
4OR-Q J Oper Res (2013) 11:57–73
DOI 10.1007/s10288-012-0212-1

RESEARCH PAPER

Variable neighborhood search for the travelling
deliveryman problem

Nenad Mladenović · Dragan Urošević ·
Saïd Hanafi

Received: 4 April 2012 / Revised: 24 July 2012 / Published online: 18 September 2012
© Springer-Verlag 2012

Abstract A travelling deliveryman needs to find a tour such that the total waiting
time of all the customers he has to visit is minimum. The deliveryman starts his tour
at a depot, travelling at constant velocity. In this paper we suggest a general variable
neighborhood search based heuristic to solve this NP-hard combinatorial optimization
problem. We combine several classical neighborhood structures and design data struc-
ture to store and update the incumbent solution efficiently. In this way, we are able
to explore neighborhoods as efficiently as when solving the travelling salesman prob-
lem. Computational results obtained on usual test instances show that our approach
outperforms recent heuristics from the literature.

Keywords Combinatorial optimization ·Routing ·Travelling deliveryman problem ·
Metaheuristics · Variable neighborhood search

Mathematics Subject Classification (2000) 90C059 · 90C27

N. Mladenović
School of Mathematics, Brunel University, Uxbridge, UK
e-mail: Nenad.Mladenovic@brunel.ac.uk

D. Urošević (B)
Mathematical Institute, Belgrade, Serbia
e-mail: draganu@mi.sanu.ac.rs

S. Hanafi
LAMIH-Université de Valenciennes, Valenciennes, France
e-mail: said.hanafi@univ-valenciennes.fr

123

58 N. Mladenović et al.

1 Introduction

The travelling deliveryman problem (TDP), also known as the minimum latency prob-
lem or travelling repairman problem, is a variant of the travelling salesman problem
(TSP). Differently from the classical TSP, where the travelling salesman is trying to
minimize the length of the tour connecting all customers, in TDP the designed tour
should minimize the total time customers are waiting to be served by a deliveryman
(or a repairman).

On metric space, TDP is NP-hard (Blum et al. 1994). However, there are special
graphs where TDP can be solved in polynomial time. Such graph classes are paths and
trees with the diameters equal to 3 (Blum et al. 1994). Regarding exact methods for
general graphs, Wu et al. (2004) suggested two methods: (i) Dynamic Programming
and (ii) Branch and Bound (B&B). Using B&B method for example, authors of this
article were able to solve exactly 50-customer instances in less than 100 seconds. It
appeared to be significantly less efficient than the B&B of solver CPLEX using the
MIP formulation described below. Méndez-Díaz et al. (2008) propose a new integer
linear programming model for Minimum Latency Problem and a new B&B method for
solving it. Experimental results show that proposed method allow them to solve exactly
instances with up to n = 40 customers. Their method is then compared with CPLEX
solver. It is shown that the CPLEX execution time is significantly longer. Abeledo et
al. (2010) propose branch–and–cut–and–price for solving TDP. The largest TSPLIB
instance solved exactly had n = 107 customers.

Salehipour et al. (2011) have recently proposed a heuristic that combines greedy
randomized adaptive search procedure (GRASP) and variable neighborhood descent
(VND), the deterministic variant of variable neighborhood search (VNS). Their
sequential VND uses the following 5 neighborhood structures: (i) swap adjacent move
(1-opt); (ii) swap move; (iii) 2-opt move; (iv) Or-opt move and (v) drop/add move.

In this paper we propose a General VNS for solving TDP. We implement neigh-
borhood structures widely used for similar combinatorial problems, but, for the first
time, within General VNS framework. In order to perform search through the different
neighborhoods in more efficient way, we use preprocessing and intelligent updating
of the incumbent solution. Moreover, we show that the worst-case complexity of
neighborhood moves that we use are the same as the complexity of those moves used
in solving TSP. Computational results performed on usual test instances show that
our heuristic outperforms recent heuristics, and thus, it can be considered as a new
state-of-the-art heuristic for solving TDP.

The paper is organized as follows. In Sect. 2 we give combinatorial and mathemat-
ical programming formulations of the problem. Complexity results of different moves
used within variable neighborhood descent are discussed in Sect. 3, while in Sect. 4
we give pseudo-codes of our implementation of GVNS. Sections 5 and 6 contain
computational results and conclusions, respectively.

2 Problem formulation

Combinatorial formulation Let G = (V, A) be a complete, directed and asymmetric
graph, where V = {0, 1, . . . , n} is a set of nodes. Nodes labelled with numbers

123

Variable neighborhood search 59

1, 2, …, n are delivery nodes and node with label 0 is the depot. The distance d(i, j)
is associated with each arc (i, j) ∈ A. The TDP consists in determining the tour, i.e.
Hamiltonian path on the graph G,

x = (x0, x1, x2, x3, . . . , xn),

starting at the depot node x0 = 0, so as to minimize the total waiting time of all
customers to be served. Assume that the deliveryman travels at constant velocity v.
Then the time to reach a client i is equal to the ratio between the passed distance
from the depot to the client i and his/her velocity v. The distance that the deliveryman
passes to reach the client x1 is equal to δ1 = d(x0, x1). Similarly, to reach the client
x2 he/she needs to pass δ2 = d(x0, x1)+ d(x1, x2), generally to reach a client xk , the
travel distance is

δk = d(x0, x1)+ d(x1, x2)+ · · · + d(xk−1, xk).

Therefore, the corresponding time of reaching the customer xk is as follows:

tk = δk

v
.

Since the objective function represents the sum of all such obtained time (for all k), it
can be formulated as

n∑

k=1

tk .

It is clear that the last expression may be formulated more simply as

n∑

k=1

(n − k + 1)d(xk−1, xk)

v
.

Since v is constant, its value does not influence the optimal solution. Thus, the objective
function to be minimized may be presented as

f (x) =
n∑

k=1

(n − k + 1)d(xk−1, xk) (1)

Note that the time needed to go back to the depot is not included in the objective
function.

Mixed integer programming (MIP) formulation As for the TSP, the TDP can also
be formulated in different ways. Fischetti et al. (1993) used the so-called flow MIP

123

60 N. Mladenović et al.

formulation. The two sets of variables are defined as

Xi j =
{

1, if deliveryman travels arc (i,j)
0, otherwise

Yi j =
{

0, if arc (i, j) is not used
n − k, if (i, j) is k-th arc on route

Then the MIP formulation for the TDP is as follows:

min
n∑

i=0

n∑

j=0

d(i, j)Yi j (2)

subject to

n∑

j=0, j �=i

Xi j = 1 i = 0, 1, 2, . . . , n (3)

n∑

i=0,i �= j

Xi j = 1 j = 0, 1, 2, . . . , n (4)

n∑

i=1

Y0i = n (5)

n∑

i=0,i �=k

Yik −
n∑

i=0,i �=k

Yki = 1 k = 1, 2, 3, . . . , n (6)

Yi0 = 0 i = 1, 2, . . . , n (7)

Y0i � nX0i i = 1, 2, . . . , n (8)

Yi j � (n − 1)Xi j i, j = 1, 2, 3, . . . , n; i �= j (9)

Xi j ∈ {0, 1} i, j = 0, 1, 2, . . . , n; i �= j (10)

Yi j ∈ {0, . . . , n} i, j = 0, 1, 2, . . . , n; i �= j (11)

Hence, in this formulation, there are 2n(n+1) variables and n2+4n+3 constraints.
Constraints (3) and (4) make a guarantee that each customer will be visited and left
only once (i.e., it has one incoming and one outcoming arc). Constraints (5)–(6) are
flow constraints. They assure that the final tour X has no subtours (tours that do not
include all n clients). Constraints (7)–(9) make a logical relation between variables X
and Y . For example, if Xi j = 0, then Yi j should be 0 as well.

Lower bound Obviously, a minimum spanning tree (MST) of the corresponding
weighted graph, may be used as a lower bounding procedure. Let us rank edges e ∈ A
of the MST in a nondecreasing order of their weights

d(e1) � d(e2) � · · · � d(en).

123

Variable neighborhood search 61

Then the lower bound LB is given by

L B =
n∑

k=1

(n + 1− k)d(ek). (12)

We will use this formula later, as Salehipour et al. (2011) to measure quality of heuris-
tics, as the average percentage deviation from the LB.

3 Neighborhood structures for solving TDP

VNS is a metaheuristic for solving combinatorial and global optimization problems.
Its basic idea is to change neighborhood in search for a better solution (Mladenović
and Hansen 1997). Its main loop consists of 3 steps: (i) Shaking or perturbation of
the incumbent solution x , (ii) local search and (iii) neighborhood change. For various
VNS variants and their successful applications see recent surveys by Hansen et al.
(2008, 2010).

Usual local search procedures used for solving TSP are 2-opt, Or-opt (or 1-2-3-
insertion) and 3-opt. Their advantage is in the fact that the updating of the objective
function may be obtained in constant time. However, this is not the case when solving
TDP, at least if usual data structure is used and no preprocessing step is performed.
We first show that the complexity of k-opt moves in such cases is O(nk+1) (instead
of O(nk) for solving classical TSP). Then we explain the steps necessary to be done,
so as the data structure to be used in order to get the same complexity for TDP as it is
for TSP, i.e., O(nk).

k-opt complexity Let us consider the solution x of TDP

x = (x1, x2, . . . , xi−1, xi , xi+1, . . . , x j−1, x j , x j+1, . . . , xn)

The solution that belongs to 2-opt neighborhood of the solution x (in solving TSP) is
obtained after deleting the links between xi and xi+1, and between x j and x j+1. The
new tour x ′ and its objective function value f (x ′) are:

x ′ = (x1, x2, . . . , xi−1, xi , x j , x j−1, . . . , xi+2, xi+1, x j+1, . . . , xn), (13)

Δ f = f (x ′)− f (x) = d(xi , x j)+ d(xi+1, x j+1)− d(xi , xi+1)− d(x j , x j+1).

(14)

Clearly, f (x ′) is obtained after 4 additions, thus, in constant time. Unfortunately,
this property does not hold when solving TDP by 2-opt. In a straightforward imple-
mentation of 2-opt for TDP, all coefficients between xi and x j in formula (1) should
be changed in calculating f (x ′). Therefore, the difference Δ f may be obtained in
O(j − i) calculations. In the worst case j = n and i = 1, and thus Δ f is obtained in
O(n).

Observe also that this straightforward implementation of k-opt for solving TDP
increases by n the complexity of k-opt move when TSP is considered, i.e., it is in

123

62 N. Mladenović et al.

O(nk+1). In this section, we will show that if an appropriate data structure is used, the
worst-case complexity of k-opt in solving both TDP and TSP is the same: O(nk).

Our list of neighborhoods consists of (i) 1-opt, (ii) move forward (insertion to the
right); (iii) move backward (insertion to the left); (iv) 2-opt. We did not put 3-opt move
in our list because of its large complexity O(n3).

1-opt move is a special case of 2-opt, where the index j is set to i + 2 in (13). Let
us consider four consecutive clients in the current tour x :

xk, xk+1, xk+2, xk+3. (15)

Then the new tour x ′ is obtained by swapping xk+1 and xk+2.

Property 1 Exploring complete 1-opt neighborhood in solving TDP is in O(n).

Proof From (1), (13) and (15) we see that the difference Δ f between the new objective
function and the old one is

Δ f = (n − k)(d(xk, xk+2)− d(xk, xk+1))

+(n − k − 2)(d(xk+1, xk+3)− d(xk+2, xk+3))

If Δ f is negative, then a better tour is obtained. Clearly, finding Δ f is in O(1). Since
the cardinality of 1-opt neighborhood is n − 3, the result follows. ��

Move forward (mf) The solution from this neighborhood is defined by moving k
consecutive customer positions to the right of the tour (k = 1, 2, . . . , �max). If that
block of k customers starts from the position i + 1 and is inserted after the position j ,
(i.e., after customer x j), then the tour

x = (x1, x2, . . . , xi , xi+1, . . . , x j , x j+1, . . . , xn)

becomes

x ′ = (x1, . . . , xi , xi+k+1, . . . , x j , xi+1, . . . , xi+k, x j+1, . . . , xn)

Property 2 Exploring complete move-forward neighborhood in solving TDP is in
O(n2�max).

Proof The difference between the new and the old objective functions is

Δ f = kδ(xi+k+1, x j)− (j − i − k)δ(xi+1, xi+k)

+(n − i)(d(xi , xi+k+1)− d(xi , xi+1))

+(n − j)(d(xi+k, x j+1)− d(x j , x j+1))

+(n − j + k)d(x j , xi+1)− (n − i − k)d(xi+k, xi+k+1)

where δ(xi+k+1, x j) denotes a subtour distance from the customer xi+k+1 to the cus-
tomer x j . Similarly, δ(xi+1, xi+k) denotes the distance from the client’s position i +1

123

Variable neighborhood search 63

to the position i + k, i.e.

δ(xi , x j) =
j−1∑

h=i

d(xh, xh+1)

If i and j are fixed then, increase of k by 1 makes calculation of the new Δ f in O(1).
The same holds for all (i, j) pairs. Therefore, finding objective function values in
complete move-forward neighborhood is O

((n
2

)
�max

) = O(n2�max). ��

Move backward (mb) This neighborhood structure is analogous to the previous one.
The only difference is that the block of k consecutive customers is moved to the left.

These two neighborhoods together may be considered as one, i.e., k − insertion
neighborhood. Therefore, together, they may be seen as an extension of Or–opt move
(note that in Or-opt k = 1, 2 and 3). However, we decided to split k-insertion neigh-
borhood into its two disjoint subsets. This idea is shown to be useful in solving some
other optimization problems on graphs (Brimberg et al. 2008, 2009).

2–opt move. We have already explained 2-opt move (see Eqs. (13) and (14)). Now
we show that the 2-opt move may be done in O(1) if appropriate data structure for
storing and updating current incumbent tour is used.

Property 3 Exploring complete 2-opt neighborhood in solving TDP is in O(n2).

Proof Let the incumbent tour be presented as

x = (x1, x2, . . . , xi−1, xi , xi+1, . . . , x j−1, x j , x j+1, . . . , xn).

After deleting links (xi , xi+1) and (x j , x j+1), the new tour x ′ becomes

x ′ = (x1, x2, . . . , xi−1, xi , x j , x j−1, . . . , xi+2, xi+1, x j+1, . . . , xn).

The corresponding objective function values are

f (x) = (n − 1)d(x1, x2)+ · · · + (n − i + 1)d(xi−1, xi)+ (n − i)d(xi , xi+1)

+(n − i − 1)d(xi+1, xi+2)+ · · · + (n − j + 1)d(x j−1, x j)

+(n − j)d(x j , x j+1)+ (n − j − 1)d(x j+1, x j+2)+ · · · + d(xn−1, xn)

and

f (x ′) = (n − 1)d(x1, x2)+ · · · + (n − i + 1)d(xi−1, xi)+ (n − i)d(xi , x j)

+(n − i − 1)d(x j , x j−1)+ · · · + (n − j + 1)d(xi+2, xi+1)

+(n − j)d(xi+1, x j+1)+ (n − j − 1)d(x j+1, x j+2)+ · · · + d(xn−1, xn)

123

64 N. Mladenović et al.

After summing these two equations we get

f (x)+ f (x ′) = 2
i−1∑

k=1

(n − k)d(xk, xk+1)+ 2
n−1∑

k= j+1

(n − k)d(xk, xk+1)

+(2n − i − j)δ(xi+1, x j−1)+ (n − i)(d(xi , xi+1)

+d(xi , x j))+ (n − j)(d(xi+1, x j+1)+ d(x j , x j+1))

By choosing the appropriate data structures and by preprocessing (before start search-
ing through the neighborhood), the last formula can be calculated in O(1) time. More-
over, at the same time ,we determine if x ′ is a better solution; since f (x) is known,
we can also find f (x ′).

Though, the problem is how to calculate the above formula. So, before starting the
search through the 2-opt neighborhood, we have to calculate and store two sequences
Sb(i) and Se(i) representing the following sums:

Sb(i) =
i∑

k=1

(n − k)d(xk, xk+1) and Se(i) =
n−1∑

k=i

(n − k)d(xk, xk+1)

so as

δ(i) =
i∑

k=1

d(xk, xk+1)

All can be done in O(n) time. If we have these values, then

f (x)+ f (x ′) = 2Sb(i − 1)+ 2Se(j + 1)+ (2n − i − j)(δ(j − 2)− δ(i))

+(n − i)(d(xi , xi+1)+ d(xi , x j))+ (n − j)(d(xi+1, x j+1)+ d(x j , x j+1))

obviously, this value is calculated in constant O(1) time and thus, the complete 2-opt
neighborhood is explored in O(n2). ��

Once we find the best solution x ′ in the 2-opt neighborhood, we need to answer
the question about the complexity of the updating move. However, it requires O(n)

time as it is included in complexity of searching the 2-opt neighborhood. We now give
pseudo-code of the updating step.

Algorithm 1: Updating within 2-opt move
Function UpdateSbSe (x, i, j);
for k ← i − 1 to n-1 do

Sb(k)← Sb(k − 1)+ (n − k)× d(xk , xk+1)

for k ← j downto 1 do
Se(k)← Se(k + 1)+ (n − k)× d(xk , xk+1)

This algorithm will be later used in 2–opt local search N2−opt (R, x ′, r), within
Sequential VND(Seq-VND) and Mix VND (Mix-VND).

123

Variable neighborhood search 65

Double bridge (db) is a special case of 4–opt. For any four indices i, j, k and �

(i < j < k < �), edges (xi , xi+1), (x j , x j+1), (xk, xk+1), (x�, x�+1) are removed.
New 4 edges are then (xi , xk+1), (x�, x j+1), (xk, xi+1) and (x j , x�+1). It is very impor-
tant for some combinatorial problems since it keeps the orientation of the tour. The
neighborhood size of double bridge is O(n4). However, we reduce it to O(n2) by
fixing indices j = i + 2 and � = k + 2. The double-bridge move is used only within
our GVNS-2, which will be explained later in Algorithm 6.

Interchange (Exchg) When the two non-successive customers xi and x j (i < j),
interchange their places in the tour, than the objective function value is obviously
changed. The interchange move is a special case of the 4-opt as well. The size of the
whole neighborhood is obviously O(n2). We use it just to compare different multi-start
local search procedures with the multi-start VND (Table 1).

4 General VNS for solving TDP

General VNS (GVNS) is a variant of VNS where VND is used as a local search routine
within basic VNS scheme Hansen et al. (2008, 2010). It contains 3 parameters: (i) tmax –
maximum time allowed in a search; (ii) kmax –the number of neighborhoods used in
shaking; (iii) �max –the number of neighborhoods used in VND. Its pseudo code is
given in Algorithm 2.

Algorithm 2: Steps of the general VNS
Function GVNS (x, �max , kmax , tmax)
x ← Initial(x)

repeat
k ← 1
repeat

x ′ ← Shake(x, k)
x ′′ ← VND(x ′, �max)
if f (x ′′) < f (x) then

x ← x ′′; k ← 1
else

k ← k + 1

until k > kmax
until t > tmax
return x .

The set of neighborhoods used both in shaking and VND local search are problem
specific.

4.1 Initial solution

We use two ways to get an initial solution. The first is random one, i.e., it is obtained
as a random permutation of n − 1 customers. The second is the Greedy randomized
procedure given in Algorithm 3. We call it Greedy-R.

123

66 N. Mladenović et al.

Algorithm 3: Greedy randomized algorithm for initial solution
Function Greedy-R (x, q)
S← {1, 2, 3, . . . , n}
x0 ← 0; k ← 1
while S �= ∅ do

S′ ← subset of S with the min(q, n − k) customers nearest to xk−1
xk ← Random selected vertex from S′
S← S \ {xk }
k ← k + 1

return x .

In each constructive step of our Greedy-R(x, q) a random selection of the next
customer xk is restricted to the q (a parameter) closest to the last selected customer
xk−1. If the number of customers n, or the number of remaining customers n − k is
less than q, then one among all remaining customers is chosen. In our implementation
we always use a value of 10 for q (q=10).

4.2 Shaking

In the VNS shaking step, the incumbent solution x is perturbed to get one random
solution x ′ from the kth neighborhood of x (x ∈ Nk(x), k = 1, . . . , kmax). Such a
random solution is an initial one for the local search routine that follows. After some
experiments, we decided to use the insertion neighborhood structure for the sake of
shaking. In other words, our shaking consists of selecting a customer i at random and
inserting it between j and j + 1, where j is also randomly chosen. In fact, we repeat
k times this random insertion move.

Algorithm 4: Shaking procedure
Function Shake(x, k)
while k > 0 do

i ← Random(1, n); //select i from [1, n] at random
j ← Random(1, n); // select i from [1, n] at random
if i �= j then

Insert xi between x j and x j+1
k ← k − 1

return x

Note that insertion move consists of move forward or move backward moves.
Therefore our shaking can be move forward or move backward if j ≥ i or j ≤ i ,
respectively. Note also that one-insertion move is a special case of Or-opt move where
one, two or three consecutive vertices are inserted.

4.3 VND algorithms

Finding the right order of neighborhoods used in deterministic VND heuristic may be
very important for the quality of the final solution. After extensive testing of different

123

Variable neighborhood search 67

variants, we decided to use the following order of neighborhoods: (i) 1-opt, (ii) 2-
opt, (iii) move-forward, (iv) move-backward. In Mix-VND, we additionally use (v)
double-bridge neighborhood structure. The number of visited solutions from 2-opt
neighborhood is also reduced: for fixed i (i.e., xi), we take only r (a parameter) nearest
customers as candidates for x j and to perform the 2-opt move. If the total number of
the customers is less than r , than we set r = n/2. Hence, we need to rank all distances
(columns of matrix D) in pre-processing step to get ranked distances R and thus be
able to easily find r closest customers to each customer xi .

We develop two VND variants for solving TDP: Seq-VND (see Algorithm 5) and
Mix-VND (see Algorithm 6). For details regarding Nested and Mixed VND methods
see Ilić et al. (2010) and Mladenović et al. (2012).

Algorithm 5: Sequential VND for solving TDP
Function Seq-VND (R, x ′, r)
�← 1
while � � 4 do

if � = 1 then
x ′′ ← argmin{ f (x)|x ∈ N1−opt (x ′)}

if � = 2 then
x ′′ ← argmin{ f (x)|x ∈ N2−opt (R, x ′, r)}

if � = 3 then
x ′′ ← argmin{ f (x)|x ∈ Nm f (x ′)}

if � = 4 then
x ′′ ← argmin{ f (x)|x ∈ Nmb(x ′)}

if f (x ′′) < f (x ′) then
x ′ ← x ′′; �← 1

else
�← �+ 1

return x ′

In Mix-VND (see Mladenović et al. 2012) we perform Seq-VND starting from
each solution that belong to Ndb neighborhood of a current solution x . The Ndb

neighborhood is fully explored but in the first improvement strategy. If the solution
x ′′ obtained with Seq-VND heuristic is better than the current solution x ′, we move
there (x ′ ← x ′′).

Algorithm 6: Mixed Variable Neighborhood Descent for TDP
Function Mix-VND (R, x ′, r)
improve← true
while improve do

improve← false
while there are unexplored solution in Ndb(x ′) and .not.improve do

x ′′ ← next solution in Ndb(x ′)
x ′′ ← Seq-VND(R, x ′′, r),

if f (x ′′) < f (x ′) then
x ′ ← x ′′
improve← true

return x ′

123

68 N. Mladenović et al.

The rationale of our Mix-VND procedure is to give double-bridge move a special
status since it is known to be very important in solving the TSP problem (Johnson and
McGeoch 1996).

4.4 GVNS algorithms

We designed here 2 GVNS variants for solving TDP. One uses sequential VND as a
local search (GVNS-1 for short), and the other uses Mixed nested VND (GVNS-2).
Correctness of these heuristics follows results from Markoski et al. (2011). We also
implemented two variants to get initial solution: Greedy-R(x, 10) and Rand(x).
Note that Rand represents a procedure for random permutation of n numbers and will
not be presented here. The pseudo code of all our variants are given in Algorithm 7.

Algorithm 7: General VNS for TDP
Function GVNS (D, x, kmax , tmax)
R← Rank(D)
x ← Greedy-R(x, 10) (or x ←Rand(x))
repeat

k ← 1
repeat

x ′ ← Shake(x, k)
x ′′ ← Seq-VND(R, x ′, 4) (or x ′′ ← Mix-VND(R, x ′, 4))
if f (x ′′) < f (x) then

x ← x ′′; k ← 1
else

k ← k + 1

until k > kmax
until t > tmax
return x .

In preprocessing step we rank distances among customers D in non-decreasing
order of their values. A new ordered matrix R is used in reducing the set of visited
points of 2-opt neighborhood. As explained earlier, in our implementation the number
of neighborhoods �max used within VND for solving TDP is equal to 4. So, we do not
need to consider �max in Algorithm 7 as a parameter, as it is presented in Algorithm 2.

5 Computational results

Our GVNS-1 and GVNS-2 are coded in C++. Computational analysis is performed
on Intel Pentium IV processor with 1.8GHz, under Linux.

Test instances. According to Salehipour et al. (2011), test instances specifically
created for TDP do not exist in the literature. That is why the authors in Salehipour
et al. (2011) generated their own instances but also used the instances from the TSP
library to test their GRASP+VNS based heuristics.

In Salehipour et al. (2011) 140 instances were generated in total with n equal to
10, 20, 50, 100, 200, 500 and 1000. For any value of n, 20 different instances were

123

Variable neighborhood search 69

Table 1 Comparison of different multistart local search procedures applied on instance with 200 customers

Loc. search Random initial Greedy initial

% of best % of worst % of avg. Time % of best % of worst % of avg. Time

1-opt 690.97 913.99 790.97 0.01 73.13 207.00 135.56 0.01

2-opt 13.72 49.54 31.75 0.40 10.83 63.42 25.63 0.16

1-ins 9.14 53.55 27.95 0.22 9.65 43.95 23.32 0.08

2-ins 21.48 71.53 38.80 0.12 21.07 70.21 37.31 0.05

3-ins 32.86 78.89 51.30 0.09 31.46 76.69 48.38 0.04

Or-opt 7.41 45.93 23.02 0.24 5.63 17.63 18.55 0.09

Exchg 70.59 150.69 108.24 0.13 39.70 93.12 64.04 0.06

Seq-vnd 2.18 13.69 6.85 0.38 2.22 14.83 7.70 0.20

generated in the following way: coordinates of all the customers, including the depot,
were generated at random with a uniform distribution on the interval [0,100]. For
instances with 500 and 1000 customers this interval was [0,500]. The matrix D = (di j)

was obtained by using floor function of the Euclidean distance between any two nodes
i and j .

Stopping condition. We stop our VNS based heuristic after n seconds (tmax = n
seconds). In the tables below, we give report on the time when the best solution of
each instance is reached.

Local search procedures. We perform extensive computational analysis to figure
out the power of each neighborhood structure for solving TDP, as well as the power
of our VND local search procedures. For that purposes we repeat local search, with
respect to each neighborhood, 1000 times. Tests are performed on many instances. In
order to save the space, here we give the results only for n = 200 in Table 1. The %
deviations from the best know solution (obtained by our GVNS methods) are reported
for the best, the worst and the average solutions obtained by each local search. Or-opt
presents the local search that uses insertion of 1, then 2 and then 3 consecutive vertices.
1-ins, 2-ins and 3-ins denote local search heuristics that inserts 1, 2 or 3 consecutive
vertices respectively.

Different local search procedures’ behavior is also presented in the so-called
distance-to-target diagram given at Fig. 1. The same random instance with n = 200
is used, with two initialization methods: random (the left part of pictures) and Ran-
domized greedy (on the right). The best known solution of that instance is given in
origin; point (u, v) in the diagram represents a local optima obtained by Greedy-R. u
and v coordinates represent the Hamming distance (between the best known solution
and the obtained local minima) and the % deviation of local optima value from the
best objective function value, respectively.

From Table 1, Fig. 1, we can draw the following conclusions: (i) The multi-start
Sequential VND local search performs the best; (ii) It is interesting to note that the
Greedy-R initialization does not improve the performance of the multi-start Seq-VND.
In other words, GRASP+VND does not produce local minima of better qualities than

123

70 N. Mladenović et al.

 0

 20

 40

 60

 80

 100

 0 50 100 150 200

%
 d

ev
ia

tio
n

of
 lo

ca
l o

pt
im

a

 o
ve

r
be

st
 k

no
w

n

distance of local optima from best known

2-opt LS

 0

 20

 40

 60

 80

 100

 0 50 100 150 200%
 d

ev
ia

tio
n

of
 lo

ca
l o

pt
im

a

 o
ve

r
be

st
 k

no
w

n

distance of local optima from best known

2-opt LS

 0

 20

 40

 60

 80

 100

 0 50 100 150 200

%
 d

ev
ia

tio
n

of
 lo

ca
l o

pt
im

a

ov

er
 b

es
t k

no
w

n

distance of local optima from best known

Or-opt LS

 0

 20

 40

 60

 80

 100

 0 50 100 150 200

%
 d

ev
ia

tio
n

of
 lo

ca
l o

pt
im

a

ov
er

 b
es

t k
no

w
n

distance of local optima from best known

Or-opt LS

 0

 20

 40

 60

 80

 100

 0 50 100 150 200

%
 d

ev
ia

tio
n

of
 lo

ca
l o

pt
im

a

 o
ve

r
be

st
 k

no
w

n

distance of local optima from best known

Seq-VND LS

 0

 20

 40

 60

 80

 100

 0 50 100 150 200%
 d

ev
ia

tio
n

of
 lo

ca
l o

pt
im

a

ov
er

 b
es

t k
no

w
n

distance of local optima from best known

Seq-VND LS

Fig. 1 Distribution of local optima in the distance-to-target diagrams; comparison of random multistart
(left) and GRASP (right) local searches w.r.t. 2-opt, Or-opt and Seq-VND neighborhoods on instance with
n=200 customers

Multistart Seq-VND; (iii) Local minima do not depend on the initialization method
but on the neighborhood structure used. The exception is Exchange neighborhood
structure (which appears not to be good for solving TDP anyway).

Comparison. To measure the quality of heuristics the average percentage deviation
from the lower bound LB (calculated as in (12)) is used in this section as in Salehipour
et al. (2011). Average deviation is calculated on 20 instances, generated for the same n.

Table 2 contains comparative results of the four methods: GRASP + VND, GRASP
+ VNS, GVNS-1 and GVNS-2. For all 4 methods the average deviation from the lower
bound is reported so as their CPU time. The columns 8 and 11 give % improvement
of our GVNS-1 and GVNS-2 suggested in this paper over GRASP-VNS that could be
seen as the current state-of-the-art heuristic.

123

Variable neighborhood search 71

Table 2 Comparison on random instances

n GRASP–VND GRASP–VNS GVNS-1 GVNS-2

% dev Time % dev Time % dev Time Impr. % dev Time Impr.

10 33.04 0.00 33.04 0.00 33.04 0.07 0.00 33.04 0.23 0.00

20 39.63 0.00 40.34 0.01 39.21 0.41 2.88 39.29 0.87 2.67

50 45.30 0.00 47.20 0.08 43.90 2.41 7.52 43.97 4.36 7.35

100 43.26 1.11 44.28 2.95 40.79 25.86 8.56 40.82 38.41 8.48

200 43.16 3.75 38.77 68.03 37.95 124.32 1.11 38.14 93.80 0.60

500 46.11 604.89 49.50 1524.09 39.41 414.05 25.60 39.54 421.72 25.19

1000 45.99 3876.51 42.35 9311.21 41.51 942.47 2.02 41.28 921.52 2.59

Table 3 Comparison on TSP-Lib instances

Name GRASP–VND GVNS-1 GVNS-2

Obj fun Time Obj fun Time Impr. Obj fun Time Impr.

st70 19533 22.24 19215 7.6 1.63 19215 26.15 1.63

att532 18448435 65121.06 17610285 488.95 4.54 17584979 532.02 4.68

kroD100 976830 54.69 949594 16.42 2.79 949594 46.55 2.79

lin105 585823 101.27 585823 86.76 0.00 585823 76.17 0.00

lin318 5876537 3951.02 5612165 179.13 4.50 5601351 294.85 4.68

pr107 1983475 225.32 1980767 97.51 0.14 1981141 49.94 0.12

pr226 7226554 2328.71 7106546 144.29 1.66 7100708 37.57 1.74

pr439 18567170 4563.44 17790562 327.15 4.18 17799975 396.84 4.13

rat99 56994 195.31 54984 42.41 3.53 55028 50.59 3.45

rat195 213371 884.78 210193 111.2 1.49 210319 150.94 1.43

Table 3 contains the same information as Table 2, but on the instances from the TSP
library. In addition, instead of % deviation above lower bound, the values of objective
functions are reported. They are obtained by a single run of the each method.

It appears that:

(i) GVNS-1 and GVNS-2 outperform both GRASP+VND and GRASP+VNS;
(ii) There is no significant difference between the GVNS-1 and the GVNS-2.
Nevertheless GVNS-2 seems to behave better for larger instances, while for the
small and middle size instances, it is opposite.

In Table 4 the results obtained by branch–and–cut–and–price method (B&C&P)
proposed by Abeledo et al. (2010) and by our GVNS-1 are compared. Note that in
this case objective function is slightly different: the first edge on tour is multiplied by
n + 1, the second with n, etc. Finally, the edge between the last customer on tour and
the depot is multiplied by 1. Values in boldface are proved to be optimal. It appears
that our GVNS-1 reaches all best optimal and three best known values with much
smaller CPU time.

123

72 N. Mladenović et al.

Table 4 Comparison of the results obtained by branch–and–cut–and–price method proposed by Abeledo
et al. (2010) and by our GVNS-1

Instance B&C&P GVNS-1

Obj.val. Time Obj.val. Time

dantzig42 12528 28 12528 0.25

swiss42 22327 20 22327 0.09

att48 209320 103 209320 0.07

gr48 102378 76 102378 0.12

hk48 247926 124 247926 0.98

eil51 10178 33 10178 1.98

berlin52 143721 104 143721 1.38

brazil58 512361 633 512361 6.16

st70 20557 2895 20557 2.68

eil76 17976 223 17976 1.36

pr76 3455242 58045 3455242 27.77

gr96 2097170 160250 2097170 2.08

rat99 57986 >48hs 57986 23.99

kroA100 983128 106336 983128 52.05

kroB100 986008 7684 986008 29.76

kroC100 961324 39559 961324 1.94

kroD100 976965 >48hs 976965 6.97

kroE100 971266 117965 971266 2.90

rd100 340047 18582 340047 63.82

eil101 27513 >48hs 27513 61.91

lin105 603910 6317 603910 12.50

pr107 2026626 9947 2026626 4.23

6 Conclusions

In this paper we propose General variable neighborhood search (GVNS) based heuris-
tic for solving Travelling deliveryman problem (TDP). Neighborhoods that we use are
the classical ones explored for solving Travelling salesman problem. We show how
they can be efficiently adapted for solving TDP as well. Moreover, we calculated
the complexity of such adapted moves. Extensive computational results show that
our two GVNS versions outperforms recent heuristic suggested by Salehipour et al.
(2011). Future research may contain extension of the methodology and data struc-
tures to another similar combinatorial optimization problems. Also, the clustering of
customers on the network (as in Carrizosa et al. 2011) may be tried out before routing.

Acknowledgments The present research work has been supported by Research Grants 174010 and III
044006 of the Serbian Ministry of Education, Science and Technological Development. The present research
work has been also supported by International Campus on Safety and Intermodality in Transportation the
Nord-Pas-de-Calais Region, the European Community, the Regional Delegation for Research and Technol-

123

Variable neighborhood search 73

ogy, the Ministry of Higher Education and Research, and the National Center for Scientific Research. The
authors gratefully acknowledge the support of these institutions.

References

Abeledo H, Fukasawa R, Pessoa A, Uchoa E (2010) The time dependent traveling salesman problem:
polyhedra and algorithm. Optim Online (http://www.optimization-online.org/DB_HTML/2010/12/
2872.html)

Blum A, Chalasani P, Coppersmish D, Pulleyblank B, Raguavan P, Sudan M (1994) The minumum latency
problem. In: Proceedings of 26th annual ACM symposium on theory of computting, Montreal

Brimberg J, Mladenović N, Urošević D (2008) Local and variable neighborhood search for the k-cardinality
subgraph problem. J Heuristics 14:501–517

Brimberg J, Mladenović N, Urošević D, Ngai E (2009) Variable neighborhood search for the heaviest
k-subgraph. Comput Oper Res 36:2885–2891

Carrizosa E, Mladenović N, Todosijević R (2011) Sum-of-square clustering on networks. Yugosl J Oper
Res 21(2):157–161

Fischetti M, Laporte G, Martello S (1993) The delivery man problem and cumulative matroids. Oper Res
41(6):1055–1064

Hansen P, Mldenović N, Moreno-Pérez JA (2008) Variable neighbourhood search: methods and applications.
4OR 6:319–360

Hansen P, Mladenović N, Moreno Pérez JA (2010) Variable neighbourhood search: algorithms and appli-
cations. Ann Oper Res 175:367–407

Ibm, ILOG CPLEX Optimizer. http://www-01.ibm.com/software/integration/optimization/cplex-
optimizer

Ilić A, Urošević D, Brimberg J, Mladenović N (2010) Variable neighborhood search for solving the unca-
pacitated single allocation p-hub median problem. Eur J Oper Res 206:289–300

Johnson DS, McGeoch LA (1996) The travelling salesman problem: a case study in local optimization.
In: Aarts EHL, Lenstra JK (eds) Local search in combinatorial optimization. Wiley, New York

Markoski B, Hotomski P, Malbaški D, Obradović D (2011) Dijkstra’s interpretation of the approach to
solving a problem of program correctness. Yugosl J Oper Res 20:229–236

Méndez-Díaz I, Zabala P, Lucena A (2008) A new formulation for the traveling deliveryman problem.
Discret Appl Math 156:3223–3237

Mladenović N, Hansen P (1997) Variable neighborhood search. Comput Oper Res 24:1097–1100
Mladenović N, Urošević D, Hanafi S, Ilić A (2012) A general variable neighborhood search for the one-

commodity pickup-and-delivery travelling salesman problem. Eur J Oper Res 220:270–285
Mladenović N, Urošević D, Todosijević R. An efficient GVNS for solving traveling salesman problem with

time windows. Yugosl J Oper Res. doi:10.2298/YJOR120530015M
Salehipour A, Sörensen K, Goos P, Brysy O (2011) Efficient GRASP+VND and GRASP+VNS metaheuris-

tics for the traveling repairman problem. 4OR-Q J Oper Res 9(2):189–209
Wu BY, Huang Z, Zhan F (2004) Exact algorithms for the minimum latency problem. Inf Process Lett

92(6):303–309

123

http://www.optimization-online.org/DB_HTML/2010/12/2872.html
http://www.optimization-online.org/DB_HTML/2010/12/2872.html
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer
http://dx.doi.org/10.2298/YJOR120530015M

	Variable neighborhood search for the travelling deliveryman problem
	Abstract
	1 Introduction
	2 Problem formulation
	3 Neighborhood structures for solving TDP
	4 General VNS for solving TDP
	4.1 Initial solution
	4.2 Shaking
	4.3 VND algorithms
	4.4 GVNS algorithms

	5 Computational results
	6 Conclusions
	Acknowledgments
	References

