ε2.

Computingwith the extended operators of AF1 and of AF2, we obtain the following
affine forms:

̂fAF1(x) = −1476.521761 − 2.042768ε1 − 16.171073ε2 + 1446.222382ε±,

̂fAF2(x) = −1476.521761 − 2.042768ε1 − 16.171073ε2 + 1440.222382ε± + 6ε+ + 0ε−.

The details of the computation by AF1 are represented in Fig. 2. The variable ε1
corresponds to x1, ε2 to x2 and using AF1, ε± contains all the errors generated by non-
affine operations. Using AF2, ε± contains the errors generated by the multiplication
and the exponential, and ε+ the errors generated by the square.

To conclude, using Eq. (3), we convert these affine forms into intervals to have the
following bounds:

Using interval arithmetic directly, we obtain

∀x ∈ [1, 2] × [2, 6], f (x) ∈ [−2976.9579870417284, 51.91446307681234],
using AF1: ∀x ∈ [1, 2] × [2, 6], f (x) ∈ [−2940.9579870417297, −12.085536923186737],
using AF2: ∀x ∈ [1, 2] × [2, 6], f (x) ∈ [−2934.9579870417297, −12.085536923186737],

and the exact range with 12 digits after comma is

range( f, [1, 2] × [2, 6]) = [−2908.957987041728,−16.085536923187668].
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In this example, the enclosure computed by interval arithmetic contains 0. This
introduces an ambiguity on the sign of f over [1, 2]×[2, 6]while it is clearly negative.
This example shows why AF1 and AF2 are interesting.

An empirical comparison among interval arithmetic, AF1 and AF2 affine forms has
been done on several randomly generated polynomial functions (Messine 2002), and
the proof of the following proposition is given there.

Proposition 1 Consider a polynomial function f of x ⊂ R
n to R and fAF , fAF1 and

fAF2 the reformulations of f respectively with AF, AF1 and AF2. Then one has:

range( f, x) ⊆̂fAF2(x) ⊆̂fAF1(x) =̂fAF (x).

3 Affine reformulation technique based on affine arithmetic

Since many years, reformulation techniques have been used for global optimization
(Androulakis et al. 1995; Audet et al. 2000; Horst and Tuy 1996; Kearfott and Hongth-
ong 2005; Lebbah et al. 2005; Maranas and Floudas 1997; Perron 2004; Sherali and
Adams 1999; Tawarmalani and Sahinidis 2004). In most cases, the main idea is to
approximate a mathematical program by a linear relaxation. Thus, solving the linear
program yields bounds on this optimal value or a certificate of infeasibility of the
original problem. The originality of our approach lies in how the linear relaxation is
constructed.

In our approach, namedAffine Reformulation Technique (ARTAF), we have kept the
computation tree and relied on the extended affine arithmetics (AF1 and AF2). Indeed,
the extended affine arithmetics handle affine forms on the computation tree. But until
now, this technique has been only used to compute bounds. Now, our approach uses the
extended affine arithmetics not only as a simple way to compute bounds but also as a
way to automatically linearize every factorable function (Tawarmalani and Sahinidis
2004). This becomes possible by fixing the number of εi variables in the extended
affine arithmetics. Thus, an affine transformation T between the original set x ⊂ R

n

and ε = [−1, 1]n is introduced, see Eq. (2); notice that T is bijective. Now, we can
identify the linear part of AF1 and AF2 as a linear approximation of the original
function. Thus, this leads to the following propositions:

Proposition 2 Consider (f0, . . . , fn+1), the components of the affine form AF1 of a
function f over x.

If ∀x ∈ x, f (x) ≤ 0, then ∀y ∈ [−1, 1]n,
n

∑

i=1

fi yi ≤ fn+1 − f0.

If ∀x ∈ x, f (x) = 0, then ∀y ∈ [−1, 1]n,

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

n
∑

i=1

fi yi ≤ fn+1 − f0,

−
n

∑

i=1

fi yi ≤ fn+1 + f0.
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Proof Denote the affine form AF1 of f over x bŷf(x). Here the components fi in the
formulation depend also on x:

̂f(x) = f0 +
n

∑

i=1

fiεi + fn+1ε±,

with ∀i ∈ {0, 1, . . . , n}, fi ∈ R, fn+1 ∈ R
+,

∀i ∈ {1, 2, . . . , n}, εi ∈ εi = [−1, 1] and ε± ∈ ε± = [−1, 1].

By definition, the affine form AF1 is an inclusion function:

∀x ∈ x, f (x) ∈ f0 ⊕
n

∑

i=1

fiεi ⊕ fn+1ε±.

But ∀y ∈ ε = [−1, 1]n, ∃x ∈ x, y = T (x) where T is an affine function, then:

∀x ∈ x, f (x) ∈
(

n
∑

i=1

fiTi (xi ) ⊕ f0 ⊕ fn+1[−1, 1]
)

,

∀x ∈ x, f (x) −
n

∑

i=1

fiTi (xi ) ∈ [f0 − fn+1, f0 + fn+1],

where Ti are the components ofT .

(7)

Thus the result follows. ��
Proposition 3 Consider (f0, . . . , fn+1, fn+2, fn+3), the components of the affine form
AF2 of a function f over x. .

If ∀x ∈ x, f (x) ≤ 0 then ∀y ∈ [−1, 1]n,
n

∑

i=1

fi yi ≤ fn+1 + fn+3 − f0.

If ∀x ∈ x, f (x) = 0 then ∀y ∈ [−1, 1]n,

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

n
∑

i=1

fi yi ≤ fn+1 + fn+3 − f0,

−
n

∑

i=1

fi yi ≤ fn+1 + fn+2 + f0.

Proof If we replace AF1 with AF2 in Eq. (7), we have the following inclusion:

∀x ∈ x, f (x) −
n

∑

i=1

fiTi (xi ) ∈ [f0 − fn+1 − fn+3, f0 + fn+1 + fn+2].

��
Consider a constrained global optimization problem (8), defined below, a linear

approximation of each of the expressions for f , gi and h j is obtained using AF1 or
AF2. Each inequality constraint is relaxed by one linear inequality and each equality
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constraint by two linear inequalities. Thus, the linear program (9) is automatically
generated.

⎧

⎪

⎨

⎪

⎩

min
x∈x⊂Rn

f (x)

s.t. gk(x) ≤ 0, ∀k ∈ {1, . . . , p},
hl(x) = 0, ∀l ∈ {1, . . . , q}.

(8)

{

min
y∈[−1,1]n c

T y

s.t. Ay ≤ b.
(9)

The linear objective function c of the linear program (9) is obtained from the linear
part of the affine form of the objective function f of the original problem (8): i.e.
c = (f1, f2, . . . , fn)T . The linear constraints (Ay ≤ b) are composed using Proposi-
tion 2 or 3 over each constraints gk and hl of the original problem (8).

Remark 1 The size of the linear program (9) still remains small. The number of vari-
ables is the same as in the general problem (8) and the number of inequality constraints
cannot exceed twice its number of constraints.

Let us denote by S1 the set of feasible solutions of the initial problem (8), S2 the
set of feasible solutions of the linear program (9), T the bijective affine transfor-
mation between x and ε = [−1, 1]n , and E f the lower bound of the error of the
affine form of f . Using AF1, E f = inf(f0 ⊕ fn+1ε±) = f0 − fn+1 and using AF2,
E f = inf(f0 ⊕ fn+1ε± ⊕ fn+2ε+ ⊕ fn+3ε−) = f0 − fn+1 − fn+3.

Proposition 4 Assume that x is a feasible solution of the original problem (8), hence
y = T (x) is a feasible solution of the linear program (9) and therefore, one has
T (S1) ⊆ S2.

Proof The proposition is a simple consequence of Propositions 2 and 3. ��
Corollary 1 If the relaxed linear program (9) of a problem (8) does not have any
feasible solution then the problem (8) does not have any feasible solution.

Proof Using directly Proposition 4, S2 = ∅ implies S1 = ∅ and the result follows. ��
Proposition 5 If ysol is a solution which minimizes the linear program (9), then

∀x ∈ S1, f (x) ≥ (f1, ..., fn)T ysol + E f ,

with E f = f0 − fn+1 if AF1 has been used to generate the linear program (9), and
E f = f0 − fn+1 − fn+3 if AF2 has been used.

Proof Using Proposition 4, one has ∀x ∈ S1, y = T (x) ∈ S2. Moreover,
ysol denotes by assumption the solution which minimizes the linear program (9),
hence one obtains ∀y ∈ S2, cT y ≥ cT ysol . Using Proposition 2 and Propo-
sition 3, we have ∀x ∈ S1, ∃y ∈ [−1, 1], f (x) − cT y ≥ E f and therefore
∀x ∈ S1, f (x) ≥ cT ysol + E f .

��
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A reliable affine relaxation method 257

We remark that equality occurs when the problem (8) is linear, because, in this case,
AF1 and AF2 are just a rewriting of program (8) on [−1, 1]n , instead of x.

Proposition 6 Let us consider a polynomial program; i.e., f and all gi , h j are poly-
nomial functions. Denote a minimizer point of a relaxed linear program (9) using AF1
form by yAF1 , and another one using AF2 form by yAF2 . Moreover, using the notations
cAF1 , E fAF1 and cAF2 , E fAF2 for the reformulations of f using AF1 and AF2 forms
respectively, we have:

∀x ∈ S1, f (x) ≥ cT
AF2

yAF2 + E fAF2 ≥ cT
AF1

yAF1 + E fAF1 .

Proof By construction of the arithmetics defined in Messine (2002) (with corrections
as in Vu et al. (2009)) and mentioned in Proposition 1, if y ∈ S2, we have:

cT
AF2

y + E fAF2 ≥ cT
AF1

y + E fAF1 ,

cT
AF2

y ≥ cT
AF2

yAF2 and cT
AF1

y ≥ cT
AF1

yAF1 .

But Proposition 4 yields ∀x ∈ S1, y = T (x) ∈ S2 and then,

∀x ∈ S1, f (x) ≥ cT
AF2

yAF2 + E fAF2 ≥ cT
AF1

yAF2 + E fAF1 ≥ cT
AF1

yAF1 + E fAF1 .

��

Remark 2 Proposition 6 could be generalized to factorable functions depending on
the definition of transcendental functions in AF1 and AF2 corresponding arithmetic.
In Messine (2002), only affine operations and the multiplication between two affine
forms were taken into account.

Proposition 7 If a constraint of the problem (8) is proved to be satisfied by inter-
val analysis, then the associated linear constraint can be removed from the linear
program (9) and the solution does not change.

Proof If a constraint of the original problem (8) is satisfied on x (which is guaranteed
by interval arithmetic based computation), then the corresponding linear constraint is
always satisfied for all the values of y ∈ [−1, 1] and it is not necessary to have it
in (9). ��

Example 3 Let us consider the following problem with x = [1, 1.5] × [4.5, 5] ×
[3.5, 4] × [1, 1.5]:
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⎧

⎪

⎪

⎨

⎪

⎪

⎩

min
x∈x x3 + (x1 + x2 + x3)x1x4

s.t. x1x2x3x4 ≥ 25,
x21 + x22 + x23 + x24 = 40,
5x41 − 2x32 + 11x23 + 6ex4 ≤ 50.

We denote the first constraint by c1, the second one by c2 and the last one by c3.
First we compute an enclosure of each constraint by interval arithmetic:

c1(x) = [15.75, 45.0], c2(x) = [34.5, 45.5] and c3(x) = [−93.940309, 45.952635].

So, ∀x ∈ x, c3(x) ≤ 50. Thus we do not need to linearize the last constraint.
This example is constructed numerically by using the double precisionfloating point

representation. To simplify the notations, the floating point numbers are rounded to
rational ones with two decimals. The aim is to illustrate how the technique ART is
used. By using the affine form AF1, the linear reformulations of the above equations
provide:

x3 + (x1 + x2 + x3)x1x4 −→ 18.98 + 3.43ε1 + 0.39ε2 + 0.64ε3 + 3.04ε4 + 1.12ε±,

25 − x1x2x3x4 −→ −2.83 − 5.56ε1 − 1.46ε2 − 1.85ε3 − 5.56ε4 + 2.71ε±,

x21 + x22 + x23 + x24 − 40 −→ −0.25 + 0.62ε1 + 2.37ε2 + 1.87ε3 + 0.62ε4 + 0.25ε±.

We have now to consider the following linear program:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

min
y∈[−1,1]4

3.43y1 + 0.39y2 + 0.64y3 + 3.04y4

s.t. −5.56y1 − 1.46y2 − 1.85y3 − 5.56y4 ≤ 5.54,
0.62y1 + 2.37y2 + 1.87y3 + 0.62y4 ≤ 0.5,

−0.62y1 − 2.37y2 − 1.87y3 − 0.62y4 ≤ 0.

After having solved the linear program, we obtain the following optimal solution:

ysol = (−1,−0.24, 1,−0.26), cT ysol = −3.70, cT ysol + E f = 14.15.

Hence, using Proposition 5, we obtain a lower bound 14.15. By comparison, the
lower bound computed directlywith interval arithmetic is 12.5 and 10.34 using directly
only AF1 on the objective function, respectively. This is due to the fact that we do not
consider only the objective function to find a lower bound but we use the constraints
and the set of feasible solutions as well.

Remark 3 This section defines a methodology for constructing relaxed linear pro-
grams using different affine forms and their corresponding arithmetic evaluations.
These results could be extended to the use of other forms such as those defined in
Messine (2002) and in Messine and Touhami (2006), which are based on quadratic
formulations.

Remark 4 The expression of the linear program (9) depends on the box x. Thus, if x
changes, the linear program (9)must be generated again to have a better approximation
of the original problem (8).
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4 Reliable affine reformulation technique: r ART rAF

The methodology explained in the previous section has some interests in itself; (i)
the constraints are applied to compute a better lower bound on the objective function,
(ii) the size of the linear program is not much larger than the original and (iii) the
dependence links among the variables are exploited. But the method is not reliable in
the presence of numerical errors due to the approximations provided by using some
floating point representations and computations. In the present section, we explain
how to make our methodology completely reliable.

First, we need to use a reliable affine arithmetic. The first version of affine arith-
metic defined by Comba and Stolfi (1993), was not reliable. In Stolfi and de Figueiredo
(1997), De Figueiredo and Stolfi proposed a self-validated version for standard affine
arithmetic; i.e., all the basic operations are done three times (including the compu-
tations of the value of the scalar, the positive and the negative numerical errors).
Another possibility is to use the Reliable Affine Arithmetic such as defined byMessine
and Touhami in Messine and Touhami (2006). This affine arithmetic replaces all the
floating numbers of the affine form by an interval, see Eq. (10), where the variables in
bold indicate the interval variables.

x̂ = x0 +
n

∑

i=1

xiεi , (10)

with ∀i ∈ {0, 1, . . . , n}, xi = [xi , xi ] ∈ IR and ∀i ∈ {1, . . . , n}, εi ∈ εi = [−1, 1].
The conversions between interval arithmetic, affine arithmetic and reliable affine

arithmetic are performed as follows:

Reliable Affine Form −→ Interval

x̂ = x0 + ∑n
i=1 xiεi , −→

x = x0 ⊕
(

n
∑

i=1

(xi � [−1, 1])
)

.
(11)

Affine Form −→ Reliable Affine Form

x̂ = x0 + ∑n
i=1 xiεi , −→

∀i ∈ {1, 2, . . . , n}, xi = xi ,

x̂ = x0 +
n

∑

i=1

xiεi .

Reliable Affine Form −→ Affine Form

x̂ = x0 + ∑n
i=1 xiεi , −→

∀i ∈ {1, 2, . . . , n}, xi = mid(xi),
x̂ = x0 + ∑n

i=1 xiεi+
(∑n

i=1 max(xi � xi, xi � xi )
)

ε±.

(12)

Interval −→ Reliable Affine Form

x = [x, x], −→
x0 = mid(x)

x̂ = x0 + max(x0 � x, x � x0)εk,
where εk ∈ εk is a new variable.

In this Reliable Affine Arithmetic, all the affine operations are done as for the stan-
dard affine arithmetic but using properly rounded interval arithmetic (Moore 1966) to
ensure its reliability. InMessine and Touhami (2006), the multiplication was explicitly
given, and the same principle is used in this paper to define other nonlinear operations.

Algorithm 1 is a generalization of the min-range linearization introduced by Stolfi
and de Figueiredo (1997), for finding that linearization, which minimizes the range
of a monotonic continuous convex or concave function in reliable affine arithmetic.
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Such as in the algorithm of De Figueiredo and Stolfi, Algorithm 1 consists of finding,
in a reliable way, the three scalars α, ζ and δ, see Eq. (6) and Fig. 1.

Algorithm 1Min-range linearization of f for reliable affine form on x̂
1: Set all local variables to be interval variables (d,α, ζ and δ),
2: f := natural interval extension of f , f′ := natural interval extension of the first derivative of f ,
3: x̂ := the reliable affine form under study, x := the interval corresponding to x̂ see Eq. (11)] ,
4: ̂f (̂x) := the reliable affine form of f over x̂.

5:

⎧

⎪

⎨

⎪

⎩

If
(

f′(x) ≤ 0
)

, α := f′(x), d := [

inf(f(x) � α � x), sup(f(x) � α � x)
]

.

If f is constant, α := 0, d := x.

If
(

f′(x) ≥ 0
)

, α := f′(x), d := [

inf(f(x) � α � x), sup(f(x) � α � x)
]

.

6: ζ := mid(d),

7: δ := max
(

sup(ζ � d), sup(d � ζ )
)

,

8: ̂f (̂x) := ζ + α · x̂ + δε±.

Remark 5 The arithmetic inAlgorithm1 is a particular case of the generalized interval
arithmetic introduced byE.Hansen inHansen (1975). Hansen’s generalized arithmetic
is equivalent to an affine form with interval coefficients. The multiplication has the
same definition as in reliable affine arithmetic. However, the division is not general-
izable and the affine information is lost. Furthermore, for nonlinear functions, such
as the logarithm, exponential, and square root, nothing is defined in Hansen (1975).
In our particular case of a reliable affine arithmetic, these difficulties to compute the
division and nonlinear functions are avoided.

Indeed, using the principle of this reliable affine arithmetic, we obtain reliable
versions for the affine forms AF1 and AF2, denoted by rAF1 and rAF2. Moreover,
as in Sect. 3, we apply Proposition 2 and 3 to rAF1 and rAF2 to provide a reliable
affine reformulation for every factorable function; i.e., we obtain a linear relaxation in
which all variables are intervals. Consequently, using the reformulation methodology
described in Sect. 3 for rAF1 or rAF2, we produce automatically a reliable linear
program, i.e. all the variables of the linear program (9) are intervals, and the feasibility
of a solution x in Proposition 4 can exactly be verified.

When the reliable linear program is generated, two approaches can be used to solve
it; (i) the first one relies on the use of an interval linear solver such as LURUPA
(Jansson 2003; Keil 2006) to obtain a reliable lower bound on the objective function
or a certificate of infeasibility. Thus, these properties are extended to the general
problem (8) using Proposition 5 and Corollary 1; (ii) the second one is based on
generating a reliable linear reformulation of each function of the general problem (8).
Then, we use the conversion between rAF1/AF1 or rAF2/AF2 (see Eq. (12)) to obtain
a linear reformulation in which all variables are scalar numbers, but, in this case, all
numerical errors are taken into account as intervals, and moved to the error variables
of the affine form by the conversion. Indeed, we have a linear program which satisfies
the conditions of Proposition 4 in a reliable way. Then, we use a result from Neumaier
and Shcherbina (2004) to compute a reliable lower bound of our linear program or a
reliable certificate of infeasibility. This method applied to our case yields:
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⎧

⎪

⎨

⎪

⎩

min
λ∈R

m+,u,l∈R
n+
bT λ +

n
∑

i=1

(li + ui )

s.t. AT λ − l + u = −c.

(13)

The linear program (13) corresponds to the dual formulation of the linear pro-
gram (9). Let (λS, lS, uS) be an approximate dual solution given by a linear solver,
the bold variables indicate the interval variables and (�S,LS,US) is the extension
of (λS, lS, uS) into interval arithmetic, i.e. �S = [λS], LS = [lS] and US = [uS].
This conversion makes it possible to perform all computations using rounded interval
arithmetic. Then, we can compute the residual of the dual (13) by interval arithmetic,
such as:

r ∈ R = c ⊕ AT�S � LS ⊕ US. (14)

Hence, using the bounds calculated in Neumaier and Shcherbina (2004), we have:

∀y ∈ S2, c
T y ∈

(

RT ε � �S
T [−∞, b] ⊕ LS

T ε � US
T ε

)

, (15)

where ε = ([−1, 1], . . . , [−1, 1])T and [−∞, b] = ([−∞, b1], . . . , [−∞, bm])T .
Proposition 8 Let (λS, lS, uS) be an approximate solution which minimizes (13), the
dual of the linear program (9). Let �S = [λS], LS = [lS] and US = [uS]. Then,

∀x ∈ S1, f (x) ≥ inf
(

RT ε � �S
T [−∞, b] ⊕ LS

T ε � US
T ε ⊕ E f

)

.

Proof The result is obtained by applying Eqs. (14), (15) and Proposition 5. ��
When the bounds cannot be computed, the dual program (13) can be unbounded

or infeasible. If it is the case, the primal (9) must be infeasible or unbounded. Since
the feasible set of the primal (9) is included in the bounded set [−1, 1]n , it must be
infeasible. Indeed, to prove that the dual (13) is unbounded, we look for a feasible
solution of the constraint satisfaction problem (16) (it is a well-knownmethod directly
adapted from Neumaier and Shcherbina 2004), since such a solution provides an
unbounded direction:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

bT λ +
n

∑

i=1

(li + ui ) �= 0

AT λ − l + u = 0,
λ ∈ R

m+, u, l ∈ R
n+.

(16)

Proposition 9 Let (λc, lc, uc) be the approximate solution of the constraint satisfac-
tion problem (16). Let �c = [λc], Lc = [lc] and Uc = [uc].

If 0 /∈
(

(

AT�c � Lc ⊕ Uc
)T

ε � �c
T [−∞, b] ⊕ Lc

T ε � Uc
T ε

)

then the general

problem (8) is guaranteed to be infeasible.

Proof By applying the previous calculation with the dual residual r ∈ R = AT�c −
Lc + Uc, we obtain that:
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if 0 /∈
(

(

AT�c � Lc ⊕ Uc
)T

ε � �c
T [−∞, b] ⊕ Lc

T ε � Uc
T ε

)

, then the primal

program (9) is guaranteed to be infeasible. Thus by applying Corollary 1, Proposition 9
is proven. ��

Indeed, using Propositions 8 and 9, we have a reliable way to compute a lower
bound on the objective function and a certificate of infeasibility by taking into account
the constraints. In the next section, we will explain how to integrate this technique
into an interval branch and bound algorithm.

5 Application within an interval branch and bound algorithm

In order to prove the efficiency of the reformulation method described previously, we
apply it in an IntervalBranch andBoundAlgorithmnamed IBBA, previously developed
by two of the authors (Messine 2005; Ninin 2010). The general principle is described
in Algorithm 2. Note that there exist other algorithms based on interval arithmetic such
as for example GlobSol, developed by Kearfott (1996). The fundamental principle is
still the same, except that different acceleration techniques are used.

Algorithm 2 Interval branch and bound algorithm: IBBA
1: x := initial hypercube in which the global minimum is searched, {x ⊆ R

n}
2: f̃ := ∞, denotes the current upper bound on the global minimum value,
3: L := {(x, −∞)}, initialization of the data structure of stored elements,

{all elements in L have two components: a box z and fz , a lower bound of f (z)}
4: repeat
5: Extract from L the element which has the smallest lower bound,
6: Choose the component which has the maximal width and bisect it by the midpoint, to get z1 and z2,
7: for j := 1 to 2 do
8: Pruning of z j by a Constraint Propagation Technique, see Messine 2004,
9: if z j is not empty then
10: Compute fz j , a lower bound of f (z j ), and all the lower and upper bounds of all the constraints

over z j ,

11: if
(

f̃ − ε f max(| f̃ |, 1) ≥ fz j
)

and no constraint is unsatisfied then

12: Insert (z j , fz j ) into L,

13: f̃ := min( f̃ , f (mid(z j ))), if and only if mid(z j ) satisfies all the constraints,

14: if f̃ is modified then
15: x̃ := mid(z j ),

16: Discard from L all the pairs (z, fz) which
(

fz > f̃ − ε f max(| f̃ |, 1)
)

is checked,

17: end if
18: end if
19: end if
20: end for

21: until
(

f̃ − min
(z, fz )∈L

fz ≤ ε f max(| f̃ |, 1)
)

or (L == ∅)

In Algorithm 2, at each iteration, the domain under study is chosen and bisected
to improve the computation of bounds. In Line 11 of Algorithm 2, boxes are elim-
inated if and only if it is certified that at least one constraint cannot be satisfied by
any point in such a box, or that no point in the box can produce a solution bet-
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ter than the current best solution minus the required relative accuracy. The criterion
(

f̃ − ε f max(| f̃ |, 1) ≥ fz j
)

has the advantage of reducing both the cluster problem

(Du and Kearfott 1994; Schichl et al. 2014) and the excess processing that occurs
when an infinity of equivalent non-isolated solutions exists.

At the end of the execution,Algorithm2 is able to provide only one globalminimizer
x̃ , if a feasible solution exists.

x̃ is reliably proven to be a global minimizer with a relative guaranteed error ε f

which depends on the magnitude of f̃ . If Algorithm 2 does not provide a solution,
this proves that the problem is infeasible (case when ( f̃ == ∞) and (L == ∅)). For
more details about this kind of interval branch and bound algorithms, please refer to
(Hansen and Walster 2004, Kearfott 1996; Messine 2005; Ninin 2010, Ratschek and
Rokne 1988).

Remark 6 On a computer, each real number is represented by a flaoting point number.
This approximation introduces numerous difficulties to certify numerical solutions
provided by an algorithm. Denote the set of floating point numbers by F and the
expressions of f, gk and hl in floating point arithmetic by f F, gF

k and hF

l respectively.
Notice that in Problem (8), if we replace R by F, in many cases, there will be no
floating point number satisfying the equality constraints. That is why the constraints
must be relaxed. Hence, optimization codes have to deal with the following problem:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

min
x∈xF⊂Fn

f F(x)

s.t. gF

k (x) ≤ εg, ∀k ∈ {1, . . . , p},
hF

l (x) ∈ [−εh, εh], ∀l ∈ {1, . . . , q}.
(17)

where εg and εh are small positive floating point numbers, and the box xF is the smaller
box such that x is included in its convex hull. Thus, by considering Problem (17) over
R
n in place of Fn , we obtain a relaxation of Problem (8). Therefore, at the end of

Algorithm 2, it is proven that there is no real vector x satisfying the relaxed constraints
such that: f (x) < f̃ − ε f max(| f̃ |, 1). Hence, the returning floating point vector x̃
is certified to be a ε f −global optimum of Problem (17). Notice that Algorithm 2
could not find such a point x̃ if the set defined by the constraints is too small or does
not contain any floating point vector. Moreover, using our upper bounding technique,
we can find a solution of Problem (17) better and also different from the real one of
Problem (8). Nevertheless, notice that the solutions of Problem (17) depend directly
on εg and εh given by the user.

One of the main advantages of Algorithm 2 is its modularity. Indeed, accelera-
tion techniques can be inserted or removed from IBBA. For example at Line 8, an
interval constraint propagation technique is included to reduce the width of boxes z j ;
for more details refer to Messine (2004). Another implementation of this method is
included in the code RealPaver (Granvilliers and Benhamou 2006), the code Couenne
of the project COIN-OR (Belotti et al. 2009), the code IBEX (2014) and the code
GlobSol (Kearfott Jan 2009). This additional technique improves the speed of the
convergence of such a Branch and Bound algorithm.
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Affine reformulation techniques described in the previous sections can also be
introduced in Algorithm 2. This routine must be inserted between Lines 8 and 9.
At each iteration, as described in Section 3, for each z1 and z2, the associated linear
program (9) is automatically generated and a linear solver (such as CPLEX) is applied.
If the linear program is proved to be infeasible, the element is eliminated. Otherwise
the solution of the linear program is used to compute a lower bound of the general
problem over the boxes z1 and z2.

Algorithm 3 Affine Reformulation Technique by Affine Arithmetic: ARTAF
1: Let (z, fz) be the current element and fz a lower bound of f over z,
2: Initialize a linear program with the same number of variables as the general problem (8),
3: Generate the affine form of f using AF1 or AF2,
4: Define c the objective function of (9), E f the lower bound of the error term of the affine form of f ;

c := (f1, . . . , fn), E f := f0 − fn+1 with AF1, or resp. E f := f0 − fn+1 − fn+3 with AF2,
5: for all constraints gk or resp. hl of the general problem (8) do
6: Calculate gk (z) or resp. hl (z), (e.g., using the natural interval extension inclusion function),
7: if the constraint gk (z) or resp. hl (z) is proved to be infeasible then
8: Eliminate the element (z, fz)
9: Exit Algorithm 3
10: end if
11: if εg ∈ gk (z) or resp. hl (z) � [−εh , εh ] then
12: Generate the affine form of gk or resp. hl using AF1 or AF2,
13: Add the associated linear constraint(s) into the linear program (9), such as described in Section 3,
14: end if
15: end for
16: Solve the linear program (9) with a linear solver such as CPLEX,
17: if the linear program has a solution ysol then
18: fz := max( fz , cT ysol + E f ),
19: else if the linear program is infeasible then
20: Eliminate the element (z, fz)
21: end if

Remark 7 In order to take into account the value of the current minimum in the affine
reformulation technique, the equation f (x) ≤ f̃ is added to the constraints when
f̃ �= ∞.

Algorithm 3 describes all the steps of the affine reformulation technique ARTAF.
The purpose of this method is to accelerate the solution by reducing the number
of iterations and the computation time of Algorithm 2. At Line 11 of Algorithm 3,
Proposition 7 is used to reduce the number of constraints; this limits the size of the
linear program without losing any information. The computation performed in Line
18 provides a lower bound for the general problem over a particular box by using
Proposition 5. Corollary 1 involves the elimination part which corresponds to Line
20. If the linear solver cannot produce a solution in an imposed time or within a given
number of iterations, the bound is not modified and Algorithm 2 continues.

Remark 8 Affine arithmetic cannot be used when in an intermediate node of the com-
putation tree, the resulting interval is unbounded. For example {minx∈[−1,1] 1

x s.t.
x2 ≥ 1/4}, it is impossible to construct a linearization of the objective function with
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our method. Therefore, if the objective function corresponds to this case, the bound
is not modified and Algorithm 2 continues without using the affine reformulation
technique at the current iteration. More generally, if it is impossible to linearize a con-
straint, the method continues without including this constraint into the linear program.
Thus, the linear program is more relaxed, and the computation of the lower bound and
the elimination property are still correct.

In Sect. 4, we have explained how the affine reformulation technique can be reli-
able and rigorous. Algorithm 4 summarizes this method named r ARTrAF and adapts
Algorithm 3. We first use rAF1 or rAF2 with the conversion between rAF1/AF1 or
rAF2/AF2 to produce the linear program (9), using Eq. (12), Propositions 2 and 3.
Then, Proposition 7 is used in Line 11 of Algorithm 4 to reduce the number of con-
straints. Thus, in most cases, the number of added constraints is small, and the dual
solution is improved. Moreover, we do not need to explicitly give the primal solution,
thus we advise generating the dual (13) directly and solving it with a primal solver.
If a dual solution is found, Proposition 8 guarantees a lower bound of the objective
function, Line 20 of Algorithm 4. Otherwise, if the solver returns that the dual is
unbounded or infeasible, Proposition 9 produces a certificate of infeasibility for the
original problem (8).

In this section, we have described two new acceleration methods, which can be
added to an interval branch and bound algorithm. r ARTrAF (Algorithm 4) included
in IBBA (Algorithm 2) allows us to take rounding errors into account everywhere in
the interval branch and bound codes. In the next section, this method will be tested to
several numerical tests to prove its efficiency concerning CPU-times and the number
of iterations.

6 Numerical tests

In this section, 74 non-linear and non-convex constrained global optimization prob-
lems are considered. These test problems come from Library 1 of the COCONUT
website (Neumaier Neumaier; Neumaier et al. 2005). We take into account all the
problems with constraints, having less than 25 variables and without the cosine and
sine functions which are not yet implemented in our affine arithmetic code (Messine
2002; Ninin 2010); however square root, inverse, logarithm and exponential functions
are included, using Algorithm 1. For all 74 test problems, no symbolic reformulation
has been done. The expressions of the equations are exactly the same as those pro-
vided in the COCONUT format. No modification has been done on the expressions
of those functions and constraints, even when some of them are clearly unadapted to
the computation of bounds with interval and affine arithmetic.

The code iswritten in Fortran 90/95 and compiled using thef90ORACLEcompiler
which includes a library for interval arithmetic. In order to solve the linear program-
ming relaxation, CPLEX version 11.0 is used. All tests are performed on a Intel-Xeon
based 3 GHz computer with 2 GB of RAM and using a 64-bit Linux system (the
standard time unit (STU) is 13 seconds which corresponds to 108 evaluations of the
Shekel-5 function at the point (4, 4, 4, 4)T ). The termination condition is based on the
precision of the value of the global minimum: f̃ −min(z, fz)∈L fz ≤ ε f max(| f̃ |, 1).
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Algorithm 4 reliable Affine Reformulation Technique by reliable Affine Arithmetic:
rART rAF
1: Let (z, fz) be the current element and fz a lower bound of f (z),
2: Initialize a linear program with the same number of variables as the general problem (8),
3: Generate the reliable affine form of f using rAF1 or rAF2,
4: Using the conversion rAF1/AF1 or rAF2/AF2, generate E f and c of the linear program (9),
5: for all constraints gk or resp. hl of the general problem (8) do
6: Calculate gk (z) or resp. hl (z), (e.g, using the natural interval extension inclusion function),
7: if the constraint gk (z) or resp. hl (z) is proved to be infeasible then
8: Eliminate the element (z, fz)
9: Exit of Algorithm 4
10: end if
11: if εg ∈ gk (z) or resp. hl (z) � [−εh , εh ] then
12: Generate the affine form of gk or resp. hl using rAF1 or rAF2 forms and conversions rAF1/AF1 or

rAF2/AF2,
13: Add the associated linear constraint(s) into the linear program (9), such as described in Section 3,
14: end if
15: end for
16: Generate the dual program (13) of the corresponding linear program (9),
17: Solve the dual (13) with a primal linear solver,
18: if the dual program has a solution (λS , lS , uS) then
19: �S := [λS ], LS := [lS ] and US := [uS ],
20: fz := max

(

fz , inf
(

RT ε � �S
T [−∞, b] ⊕ LS

T ε � US
T ε ⊕ E f

))

,

21: else
22: Solve the program (16) associated with the dual (13),
23: if program (16) has a solution (λc, lc, uc) then
24: �c := [λc], Lc := [lc] and Uc := [uc],
25: if 0 /∈

(

(

AT �c � Lc ⊕ Uc

)T
ε � �c

T [−∞, b] ⊕ Lc
T ε � Uc

T ε

)

then

26: Eliminate the element (z, fz)
27: end if
28: end if
29: end if

This relative accuracy of the objective function is fixed to ε f = 10−8 for all the prob-
lems and the accuracies of the constraints are εg = 10−8 and εh = 10−8. The accuracy
to solve the linear program by CPLEX is fixed to 10−8 and we limit the number of
iterations of a run of CPLEX to 15. Furthermore, two limits are imposed: (a) on the
CPU-time which must be less than 60 minutes and (b) on the maximum number of
elements in L which must be less than two millions (corresponding approximately to
the limit of the RAM of our computer for the largest problem). When the code termi-
nates normally the values corresponding to (i) whether the problem is solved or not,
(ii) the number of iterations of the main loop of Algorithm 2, and (iii) the CPU-time
in seconds (s) or in minutes (min), are respectively given in columns ‘ok?’, ‘iter’ and
‘t’ of Tables 1, 2 and 3.

The names of the COCONUT problems are in the first column of the tables; in the
COCONUTwebsite, all problems and best known solutions are given. Columns N and
M represent the number of variables and the number of constraints for each problem.
Test problem hs071 from Library 2 of COCONUT corresponds to Example 3 when
the box is x = [1, 5]4 and the constraints are only c1 and c2.
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A reliable affine relaxation method 267

Table 1 Numerical results for reliable IBBA based methods

Name N M IBBA+CP IBBA+r ARTrAF2 IBBA+r ARTrAF2 +CP

Ok? Iter t(s) Ok? Iter t(s) Ok? Iter t(s)

hs071 4 2 T 9, 558, 537 722.34 T 1,580 2.44 T 804 1.04

ex2_1_1 5 1 T 26, 208 1.17 T 151 0.32 T 151 0.23

ex2_1_2 6 2 T 105 0.00 T 289 0.46 T 105 0.18

ex2_1_3 13 9 F 2, 004, 691 106.02 T 352 0.74 T 266 0.52

ex2_1_4 6 5 T 5, 123 0.25 T 641 0.74 T 250 0.27

ex2_1_5 10 11 T 172, 195 32.70 T 844 1.98 T 263 0.66

ex2_1_6 10 5 T 5, 109, 625 565.22 T 286 0.77 T 285 0.69

ex2_1_7 20 10 F 7, 075, 425 1,735.15 T 1,569 16.26 T 1,574 16.75

ex2_1_8 24 10 F 2, 005, 897 280.95 T 3,908 53.38 T 1,916 26.78

ex2_1_9 10 1 F 1, 999, 999 93.57 T 66,180 160.10 T 60,007 154.02

ex2_1_10 20 10 F 1, 999, 999 635.95 T 938 8.81 T 636 5.91

ex3_1_1 8 6 F 38, 000, 000 3,604.46 T 81,818 137.02 T 131,195 115.92

ex3_1_2 5 6 T 6, 571 0.44 T 144 0.36 T 111 0.19

ex3_1_3 6 6 T 4, 321 0.21 T 243 0.55 T 182 0.24

ex3_1_4 3 3 T 21, 096 1.06 T 171 0.37 T 187 0.25

ex4_1_8 2 1 T 78, 417 2.31 T 137 0.32 T 128 0.11

ex4_1_9 2 2 T 49, 678 6.38 T 171 0.19 T 157 0.17

ex5_2_2_case1 9 6 F 4, 266, 494 308.90 F 2,300,000 3,699.67 T 5,233 8.05

ex5_2_2_case2 9 6 F 7, 027, 892 529.41 F 2,200,000 3,646.14 T 9,180 14.73

ex5_2_2_case3 9 6 F 3, 671, 986 257.71 F 2,300,000 3,682.61 T 2,255 3.44

ex5_2_4 7 6 F 3, 338, 206 510.99 T 128,303 142.42 T 9,848 11.30

ex5_4_2 8 6 F 43, 800, 000 3,606.12 T 8,714 12.72 T 201,630 121.45

ex6_1_1 8 6 F 5, 270, 186 2,805.03 F 1,600,000 3,756.88 F 1,500,000 3,775.80

ex6_1_2 4 3 T 15, 429 0.83 T 1,813 2.39 T 108 0.26

ex6_1_3 12 9 F 4, 534, 626 3,233.97 F 900,000 3,704.39 F 1,000,000 3,913.87

ex6_1_4 6 4 F 2, 444, 266 204.92 T 148,480 262.65 T 1,622 2.70

ex6_2_5 9 3 F 1, 999, 999 192.80 F 800,000 3,934.43 F 800,000 4,055.02

ex6_2_6 3 1 F 2, 097, 277 124.56 F 2,100,000 3,719.93 T 922,664 1,575.43

ex6_2_7 9 3 F 1, 999, 999 229.94 F 500,000 3,973.21 F 500,000 4,036.90

ex6_2_8 3 1 F 2, 003, 020 118.81 T 634,377 1,122.06 T 265,276 457.87

ex6_2_9 4 2 F 3, 724, 203 369.78 F 1,500,000 3,700.92 T 203,775 522.57

ex6_2_10 6 3 F 1, 999, 999 241.17 F 1,300,000 3,872.20 F 1,200,000 3,775.14

ex6_2_11 3 1 F 2, 729, 823 149.66 T 214,420 346.71 T 83,487 140.51

ex6_2_12 4 2 F 2, 975, 037 202.77 T 1,096,081 2,136.20 T 58,231 112.58

ex6_2_13 6 3 F 2, 007, 671 332.47 F 1,600,000 3,605.98 F 1,500,000 3,650.76

ex6_2_14 4 2 T 8, 446, 077 988.14 T 450,059 956.88 T 95,170 207.78

ex7_2_1 7 14 F 9, 324, 644 2,512.97 T 18,037 50.64 T 8,419 24.72

ex7_2_2 6 5 F 4, 990, 110 1,031.30 T 4,312 5.64 T 531 0.87

ex7_2_3 8 6 F 41, 000, 000 3,607.35 F 2,300,000 3,684.73 F 2,200,000 3,716.02

ex7_2_5 5 6 T 6, 000 0.67 T 249 0.52 T 186 0.40

ex7_2_6 3 1 F 7, 022, 520 326.38 T 2,100 1.89 T 1,319 1.23
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Table 1 continued

Name N M IBBA+CP IBBA+r ARTrAF2 IBBA+r ARTrAF2 +CP

Ok? Iter t(s) Ok? Iter t(s) Ok? Iter t(s)

ex7_2_10 11 9 T 1, 417 0.09 T 2,605 3.96 T 1,417 2.19

ex7_3_1 4 7 T 33, 347 4.23 T 2,713 6.21 T 1,536 3.50

ex7_3_2 4 7 T 141 0.08 T 2,831 3.05 T 141 0.28

ex7_3_3 5 8 T 18, 603 2.14 T 1,104 1.74 T 373 0.66

ex7_3_4 12 17 F 3, 194, 446 467.81 F 800,000 3,756.89 F 1,000,000 3,971.41

ex7_3_5 13 15 F 3, 017, 872 513.88 F 500,000 4,291.36 F 500,000 4,259.44

ex7_3_6 17 17 T 1 0.00 T 84 5.55 T 1 0.14

ex8_1_7 5 5 F 3, 807, 889 395.30 T 6,183 12.25 T 1,432 2.64

ex8_1_8 6 5 F 4, 990, 110 1,029.01 T 4,312 5.65 T 531 0.87

ex9_2_1 10 9 T 161 0.02 F 1,800,000 3,637.95 T 64 0.26

ex9_2_2 10 11 F 5, 902, 793 314.66 F 2,000,000 3,653.05 F 4,700,000 3,602.48

ex9_2_3 16 15 T 884 0.15 F 1,500,000 3,740.15 T 156 0.50

ex9_2_4 8 7 T 77 0.00 T 4,682 7.96 T 49 0.25

ex9_2_5 8 7 T 51, 303 7.59 T 6,331 12.69 T 136 0.44

ex9_2_6 16 12 F 2, 895, 007 233.85 F 1,000,000 3,611.39 F 1,200,000 3,756.22

ex9_2_7 10 9 T 161 0.02 F 1,700,000 3,643.63 T 64 0.35

ex14_1_1 3 4 T 367 0.13 T 1,728 2.75 T 301 0.54

ex14_1_2 6 9 T 619, 905 145.68 T 59,677 206.88 T 24,166 54.58

ex14_1_3 3 4 T 94 0.00 F 8,000,000 3,629.02 T 91 0.26

ex14_1_5 6 6 T 165, 381 18.06 T 3,961 6.38 T 1,752 2.99

ex14_1_6 9 15 T 42, 139 8.88 T 6,326 26.61 T 2,531 12.45

ex14_1_7 10 17 F 9, 600, 000 3,635.90 F 600,000 4,155.17 F 1,100,000 3,703.00

ex14_1_8 3 4 T 98 0.01 T 2,011 2.30 T 77 0.25

ex14_1_9 2 2 T 1, 300 0.05 T 23,465 17.84 T 223 0.35

ex14_2_1 5 7 T 12, 017, 408 1,683.62 T 30,436 64.13 T 16,786 36.73

ex14_2_2 4 5 T 8, 853 0.67 T 2,671 3.64 T 1,009 1.39

ex14_2_3 6 9 F 13, 800, 000 3,622.13 T 70,967 252.31 T 47,673 173.28

ex14_2_4 5 7 T 1, 975, 320 455.49 T 62,245 274.42 T 30,002 127.56

ex14_2_5 4 5 T 18, 821 1.92 T 5,821 11.75 T 2,041 3.70

ex14_2_6 5 7 F 9, 543, 033 2,124.91 T 138,654 407.27 T 74,630 237.56

ex14_2_7 6 9 F 7, 678, 896 2,844.60 F 800,000 4,021.63 F 700,000 3,841.44

ex14_2_8 4 5 T 2, 085, 323 279.49 T 31,840 57.17 T 10,044 19.13

ex14_2_9 4 5 T 463, 414 70.83 T 19,474 40.44 T 6,582 14.59

Average when ‘T’ 37 1, 108, 213.51 135.16 52 64,547.85 131.89 61 37,556.70 69.3

Average when ‘T’ for all 33 1, 242, 503.03 151.54 33 22,023.73 52.23 33 5,977.39 14.98
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Table 2 Comparison with GlobSol approach Kearfott 2006 and our approach

Name N M
Globsol GlobSol IBBA+ CP our guaranteed

UB
UB of

COCONUT Algorithm+ LR + rARTrAF2
ok? t(min) ok? t(min) ok? t(min)

hs071 4 2 T 0.02 17.014017363 17.014 DONLP2
ex2 1 1 5 1 T 0.09 T 0.02 T 0 -16.999999870 -17 BARON7.2
ex2 1 2 6 2 T 0.08 T 0.06 T 0 -212.999999704 -213 MINOS
ex2 1 3 13 9 T 0.01 -14.999999864 -15 BARON7.2
ex2 1 4 6 5 T 0.16 T 0.09 T 0 -10.999999934 -11 DONLP2
ex2 1 5 10 11 T 0.01 -268.014631487 -268.0146 MINOS
ex2 1 6 10 5 T 0.01 -38.999999657 -39 BARON7.2
ex2 1 7 20 10 T 0.28 -4,150.410133579 -4,150.4101 BARON7.2
ex2 1 8 24 10 T 0.45 15,639.000022211 15,639 BARON7.2
ex2 1 9 10 1 T 2.57 -0.375 -0.3750 MINOS
ex2 1 10 20 10 T 0.1 49,318.017963635 49,318.018 MINOS
ex3 1 1 8 6 F 60.18 F 60.17 T 1.93 7,049.248020538 7,049.2083 BARON7.2
ex3 1 2 5 6 T 0 -30,665.538672616 -30,665.54 LINGO8
ex3 1 3 6 6 T 0 -309.999998195 -310 BARON7.2
ex3 1 4 3 3 T 0 T 0 T 0 -3.999999985 -4 DONLP2
ex4 1 8 2 1 T 0 T 0 T 0 -16.738893157 -16.7389 MINOS
ex4 1 9 2 2 T 0.01 T 0.01 T 0 -5.508013267 -5.508 BARON7.2
ex5 2 2 case1 9 6 T 0.13 -399.999999744 -400 DONLP2
ex5 2 2 case2 9 6 T 0.25 -599.999999816 -600 BARON7.2
ex5 2 2 case3 9 6 T 0.06 -749.999999952 -750 DONLP2
ex5 2 4 7 6 F 60.24 F 43.97 T 0.19 -449.999999882 -450 MINOS
ex5 4 2 8 6 T 1.32 T 4.94 T 2.02 7,512.230144503 7,512.2259 BARON7.2
ex6 1 1 8 6 F 100.95 T 53.39 F 62.93 +∞ -0.0202 BARON7.2
ex6 1 2 4 3 T 0.41 T 0.02 T 0 -0.032463785 -0.0325 BARON7.2
ex6 1 3 12 9 F 65.23 +∞ -0.3525 BARON7.2
ex6 1 4 6 4 T 4.49 T 0.24 T 0.05 -0.294541288 -0.2945 MINOS
ex6 2 5 9 3 F 67.58 +∞ -70.7521 MINOS
ex6 2 6 3 1 F 60.24 T 5.1 T 26.26 -0.000002603 0 DONLP2
ex6 2 7 9 3 F 67.28 +∞ -0.1608 BARON7.2
ex6 2 8 3 1 F 60.01 T 3.4 T 7.63 -0.027006349 -0.027 BARON7.2
ex6 2 9 4 2 F 60.03 T 7.72 T 8.71 -0.034066184 -0.0341 MINOS
ex6 2 10 6 3 F 60.1 F 60.09 F 62.92 -3.051949753 -3.052 BARON7.2
ex6 2 11 3 1 F 60.01 T 4.55 T 2.34 -0.000002672 0 MINOS
ex6 2 12 4 2 F 60.03 T 3.27 T 1.88 0.289194748 0.2892 BARON7.2
ex6 2 13 6 3 F 60.08 F 60.07 F 60.85 -0.216206601 -0.2162 BARON7.2
ex6 2 14 4 2 T 10.41 T 0.53 T 3.46 -0.695357929 -0.6954 MINOS
ex7 2 1 7 14 T 0.41 1,227.226078824 1,227.1896 BARON7.2
ex7 2 2 6 5 T 0.46 T 0.09 T 0.01 -0.388811439 -0.3888 DONLP2
ex7 2 3 8 6 F 61.93 7,049.277305603 7,049.2181 MINOS
ex7 2 5 5 6 T 0.27 T 0.04 T 0.01 10,122.493318794 10,122.4828 BARON7.2
ex7 2 6 3 1 T 0.01 T 0 T 0.02 -83.249728842 -83.2499 BARON7.2
ex7 2 10 11 9 T 0.04 0.100000006 0.1 MINOS
ex7 3 1 4 7 T 0.2 T 0.04 T 0.06 0.341739562 0.3417 BARON7.2
ex7 3 2 4 7 T 0 T 0.01 T 0 1.089863971 1.0899 DONLP2
ex7 3 3 5 8 T 0.19 T 0.06 T 0.01 0.817529051 0.8175 BARON7.2
ex7 3 4 12 17 F 66.19 +∞ 6.2746 BARON7.2
ex7 3 5 13 15 F 70.99 +∞ 1.2036 BARON7.2
ex7 3 6 17 17 T 0 no solution no solution MINOS
ex8 1 7 5 5 F 60.01 F 60.01 T 0.04 0.029310832 0.0293 MINOS
ex8 1 8 6 5 T 0.46 T 0.09 T 0.01 -0.388811439 -0.3888 DONLP2
ex9 2 1 10 9 T 0 17 17 DONLP2
ex9 2 2 10 11 F 60.04 +∞ 99.9995 DONLP2
ex9 2 3 16 15 T 0.01 0 0 MINOS
ex9 2 4 8 7 F 62.8 F 64.04 T 0 0.5 0.5 DONLP2
ex9 2 5 8 7 F 61.2 F 39.02 T 0.01 5.000000026 5 MINOS
ex9 2 6 16 12 F 62.6 56.3203125 -1 DONLP2
ex9 2 7 10 9 T 0.01 17 17 DONLP2
ex14 1 1 3 4 T 0.19 T 0.2 T 0.01 -0.000000009 0 MINOS
ex14 1 2 6 9 T 0.21 T 0.08 T 0.91 0.000000002 0 MINOS
ex14 1 3 3 4 T 0.13 T 1.79 T 0 0.000000008 0 BARON7.2
ex14 1 5 6 6 T 0.19 T 0.05 T 0.05 0.000000007 0 DONLP2
ex14 1 6 9 15 T 0.21 0.000000008 0 DONLP2
ex14 1 7 10 17 F 61.72 3,234.994301063 0 BARON7.2
ex14 1 8 3 4 T 0 0.000000009 0 BARON7.2
ex14 1 9 2 2 T 0.01 T 0.01 T 0.01 -0.000000004 0 MINOS
ex14 2 1 5 7 T 0.55 T 0.06 T 0.61 0.000000009 0 MINOS
ex14 2 2 4 5 T 0.01 T 0.01 T 0.02 0.000000009 0 MINOS
ex14 2 3 6 9 T 1.34 T 0.17 T 2.89 0.000000004 0 MINOS
ex14 2 4 5 7 T 2.13 0.000000009 0 MINOS
ex14 2 5 4 5 T 0.32 T 0.07 T 0.06 0.000000009 0 MINOS
ex14 2 6 5 7 T 3.96 0.000000004 0 MINOS
ex14 2 7 6 9 F 64.02 0.218278728 0 MINOS
ex14 2 8 4 5 T 0.32 0.000000009 0 MINOS
ex14 2 9 4 5 T 0.24 0.000000009 0 MINOS
Average when ’T’ for 26 0.83 32 2.69 36 1.65
the sample of 39 problems
Average when ’T’ for all 26 0.83 26 0.33 26 0.39
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Table 3 Numerical results for non reliable but exact global optimization methods

Name N M IBBA+ARTAF2_primal +CP IBBA+ ARTAF2_dual +CP IBBA+r ARTAF2 +CP

Ok? Iter t(s) Ok? iter t(s) Ok? Iter t(s)

hs071 4 2 T 1,182 1.28 T 1,146 1.28 T 809 0.94

ex2_1_1 5 1 T 151 0.10 T 151 0.33 T 151 0.30

ex2_1_2 6 2 T 105 0.07 T 105 0.30 T 105 0.29

ex2_1_3 13 9 T 266 0.19 T 266 0.58 T 266 0.39

ex2_1_4 6 5 T 234 0.20 T 236 0.38 T 245 0.37

ex2_1_5 10 11 T 220 0.28 T 220 0.50 T 268 0.52

ex2_1_6 10 5 T 285 0.22 T 285 0.40 T 285 0.42

ex2_1_7 20 10 T 1,209 2.81 T 1,207 2.59 T 1,574 3.82

ex2_1_8 24 10 T 3,359 8.28 T 3,359 6.10 T 3,359 7.12

ex2_1_9 10 1 T 3,061,982 1,968.72 T 50,557 45.76 T 60,007 53.56

ex2_1_10 20 10 T 640 0.93 T 668 1.07 T 640 1.17

ex3_1_1 8 6 T 93,509 68.60 T 95,277 63.97 T 55,492 53.88

ex3_1_2 5 6 T 111 0.11 T 183 0.32 T 111 0.33

ex3_1_3 6 6 T 620 0.40 T 620 0.59 T 182 0.33

ex3_1_4 3 3 T 169 0.15 T 169 0.33 T 183 0.37

ex4_1_8 2 1 T 121 0.07 T 121 0.21 T 127 0.27

ex4_1_9 2 2 T 159 0.13 T 159 0.30 T 157 0.33

ex5_2_2_case1 9 6 T 5,217 6.52 T 5,228 5.87 T 5,353 6.48

ex5_2_2_case2 9 6 T 9,251 11.87 T 9,243 10.71 T 9,307 11.77

ex5_2_2_case3 9 6 T 2,034 2.43 T 2,031 2.32 T 2,211 2.72

ex5_2_4 7 6 T 9,742 8.13 T 9,684 8.07 T 9,914 8.55

ex5_4_2 8 6 T 24,596 12.27 T 109,474 46.20 T 137,661 59.82

ex6_1_1 8 6 T 1,784,279 3,341.29 T 1,742,095 2,888.04 T 1,724,012 3,098.62

ex6_1_2 4 3 T 108 0.10 T 108 0.33 T 108 3.36

ex6_1_3 12 9 F 1,400,000 3,714.25 F 1,600,000 3,644.57 F 1,500,000 3,612.44

ex6_1_4 6 4 T 1,605 6.92 T 1,606 1.87 T 1,622 2.08

ex6_2_5 9 3 F 1,999,999 1,463.63 F 1,999,999 1,440.09 F 1,999,999 1,469.85

ex6_2_6 3 1 T 925,230 771.71 T 925,180 767.14 T 923,064 842.48

ex6_2_7 9 3 F 1,900,000 3,784.13 F 1,999,999 3,723.61 F 1,900,000 3,737.05

ex6_2_8 3 1 T 263,014 246.99 T 262,902 226.24 T 265,337 247.04

ex6_2_9 4 2 T 202,409 204.80 T 202,436 212.71 T 203,764 223.66

ex6_2_10 6 3 F 4,630,829 3,265.45 F 4,630,829 3,262.37 F 4,630,829 3,294.58

ex6_2_11 3 1 T 83,306 77.69 T 83,318 70.49 T 83,483 74.96

ex6_2_12 4 2 T 57,667 48.77 T 57,692 50.29 T 58,232 53.54

ex6_2_13 6 3 F 4,287,127 2,594.17 F 4,287,127 2,510.00 F 4,287,127 2,557.77

ex6_2_14 4 2 T 80,960 77.74 T 81,813 79.54 T 95,156 103.80

ex7_2_1 7 14 T 7,365 12.74 T 7,521 11.74 T 8,653 14.58

ex7_2_2 6 5 T 554 0.81 T 554 0.81 T 531 0.76

ex7_2_3 8 6 T 2,211,218 2,322.57 T 2,377,846 2,398.99 T 2,387,169 2,579.08

ex7_2_5 5 6 T 198 0.42 T 201 0.40 T 176 1.36
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Table 3 continued

Name N M IBBA+ARTAF2_primal +CP IBBA+ ARTAF2_dual +CP IBBA+r ARTAF2 +CP

Ok? Iter t(s) Ok? Iter t(s) Ok? Iter t(s)

ex7_2_6 3 1 T 1,301 1.21 T 1,301 1.15 T 1,319 1.11

ex7_2_10 11 9 T 1,417 1.30 T 1,417 1.28 T 1,417 1.31

ex7_3_1 4 7 T 133,163 85.37 T 1,656 1.80 T 1,536 1.93

ex7_3_2 4 7 T 130 0.33 T 130 0.27 T 141 0.29

ex7_3_3 5 8 T 309 0.62 T 280 0.48 T 373 0.57

ex7_3_4 12 17 F 3,414,184 3,413.47 F 3,600,000 3,608.75 F 3,200,000 3,619.05

ex7_3_5 13 15 F 3,439,246 3,402.08 F 3,072,081 3,272.27 F 2,228,770 3,398.21

ex7_3_6 17 17 T 1 0.15 T 1 0.13 T 1 0.18

ex8_1_7 5 5 T 1,273 1.61 T 1,343 1.51 T 1,439 1.55

ex8_1_8 6 5 T 554 0.82 T 554 0.76 T 531 0.76

ex9_2_1 10 9 T 64 0.31 T 64 0.22 T 64 0.24

ex9_2_2 10 11 F 5,902,793 3,065.19 F 5,902,793 3,079.29 F 5,902,793 3,417.14

ex9_2_3 16 15 T 147 0.51 T 154 0.49 T 156 0.41

ex9_2_4 8 7 T 49 0.29 T 49 0.20 T 49 0.24

ex9_2_5 8 7 T 133 0.41 T 133 0.35 T 136 0.40

ex9_2_6 16 12 F 2,476,815 2,960.31 F 2,476,815 2,773.41 F 2,476,882 3,409.49

ex9_2_7 10 9 T 64 0.83 T 64 0.31 T 64 0.30

ex14_1_1 3 4 T 2 0.23 T 247 0.44 T 300 0.41

ex14_1_2 6 9 T 23,965 20.39 T 48,087 38.85 T 23,976 20.67

ex14_1_3 3 4 T 2 0.24 T 91 0.30 T 91 0.30

ex14_1_5 6 6 T 5,610 3.42 T 4,836 2.97 T 2,996 3.60

ex14_1_6 9 15 T 2 0.27 T 2,379 4.61 T 2,266 5.32

ex14_1_7 10 17 F 3,900,000 3,700.27 F 3,900,000 3,617.51 F 3,800,000 3,702.24

ex14_1_8 3 4 T 72 0.41 T 74 0.25 T 77 0.29

ex14_1_9 2 2 T 235 0.42 T 235 0.33 T 225 0.32

ex14_2_1 5 7 T 406,852 306.00 T 262,394 198.59 T 16,813 20.75

ex14_2_2 4 5 T 1,950 1.68 T 1,169 1.14 T 1,010 1.02

ex14_2_3 6 9 T 47,495 80.99 T 47,250 75.38 T 48,505 80.69

ex14_2_4 5 7 T 235,435 223.18 T 128,507 126.53 T 29,793 40.65

ex14_2_5 4 5 T 2,257 2.12 T 2,868 2.55 T 2,057 1.99

ex14_2_6 5 7 T 73,827 118.14 T 73,520 106.65 T 74,630 110.38

ex14_2_7 6 9 F 1,800,000 3,727.71 F 1,800,000 3,668.57 F 1,800,000 3,720.75

ex14_2_8 4 5 T 10,327 10.92 T 10,117 10.75 T 10,066 11.01

ex14_2_9 4 5 T 30,200 26.47 T 6,764 7.92 T 6,581 7.78

Average when ‘T’ 63 155,712.87 160.24 63 105,227.7 118.94 63 99,465.49 123.39

Avg when ‘T’ for 3rd Alg. Tab. 1 61 95,318.26 72.64 61 41,137.77 36.16 61 35,330.25 34.36
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For all tables and performance profiles, IBBA+CP indicates results obtained with
Algorithm 2 (IBBA) and the constraint propagation technique (CP) described in Mes-
sine (2004). I BBA + r ARTrAF2 represents results obtained with Algorithm 2 and
the reliable affine reformulation technique based on the rAF2 affine form (Algo-
rithm 4) and the corresponding affine arithmetic (Messine 2002;Ninin 2010; Mes-
sine and Touhami 2006). I BBA + r ARTrAF2 +CP represents results obtained with
Algorithm 2 and both acceleration techniques.GlobSol+LR andGlobSol represent the
results extracted fromKearfott (2006) and obtained using (or not) the linear relaxation
based on RLT (Kearfott and Hongthong 2005).

The performance profiles, defined by Dolan and Moré (2002), are visual tools to
benchmark algorithms. Thus, Tables 1, 2 and 3 are summarized in Fig. 3 accordingly.
The percentage of solved problems is represented as a function of the performance
ratio; the latter depending itself on theCPU-time.Moreprecisely, for each test problem,
one compares the ratio of the CPU-time of each algorithm to the minimum of those
CPU-times. Then the performance profiles, i.e. the cumulative distribution functions
for the ratio, are computed.

Remark 9 Algorithm 2 was also tested alone. The results are not in Table 1 because
Algorithm 2 does not work efficiently without one of the two acceleration techniques.
In this case, only 24 of the 74 test problems were solved.

6.1 Validation of the reliable approach

In Table 1, a comparison is made among the basic algorithm IBBA with constraint
propagation CP, with the new relaxation technique rART and with both. It appears
that:

– IBBA+CP solved 37 test problems, I BBA + r ARTrAF2 52 test problems and
I BBA + r ARTrAF2 +CP 61 test problems.

– The solved cases are not the same using the two distinct techniques (CP or
r ARTrAF2). Generally, IBBA+CP finished when the limit on the number of ele-
ments in the list is reached (corresponding to the limitation of the RAM). In
contrast, the I BBA + r ARTrAF2 code stopped when the limit on the CPU-time
was reached.

– All problems solved with one of the acceleration techniques are solved also when
both are combined. Moreover, this is achieved in a moderate computing time of
about 1 min 9 s on average.

– Considering only the 33 cases solved by all three methods (in the tables), in the
line ‘Average when T for all’ of Table 1, we obtain that average computing time of
IBBA+CP is three times the one of I BBA+ r ARTrAF2, but is divided by a factor
of about 10 when those two techniques are combined. Considering the number of
iterations, the gain of I BBA+ r ARTrAF2 +CP is a factor of about 200 compared
to IBBA+CP, and about 3.5 compared to I BBA + r ARTrAF2.

The performance profiles of Fig. 3 confirm that I BBA+r ARTrAF2 +CP is themost
efficient and effective of the three first studied algorithms. Considering the curve of
the algorithms I BBA+ r ARTrAF2 and IBBA+CP shows that IBBA+CP is in general
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Fig. 3 Performance profile comparing the results of various versions of algorithms

faster than the other but I BBA + r ARTrAF2 solves more problems, which implies a
crossing of the two curves.

By observing how the acceleration techniques work on a box, the reformulation
r ARTrAF2 is more precise when the box under study is small. This technique is slow
at the beginning and becomes very efficient after a while. In contrast, CP enhances
the convergence when the box is large, but since it considers the constraints one by
one, this technique is less useful at the end. That is why the combination of CP and
r ARTrAF2 is so efficient: CP reduces quickly the size of boxes and then r ARTrAF2
considerably improves the lower bound on each box and eliminates boxes which do
not contain the global minimum.

In Table 2, column ‘our guaranteed UB’ corresponds to the upper bound found by
our algorithm and column ‘UB of COCONUT’ corresponds to the upper bound listed
in Neumaier and found by the algorithm of the column ‘Algorithm’. We remark that
all our bounds are close to those of COCONUT. These small differences appear to be
due to the accuracy guaranteed on the constraint satisfactions.

6.2 Comparison with GlobSol

Kearfott and Hongthong (2005) have developed another technique based on the same
principle such as Reformulation Linearization Technique (RLT), by replacing each
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nonlinear term by linear overestimators and underestimators. This technique was well-
known and already embedded without interval and affine arithmetics in the software
packageBARON(Tawarmalani andSahinidis 2004).Another paper byKearfott (2006)
studies its integration into an interval branch and bound algorithm named GlobSol. In
Kearfott (2006), the termination criteria of the branch and bound code are not exactly
the same forGlobSol and I BBA+r ARTrAF2+CP. The stopping criterion ofGlobSol
ensures enclosures of all exactly optimizing points. This difference leads to favor IBBA.
Thus, this empirical comparison betweenGlobSol and I BBA+r ARTrAF2+CP should
be considered as a first approximation. Moreover, (i) the CPU-times in Table 2 depend
on the performances of the two different computers (Kearfott used GlobSol with the
Compaq Visual Fortran version 6.6, on a Dell Inspiron 8200 notebook with a mobile
Pentium 4 processor running at 1.60 GHz), (ii) the version ofGlobSol used in Kearfott
(2006) is not the last one, and (iii) it is the first version of I BBA + r ARTrAF2+CP
which does not include classical accelerating techniques as the use of a local solver to
improve the upper bounds. However, this does not modify our conclusions. It appears
that:

– GlobSol+LR solves 26 among the subset of 39 test problems attempted, GlobSol
without LR solves 32 of them, and I BBA + r ARTrAF2+CP solves 36.

– Kearfott limited his algorithm to problems with 10 variables at most. Indeed prob-
lems solved by GlobSol without LR have at most 8 variables and 9 constraints.
Problems solved by I BBA + r ARTrAF2+CP have at most 24 variables and 17
constraints.

– GlobSol without LR solved 1 problem in 53 minutes that I BBA+ r ARTrAF2 +CP
does not solve in 60minutes (ex6_1_1). I BBA+r ARTrAF2+CP solved 5 problems
that GlobSol without LR does not solve and 10 that GlobSol+LR does not solve.

Turning now to the performance profile of Fig. 3, we observe that: (i) the linear
relaxation of Kearfott and Hongthong slows down their algorithm on this set of test
problems; (ii) the performance of I BBA+r ARTrAF2+CP dominates those ofGlobSol
with and without LR, it still remains true if we multiply the computation time by 2 to
overestimate the difference between the computers.

6.3 Comparison with the non-reliable methods

In Table 3, results for non-rigorous global optimization algorithms are presented to
evaluate the cost of the reliability in our algorithm combining CP and ARTAF2 tech-
niques. Thus, we test for all three cases an IBBA algorithm associated with the CP
and ARTAF2 techniques (Algorithm 3) when the affine arithmetic corresponding to the
affine form AF2 is not strictly reliable (the rounding errors are not taken into account).
In the first and second main data column, Algorithm 3 is used and the associated linear
programs for computing bounds are solved by using the primal formulation of pro-
gram (9) for the column I BBA+ ARTAF2_primal +CP and the dual formulation for the
column I BBA + ARTAF2_dual +CP. In the third columns I BBA + r ARTAF2 +CP,
we use Algorithm 4 but the linear program is generated directly with AF2 instead of
rAF2, thus the linear program is not completely reliable. It appears that:
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– Comparing to the reliable code I BBA + r ARTrAF2 +CP, two new test problems,
ex6_1_1 and ex7_2_3 of COCONUT, are now solved by all the three non-reliable
algorithms, see Table 3. However, this is only due to the stopping criterion on the
CPU-time which is fixed to one hour.

– Analyzing the performance profiles on Fig. 3, the primal formulation seems to be
more efficient. Indeed up to a ratio of about 2, we note that the largest part of the
tests aremost rapidly solved by the version using the primal formulation for solving
the linear programs I BBA + ARTAF2_primal +CP. Nevertheless, we also note that
some cases are more difficult to solve using the primal formulation (see ex2_1_9
and ex7_3_1 of Table 3) than using the dual formulation. This provides the worst
CPU-time average for I BBA+ ARTAF2_primal +CP even if it is generally the most
efficient (see Fig. 3). In fact, it appears that I BBA + ARTAF2_primal +CP spends
more time to reach the fixed precision of 10−8 than the dual versions; solutions
with an accuracy of about 10−6 are rapidly obtained with the primal version, but
sometimes, this code spends a huge part of the time to improve the precision until
10−8 is reached (as for example ex2_1_9 in Table 3).

– The increasing CPU-time to obtain reliable computations is about a factor of 2, see
last line of Tables 3 and 1 where the averages are done for the 61 cases which the
reliable code find the global solution in less than one hour. Indeed, the CPU-time
average for the reliable method is 69.3 seconds for the 61 results solved in Table 1,
compared to about 35 seconds obtained by the two non-reliable dual versions of the
code. Similar results are obtained concerning the number of iterations of reliable
and non-reliable dual versions of the code which confirms that each iteration of the
reliable method is about 2 times more consuming compared to the corresponding
non-reliable one.

– All methods presented in Table 3 are efficient: the algorithms are not exactly reli-
able, but no numerical error results in a wrong optimal solution.

7 Conclusion

In this paper, we present a new reliable affine reformulation technique based on affine
forms and their associated arithmetics. These methods construct a linear relaxation of
continuous constrained optimization problems in an automatic way. In this study, we
integrate these new reliable affine relaxation techniques into our own interval branch
and bound algorithm for computing lower bounds and for eliminating boxes which
do not contain the global minimizer point. The efficiency of this technique has been
validated on 74 problems from the COCONUT database. The main advantage of this
method is that the number of variables in the linear programs generated is the same as
in the original optimization problem. Indeed, the linear programs require short times
to be solved. Moreover, when the width of the boxes under study becomes small, the
errors generated by the relaxation are reduced and the computed bounds are more
precise.

Furthermore, inserting this new affine relaxation technique with constraint propa-
gation into an interval branch and bound algorithm results in a relatively simple and
efficient algorithm.
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