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Abstract In cooperative games, the core is the most popular solution concept, and its
properties are well known. In the classical setting of cooperative games, it is generally
assumed that all coalitions can form, i.e., they are all feasible. In many situations, this
assumption is too strong and one has to deal with some unfeasible coalitions. Defining
a game on a subcollection of the power set of the set of players has many implications
on the mathematical structure of the core, depending on the precise structure of the
subcollection of feasible coalitions. Many authors have contributed to this topic, and
we give a unified view of these different results.
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1 Introduction

Let N := {1, . . . , n} be a finite set of players. We consider the situation where these
players can form coalitions, and the profit given by the cooperation of the players in
a coalition can be freely distributed among its members: this is in general referred
to as cooperative profit games with transferable utility, which we will abbreviate in
the sequel as TU-games (see, e.g., Driessen 1988; Peleg and Sudhölter 2003; Brânzei
et al. 2005).

Let v be a TU-game, that is, a set function v : 2N → R such that v(∅) = 0,
assigning to each coalition S ⊆ N its worth (profit) v(S). Let us assume that forming
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208 M. Grabisch

the grand coalition N is the best way to generate profit. One of the main problems in
cooperative game theory is to define a rational sharing among all players of the total
worth v(N ) of the game. Any sharing is called a solution of the game, since it solves
the (difficult) problem of sharing the cake.

The literature on solutions of TU-games is very abundant, and many concepts of
solution have been proposed. One may distinguish among them two main families,
namely those solutions which are single-valued, and those which are set-valued. In
the first category, to each game is assigned a single solution, which most of the time
exists. Best known examples are the Shapley value (Shapley 1953), the Banzhaf value
(Banzhaf 1965) and any other power index used in voting theory (see, e.g., Felsenthal
and Machover (1998)), the nucleolus (Schmeidler 1969), the τ -value Tijs (1981), etc.
In the second category, to each game a set of solutions is assigned. This is the case
of the core (Gillies 1953; Shapley 1971), the bargaining set (Aumann and Maschler
1964; Davis and Maschler 1963), the kernel (Davis and Maschler 1965), etc.

Among all these solution concepts, the core remains one of the most appealing
concepts, due to its simple and intuitive definition. Roughly speaking, it is the set of
sharing vectors for which “nobody can complain”, or more exactly, which are coali-
tionally rational. This means that no coalition can be better off by splitting from the
grand coalition N , i.e., for every S ⊆ N , the payoff x(S) given to S is at least equal to
v(S), the profit that S can make without cooperating with the other players. The core
may be empty, but when nonempty, it ensures in some sense the stability of the set of
players, hence its interest.

The core is an important notion in economics. In an exchange economy, the core
is defined as the set of situations where no coalition of agents can improve the utility
of its members by reassigning the initial resources of its own members among them
(Debreu and Scarf 1963). Besides, there are many examples in economics where a
common good or resource has to be shared among several users (e.g., a river supplying
the water of several towns). The problem of sharing the cost among all the users in a
rational way precisely amounts to find a solution like the core (Ambec and Sprumont
2002; van den Brink and van der Laan 2005; van den Brink et al. 2007; Khmelnitskaya
2009). The core is also well known in decision theory and in the field of imprecise
probabilities (see the monograph of Walley (1991), and also Chateauneuf and Jaffray
(1989)): given a capacity, i.e., a monotonic game v such that v(N ) = 1 (Choquet
1953) representing the uncertainty on the set of states of nature, its core is the set of
probability measures compatible with the available information on uncertainty. Con-
versely, given a family of probability measures representing some uncertainty on the
set of states of nature, its lower envelope defines a capacity.

The core has been widely studied, and its properties are well known. In particular,
when nonempty it is a bounded convex polyhedron, and the famous Bondareva theo-
rem tells us when the core is nonempty (Bondareva 1963), while Shapley (1971) and
later Ichiishi (1981) found the vertices of the core for convex games.

The classical view in cooperative game theory is to consider that every coalition
can form, i.e., a game v is a mapping defined on 2N , the set of all subsets of N . A view
closer to reality reveals that it is not always possible to assume that every coalition
can form, so that one should distinguish between feasible and unfeasible coalitions.
For example, some hierarchy may exist on the set of players, and feasible coalitions
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The core of games on ordered structures and graphs 209

are those which respect this hierarchy, in the sense that subordinates should be present
(games with precedence constraints, Faigle and Kern 1992). Another example is when
coalitions are the connected subgraphs of a communication graph, depicting who can
communicate with whom (Myerson 1977b). More simply, when considering politi-
cal parties, leftist and rightist parties cannot in general make alliance. In fact, many
authors have studied the case where the set of feasible coalitions is a subcollection of
2N , as this paper will show.

The study of the core under such a general framework becomes much more dif-
ficult. Surprisingly, even if the core, when nonempty, is still a convex polyhedron, it
need not be bounded, and moreover, it need not have vertices. The structure of the
core for convex games, perfectly clear in the classical case, is complicated by the fact
that it is not always possible to speak of convex games in the usual sense, because
the definition of convexity works for a collection of feasible coalitions closed under
union and intersection. The aim of this survey is precisely to give a unified view of
the scattered results around these questions.

The paper is organized as follows. Section 2 introduces the basic material on par-
tially ordered sets and polyhedra. Then Sect. 3 is devoted to a comparative study of
various families of set systems (collections of feasible coalitions). Section 4 defines
the core and the positive core, and gives the main classical results that are valid when
all coalitions are feasible. Section 5 studies the structure of the core under various
assumptions on the set system, while Sect. 6 does the same for the positive core.
Finally, Sect. 7 studies the case of communication graphs.

Throughout the paper, the following notation will be used: we denote by R+ the
set of nonnegative real numbers; N = {1, . . . , n} is the set of players; for any subset
S ⊆ N , 1S denotes the characteristic function (or vector) of S. For singletons, pairs,
etc., we often omit braces and commas to avoid a heavy notation: we write S \ i, 123
instead of S \ {i} and {1, 2, 3}.

2 Some prerequisites

2.1 Partially ordered sets

The reader can consult, e.g., Davey and Priestley (1990), Birkhoff (1967), and Grätzer
(1998) for more details. A partially ordered set (or poset for short) (P,≤) (or simply
P if no confusion occurs) is a set P endowed with a partial order ≤ (i.e, a reflexive,
antisymmetric and transitive binary relation). As usual, x < y means x ≤ y and
x �= y, while x ≥ y is equivalent to y ≤ x . Two elements x, y ∈ P are incomparable,
and we denote this by x ||y, if neither x ≤ y nor y ≤ x hold. A useful example of
poset in this paper is (2N ,⊆). We say that x is covered by y, and we write x ≺ y, if
x < y and there is no z ∈ P such that x < z < y. A chain in P is a sequence of
elements x1, . . . , xq such that x1 < · · · < xq , while in an antichain, any two elements
are incomparable. A chain from x1 to xq is maximal if no other chain can contain it,
i.e., it is a sequence of elements x1, . . . , xq such that x1 ≺ · · · ≺ xq . The length of a
chain is its number of elements minus 1.
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210 M. Grabisch

Fig. 1 Left a distributive lattice L . Join-irreducible elements are those in grey. Middle the poset J (L) of
join-irreducible elements. Right the set O(J (L)) of all downsets of J (L) ordered by inclusion, which is
isomorphic to L

A subset Q ⊆ P is a downset of P if for any x ∈ Q, y ≤ x implies y ∈ Q (and
similarly for an upset).1 The set of all downsets of P is denoted by O(P).

An element x ∈ P is maximal if there is no y ∈ P such that y > x (and similarly
for a minimal element). x ∈ P is the (unique) greatest element (or top element) of
P if x ≥ y for all y ∈ P (and similarly for the least element, or bottom element).
Suppose P has a least element ⊥. Then x is an atom of P if x 
 ⊥. Let Q ⊆ P . The
element x ∈ P is an upper bound of Q if x ≥ y for all y ∈ Q (and similarly for a
lower bound). For x, y ∈ P , the supremum of x, y, denoted by x ∨ y, is the least upper
bound of {x, y}, if it exists (and similarly for the infimum of x, y, denoted by x ∧ y).

A poset L is a lattice if every pair of elements x, y ∈ L has a supremum and an
infimum. A lattice L is distributive if ∨,∧ obey distributivity, that is, x ∨ (y ∧ z) =
(x ∨y)∧(x ∨z) or equivalently x ∧(y∨z) = (x ∧y)∨(x ∧z), for all x, y, z ∈ L . If L is
finite, then it has a least and a greatest element, which we denote by ⊥,
 respectively.
An element x �= ⊥ is join-irreducible if it cannot be expressed as a supremum of other
elements, or equivalently, if it covers only one element. Atoms are join-irreducible
elements. We denote by J (L) the set of all join-irreducible elements. An important
result which will be useful in the sequel is the theorem of Birkhoff (1933): it says
that if the lattice (L ,≤) is distributive, then it is isomorphic to O(J (L)), where it is
understood that J (L) is endowed with ≤, and that the set of downsets is endowed
with inclusion. Conversely, any poset P generates a distributive lattice O(P). This is
illustrated on Fig. 1.

Let P be a poset, and x ∈ P . The height of x is the length of a longest chain
in P from a minimal element to x . The height of a lattice L is the height of its top
element, i.e., it is the length of a longest chain from bottom to top. When the lattice is
distributive, its height is |J (L)|.

1 Some authors use instead the words ideals and filters. This is however incorrect, since in the standard
terminology, an ideal is a downset closed under supremum, and a filter is an upset closed under infimum.
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The core of games on ordered structures and graphs 211

2.2 Inequalities and polyhedra

We recall only some basic facts useful for the sequel (see, e.g., Ziegler 1995; Faigle
et al. 2002 for details). Our exposition mainly follows Fujishige (2005, §1.2).

We consider a set of linear equalities and inequalities with real constants

n∑

j=1

ai j x j ≤ bi (i ∈ I ) (2.1)

n∑

j=1

a′
i j x j = b′

i (i ∈ E). (2.2)

This system defines an intersection of halfspaces and hyperplanes, called a (closed
convex) polyhedron. A set C ⊆ R

n is a convex cone (or simply a cone) if x, y ∈ C
implies that αx +βy ∈ C for all α, β ≥ 0 (conic combination). The cone is pointed if
C ∩ (−C) = {0} (equivalently, if it has an extreme point, see below). An affine set A
is the translation of a subspace of the vector space R

n . Its dimension is the dimension
of the subspace. A line is a one-dimensional affine set, and a ray is a “half-line”, i.e.,
a translation of a set given by {αx | α ≥ 0} for some x ∈ R

n, x �= 0. An extreme ray
of a cone is a ray whose supporting vector cannot be expressed as a convex combina-
tion of the supporting vectors of other rays. Any cone can be expressed as the conic
combination of its extreme rays. An extreme point or vertex of a polyhedron P is a
point in P which cannot be expressed as a convex combination of other points in P .
A polyhedron is pointed if it contains an extreme point. The recession cone C(P) of
a polyhedron P defined by (2.1) and (2.2) is defined by

n∑

j=1

ai j x j ≤ 0 (i ∈ I ) (2.3)

n∑

j=1

a′
i j x j = 0 (i ∈ E). (2.4)

The recession cone is either a pointed cone (possibly reduced to {0}) or it contains a
line. The following basic properties are fundamental:

(i) P has rays (but no line) if and only if C(P) is a pointed cone different from {0};
(ii) P is pointed if and only if C(P) does not contain a line, or equivalently, if the

system (2.4) and

n∑

j=1

ai j x j = 0 (i ∈ I )

has 0 as unique solution.
(iii) P is a polytope (i.e., a bounded polyhedron) if and only if C(P) = {0}.
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212 M. Grabisch

The fundamental theorem of polyhedra asserts that any pointed polyhedron P defined
by a system (2.1) and (2.2) is the Minkowski sum of its recession cone (generated by
its extreme rays; this is the conic part of P) and the convex hull of its extreme points
(the convex part of P):

P = cone(r1, . . . , rk)+ conv(ext(P))

where r1, . . . , rk are the extreme rays of C(P), cone() and conv() indicate respectively
the set of all conic and convex combinations, and ext() is the set of extreme points of
some convex set.

If P is not pointed, then it reduces to its recession cone up to a translation.

3 Set systems

Our study deals with games defined on a collection of feasible coalitions. In this
section, we introduce various possible structures for these collections. The weakest
requirement we introduce is that the collection should include the grand coalition, and
for mathematical convenience, the empty set. There are however exceptions to this
rule.

A set system F on N is a subset of 2N containing ∅ and N . Endowed with inclu-
sion, F is a poset with top and bottom elements N ,∅ respectively. The set of maximal
chains from ∅ to N in F is denoted by C(F). For any S ⊆ N , we put F(S) := {T ∈
F | T ⊆ S}.

A set system F is atomistic if {i} ∈ F for all i ∈ N .
For any collection F ⊆ 2N , we introduce

F̃ := {S ∈ 2N | S = F1 ∪ · · · ∪ Fk, F1, . . . , Fk ∈ F pairwise disjoint}

the family generated by F (Faigle 1989).
Let F be a set system. A TU-game (or simply game) on F is a mapping v : F → R

such that v(∅) = 0. The game is monotonic if for S, T ∈ F such that S ⊆ T , we have
v(S) ≤ v(T ) (and therefore v is nonnegative).

When F = 2N , the notion of convexity and superadditivity are well known. A game
is said to be convex if for any S, T ∈ 2N , we have

v(S ∪ T )+ v(S ∩ T ) ≥ v(S)+ v(T ).

A game v is superadditive if the above inequality holds for disjoint subsets, i.e., for
all S, T ∈ 2N such that S ∩ T = ∅,

v(S ∪ T ) ≥ v(S)+ v(T ).

The above notions generalize as follows. Assume F is a (set) lattice. A game v on F
is convex if for any S, T ∈ F ,

v(S ∨ T )+ v(S ∧ T ) ≥ v(S)+ v(T ).
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The core of games on ordered structures and graphs 213

Superadditivity amounts to the above inequality restricted to subsets S, T such that
S ∧ T = ∅. Obviously, one could not speak of convex game if the set system is not a
lattice. It is however possible to find alternative definitions for weaker structures, as
will be seen in the sequel (see Sect. 6.1, and supermodular games in Sect. 6.2).

The Möbius transform of v on F is a real-valued mapping mv on F given implicitely
by the system of equations

v(S) =
∑

F⊆S,F∈F
mv(F), S ∈ F .

As it is well known, when F = 2N, we obtain mv(S) = ∑
F⊆S(−1)|S\F |v(F). The

Möbius transform is known as the Harsanyi dividends (Harsanyi 1963) in game theory.
Given these general definitions, we turn to the study of the main families of set

systems.

3.1 Regular set systems

Let 1 ≤ k ≤ n. A set system is k-regular if all maximal chains from ∅ to N have the
same length k (Xie and Grabisch 2009). A n-regular set system is simply called a reg-
ular set system (Honda and Grabisch 2008; Lange and Grabisch 2009). Equivalently,
F is regular if and only if for S, T ∈ F such that S 
 T , we have |S \ T | = 1.

Any regular set system satisfies:

(i) One-point extension: if S ∈ F , S �= N , then ∃i ∈ N \ S such that S ∪ i ∈ F ;
(ii) Accessibility: if S ∈ F , S �= ∅, then ∃i ∈ S such that S \ i ∈ F .

The converse is not true (see Fig. 2).
In a k-regular set system F , for any S, T ∈ F , all maximal chains from S to T have

the same length.

Remark 3.1 Obviously, regular set systems (and to a less extent, k-regular set systems)
offer a convenient mathematical framework because all maximal chains have length n,
and for this reason many notions [in particular marginal worth vectors, and therefore
the Shapley value (Shapley 1953) and the Weber set (see Sect. 4)] can be defined as
in the classical case F = 2N . One can however find motivations for such structures
which are more game-theoretically oriented:

Fig. 2 A set system satisfying
one-point extension and
accessibility, but which is not
k-regular
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214 M. Grabisch

(i) The set of connected coalitions in a connected communication graph is a regular
set system (see Sect. 7). The converse is false: {i} ∈ F for all i ∈ N is a neces-
sary condition (for necessary and sufficient conditions: see augmenting systems
in Sect. 3.7).

(ii) Maximal chains correspond to permutations on N (or total orders on players). A
regular set system forbids some permutations, i.e., some orderings of the players
to enter the game. With k-regular set systems, k < n, players may enter the game
by groups.

3.2 Convex geometries and antimatroids

A convex geometry F (Edelman and Jamison 1985) is a collection of subsets of N
containing the empty set, closed under intersection, and satisfying the one-point exten-
sion property. Necessarily N ∈ F , hence it is a set system, and moreover a regular set
system.

An antimatroid F (Dilworth 1940) is a collection of subsets of N containing the
empty set, closed under union, and satisfying the accessibility property. Any antimat-
roid satisfies the augmentation property:

S, T ∈ F with |T | > |S| ⇒ ∃i ∈ T \ S s.t. S ∪ i ∈ F .

If F satisfies
⋃ F = N , then N ∈ F . Such antimatroids are called normal by van

den Brink (2009).

Remark 3.2 Algaba et al. (2004) relate antimatroids to permission structures; see
Sect. 3.4. However, the relation is somewhat artificial since antimatroids do not always
correspond to permission structures (this is the case of systems closed under ∪,∩). The
unusual word “poset antimatroids” is used, and means the set of upsets (or downsets)
of a poset. These are antimatroids closed under intersection. But it is well known that
such set systems are distributive lattices O(N ) (and so could be called poset convex
geometries as well), hence closed under union and intersection (see Sect. 2.1).

3.3 Set lattices

If a set system is a lattice, we call it a set lattice. It need not be closed under ∩,∪, nor
be a k-regular set system [see for example the pentagon on Fig. 4 (ii)].

If the lattice is distributive, then we benefit from Birkhoff’s theorem and we know
that it is generated by a poset P . However, this poset is not always N endowed with
some partial order. The following can be easily proved and clarifies the situation (see
Xie and Grabisch 2009):

Proposition 3.3 Let F be a distributive set lattice on N of height k. The following
holds.

(i) F is a k-regular set system, which is generated by a poset P of k elements, i.e.,
F is isomorphic to O(P).
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The core of games on ordered structures and graphs 215

(ii) F is closed under union and intersection if and only if F is isomorphic to O(P),
where P can be chosen to be a partition of N .

(iii) k = n if and only if F is isomorphic to O(N ).
Figure 3 shows the relative situation of set lattices and k-regular set systems.

Figure 4 shows that all inclusions are strict.

3.4 Systems closed under union and intersection

As seen in Sect. 3.3, these are particular set lattices, which are distributive and gener-
ated by a partition of N .

Fig. 3 Set lattices and k-regular set systems

(i) (ii) (iii)

(iv) (v)

Fig. 4 i k-regular but not a lattice; ii lattice but not k-regular; iii k-regular lattice but not distributive; iv
distributive lattice but not closed under ∪; v closed under ∪,∩ but not isomorphic to O(N )
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216 M. Grabisch

Derks and Gilles (1995) proved that they are equivalent to (conjunctive) permission
structures of Gilles et al. (1992). A (conjunctive) permission structure is a mapping
σ : N → 2N such that i �∈ σ(i). The players in σ(i) are the direct subordinates of i .
“Conjunctive” means that a player i has to get the permission to act of all his superiors.
Consequently, an autonomous coalition contains all superiors of every member of the
coalition, i.e., the set of autonomous coalitions generated by the permission structure
σ is

Fσ = {S ∈ 2N | S ∩ σ(N \ S) = ∅}.

Then F is closed under union and intersection if and only if F = Fσ for some
permission structure σ .

See also Algaba et al. (2004) for similar results related to antimatroids (see
Sect. 3.2). They characterize acyclic permission structures (i.e., where, for all i ∈ N ,
in the set of all subordinates (not limited to the direct ones) of i, i is not present) by
distributive lattices O(N ) (called there poset antimatroids).

3.5 Weakly union-closed systems

A set system F is weakly union-closed if F ∪ F ′ ∈ F for all F, F ′ ∈ F such that
F ∩ F ′ �= ∅.

An important consequence is that for any S ⊆ N ,F(S) := {F ∈ F | F ⊆ S} has
pairwise disjoint maximal elements.

The basis of F is the collection of sets S in F which cannot be written as S = A∪B,
with A, B ∈ F , A, B �= S, A ∩ B �= ∅ (Bilbao 2000, Chap. 6). All singletons and
pairs of F are in the basis. Clearly, knowing the basis permits to recover F .

Remark 3.4 (i) This terminology is used by Faigle and Grabisch (2009). Weakly
union-closed systems have been studied under the name union stable systems
by Algaba (1998) [summarized in Bilbao (2000, Chap. 6)].

(ii) They are closely related to communication graphs because if F represents a
communication graph (i.e., F is the collection of connected coalitions of the
graph; see Sect. 7), then the union of two intersecting connected coalitions must
be connected. van den Brink (2009) characterized those weakly union-closed
collections which correspond to communication graphs: F ⊆ 2N is the set
of connected coalitions of some comunication graph if and only if ∅ ∈ F ,F
is normal (i.e.,

⋃ F = N ), weakly union-closed, and satisfies 2-accessibility
(i.e., S ∈ F with |S| > 1 implies that there exist distinct i, j ∈ S such that
S \ i and S \ j belong to F). Another characterization is due to Bilbao through
augmenting systems (see Sect. 3.7).

(iii) Similarly, they are also related to the more general notion of conference struc-
tures of Myerson (1980), which generalize communication graphs. A confer-
ence structure Q is a collection of subsets of N of cardinality at least 2. Two
players i, j are connected if there is a sequence S1, . . . , Sk of sets in Q such
that i ∈ S1, j ∈ Sk , and S� ∩ S�+1 �= ∅ for � = 1, . . . , k − 1. Then, F :=
{S ⊆ N | ∀i, j ∈ S, i and j are connected} is a weakly union-closed system.
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The core of games on ordered structures and graphs 217

Conversely, given a weakly union-closed system F , the basis of F restricted
to sets of cardinality at least 2 can be considered as a conference structure. An
equivalent view of this is given by van den Nouweland et al. through hyper-
graphs (van den Nouweland et al. 1992), since in a hypergraph, a (hyper)link
joins several nodes (and thus can be viewed as a subset of cardinality at least 2).
Thus, a path in a hypergraph corresponds to a sequence S1, . . . , Sk as described
above.

3.6 Partition systems

They were studied by Bilbao (2000, §5.1) and Algaba et al. (2001). A partition system
is a collection F ⊆ 2N containing the empty set, all singletons, and such that for every
S ⊆ N , the maximal subsets of S in F form a partition of S (equivalently, F contains
∅, all singletons and is weakly union-closed).

Any set system induced by a communication graph is a partition system. If F is a
partition system, then F̃ = 2N .

3.7 Augmenting systems

An augmenting system (Bilbao 2003; Bilbao and Ordóñez 2009, 2008) is a collection
F ⊆ 2N containing ∅, being weakly union-closed, and satisfying

∀S, T ∈ F s.t. S ⊆ T, ∃i ∈ T \ S s.t. S ∪ i ∈ F .

Remark 3.5 (i) In Bilbao (2003), it is required in addition that
⋃ F = N (obvi-

ously, this property should always be required when dealing with collections of
subsets).

(ii) N does not necessarily belong to F . If N ∈ F , the above property implies that
all maximal chains from ∅ to N have the same length n, and thus F is a regular
set system. The converse is false.
If N �∈ F , by weak union-closure, all maximal sets in F , say F1, . . . , Fk , are
disjoint, and no F ∈ F can intersect two distinct maximal subsets. Therefore,
F can be partitioned into augmenting subsystems F1, . . . ,Fk on F1, . . . , Fk

respectively, which are all regular. Hence, it is sufficient to study the case where
N ∈ F .

(iii) An augmenting system is an antimatroid (respectively, convex geometry) if and
only if F is closed under union (respectively, intersection).

(iv) Augmenting systems are of particular importance since they permit to charac-
terize communication graphs (see Sect. 7). Specifically, if G is a communication
graph, the set of connected coalitions is an augmenting system. Conversely, an
augmenting system is the collection of connected coalitions of a communica-
tion graph if {i} ∈ F for all i ∈ N . Each connected component of the graph
corresponds to the augmenting subsystems F1, . . . ,Fk mentionned in (ii).
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218 M. Grabisch

Augmenting systems are also closely related to the previously introduced structures,
as shown in the next proposition.

Proposition 3.6 F is an augmenting system containing N if and only if it is regular
and weakly union-closed.

Proof The “only if” part has been already noticed above. Now, suppose it is regular.
Take S ⊆ T in F , then they lie on some chain. Since the system is regular, there are
t − s − 1 subsets between S and T , which implies the augmentation property. ��

The various relations between regular set systems, weakly union-closed systems
and augmenting systems are illustrated on Fig. 5. Figure 6 shows that it is possible to
have regular set lattices which are not weakly union-closed, and weakly union-closed
regular systems not being a lattice.

3.8 Coalition structures

Our last category is of different nature since it is not a set system in our sense, and
its motivation is very different from the notion of feasible coalition. Its origin comes

Fig. 5 Regular set systems and weakly union-closed systems

Fig. 6 Left: regular set lattice
but not weakly union-closed.
Right: regular and weakly
union-closed but not a lattice,
since 1 and 2 have no supremum
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The core of games on ordered structures and graphs 219

from the domain of coalition formation. We nevertheless mention it here due to its
importance, although the topic of coalition formation falls outside the scope of this
survey (see, e.g., Holler and Owen 2001; van Deemen 1997).

A coalition structure on N is a partition of N (Aumann and Drèze 1974). It is called
by Owen (1977) a priori union structures.

Let v be a game on 2N , and consider a coalition structure B := {B1, . . . , Bm}.
Given a payoff vector x, Bk ∈ B, we define the game v∗

x on 2Bk by

v∗
x (S) =

{
maxT ⊆N\Bk (v(S ∪ T )− x(T )), S ⊂ Bk, S �= ∅
v(S), S = Bk or ∅.

Remark 3.7 The above definition considers a game in the classical sense, and not on
the blocks of the partition. Another type of game suited for coalition structures is
global games and games in partition function form. We mention them without fur-
ther development since their nature is too far away from coalitional games. A global
game (Gilboa and Lehrer 1991) is a real-valued mapping defined on the set �(N ) of
partitions of N : it assigns some worth to any coalition structure. A game in partition
function form (Thrall and Lucas 1963) is a mapping v assigning a real number to
a coalition S and a partition π containing S: knowing that the coalition structure is
some π ∈ �(N ) such that S ∈ π, v(S, π) is the worth of S in this organization of the
society.

4 The core and related notions

Let v be a game on a set system F . A payoff vector is any x ∈ R
n . It represents some

amount of money given to the players. By commodity we write x(S) := ∑
i∈S xi for

any S ⊆ N . A payoff vector is efficient if x(N ) = v(N ). The pre-imputation set of v
is the set of all efficient payoff vectors. We define the imputation set of v as

I (v) := {x ∈ R
n | xi ≥ v({i}) if {i} ∈ F and x(N ) = v(N )}.

The core of v is defined by

core(v) := {x ∈ R
n | x(S) ≥ v(S) for all S ∈ F and x(N ) = v(N )}.

The positive core of v is defined by (Faigle 1989):

core+(v) := {x ∈ R
n+ | x(S) ≥ v(S) for all S ∈ F and x(N ) = v(N )}.

Remark 4.1 (i) The classical definition of the core (Shapley 1971) is recovered
with F = 2N . It should be noted that the definition is meaningful only if the
game is a profit game. For cost games, the inequalities should be reversed. The
core is the set of payoff vectors which are coalitionally rational: no coalition
can have a better profit if it splits from the grand coalition N .
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(ii) If F contains all singletons and the game is monotonic, the distinction between
the core and the positive core is void since they coincide. The positive core
retains imputations which are nonnegative, which means that in no case the
players would have to pay something instead of being rewarded. This notion
is natural essentially if the game is monotonic, for otherwise there would exist
players with negative contribution to the game, and those players should be
penalized; see also Remark 6.1.

(iii) The (positive) core is also well known in decision under risk and uncertainty:
it is the set of probability measures dominating a given capacity (monotonic
game); see, e.g., Walley (1991). More surprisingly, the (positive) core with the
reversed inequalities is a well-known concept in combinatorial optimization,
under the name of base polyhedron of a polymatroid (Edmonds 1970), where
a polymatroid is nothing else than a submodular2 monotonic game. As we will
see, many theorems shown in game theory about the core were already known in
combinatorial optimization; see the excellent monograph of Fujishige (2005).

We recall the classical results on the core when F = 2N .
A first important question is to know whether the core is empty or not. A collection

B of nonempty subsets of 2N is balanced if there exist positive coefficients λB, B ∈ B,
such that

∑

B∈B
λB1B = 1N .

The vector λ := (λB)B∈B is called the balancing vector. Balanced collections gener-
alize the notion of partitions. Derks and Peters (1998) have shown that a collection is
balanced if and only if for all y ∈ R

n such that y(N ) = 0 (side-payment vector), if
y(S) > 0 for some S ∈ B, then it exists S′ ∈ B such that y(S′) < 0.

A game v on 2N is balanced if for every balanced collection B with balancing
vector λ it holds

∑

B∈B
λBv(B) ≤ v(N ).

This could be interpreted by saying that there is no advantage in dividing the grand
coalition into balanced collections. The following well-known result is an easy con-
sequence of the duality theorem of linear programming.

Theorem 4.2 (Bondareva 1963) Let v be a game on 2N . Then core(v) �= ∅ if and
only if v is balanced.

Obviously, the interest of the theorem is more mathematical than algorithmical. It can-
not reasonably be used for testing the nonemptiness of the core of a given game. Since
the core is a set of linear inequalities, classical tools testing the feasability of a set

2 When F is closed under ∪,∩, a submodular game, also called concave, satisfies the inequality v(S ∪
T )+ v(S ∩ T ) ≤ v(S)+ v(T ) for all S, T ∈ 2N .
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of inequalities, like the Fourier-Motzkin elimination, or simply a linear programming
solver, should be used.

Assuming that the core is nonempty, it is a polytope, and therefore the ques-
tion of knowing its vertices arises. To each maximal chain C ∈ C(2N ) with
C = {∅, S1, . . . , Sn = N }, corresponds bijectively a permutation σ ∈ S(N ), the
set of permutations on N , such that

Si = {σ(1), . . . , σ (i)}, i = 1, . . . , n.

Considering a game v on 2N , to each permutation σ (or maximal chain C) we assign
a marginal worth vector φσ (or φC ) in R

n by:

φσσ(i) := v(Si )− v(Si−1) = v(Si−1 ∪ σ(i))− v(Si−1).

The Weber set is the convex hull of all marginal worth vectors:

W(v) := conv(φC | C ∈ C(2N )).

The following inclusion always holds

core(v) ⊆ W(v).

Theorem 4.3 The following assertions are equivalent.

(i) v is convex
(ii) All marginal vectors φC ,C ∈ C(2N ) (or φσ , σ ∈ S(N )), belong to the core

(iii) core(v) = conv({φσ }σ∈S(N ))

(iv) ext(core(v)) = {φσ }σ∈S(N ).

Shapley (1971) proved (i)⇒(ii) and (i)⇒(iv), while Ichiishi (1981) proved (ii)⇒(i).
Edmonds (1970) proved the same result as Shapley. This is also mentionned in (Lovász
1983). This result clearly shows why convexity is an important property for games.
Indeed, in this case, the core is nonempty and its structure is completely known. In
the subsequent sections, we will see that much effort is done for games defined on set
systems in order to preserve these properties as far as possible.

5 Structure of the core

5.1 General results for arbitrary set systems

We begin by some simple considerations on the imputation set. If F is atomistic,
then I (v) �= ∅ if and only if v(N ) ≥ ∑

i∈N v({i}). If F is not atomistic, then it is
always true that I (v) �= ∅. Indeed, if { j} �∈ F , just take xi = v(i) if {i} ∈ F , x j =
v(N )− ∑

{i}∈F v(i), and xi = 0 otherwise. Similarly, I (v) is bounded if and only if
F is atomistic.
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The first question we address is to know when the core is nonempty. It is easy to
see that the classical definitions and result of Bondareva on balancedness still work:
core(v) �= ∅ if and only if v is balanced, where balanced collections are understood as
collections in F . Another result is due to Faigle (1989), with a different (but equivalent)
definition of balancedness. A game v on F is balanced if for all families A1, . . . , Ak

in F and m ∈ N it holds

1

m

k∑

i=1

1Ai = 1N implies
1

m

k∑

i=1

v(Ai ) ≤ v(N ).

In the above, it should be noted that repetitions are allowed in the family and that the
length of a family is arbitrary.

Assuming that core(v) is nonempty, one can define its lower envelope v∗, which is
a game on 2N :

v∗(S) := min
x∈core(v)

x(S), ∀S ⊆ N .

Note that v∗(N ) = v(N ), and if F = 2N , we have core(v∗) = core(v).

Remark 5.1 The lower envelope is an important notion in decision theory (see Walley
1991). In game theory, it is called the Harsanyi mingame (Derks et al. 2008).

An important question is to know whether the equality v = v∗ holds. Such games
are called exact. If a game v is exact, by the above mentioned property, it is the smallest
game having the core equal to core(v). Faigle (1989) proved the next result:

Theorem 5.2 A game v is exact if and only if for all families A, A1, . . . , Ak in F \{∅}
and m, l ∈ N,

k∑

i=1

1Ai = m1N + l1A implies
k∑

i=1

v(Ai ) ≤ mv(N )+ lv(A).

As above, repetitions are allowed in the family. This is similar to a result of Schmei-
dler (1972), proved when F is a (possibly infinite) family closed under union and
complementation: v is exact if and only if for all S ∈ F

v(S) = sup

{
∑

i

aiv(Si )− a|v| s.t.
∑

i

ai 1Si − a1N ≤ 1S,

with a ∈ R+, (ai , Si ) is a finite sequence in R+ × F
}
,

and |v| := sup{∑i aiv(Si ) | (ai , Si ) is a finite sequence in R+ × F s.t.
∑

i ai 1Si ≤
1N }.
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When nonempty, the core is a polyhedron. Therefore it makes sense to speak
of its recession cone [proposed under the name of core of the set system F by
Derks and Reijnierse (1998), hence the notation]:

core(F) := {x ∈ R
n | x(S) ≥ 0 for all S ∈ F and x(N ) = 0}.

A direct application of results of Sect. 2.2 leads to:

(i) core(v) has rays if and only if core(F) is a pointed cone different from {0}.
Then core(F) corresponds to the conic part of core(v);

(ii) core(v) has no vertices if and only if core(F) contains a line;
(iii) core(v) is a polytope if and only if core(F) = {0}.
Therefore, it remains to study the structure of the recession cone. We introduce

span(F) :=
{

S ⊆ N | 1S =
∑

T ∈F
λT 1T for some λT ∈ R

}
.

F is non-degenerate if span(F) = 2N . 3 Non-degeneracy implies the discerning prop-
erty (see Sect. 5.2). The converse holds if F is closed under ∪,∩ (see Theorem 5.10).
We give two easy sufficient conditions for F to be non-degenerate:

(i) F contains all singletons (obvious from Footnote 3);
(ii) F is regular. Indeed, since any chain has length n, all 1i ’s can be recovered from

1S j − 1S j−1 , for two consecutive sets S j , S j−1 in a chain.

Theorem 5.3 (Derks and Reijnierse 1998) core(F) is a pointed cone if and only if F
is non-degenerate.

This result is easy to see from Footnote 2 and Sect. 2.2. Indeed, non-degeneracy is
equivalent to the existence of linear combinations of the 1T ’s, T ∈ F , giving all 1i ’s,
i ∈ N , and the same linear combinations can be used to express all xi ’s, i ∈ N , from
the system x(T ) = 0, T ∈ F , thus proving that this system has a unique solution
(which is 0). But this is equivalent to say that the recession cone is a pointed cone.

We recall that F is balanced if ∃λS > 0 for all S ∈ F such that 1N = ∑
S∈F λS1S .

Theorem 5.4 (Derks and Reijnierse 1998) core(F) is a linear subspace if and only
if F is balanced.

Therefore, core(F) = {0} if and only if F is balanced and non-degenerate.
Lastly, considering a game v on F , we introduce the following extension of v to F̃

(Faigle 1989)

ṽ(S) := max

{
∑

i∈I

v(Fi ), {Fi }i∈I is a F − partition of S

}
,

3 In fact, it is simpler to check the following equivalent condition: for all i ∈ N , it exists a linear combination
of the 1T ’s, T ∈ F , giving 1i .
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where by a F-partition we mean a partition whose blocks belong to F . The game ṽ is
superadditive, and if ṽ(N ) = v(N ), then core(v) = core(ṽ), which is easy to show.

Remark 5.5 If F contains all singletons (e.g., a partition system), then F̃ = 2N , and
so ṽ is an extension of v on 2N : compare with the extension v defined in Sect. 6.3. Also,
ṽ is a partitioning game of Kaneko and Wooders (see Sect. 5.4). If v is a superadditive
game on a partition system, then ṽ = v. In Bilbao (2000, §5.3) it is shown that if F is
a partition system containing N and v(N ) = v(N ) = ṽ(N ), then core(v) = core(ṽ).

5.2 Set systems closed under ∪,∩

Let F be a set system closed under ∪,∩ (such systems are distributive lattices, and
correspond to permission structures; see Sect. 3.4). For each i ∈ N we define

Di :=
⋂

{S ∈ F | S � i} = smallest S in F containing i.

Proposition 5.6 The set of Di ’s coincides with the set of join-irreducible elements of
F , i.e.,

{Di }i∈N = J (F).

Moreover, if the height of F is strictly smaller than n, necessarily we have Di = D j

for some i, j (the height equals the number of distinct Di ’s).

Proof Suppose there is some Di which is not a join-irreducible element. Then Di can
be written as the supremum of other elements, which are smaller. Since F is closed
under ∪, one of these elements must contain i , a contradiction with the definition of Di .

Conversely, take a join-irreducible element S. If S = {i}, we are done. Assume
then that |S| > 1. Since it covers only one subset, say S′, for any i in S \ S′, S is the
smallest subset containing i , whence the result.

Finally, since F is a distributive lattice, its height is the number of join-irreducible
elements, hence some Di ’s must coincide if the height is less than n. ��
Remark 5.7 The sets Di ’s are introduced in Derks and Gilles (1995). They are also
known in the literature of combinatorial optimization [see Fujishige (2005, Sec. 3.3)
and Fujishige (2005, Sec. 7.2 (b.1)) (principal partitions)].

Theorem 5.8

core(F) = cone(1 j − 1i | i ∈ N and j ∈ Di ).

If F is not closed under ∪,∩, then any 1 j − 1i is a ray of core(F).
Remark 5.9 This result is due to Derks and Gilles (1995). It was in fact proved when
the system is of the type O(N ) in a more precise form by Tomizawa (1983), cited in
Fujishige (2005, Th. 3.26): it says that the extreme rays are those corresponding to
j 
 i in (N ,≤). Note that it could be easily adapted if the lattice is not generated by
N , but by a partition of N (see Proposition 3.3).
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The set system F is discerning if all Di ’s are different (equivalently, by Proposition 5.6,
if the height of F is n, which is a much simpler condition).

Theorem 5.10 (Derks and Gilles 1995) Consider F to be closed under ∪,∩. core(F)
is a pointed cone if and only if F is discerning.

This result is easy to deduce from previous facts. If the recession cone is pointed,
then F is non-degenerate by Theorem 5.3, which implies the discerning property as
mentioned above. If F is discerning, then its height is n, and so it is regular, which
implies that it is non-degenerate, and therefore, the recession cone is pointed.

When F is of the type O(N ), for any maximal chain C ∈ C(F), define the marginal
vector associated to C like in the classical case, and define the Weber set as the convex
hull of all marginal vectors.

Theorem 5.11 Let F be of the type O(N ). Then the convex part of the core is included
in the Weber set.

Theorem 5.12 Let F be of the type O(N ). Then v is convex if and only if the convex
part of the core is equal to the Weber set.

Remark 5.13 The two last theorems are shown by Grabisch and Xie (2008), but they
can deduced from Derks and Gilles (1995), where they are stated for acyclic permis-
sion structures. Indeed, from Algaba et al. (2004), we know that these systems are
equivalent to distributive lattices of the type O(N ) (see Sect. 3.4). The “only if” part
of the latter theorem was already shown by Fujishige and Tomizawa (1983).

Lastly, we address a slightly more general case, where closure under union is
replaced by weak union-closure. The following development is due to Faigle (1989).
A, B ⊆ N is a crossing pair if A, B intersect, A ∪ B �= N and A\B, B\A are non-
empty. Then F is a crossing family if A ∪ B, A ∩ B ∈ F whenever A, B is a crossing
pair. v on a crossing family F is convex if for every crossing pair v(A∪B)+v(A∩B) ≥
v(A)+ v(B).

Theorem 5.14 Suppose F is weakly union-closed and closed under intersection. Then
F̃ is closed under union and intersection, and v convex on F implies ṽ convex on F̃ .

Theorem 5.15 Suppose F is weakly union-closed and closed under intersection, and
v on F is convex. Then v is balanced if and only if for all partitions (with nonempty
blocks, as usual) {A1, . . . , Ak} of N,

v(A1)+ · · · + v(Ak) ≤ v(N ).

Now, if the Ai ’s are only pairwise disjoint, this characterizes complete balancedness
(see Sect. 6).

5.3 Convex geometries

The core of games on convex geometries has been studied by Bilbao et al. (1999).
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Theorem 5.16 Let v be a game on a convex geometry F .

(i) core(v) is either empty or a pointed polyhedron (i.e., having vertices).
(ii) Assume that core(v) �= ∅ and that v is nonnegative. Then core(v) is a polytope

if and only if F is atomistic if and only if core(v) = core+(v).

Remark 5.17 (i) is clear from Theorem 5.3 since a convex geometry is non-degenerate
(since n-regular). (ii) was already remarked by Faigle (1989) (see Theorem 6.2).

A game v is quasi-convex if convexity holds only for pairs A, B ∈ F such that
A ∪ B ∈ F . Marginal vectors are defined as usual, considering all maximal chains in
F (all of length n).

Theorem 5.18 A game v on F is quasi-convex if and only if all marginal vectors
belong to the core.

5.4 Partition systems

Let F be a partition system, v be a game on F , and v its extension on 2N (see Sect. 6.3).
If N ∈ F , it is easy to establish that core(v) ⊆ core(v).

Kaneko and Wooders (1982) deal with a weaker definition of partition systems. A
partition system only needs to contain all singletons. Then a partitioning game v is a
game on 2N defined from some game v′ on F by

v(S) = max

{
∑

i∈I

v′(Fi ), {Fi }i∈I is a F − partition of S

}
.

Then v is superadditive and core(v) = core(v′) when N ∈ F .

5.5 k-Regular set systems

The core of games on k-regular set systems has been studied by Xie and Grabisch
(2009). We mentioned in Sect. 5.1 that a n-regular set system is non-degenerate,
hence Theorem 5.3 applies and the core is a pointed polyhedron, unbounded in gen-
eral. However, in many cases, F could be degenerate, and in this case the core has no
vertices. This is the case for the 2-regular set system given in Fig. 7.

Fig. 7 Example of a degenerate
2-regular set system with three
players
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Let F be a k-regular set system, and a maximal chain C := {∅ = S0, S1, . . . , Sk =
N }. Since |Si\Si−1| > 1 may occur, the classical definition of a marginal worth vector
does not work. Instead, from a given maximal chain, several marginal worth vectors
can be derived. Choose an element ri in Si\Si−1, i = 1, . . . , k. The marginal worth
vector associated to C and r1, . . . , rk is defined by

ψC(r1,...,rk ) =
k∑

i=1

(v(Si )− v(Si−1))1ri .

We have ψC(r1,...,rk )(Si ) = v(Si ) for all Si ∈ C . Denote by M(v,F) the set of all
marginal worth vectors, for all maximal chains and possible choices of elements. We
define the Weber set as

W(v) := conv(M(v,F)).

Theorem 5.19 Let F be a k-regular lattice closed under union and intersection. If v
is convex, then W(v) ⊆ core(v).

Theorem 5.20 Let F be a n-regular lattice. If v is monotone and convex, then W(v) ⊆
core(v).

The classical inclusion of the convex part of the core into the Weber set does not hold
in general, as shown by the following counterexample.4

Consider the following sets system (regular set lattice but not distributive, since it
contains a pentagon, figured by the grey circles), with the values of the game v given
into parentheses.

The core is defined by

x1 ≥ −1

x2 ≥ −1

x1 + x2 ≥ −1

4 This example was communicated by J. Derks.
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x1 + x3 ≥ 0

x2 + x3 ≥ 0

x1 + x2 + x3 = 0

The core is bounded and vertices are (0, 0, 0), (−1, 0,+1), (0,−1,+1). The Weber
set is generated by the marginal vectors associated to the 4 maximal chains (only 2
differents):

(0,−1,+1), (−1, 0,+1).

Clearly, W(v) �� (0, 0, 0).

Remark 5.21 As noted in Sect. 6.1, the same phenomenon occurs for the positive core
of games on augmenting systems. However, one should be careful that this kind of
(negative) result heavily depends on the definition given to the marginal vectors: the
framework given in Sect. 6.2, which is more general than augmenting systems, does
not exhibit this drawback.

5.6 Distributive lattices generated by a poset on N

Consider F = O(N ) for some partial order ≤ on N . Then F is a regular distribu-
tive set lattice, and previous results give us the properties of the core. Considering a
balanced game v, we have:

(i) core(v) is a pointed polyhedron, since F is non-degenerate (see Sect. 5.1);
(ii) coreF (v) ⊆ W(v), where coreF (v) is the convex part of core(v) (see Theo-

rem 5.11);
(iii) v is convex if and only if coreF (v) = W(v) (see Theorem 5.12).

To avoid unboundedness, Grabisch and Xie (2008) have imposed further restrictions
in the definition of the core, leading to the notion of restricted core. These additional
constraints are built as follows. First, elements in (N ,≤) of same height i are put
into the level set Qi+1. Hence, N is partitioned into level sets Q1, . . . , Qk , and Q1
contains all minimal elements of N . The level sets Q1, . . . , Qk induce in F a partition
whose blocks are level sets S1, . . . , Sk :

S1 := O(Q1), S2 := O(Q1 ∪ Q2)\S1, . . . , Sq := O(N )\(S1 ∪ · · · ∪ Sq−1).

Each Si has a top element 
i = ⋃i
j=1 Qi . Restricted maximal chains from ⊥ to 
 in

O(N ) are those passing through all 
1, . . . ,
k = 
. They induce restricted marginal
vectors. These definitions are illustrated on Fig. 8. The restricted core of a game v is
defined as follows:

core∗(v) = {x ∈ core(v) | x(
i ) = v(
i ), i = 1, . . . , k}.

If nonempty, it is always a polytope. The restricted Weber set W∗(v) is defined as the
convex hull of all restricted marginal vectors.
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Fig. 8 The poset (N ,≤) (left)
and the generated lattice O(N )
(right). Level sets on (N ,≤) are
Q1 = {1, 3} and Q2 = {2, 4},
inducing level sets
S1 = {1, 3, 13} and
S2 = {34, 123, 134, 1234} in
O(N ). A restricted maximal
chain is drawn in grey

Theorem 5.22 For any game v on F , core∗(v) ⊆ W∗(v). Furthermore, if v is convex,
equality holds, and the restricted marginal vectors are vertices of the core.

The converse (core∗(v) = W∗(v) implies convexity of v) is false.

5.7 Coalition structures

Let B be a coalition structure and v on 2N being zero-normalized (i.e., v({i}) = 0 for
all i ∈ N ). The core is defined as follows (Aumann and Drèze 1974):

core(v,B) := {x ∈ R
n | x(S) ≥ v(S), ∀S ∈ 2N ,

and x(Bk) = v(Bk), k = 1, . . . ,m}.

Theorem 5.23 Let B be a coalition structure and v on 2N being zero-normalized,
and let x ∈ core(v,B). Then

{y ∈ R
Bk | (y, x|N\Bk ) ∈ core(v,B)} = core(Bk, v

∗
x , Xk),

with core(Bk, v
∗
x , Xk) := {y ∈ R

Bk+ | y(Bk) = v∗
x (Bk), y(S) ≥ v∗

x (S),∀S ⊆ Bk,}.

6 Structure of the positive core

We first address the question of nonemptiness. Adapting the result of Bondareva,
we say that a collection B is completely balanced if there exist positive coefficients
λB, B ∈ B such that

∑

B∈B
λB1B ≤ 1N .

Then a game is completely balanced if
∑

B∈B λBv(B) ≤ v(N ) holds for every com-
pletely balanced collection, and core+(v) �= ∅ if and only if v is completely balanced.

An equivalent definition of a completely balanced game is given by Faigle (1989).
A game v is completely balanced if and only if for all families A1, . . . , Ak in F and
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m ∈ N it holds

1

m

k∑

i=1

1Ai ≤ 1N implies
1

m

k∑

i=1

v(Ai ) ≤ v(N ).

Above, F � ∅ is assumed, in order to get the condition v(N ) ≥ 0 by considering
the family reduced to ∅. If F is closed under intersection and complementation, a
nonnegative balanced game is completely balanced.

Remark 6.1 The positive core is in general much smaller than the core, and could be
empty even if the core is nonempty. In particular, if v is not monotone, the positive
core is likely to be empty. See also the discussion below on the equality between the
core and the positive core.

An important question is to know when the core and the positive core coincide.

Theorem 6.2 (Faigle 1989) Let v be a nonnegative balanced game on F closed under
intersection. Then core(v) = core+(v) if and only if F is atomistic. Moreover, core(v)
is unbounded unless core(v) = core+(v).

F atomistic implies core(v) = core+(v) is obvious by nonnegativity of v. Also,
if core(v) �= core+(v) then F is not atomistic, and for { j} �∈ F , x j can be taken
arbitrarily negatively large, hence unboundedness.

6.1 The positive core for augmenting systems

This has been studied by Bilbao and Ordóñez (2008). Given a (nonnegative) game v
on F , we consider its extension v on 2N :

v(S) :=
∑

T maximal in F(S)
v(T ).

(see Sect. 6.3). Recall that maximal sets in F(S) are pairwise disjoint.
Since N does not necessarily belong to F , the definition of the core is slightly

modified as follows:

core+(v) := {x ∈ R
n+ | x(S) ≥ v(S) for all S ∈ F and x(N ) = v(N )}.

A fundamental (but obvious) property is that core+(v) = core+(v) (see Sect. 7 for a
close result, as well as Remark 6.7(v) for a more general result), and it is a polytope.

Suppose that N ∈ F (hence it is a regular set system). Then any maximal chain
in F corresponds to an ordering on N (compatible orderings or permutations). For a
maximal chain C , denote by φC the corresponding marginal worth vector. Then the
Weber set is naturally defined by

W(v) := conv{φC | C ∈ C(F)}.
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Define v to be convex if for all S, T ∈ F such that S ∪ T ∈ F ,

v(S ∪ T )+
∑

F maximal in F(S∩T )

v(F) ≥ v(S)+ v(T )

(this is identical to supermodular games on weakly union-closed systems in Sect. 6.2).

Theorem 6.3 (Bilbao and Ordóñez 2008) If v is monotone and convex, then W(v) ⊆
core+(v), and any marginal vector is a vertex of core+(v).

The classical inclusion of the core in the Weber set does not hold in general: a coun-
terexample is given in Bilbao and Ordóñez (2008) (see also Remark 5.21).

A game v is superadditive if for all disjoint S, T ∈ F such that S ∪ T ∈ F , v(S ∪
T ) ≥ v(S)+ v(T ).

Theorem 6.4 (Bilbao and Ordóñez 2008) Let v be a game on F .

(i) If v is superadditive and monotone, then v is superadditive and monotone.
(ii) If v is convex and monotone, then v is convex.

(iii) Suppose v is monotone. Then v is convex if and only if v is convex if and only if
core(v) = W(v).

6.2 The positive core and Monge extensions

It is possible to get more general results, valid for an arbitrary set system or a weakly-
union closed system, by considering an approach closer to combinatorial optimization,
through the so-called Monge algorithm.5 We refer the reader to Faigle et al. (2009)
for details and proofs.

Consider an arbitrary set system F , and a vector c ∈ R
n , which will be the input

vector of the Monge algorithm (MA). The idea of the algorithm is to take at each
iteration the largest subset F of F contained in the current set X , and to select in F
the first element p corresponding to the smallest component of a vector γ ∈ R

n . At
initialization, X = N and γ = c, and at each iteration, p is discarded from X , and γp

is subtracted from γi , for all i ∈ F .
The output of the algorithm is the sequence of all selected subsets F , the sequence

of all selected elements p, and a vector y ∈ R
F recording at index F the quantity γp.

5 The original idea of the Monge algorithm goes back to Monge (1781). Monge studied a geometric trans-
portation problem in which a set of locations s1, . . . , sn of mass points has to be matched optimally (in the
sense of minimizing the total cost) with another set of locations t1, . . . , tn , and proved that optimality was
reached if the transportation lines do not cross. This geometric fact can be expressed as follows: if the costs
ci j of matching objects si with t j have the “uncrossing” property:

ci j + ck� ≥ cmax(i,k),max( j,�) + cmin(i,k),min( j,�)

then the optimal matching is (s1, t1), . . . , (sn , tn). This is also called the “north-west corner rule”. Translated
into the language of set functions, the uncrossing property is in fact submodularity:

v(A)+ v(B) ≥ v(A ∪ B)+ v(A ∩ B).
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We define �(y) := 〈v, y〉. Letting for any input c ∈ R
n

v̂(c) := �(y),

v̂ is an extension of v since it can be proven that v̂(1F ) = v(F) for any F ∈ F .
Moreover,

core+(v) = {x ∈ R
n | 〈c, x〉 ≥ v̂(c),∀c ∈ R

n}.

The next step is to define marginal vectors, usually defined through permutations
on N . The idea here is to take instead the sequence of selected elements p produced
by MA, which is not necessarily a permutation, because some elements of N may be
absent. Let us denote by � the set of all possible sequences produced by MA, and
consider a sequence π ∈ �. Then the marginal vector xπ associated to π is computed
as follows: for each p ∈ π, xπp is the difference between v(F) (where F is the smallest
selected subset containing p) and

∑
G v(G), where the sum is running over all maxi-

mal subsets of F belonging to the sequence. For each p �∈ π , we put xπp = 0. Clearly,
the classical definition is recovered if F is regular, since in this case, the sequence of
selected subsets will form a maximal chain.

We define the Weber set as

W(v) := conv{xπ | π ∈ �}.

Then it is proved in Faigle et al. (2009) that core+(v) ⊆ W(v).
The last step is to relate equality of the Weber set and the core to convexity. This is

done through the following definition. A game v on F is convex if v̂ is concave, i.e.,
it satisfies for all parameter vectors c, d ∈ R

N and real scalars 0 < t < 1,

t v̂(c)+ (1 − t)v̂(d) ≤ v̂(tc + (1 − t)d).

Theorem 6.5 Assumev is monotone. Thenv is convex if and only if core+(v) = W(v).

The above definition of convexity is done through the extension v̂. However, it is pos-
sible to relate it directly to v. A game v on F is strongly monotone if for any F ∈ F
and pairwise disjoint feasible sets G1, . . . ,G f ∈ F(F) we have

f∑

�=1

v(G�) ≤ v(F).

For any intersecting F, F ′ ∈ F we put

v(F ∩ F ′) :=
∑

{v(G) | G ∈ F(F ∩ F ′) maximal}

A game v on F is supermodular if for all intersecting F, F ′ ∈ F , we have

v(F ∪ F ′)+ v(F ∩ F ′) ≥ v(F)+ (F ′).
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Theorem 6.6 A game v is convex if and only if v is strongly monotone and
supermodular.

6.3 Extension of v on 2N

Let F be weakly union-closed, and v be a game on F . We introduce an extension of
v on 2N as follows:

v(S) =
∑

T maximal in F(S)
v(T ), ∀S ⊆ N .

Remark 6.7 (i) This way of extending a game on 2N appears in many different
works. For communication graphs, Myerson (1977b) used it for computing
vG(S), the extension on 2N of a game v on G, for any S ⊆ N , decomposing
S into its (maximal) connected components (in this context, see also Owen
1986; Borm et al. 1992; Potters and Reijnierse 1995). It can be found also in
Bilbao (2000, §5.2) with F a partition system, under the name of F-restricted
game, and in Bilbao and Ordóñez (2008). In general, it is considered in all the
literature on communication graphs. This extension has been studied by Faigle
and Grabisch (2009), and arises naturally as the output of the Monge algorithm
described in Sect. 6.2 [see (ii) and (iii) below].

(ii) Even if v is monotone, v need not be monotone. If v is monotone, it is not the
smallest extension of v (for this replace

∑
by max in the above equation). If F

is union-closed, then v is the smallest extension and preserves monotonicity of
v (Faigle and Grabisch 2009).

(iii) v is given by the Monge algorithm, i.e., v(S) = v̂(1S) for all S ∈ 2N .
(iv) The Möbius transform (see Sect. 3) of v vanishes for all S not in F (easy fact,

remarked by Owen 1986). More precisely:

mv(S) =
{

mv(S), for all S ∈ F
0, otherwise

where mv is the Möbius transform of v on F .
(v) For any game v, we always have core+(v) = core+(v). Indeed, the inclusion of

core+(v) in core+(v) is obvious. Conversely, assume that x ∈ core+(v) and take
any F �∈ F . Then v(F) = ∑

T maximal in F(F) v(T ). We have x(T ) ≥ v(T ) for
all T maximal in F(F). Therefore, since these T ’s are disjoint and x is nonnega-
tive, we find x(F) ≥ v(F). Adapting the previous argument, core(v) = core(v)
holds provided all singletons belongs to F . Then the maximal sets in F(F) form
a partition of F (F is a partition system).

Faigle and Grabisch (2009) have proved the following.

Theorem 6.8 Assume F is union-closed, and v is a game on F . Then v is supermod-
ular on F (in the sense of Sect. 6.2) if and only if v is supermodular on 2N.
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7 Games on communication graphs

7.1 General definitions

Consider a (undirected) graph G = (N, E), where the vertices are players, and E is the
set of links. A link between i, j exists if these players can communicate or are friends.
Two players are connected if there exists a path between them. A connected coalition
is a subset of N where any two players are connected. The set of connected coalitions
is denoted by CE (N ). Maximal connected coalitions of G are called connected com-
ponents of G, and they partition N . The set of connected components of G is denoted
by N/E . Any coalition S ⊆ N, even if not connected, can be partitioned into maximal
connected coalitions (i.e., connected components of the subgraph induced by S). The
set of connected components of S is denoted by S/E . This is the framework defined
by Myerson (1977a).

Remark 7.1 (i) As said in Sect. 3.7, set collections induced by communication
graphs are exactly augmenting systems containing all singletons. If the graph
is connected, then they are regular set systems containing all singletons (the
converse is false). Recall also from Sect. 3.5 the characterization of van den
Brink, and that these set collections are weakly union-closed.

(ii) A generalization of communication graphs is done through conference struc-
tures of Myerson, or equivalently through hypergraphs (see Sect. 3.5).

A game on the graph G = (N , E) is a TU-game on CE (N ) (i.e., it is a game on the
collection of feasible coalitions F = CE (N )). From v we define the extended game
vG on 2N as follows [see Sect. 6.3; called point game by Borm et al. (1992)]

vG(S) =
∑

T ∈S/E

v(T ), ∀S ⊆ N .

Since a communication graph may contain several connected components, and
recalling Remark 3.5 (ii), a natural adaptation for the definition of the core is as
follows:

core(v) := {x ∈ R
n | x(C) = v(C),∀C ∈ N/E, and x(S) ≥ v(S),∀S ∈ CE (N )}.

This definition was considered, among others, by Demange (1994, 2004). As it is
easy to show, core(v) = core(vG), which proves that when nonempty the core is a
polytope.

Remark 7.2 Note that if the graph is connected, we recover the definition of the
previous sections, hence all general properties given in Sect. 5.1 apply. Concern-
ing the positive core, results in Sect. 6.2 apply under the same condition. Using again
Remark 3.5 (ii), the above definition of the core amounts to take the intersection of
all cores on the subsystems induced by the connected components of G.

We consider below the main families of communication graph, most useful in
applications.
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7.2 Communication line-graphs

Let us assume that the players are ordered according to the natural ordering 1, . . . , n,
and consider the set of edges connecting two adjacent players: E0 = {(i, i + 1), i =
1, . . . , n − 1}. Then G = (N, E) is a line-graph if E ⊆ E0, i.e., only some adja-
cent players can communicate. For convenience, we introduce the notation [i, j] :=
{i, i + 1, . . . , j} for i < j in N .

These line-graphs often arise in applications, e.g., water distribution problem along
a river (Ambec and Sprumont 2002), and auctions situations (Graham et al. 1990), and
have been studied by van den Brink et al. (2007). They show that a sufficient condition
for the nonemptiness of the core is linear convexity:

v([i, j])− v([i + 1, j])− v([i, j − 1])+ v([i + 1, j − 1]) ≥ 0

for all [i, j] ∈ C(E)N .
van den Brink (2009) has characterized communication line-graphs in terms of the

associated set system as follows.

Theorem 7.3 A collection F ⊆ 2N is the set of connected coalitions of a line-graph
if and only if F � ∅,F is normal (i.e.,

⋃ F = N), weakly union-closed, satisfies
2-accessibility (see Remark 3.4 (ii)) and path union stability.

To explain the last property, we need some definitions. Let ∅ �= S ∈ F and i ∈ S.
Then i is an extreme player in S if S\i ∈ F . Now, S is a path in F if it has exactly
two extreme players. The name comes from the fact that a path in F corresponds to a
path in the graph (although the converse is false). Path union stability means that the
union of two nondisjoint paths in F is still a path in F .

7.3 Cycle-free communication graphs

A graph is cyle-free if it contains no cycle, in the usual sense of graph theory.
Le Breton et al. (1992) have characterized this property by what they call strong
balancedness: the collection F of connected coalitions is strongly balanced if every
balanced collection contains a partition of N .

Another characterization is due to van den Brink (2009).

Theorem 7.4 A collection F ⊆ 2N is the set of connected coalitions of a cycle-free
graph if and only if F � ∅,F is normal (i.e.,

⋃ F = N), weakly union-closed,
satisfies 2-accessibility (see Remark 3.4 (ii)) and weak path union stability.

Weak path union stability means that path union stability is required only for those
pairs of paths having a common extreme player.

An important particular case of cycle-free communication graph is the case of
connected graphs. Then the graph is called a tree. Games on trees have been stud-
ied by many authors, among them Demange (1994, 2004), Herings et al. (2008),
Khmelnitskaya (2009), Baron et al. (2008) and Béal et al. (2009). However, most
of these works are more concerned with single-valued solution [as the average tree
solution of Herings et al. (2008)] than the core.
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7.4 Cycle-complete communication graphs

A communication graph is cycle-complete if for each cycle of the graph, the subgraph
induced by the players in that cycle is complete (i.e., each player is connected to every
player in the cycle).

van den Nouweland and Borm (1991) have studied this kind of communication
graph. They have shown that if the game v is convex (assuming v is defined on 2N,
unlike our assumption), then vG is also convex.

van den Brink (2009) has characterized cycle-complete communication graphs as
follows.

Theorem 7.5 A collection F ⊆ 2N is the set of connected coalitions of a cycle-free
graph if and only if F � ∅,F is normal (i.e.,

⋃ F = N ), weakly union-closed,
satisfies 2-accessibility (see Remark 3.4 (ii)) and the path property.

F has the path property if for every pair of players i, j , there is at most one path having
i, j as extremal players. Alternatively, the path property can be replaced by closure
under intersection.

Acknowledgments The author is indebted in particular to Ulrich Faigle, Jean Derks, and René van den
Brink for fruitful discussions, and for giving him an incentive to write a survey on this topic.
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