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Abstract This paper deals with stability analysis in multi-objective combinator-
ial optimization problems. The stability radius of an efficient solution is defined as
the maximal adjustment of the problem parameters such that this solution remains
efficient. An algorithm based on inverse optimization is proposed to compute it. The
adjustment is limited to the coefficients of the objective functions and measured by
the Chebyshev norm. This approach is applied to randomly generated instances of
the bi-objective knapsack problem and computational results are reported. Several
illustrative examples are analyzed.
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380 J. Roland et al.

1 Introduction

Multi-objective optimization consists in finding solutions that simultaneously “maxi-
mize” several objective functions over a set of feasible solutions. Since there is gener-
ally no ideal feasible solution that is simultaneously optimal for all objective functions,
the resolution of such a problem usually leads to finding the so-called efficient solu-
tions. An efficient solution is characterized by the fact that it is not possible to find
another solution that leads to an improvement of the outcomes of all objective func-
tions, without a degradation of the outcome of at least one objective function (see
Steuer 1986; Ehrgott 2005).

Modeling a multi-objective optimization problem requires to fix the values of the
parameters in order to define the objective functions and the feasible set. Those values
rely on some hypothesis as well as on the accuracy of the evaluations. These sources
of uncertainty must be taken into account, because a small perturbation on the model
can transform an efficient solution into a non-efficient one. This reflects an instability
of the model. A way of assessing such an instability is to compute a stability radius for
each efficient solution. This stability radius is defined as the maximal variation of the
problem parameters that allows the solution to remain an efficient one (see Emelichev
et al. 2004; Emelichev and Kuzmin 2006; Emelichev and Podkopaev 2010).

The purpose of this paper is to study the calculation of the stability radius in the
context of multi-objective combinatorial optimization. In single-objective combinator-
ial optimization, the stability radius can be computed in polynomial time if the problem
is polynomially solvable (Chakravartia and Wagelmansb 1998). However, to the best of
our knowledge, no algorithm can compute the stability radius for multi-objective com-
binatorial problems except by explicit enumeration (Emelichev and Podkopaev 2010).
Theoretical results are available for measuring the stability radius, but the proposed
formula requires the complete enumeration of subsets of the feasible set (Emelichev
et al. 2004; Emelichev and Kuzmin 2006; Emelichev and Podkopaev 2010).

The calculation of the stability radius is closely related to inverse multi-objective
optimization (Roland et al. 2011). It is defined as the minimal adjustment of the prob-
lem parameters inducing a change (addition or removal of solutions) in the efficient
set. Indeed, it is easy to see that the stability radius of an efficient solution can be
obtained through the minimal adjustment of the parameters, in such a way that a given
solution becomes non-efficient. However, this precise question has not been covered
yet in inverse multi-objective optimization, and it constitutes the purpose of the paper.

This paper deals with a particular class of multi-objective combinatorial problems,
where each objective function is a maximum sum and the coefficients are restricted
to natural numbers. In a first attempt to solve the associated inverse problem, only the
objective functions coefficients are subject to an adjustment, which is measured by the
Chebyshev distance. Some theoretical results on the nature of the optimal solutions are
provided, and an algorithm is proposed. This algorithm performs a particular search
on the set of profit matrices (objective functions coefficients) in order to find the
minimal adjustment, which transforms a given efficient solution into a non-efficient
one. To achieve this purpose, the algorithm makes use of a linear integer program
in order to test the efficiency of the feasible solution for a given profit matrix. This
algorithm has been implemented and computational experiments were performed on
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On the calculation of stability radius 381

randomly generated instances of the bi-objective knapsack problem. Finally, several
illustrative examples are analyzed in order to have a better understanding of the stability
radius.

This paper is organized as follows. In Sect. 2, concepts, definitions, and notation are
introduced. In Sect. 3, the inverse problem is defined, theoretical results are provided,
and an algorithm is proposed. The design of the experiments and computational results
are presented in Sect. 4. Several illustrative examples are analyzed in Sect. 5. We
conclude with remarks and directions for future research.

2 Concepts, definitions, and notation

Multi-objective optimization consists of maximizing “simultaneously” several objec-
tive functions over a set of feasible solutions. The feasible set is denoted by X ⊆ R

n .
The outcome of each feasible solution x ∈ X is denoted by a vector F(x) =
( f 1(x), f 2(x), . . . , f i (x), . . . , f q(x)) composed by the outcomes of q objective
functions f i : X → R, with i ∈ I = {1, 2, . . . , q}.

A particular class of Multi-Objective Combinatorial Optimization problems
(MOCO) is considered. Each instance is defined by a pair (X, C) where X ⊆ {x : x ∈
{0, 1}n} is the feasible set and C ∈ N

q×n is the so-called profit matrix (composed of
non-negative integers). Each objective function f i : X → N, with i ∈ I , is defined
by a row of the profit matrix with f i (x) = ∑

j∈J Ci j x j , where J = {1, 2, . . . , n}.
Let x, y ∈ R

n be two vectors. The following notation will be used hereafter: x > y
iff ∀ j ∈ J : x j > y j ; x � y iff ∀ j ∈ J : x j � y j ; x �= y iff ∃ j ∈ J : x j �= y j ; x ≥ y
iff x � y and x �= y. The binary relations �,≤, and < are defined in a similar way.

In multi-objective optimization, two spaces should be distinguished. The decision
space, i.e. the space in which the feasible solutions are defined, and the objective space,
i.e. the space in which the outcome vectors are defined. The image of the feasible set
in the objective space is denoted by Y = {y ∈ R

q : y = Cx, x ∈ X}.
An outcome vector y∗ ∈ Y is said to be ideal if and only if, for all y ∈ Y, y∗ � y.

An ideal outcome vector does not always exist and there is not a unique total order
on R

q , as soon as q � 2. Consequently, it is widely accepted to build the dominance
relation on the set Y of the outcome vectors. Let y, y′ ∈ Y denote two outcome vectors
such that y �= y′. If y ≥ y′, then y dominates y′. Dominance is a binary relation that is
irreflexive, asymmetric, and transitive. This relation induces a partition of Y into two
subsets: the set of dominated outcome vectors and the set of non-dominated outcome
vectors. The set of non-dominated outcomes corresponding to an instance (X, C) is
denoted by N D(X, C). Similarly, in the decision space the concepts of efficient and
non-efficient solutions can be defined. A solution x∗ ∈ X is efficient if and only if there
is no x ∈ X such that F(x) ≥ F(x∗). The set of efficient solutions corresponding to
an instance (X, C) is denoted by E(X, C).

Let us consider the L∞ distance (Chebyshev distance) between two matrices C
and D, i.e. ||C − D||∞ = maxi∈I, j∈J |Ci j − Di j |. The set of all matrices D with
distance ε ∈ N from C is defined by Γ (ε) = {D ∈ N

q×n : ||C − D||∞ = ε}.
The stability radius of an efficient solution x ∈ E(X, C) is the optimal solution of
max{ε ∈ N : ∀D ∈ Γ (ε), x ∈ E(X, D)}.
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382 J. Roland et al.

3 Theoretical developments

The stability radius of an efficient solution can be computed by solving a particular
inverse multi-objective optimization problem. The considered inverse problem con-
sists of finding a minimal adjustment of the profit matrix such that a given efficient
solution becomes non-efficient. This question is formalized as follows. Let (X, C)

denote an instance of a MOCO and x0 ∈ X an efficient solution. The L∞ inverse
efficiency multi-objective combinatorial optimization problem (IEMOCO-∞) can be
stated as follows:

min ||C − D||∞
subject to: x0 /∈ E(X, D)

D ∈ N
q×n .

(IEMOCO-∞)

It is easy to understand that the optimal solution value of IEMOCO-∞ is equal to
the stability radius increased by one unit. This problem is not feasible whenever every
solution x ∈ X\{x0} is a subset of x0, i.e. when there does not exists a j ∈ J such
that x j = 1 and x0

j = 0. This situation occurs in the following instance:

max f 1(x) = 5x1 + 5x2

max f 2(x) = 5x1 + 5x2

subject to:x1 + x2 � 2 (1)

x1, x2 ∈ {0, 1},

where {v1, v2, v3, v4} = {(1, 1); (1, 0); (0, 1); (0, 0)} is the feasible set and {v1} is
the efficient set. The feasible solutions v2, v3 and v4 are subsets of v1, which implies
that for all profit matrices D ∈ N

q×n : Dv1 � Dv2, Dv1 � Dv3, Dv1 � Dv4.
Let us analyze the nature of some optimal solutions of IEMOCO-∞. Based on a

partition of J defined by J 0 = { j ∈ J : x0
j = 0} and J 1 = { j ∈ J : x0

j = 1}, the
first theorem establishes that an optimal solution D∗ of IEMOCO-∞ can be built by
decreasing, or keeping equal, Ci j , for all j ∈ J 1 and by increasing, or keeping equal,
Ci j , for all j ∈ J 0, for all i ∈ I .

Theorem 1 For every feasible instance of IEMOCO-∞ with profit matrix C, there
exists an optimal solution D∗ ∈ N

q×n of IEMOCO-∞ such that ∀ j ∈ J 1 : D∗
i j � Ci j

and ∀ j ∈ J 0 : D∗
i j � Ci j , with i ∈ I .

Proof Let D ∈ N
q×n denote any optimal solution of IEMOCO-∞. Define the follow-

ing sets for all i ∈ I : J 0<
i = { j ∈ J 0 : Di j < Ci j }, J 1>

i = { j ∈ J 1 : Di j > Ci j }.
By definition of D, there is a feasible solution x ∈ X with Dx ≥ Dx0. Consider a
matrix D∗ ∈ N

q×n defined as follows, for all i ∈ I, j ∈ J :

D∗
i j :=

{
Ci j , if j ∈ {J 1>

i ∪ J 0<
i }

Di j , otherwise.
(2)
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Let us show that if Dx ≥ Dx0, then D∗x ≥ D∗x0. This is equivalent to show that the
following condition holds: if D(x − x0) ≥ 0, then D∗(x − x0) ≥ 0. The profit matrix
D∗ is introduced into the first inequality as follows, (D+D∗−D∗)(x−x0) ≥ 0, which
leads to write: D∗(x − x0) ≥ (D∗ − D)(x − x0). From Eq. 2 and the definition of J 1,
one may deduce that, for all j ∈ J 1, (x −x0) j � 0 and (D∗

i j − Di j ) � 0. Similarly, for

all j ∈ J 0, (x −x0) j � 0 and (D∗
i j − Di j ) � 0. Therefore, (D∗ − D)(x −x0) � 0 and

consequently D∗(x −x0) ≥ 0. This implies that D∗ is a feasible solution of IEMOCO-
∞ and therefore an optimal one, because the inequality ||D∗ − C ||∞ � ||D − C ||∞
is directly deduced from Eq. 2. ��

Based on the same principle of increasing and decreasing some specific parts of the
profit matrices, let us define a particular operator � between pairs of matrices with
respect to x0.

Definition 1 (D � E) Let D and E be two matrices of size q × n. For all i ∈ I and
j ∈ J,

(D � E)i j :=
{

max{0, Di j − Ei j }, if j ∈ J 1,

Di j + Ei j , otherwise.

This particular operation is crucial, because when it is applied on a feasible solu-
tion of IEMOCO-∞, the resulting solution is also feasible. This is established in the
following theorem.

Theorem 2 For all E ∈ N
q×n, if D is a feasible solution of IEMOCO-∞, then D � E

is also feasible.

Proof Let us show that if Dx ≥ Dx0, then (D � E)x ≥ (D � E)x0. Similarly to
the proof of Theorem 1, it is equivalent to show that the following condition holds: if
D(x − x0) ≥ 0, then (D � E)(x − x0) ≥ 0. Consequently, one can write: (D � E)

(x − x0) ≥ [(D � E) − D](x − x0) ≥ 0.
From Definition 1, one may deduce that, for all j ∈ J 1, (x − x0) j � 0 and

[(D � E)− D] � 0. Similarly, for all j ∈ J 0, (x − x0) j � 0 and [(D � E)− D] � 0.
Therefore, [(D � E)− D](x − x0) � 0 and consequently (D � E)(x − x0) ≥ 0. This
implies the proof of this theorem. ��

Let us define a matrix Dk ∈ N
q×n of distance at most k from matrix C with respect

to the L∞ distance.

Definition 2 [Dk] Let k � 0 be a natural number. Then, Dk is a matrix of size q × n,
where for all i ∈ I and j ∈ J,

Dk
i j :=

{
max{0, Ci j − k}, if j ∈ J 1,

Ci j + k, otherwise.

The following theorem provides an optimality condition for Dk based on the value
of k.

Theorem 3 If there exits an optimal solution D of IEMOCO-∞ with ||C −D||∞ = k,
then Dk is also an optimal solution of IEMOCO-∞.
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Proof From Theorem 1, it can be assumed that ∀i ∈ I,∀ j ∈ J 1 : Di j � Ci j and
∀ j ∈ J 0 : Di j � Ci j . It is easy to build a matrix E ∈ N

q×n such that D � E = Dk .
From Theorem 2, Dk is a feasible solution of IEMOCO-∞ and therefore the theorem
is proved. ��

As a corollary of this theorem, an optimal solution of IEMOCO-∞ can be built
on the basis of the optimal solution value. Indeed, if the optimal solution value of
IEMOCO-∞ is equal to k, then an optimal solution of this problem is given by the
matrix Dk . Therefore, IEMOCO-∞ can be reduced to finding the optimal solution
value, which is given by the minimal value of k where x0 is a non-efficient solution
with respect to Dk . In order to reduce the search domain, an upper bound on this value
is provided in the following lemma.

Lemma 1 If δ∞ ∈ N is the optimal solution value of IEMOCO-∞, then δ∞ � Δ =
maxi∈I, j∈J {x0

j Ci j }
Proof For a feasible instance of IEMOCO-∞, it is always possible to build a matrix
D ∈ N

q×n such that ||C − D||∞ = maxi∈I, j∈J {x0
j Ci j } and Dx0 is a dominated

solution of (X, D). The matrix is defined as follows, ∀i ∈ I,∀ j ∈ J 0 : Di j = Ci j

and ∀i ∈ I,∀ j ∈ J 1 : Di j = 0. It is easy to see that there exists another feasible
solution x ∈ X such that Dx ≥ Dx0 and ||C − D||∞ = maxi∈I, j∈J {x0

j Ci j }. This

solution satisfies the condition that there exists a j ∈ J , such that x j = 1 and x0
j = 0;

otherwise the problem is not feasible. This concludes the proof. ��
Based on the previous results, an algorithm for computing an optimal solution of

IEMOCO-∞ is devised. Thanks to Theorem 3, an optimal solution of IEMOCO-∞
can be built based on the distance between matrices D∗ and C . Since this distance
is bounded from above by Δ = maxi∈I, j∈J {x0

j Ci j } (see Lemma 1), the algorithm

consists of finding the minimal value k ∈ {1, 2, . . . , Δ} such that Dk x0 is a dominated
vector of the multi-objective instance (X, Dk). This condition is naturally checked by
solving Problem 3.

max
∑

i∈I

∑

j∈J

Dk
i j x j

subject to: Dk x � Dk x0

x ∈ X.

(3)

Let x∗ be an optimal solution of Problem 3. Wendell and Lee (1977) have shown
that Dk x0 is a dominated solution of (X, Dk) if and only if Dk x0 �= Dk x∗. This
problem can be solved as a linear integer program if the feasible set X is defined by a
set of linear constraints.

The minimal value of k can be found by performing a binary search on the set
{1, 2, . . . , Δ}, because the value of k can be increased without altering the non-
efficiency of x0 with respect to matrix Dk , as it can be directly deduced from
Theorem 2. Therefore, Algorithm 1 requires to solve log2Δ times Problem 3. For
more details on the procedure, see the pseudo-code of Algorithm 1.

123



On the calculation of stability radius 385

4 Computational experiments

The purpose of this section is to report the performance of Algorithm 1 (in terms of
CPU time) on several sets of randomly generated instances of the bi-objective {0,1}-
knapsack problem (BKP). This is a well-known classical multi-objective combinatorial
optimization problem (Kellerer et al. 1994), which is formalized as follows:

max F(x) = ( f 1(x), f 2(x))

subject to:
∑

j∈J w j x j � W (BKP)

x j ∈ {0, 1}, j ∈ J.

The design of the experiments is inspired by the frameworks used in Martello and
Toth (1990) and in Pisinger (1995). For a given number of variables n and data range
R, a set of instances was randomly generated in the following way. Each instance
s ∈ {1, 2, . . . , S} is generated with the seed number s. The values of C1 j , C2 j and w j

are uniformly distributed within the range [1, R], and W is computed as the maximum
between R and �P

∑
j∈J w j�, where P ∈ [0, 1]. Groups were composed of S = 30

instances. The choice of 30 is based on the rule of thumb in statistics to produce good
estimates (Coffin and Saltzman 2000). Other types of randomly generated instances,
for which the profit matrices are correlated with the weights, were also considered.
Since these instances have led to the same kind of results, we will not detail them
hereafter.

For each set of instances, Algorithm 1 was run on each efficient solution. The perfor-
mance was measured through the average (Avg.), standard deviation (SD), minimum
(Min.) and maximum (Max.) of the CPU time in seconds. Algorithm 1 was imple-
mented in the C# programming language and Problem 3 was solved by using the
Cplex solver. All the experiments were performed on a 3.0 GHz dual-core processor
with 4 GB of RAM.

Results show that Algorithm 1 is very efficient for large scale instances. For
example, with n = 500, R = 1,000 and P = 0.5, the average CPU time is 4.91 s with
a standard deviation of 2.14. Let us point out that the performances of this algorithm
are strongly linked to Problem 3. Therefore, the use of another way to test the effi-
ciency of a feasible solution could either increase or decrease significantly the CPU
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Table 1 Impact of varying the number of variables n and data range R on the performance of Algorithm 1
with a group of instances with P = 0.5

n CPU time (s)

R = 100 R = 1,000

Avg. SD Min. Max. Avg. SD Min. Max.

10 0.41 0.10 0.30 0.74 0.58 0.09 0.44 0.81

50 0.51 0.10 0.42 0.96 0.77 0.13 0.62 1.30

100 0.68 0.17 0.51 1.14 1.13 0.29 0.80 2.25

500 1.31 0.81 0.28 3.58 4.91 2.14 0.96 8.32

time. For more details about the results of the computational experiments, the reader
may consult Table 1.

5 Illustrative examples

The purpose of this section is to present and analyze the stability radius for several
illustrative instances of the bi-objective {0,1}-knapsack problem. An extended version
of the stability radius is considered, where we take into account stable and unstable
components in the profit matrix, i.e. some values in the profit matrix may have a
different value while others are fixed. This helps to get a better understanding of the
stability radius. Let us note that one could even consider intervals on the profits to
express more precisely the uncertainty on their adequate values. This would enable a
more sophisticated analysis for a real-world application.

The set of stable components in the profit matrix is denoted by S ⊆ I × J . The set
of unstable components is denoted by S̄, with S̄ ∪ S = I × J . This leads to modify
IEMOCO-∞ as follows:

min ||C − D||∞
subject to: x0 /∈ E(X, D)

D ∈ N
q×n (IEMOCO-∞(S))

Ci j = Di j , for all (i, j) ∈ S.

Theorems 1,2, and 3 can be extended to IEMOCO-∞(S). It requires to modify the
definition of Dk as follows, for all i ∈ I, j ∈ J ,

Dk
i j :=

⎧
⎨

⎩

max{0, Ci j − k}, if j ∈ J 1and (i, j) ∈ S̄,

Ci j + k, if j ∈ J 0and (i, j) ∈ S̄,

Ci j , otherwise,

as well as the definition of D � E , for all i ∈ I, j ∈ J ,

(D � E)i j :=
⎧
⎨

⎩

max{0, Di j − Ei j }, if j ∈ J 1 and (i, j) ∈ S̄,

Di j + Ei j , if j ∈ J 0 and (i, j) ∈ S̄,

Di j , otherwise.
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It is obvious to show that Theorems 1,2, and 3 remain valid with these modifications.
However, Lemma 1 cannot be applied in this situation as illustrated in the following
instance:

max f 1(x) = 1x1 + 2x2

max f 2(x) = 4x1 + 1x2

subject to: x1 + x2 � 1

x1, x2 ∈ {0, 1},

(4)

where {v1, v2, v3} = {(1, 0); (0, 1); (0, 0)} is the feasible set, {v1, v2} is the efficient
set, and S = {(1, 1); (1, 2); (2, 1)} is the set of stable components. The minimal
adjustment of the profit matrix that transforms v2 into a non-efficient solution is equal
to 3. This provides a counterexample to Lemma 1. However, in practice, one would
consider the optimal value of maxi∈I, j∈J {Ci j } as being large enough to represent
a maximal stability radius, because this modification would completely change the
initial profit matrix.

Consider, as a first illustrative example, the following knapsack instance:

max f 1(x) = 10x1 + x2 + 2x3

max f 2(x) = 2x1 + 8x2 + 10x3

subject to: x1 + x2 + x3 � 1

x1, x2, x3 ∈ {0, 1},

(5)

where {v1, v2, v3, v4} = {(1, 0, 0); (0, 1, 0); (0, 0, 1); (0, 0, 0)} is the feasible set,
{v1, v3} is the efficient set, and all components are unstable. When applying Algorithm
1 on each efficient solution, the stability radii of v1 and v3 are 3 and 0, respectively.
It means that v1 remains efficient even if one increases or decreases by 3 the profit
of each item (keeping such profits as non-negative), whereas there exists a profit
matrix with distance 1 that leads to transform v3 into a non-efficient solution. This
strong difference does not appear when looking only at the non-dominated set in
the objective space given by {(10, 2); (2, 10)}. It is due to the fact that all feasible
solutions in Problem 5 are independent (the intersections between the feasible sets of
items are empty) and to the existence of the non-efficient solution v2 that is very close
to v3 in the objective space. Indeed, the independence implies that the outcome of a
solution can be improved or deteriorated without modifying the outcome of another
solution. Therefore, the outcome of v3 can be deteriorated and the outcome of v2

can be improved without modifying the outcome of v1. This explains the difference
between v1 and v2 in terms of stability.

Let us consider the influence of stable components on this instance. If the profit of
the second item is stable, then the stability radius of v3 is increased to 1, because all
the modifications to have v2 dominate v3 must be applied on the third item.

123



388 J. Roland et al.

Consider, as a second example, the following instance:

max f 1(x) = 10x1 + x2 + x3

f 2(x) = 2x1 + 8x2 + 2x3

subject to: 2x1 + x2 + x3 � 2

x1, x2, x3 ∈ {0, 1},

(6)

where {v1, v2, . . . , v5} = {(1, 0, 0); (0, 1, 0); (0, 1, 1); (0, 0, 1); (0, 0, 0)} is the
feasible set, {v1, v3} is the efficient set, and all components are unstable. Even though
the image of the feasible set in the objective space is the same for this second instance,
the stability radii are different. Their values are both equal to 3. This is because, in
this case, v2 is a subset of v3, which implies that any modification to the outcome
of v2 leads to a modification to the one of v3. In other words, for all profit matrices
D ∈ N

q×n : Dv3 � Dv2. This explains why v3 is more stable in this second example.
Consider, as a third example, the following instance:

max f 1(x) = 2x1 + 4x2

max f 2(x) = 4x1 + 2x2

subject to: x1 + x2 � 1

x1, x2 ∈ {0, 1},

(7)

where {v1, v2, v3} = {(1, 0); (0, 1); (0, 0)} is the feasible set, {v1, v2} is the efficient
set, and the set of stable components is S = {(1, 1); (2, 1)} (the first item’s profits
are stable). The stability radii of v1 and v2 are both equal to 1. This shows that even
though v1 is only composed of a single stable item and v2 of a single unstable item,
both have the same stability radius. If all components are unstable, then the stability
radii of v1 and v2 are both equal to 0. This shows the influence of stable components
on the stability radius.

Even though the situations presented in this section can be easily tackled, one should
remember that such an analysis would become fastidious in large scale instances with
complex combinatorial structures. This also shows the usefulness of computing the
stability radius for providing information on the underlying structure of the feasible set.

6 Conclusion

In this paper, we have addressed the problem of computing the stability radius of
an efficient solution in the context of MOCO. More precisely, we focused on the
maximal perturbation of the objective functions coefficients such that a given solution
remains efficient. This is measured under the Chebyshev norm and the coefficients are
restricted to natural numbers. The stability radius of an efficient solution is modeled
as a particular inverse optimization problem. The model is solved by an algorithm
which requires only to solve a logarithmic number of mixed integer programs. It
contains a linear number of constraints and variables compared with the instance of
the combinatorial optimization problem if its feasible set can be defined by linear
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constraints. To the best of our knowledge, this algorithm is the first one that allows to
compute the stability radius in a reasonable amount of time. Further research questions
will encompass the extension to the adjustment of all the problem parameters (and not
only the objective functions coefficients) and to other norms (such as L1).
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