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Abstract In this paper, we investigate the single machine scheduling problem with
release dates and tails and a planned unavailability time period. We show that the
problem admits a fully polynomial-time approximation scheme when the tails are
equal. We derive an approximation algorithm for the general case and we show that
the worst-case bound of the sequence yielded by Schrage’s algorithm is equal to 2 and
that this bound is tight. Some consequences of this result are also presented.
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1 Introduction

We consider the one-machine scheduling problem with heads and tails, provided that
the machine is unavailable during a planned time interval, with the aim of minimiz-
ing the makespan. Formally, the problem is defined in the following way. We have
to schedule a set J of n jobs on a single machine. Each job j ∈ J has a processing
time p j , a release date (or head) r j and a tail q j . The machine can only perform
one job at a given time. The preemption is not permitted. The machine is unavailable
during a preset time interval [T1, T2). The problem is to find a sequence of jobs, with
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80 I. Kacem, M. Haouari

the objective of minimizing the makespan Cmax = max1≤ j≤n
{
C j + q j

}
where C j

is the completion time of job j . We also define t j as the starting time of job j (i.e.,
C j = t j + p j ). Without loss of generality, we consider that r j /∈ [T1, T2) for j ∈ J
and that if r j < T1, then, the inequality r j + p j ≤ T1 holds (otherwise, in both cases,
r j would be set equal to T2).

For self-consistency, we recall some necessary definitions related to the approxi-
mation area. A ρ-approximation algorithm for a problem of minimizing an objective
function ϕ is an algorithm such that for every instance π of the problem it gives a
solution Sπ verifying ϕ(Sπ )/ϕ (OPTπ ) ≤ ρ where OPTπ is the optimal solution of π .
Also, ρ is called the worst-case bound of the above algorithm. The approximation is
tight if ρ is the best possible (i.e., the smallest value we can obtain by the algorithm
for all the instances of the problem). A class of (1 + ε)-approximation algorithms
is a fully polynomial-time approximation scheme (FPTAS), if its running time is
bounded by a polynomial function in 1/ε and the instance size for every ε > 0.
A class of (1 + ε)-approximation algorithms is a PTAS (Polynomial-Time Approxi-
mation Scheme), if its running time is an arbitrary function in 1/ε and the instance
size for every ε > 0.

Scheduling problems with unavailability constraints have attracted numerous
researchers. This has been motivated by practical and real industrial problems. It
is noteworthy that during the last decade numerous problems of this class have been
addressed in the literature (for more details, see the state-of-the-art papers by Lee 1996,
2004; Schmidt 2000). However, to the best of our knowledge, the worst-case analysis
investigated in the present paper has never been addressed before. Maugière et al.
(2005) considered the single machine and the job-shop problems under unavailabil-
ity constraints and proposed a branch-and-bound algorithm to minimize the make-
span. Souissi et al. (2006) addressed the special case without tails. Recently, Yuan
et al. (2007) developed an interesting PTAS for the problem without release dates and
Kacem (2007) proposed an FPTAS for the same problem. That is why this paper is
a good attempt to design efficient approximation algorithms for the general problem
under release dates and tails assumptions. It is noteworthy that the special case with
neither release dates nor tails can be reduced to a classical knapsack problem (for this
case see Martello and Toth 1990).

Note that numerous works addressed this type of problem without unavailabil-
ity constraint. Lawler et al. (1993) proved that this special problem is NP-Hard in
the strong sense. Dessouky and Margenthaler (1972) proposed an efficient algo-
rithm for solving this problem. Carlier (1982) studied the Schrage’s sequence and
derived a branch-and-bound algorithm. Potts (1980) reported that the worst-case per-
formance bound of Schrage’s algorithm for the problem without unavailability is 2,
and this bound is tight. At this point, it is worth noting that Potts (1980) and Hall and
Shmoys (1992) have proposed better approximation algorithms having worst-case
performances of 3/2 and 4/3, respectively.

The paper is organized as follows. In Sect. 2, we consider the case when the tails are
equal and we show that this problem admits an FPTAS. In Sect. 3, we consider the gen-
eral case and we deduce an approximation algorithm. We also recall the main previous
results and we provide the worst-case performance analysis of Schrage’s sequence
when there is an unavailability period. Moreover, some interesting consequences
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Approximation algorithms for single machine scheduling with one unavailability period 81

are presented. Finally, we conclude by giving some perspectives and concluding
remarks.

2 FPTAS for the case when the tails are equal

In this case, tails q j are equal for all j . Without loss of generality, we assume that
q j = 0 for every j and that jobs are sorted in non-decreasing order of release dates
(i.e., r1 ≤ r2 ≤ · · · ≤ rn). This special case is denoted as (P). For this configuration,
Souissi et al. (2006) showed that the worst case performance bound of the first in first
out (FIFO) rule1 is equal to 2 and that this bound is tight. Due to the dominance of the
FIFO order, an optimal solution is composed of two sequences (before and after the
unavailability period) of jobs scheduled in nondecreasing order of their indices (see
Souissi et al. 2006). Note that if all the jobs can be inserted before T1, then the FIFO
rule is obviously optimal. Therefore, we assume that we cannot insert all jobs before
T1 (consequently, the optimal makespan is strictly greater than T2).

In the remainder of this paper, C∗
max(Q) denotes the minimal makespan for problem

Q and C S
max(Q) is the makespan of schedule S for problem Q.

2.1 Dynamic programming

The problem can be optimally solved by applying the following dynamic program-
ming algorithm A, which is a weak version of the one proposed in Souissi et al. (2006).
This algorithm generates iteratively some sets of states. At every iteration k, a set Vk

composed of states is generated (1 ≤ k ≤ n). Each state [t, f ] in Vk can be associated
with a feasible schedule for the first k jobs. Variable t denotes the completion time of
the last job scheduled before T1 and f is the completion time of the last job scheduled
after the unavailability period. In a first step, we assume that r j < T1 for every job j
(this assumption is considered to simplify the proofs and we show later that the result
holds for arbitrary release dates). This algorithm can be described as follows:

Algorithm A

(i) Set V1 = {[0, T2 + p1] , [r1 + p1, T2]}.
(ii) For k ∈ {2, 3, . . . , n},

For every state [t, f ] in Vk−1:
1. Put [t, f + pk] in Vk

2. Put [max {t, rk} + pk, f ] in Vk if max {t, rk} + pk ≤ T1
Remove Vk−1

(iii) C∗
max (P) = min[t, f ]∈Vn { f }.

Let UB be an upper bound on the optimal makespan for the problem (P). If we
add the restriction that for every state [t, f ] the relation f ≤ UB must hold, then
the running time of A can be bounded by nT1UB. Indeed, t and f are integers and
at each step k, we have to create at most T1UB states to construct Vk . Moreover, the
complexity of A is proportional to

∑n
k=1 |Vk |.

1 FIFO consists in scheduling jobs according to the nondecreasing release dates order.
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However, this complexity can be reduced to O (nT1) as it was done by Souissi et al.
(2006), by choosing at each iteration k and for every t the state [t, f ] with the smallest
value of f .

In the remainder of the paper, algorithm A denotes the weak version of the dynamic
programming algorithm by taking UB = CFIFO

max (P).

2.2 FPTAS

Our FPTAS is based on two steps and its principle is similar to the one proposed in
Kacem (2007). First, we use the 2-approximation algorithm by Souissi et al. (2006).
In the second step of our FPTAS, we modify the execution of algorithm A in order
to decrease the running time. The principle is to remove a part of the states generated
by the algorithm. Therefore, the modified algorithm A (ε) becomes faster and yields
an approximate solution instead of the optimal schedule. Hence, we have to take care
when removing such states so that the approximation will be of a good quality.

The approach of modifying the execution of an exact algorithm to design an FPTAS,
was initially proposed by Ibarra and Kim (1975) for solving the knapsack problem. It
is noteworthy that during the last decades numerous scheduling problems have been
addressed by applying such an approach (a sample of these papers includes Sahni 1976;
Kacem 2007; Kovalyov and Kubiak 1999; Kellerer and Strusevich 2007; Woeginger
2000, 2005).

Given an arbitrary ε > 0, we define

LB = CFIFO
max (P)

2
,

β =
⌈

2n

ε

⌉
,

and

γ = CFIFO
max (P)

β
.

We split the interval
[
0, CFIFO

max (P)
]

into β equal subintervals Ih = [
(h − 1)γ,

hγ
]

1≤h≤β
of length γ . Our algorithm A (ε) generates reduced sets V#

k instead of sets
Vk . It can be described as follows:

Algorithm A(ε)

(i) Set V#
1 = {[0, T2 + p1] , [r1 + p1, T2]}.

(ii) For k ∈ {2, 3, . . . , n},
For every state [t, f ] in V#

k−1:
1. Put [t, f + pk] in V#

k
2. Put [max {t, rk} + pk, f ] in V#

k if max {t, rk} + pk ≤ T1

Remove V#
k−1
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Let [t, f ]h be the state in V#
k such that f ∈ Ih and t ≤ T1 with the small-

est possible t (ties are broken by choosing the state of the smallest f ). Set
V#

k = {
[t, f ]h |1 ≤ h ≤ β

}
.

(iii) C A(ε)
max (P) = min[t, f ]∈V#

n
{ f }.

2.3 Worst-case analysis and complexity

The worst-case analysis of our FPTAS is based on the comparison of the execution
of algorithms A and A (ε). In particular, we focus on the comparison of the states
generated by each of the two algorithms. We can remark that the main action of
algorithm A (ε) consists in reducing the cardinality of the state subsets by splitting
[0, T1] × [

0, CFIFO
max (P)

]
into β boxes [0, T1] × Ih and by replacing all the vectors of

Vk belonging to [0, T1] × Ih by a single approximate state with the smallest t .

Lemma 1 For every state [t, f ] in Vk there exists a state
[
t#, f #

]
in V#

k such that:

t# ≤ t (1)

and

f # ≤ f + kγ (2)

Proof By induction on k.
First, for k = 1 we have V#

1 = V1. Therefore, the statement is trivial.
Now, assume that the statement holds true up to level k −1. Consider an arbitrary state
[t, f ] ∈ Vk . Algorithm A introduces this state into Vk when job k is added to some
feasible state for the first k − 1 jobs. Let

[
t ′, f ′] be the above feasible state. Two cases

can be distinguished: either [t, f ] = [
t ′, f ′ + pk

]
or [t, f ] = [

max
{
t ′, rk

} + pk, f ′]

must hold. We will prove the statement for level k in the two cases.

1st case [t, f ] = [
t ′, f ′ + pk

]

Since
[
t ′, f ′] ∈ Vk−1, there exists

[
t ′#, f ′#] ∈ V#

k−1 such that t ′# ≤ t ′ and f ′# ≤
f ′ + (k − 1) γ . Consequently, the state

[
t ′#, f ′# + pk

]
is created by algorithm A (ε)

at iteration k. However it may be removed when reducing the state subset. Let [λ,µ]
be the state in V#

k that is in the same box as
[
t ′#, f ′# + pk

]
. Hence, we have:

λ ≤ t ′# ≤ t ′ = t

and

µ ≤ f ′# + pk + γ ≤ f ′ + pk + (k − 1) γ + γ ≤ f ′ + kγ + pk = f + kγ.

Consequently, the statement holds for level k in this case.
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2nd case [t, f ] = [
max

{
t ′, rk

} + pk, f ′]

Since
[
t ′, f ′] ∈ Vk−1, there exists

[
t ′#, f ′#] ∈ V#

k−1 such that t ′# ≤ t ′ and f ′# ≤
f ′ + (k − 1) γ . Consequently, the state

[
max

{
t ′#, rk

} + pk, f ′#] is created by algo-
rithm A (ε) at iteration k. However it may be removed when reducing the state subset.
Let

[
λ′, µ′] be the state in V#

k that is in the same box as
[
max

{
t ′#, rk

} + pk, f ′#].
Hence, we have:

λ′ ≤ max
{

t ′#, rk

}
+ pk ≤ max

{
t ′, rk

} + pk = t

and

µ′ ≤ f ′# + γ ≤ f ′ + (k − 1) γ + γ ≤ f ′ + kγ = f + kγ.

In conclusion, the statement holds also for level k in the second case, and this com-
pletes our inductive proof. ��
Theorem 1 Given an arbitrary ε > 0, algorithm A (ε) yields an output C A(ε)

max (P)

such that:

C A(ε)
max (P)

C∗
max (P)

≤ (1 + ε) . (3)

Proof By definition, the optimal solution can be associated with a state
[
t∗, f ∗] in

Vn . From Lemma 1, there exists a state
[
t#, f #

]
in V#

n such that:

t# ≤ t∗

and

f # ≤ f ∗ + nγ < C∗
max (P) + εLB.

Clearly, we have C∗
max (P) ≥ LB. Therefore, we deduce that

f # ≤ (1 + ε) C∗
max (P)

Since C A(ε)
max (P) ≤ f #, we conclude that inequality (3) holds. ��

Lemma 2 Given an arbitrary ε > 0, algorithm A (ε) can be implemented in O
(
n2/ε

)

time.

Proof The first step consists in applying Heuristic FIFO, which can be implemented
in O (n log (n)) time. In the second step, algorithm A (ε) generates the state sets V#

k
(k ∈ {1, 2, . . . , n}). Since

∣
∣V#

k

∣
∣ ≤ β, we deduce that

n∑

k=1

∣
∣
∣V#

k

∣
∣
∣ ≤ nβ = n

⌈ 2n
ε

⌉ ≤ n
( 2n

ε
+ 1

)
.
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Note that algorithm A (ε) generates V#
k by associating every new created state to its

corresponding box if and only if such a state has a smaller value of t (in this case, the
last state associated with this box will be removed). Otherwise, the new created state
will be immediately removed. This allows us to generate V#

k in O (β) time. Hence,
our method can be implemented in O

(
n log (n) + n2/ε

)
time and this completes the

proof. ��
From Lemma 2 and Theorem 1, the result is proved and the following corollary

holds.

Corollary 1 Algorithm A (ε) is an FPTAS for the non-resumable version of the
problem.

Remark 1 The approach remains valid when some r j ≥ T2. In this case, we divide J
in two subsets J1 and J − J1 where r j < T1 if j ∈ J1 and r j ≥ T2 if j ∈ J − J1. Then,
we apply algorithm A (ε) to the data of J1. The obtained solution will be completed
by scheduling jobs of J − J1 in nondecreasing order of their release dates after jobs
of J1.

3 Approximation algorithms for the general case

In this section, we consider the case when the tails are arbitrary. Such a problem is
NP-Hard in the strong sense and therefore it is not possible to design an FPTAS for
it (unless P �= N P). Hence, we prefer to investigate the development of polynomial
approximations. We propose two main ideas to design approximation algorithms. The
first one is based on our previous FPTAS. The second idea uses the Schrage’s sequence.

3.1 A (2 + ε)-approximation algorithm

The idea of this algorithm is based on the application of the schedule yielded by the
previous FPTAS.

First, jobs are sorted according to the nondecreasing order of their release dates.
Then, we partition the jobs in two subsets X1 and X2 where r j < T1 for every j ∈ X1
and r j ≥ T2 for every j ∈ X2. Let σ be the schedule given by algorithm A (ε) for data(
r j

)
j∈X1

,
(

p j
)

j∈X1
, T1 and T2. We complete σ by the jobs of X2 in nondecreasing

order of their indices. Let σ = (σ (1) , σ (2) , . . . , σ (n)) be such a schedule.
Let z be the index such that

Cσ(z) + qσ(z) = max
1≤i≤n

{
Cσ(i) + qσ(i)

}
.

Clearly, we have:

Cσ(z) + qσ(z) ≤ Cσ(n) + qσ(z) (4)

≤ (1 + ε) C∗
max + qσ(z)

where C∗
max is the optimal makespan.
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Moreover, we have:

C∗
max ≥ qσ(z) (5)

Therefore, we deduce that:

Cσ(z) + qσ(z) ≤ (2 + ε) C∗
max (6)

Consequently, this method yields a (2 + ε)-approximation solution in O
(
n2/ε

)

time. In the remainder of this paper we show that a simpler Schrage’s sequence yields
a 2-approximation solution in O (n log (n)) time.

3.2 Worst-case analysis of Schrage’s algorithm when the machine is continuously
available

First, for the sake of completeness we briefly recall Schrage’s algorithm and the pre-
vious results pertaining to its worst-case performance in case where the machine is
continuously available. The algorithm can be described as follows.

Schrage’s algorithm

(i) Set t = min1≤ j≤n
{
r j

}
; S = ∅;

(ii) At time t , schedule job j such that j ∈ W = {k ∈ J − S|rk ≤ t} and q j =
maxk∈W {qk}.

(iii) Set S = S ∪ { j}; t j = t ; t = max
{
t j + p j ; mink∈J−S {rk}

}
. If |S| = n, then

STOP; Else, go to step (ii).

In the sequel, without ambiguity we refer to S as the job sequence delivered by the
algorithm.

The following result has been derived by Carlier (1982).

Theorem 2 (Carlier 1982) Let C S
max be the makespan obtained for S. If S is not opti-

mal, then there exists a critical job c and a critical subset K such that : min j∈K
{
r j

}+∑
j∈K p j + min j∈K

{
q j

}
> C S

max − pc.

For the sake of clarity, we briefly sketch the basic idea of this theorem. To prove the
result, the author considers the conjunctive graph associated with Schrage’s schedule.
He determines the critical path passing throughout the maximum number of jobs.
Then, he reindexes the jobs so that the critical path will pass by jobs 1, 2, 3, . . . , p. He
considers two cases. In the first one, we have: C S

max = min1≤ j≤p
{
r j

}+∑
1≤ j≤p p j +

min1≤ j≤p
{
q j

}
(case where Schrage’s sequence is optimal). In the second case, qp �=

min1≤ j≤p
{
q j

}
. This implies the existence of a job j < p such that q j < qp. Let c be

the largest index such that qc < qp. The critical set is K = {c + 1, c + 2, . . . , p}. The
author shows several properties leading to the theorem: ∀ j ∈ K , qc < q j and r j > tc.

In the rest of this paper we will solely focus on the worst-case analysis of Schrage’s
algorithm in presence of a single unavailability period. The modified algorithm (here-
after denoted by H ) consists in taking the sequence delivered by Schrage’s algorithm
without unavailability constraint.
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Table 1 Data of Example 1
j 1 2 3 4 5 6

r j 0 9 14 21 30 31
p j 7 7 6 15 2 3
q j 18 22 27 23 1 9

2 3 4 6 5

1 2 3 4 6 5

1

Fig. 1 Illustration for Example 1

Example 1 Let us consider the 6-job instance that is described in Table 1. The appli-
cation of Schrage’s algorithm yields the following schedule: t1 = 0; t2 = 9; t3 = 16;
t4 = 22; t5 = 40; t6 = 37 and C S

max = 60. The corresponding sequence is S =
(1, 2, 3, 4, 6, 5).
Now, we assume that the machine is unavailable during the the time interval [20, 25).
The schedule corresponding to the sequence S is the following: t1 = 0; t2 = 9;
t3 = 25; t4 = 31; t5 = 49; t6 = 46. The new makespan is 69 (see Fig. 1).

3.3 Worst-case analysis of Heuristic H when there is an unavailability period

Theorem 3 Heuristic H has a worst-case performance of 2 and this bound is tight.

Proof First, we prove that the worst-case performance bound of Heuristic H is larger
than or equal to 2. To that aim, we consider the two-job instance such that r1 = 0;
p1 = 2ε; q1 = ε; r2 = ε; p2 = q − ε; q2 = ε; T1 = q; T2 = q + ε (with ε << q).
The sequence yielded by H is (1, 2) with a makespan equal to C H

max = 2q + ε while
the optimal sequence is (2, 1) with C∗

max = q + 4ε (see Fig. 2). Thus, C H
max/C∗

max
= (2q + ε) / (q + 4ε) →

q→+∞ 2.

Now, we show that the worst-case performance bound of H is less than or equal
to 2. Let t j refers to the starting time of job j ∈ J in the schedule produced by H .
Several cases may occur:

21

q+εq0

  Solution (1,2)

0

 2ε

q+3ε

  Solution (2,1)

2

  q q+ε

1

 2q 

ε

Fig. 2 Worst case example for Heuristic H in the general case
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…

T1 T2

i1

δ

Fig. 3 Definition of δ

(a) Case 1: max1≤ j≤n
{
t j + p j

} ≤ T1: then all the jobs are completed before T1. In
this case, and according to Theorem 2, if H is not optimal, then C H

max−C∗
max < pc.

In addition, we have C∗
max > pc, thus, C H

max/C∗
max ≤ 2.

(b) Case 2: a subset of jobs is scheduled after T2. In this case, let i1 denote the first
job scheduled after T2. Two sub-cases may occur:

(b.1) ri1 ≥ T2. In this case, the unavailability time period does not modify
the schedule of Schrage (without unavailability period). In this case, and
according to Theorem 2, if the sequence is not optimal, then C H

max −
C∗

max < pc. Hence, we have C H
max/C∗

max ≤ 2.
(b.2) ri1 < T1. In this case, the unavailability period leads to delaying the

starting time of job i1 after T2. Two situations can be distinguished:
(b.2.1) Schrage’s sequence S, for the problem without unavailability

constraint, is optimal. In this case, let δ denote the time lag
between the completion of the last job scheduled prior to the
unavailability time period and T1 (see Fig. 3). Clearly, we have
C H

max − C∗
max < δ + 
T (where, 
T = T2 − T1). On the other

hand, C∗
max > T2 > δ + 
T . Therefore, C H

max/C∗
max ≤ 2.

(b.2.2) Schrage’s sequence S, for the problem without unavailability
period, is not optimal. In this case, let c denote the critical job.
Two situations need to be considered:
(b.2.2.1) If i1 �= c, then we have C∗

max > pc + pi1 + 
T >

pc + δ + 
T . On the other hand, C H
max − C∗

max <

δ + 
T + pc. Therefore, we get C H
max/C∗

max ≤ 2.
(b.2.2.2) If i1 = c, then the critical job is the first job sched-

uled after the unavailability period (see Fig. 4). Hence,
the critical sub-set K = {c + 1, c + 2, . . . , p} will be
scheduled immediately after the critical job c. Thus,
C H

max = T2 + ∑
j∈{c}∪K p j + qp. Two different cases

are considered:
(b.2.2.2.1) If 
T ≥ qp, then we have: C H

max − C∗
max < C H

max −
(tc−1 + pc−1 + 
T + ∑

j∈{c}∪K p j ) ≤ δ + qp ≤

…

  T1   T2

  c 

δ

 c-1 

  tc-1

  p    c+1 

Fig. 4 Critical sub-set
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δ + 
T . On the other hand, C∗
max > δ + 
T . Hence,

C H
max/C∗

max ≤ 2.
(b.2.2.2.2) If 
T < qp. In this case, we have C H

max − C∗
max <

C H
max −(tc−1 + pc−1 +
T +∑

j∈{c}∪K p j ) ≤ δ+qp.
Now, assume that C∗

max < δ + qp. To satisfy this
assumption, the jobs of K = {c + 1, c + 2, . . . , p}
should be scheduled before the start of the unavailabil-
ity period and prior to job c. Note that from
Theorem 2, we have r j > tc−1 + pc−1, ∀ j ∈ K .
Scheduling the jobs of K before T1 leads to the impos-
sibility of scheduling c before T1 and after the jobs of
K . This implies that c should be scheduled after T2
and therefore, this implies that C∗

max > δ + 
T + pc.
Hence, we have C∗

max > δ + qp or C∗
max > δ + 
T +

pc. Consequently, we can deduce that C H
max/C∗

max ≤2.

Therefore, the result is proven. ��

3.4 Consequences

3.4.1 Case where release dates are equal

Now, we turn our attention to the investigation of the worst-case performance of H in
case where all jobs have equal release dates. Interestingly, in the following we show
that even for this apparently much simpler case, H has a worst-case performance
bound equal to 2.

Without loss of generality, we assume that r j = 0∀ j ∈ J . Therefore, the sequence
obtained by H corresponds to the sequence of jobs ranked in the non-increasing order
of their tails.

Proposition 1 If all the release dates are equal, then the worst-case performance
bound of H is larger or equal to 2.

Proof Consider the two-job instance such that r1 = 0; p1 = ε; q1 = 2ε; r2 = 0;
p2 = q; q2 = ε; T1 = q; T2 = q + ε (with ε << q). The sequence obtained by H is
(1, 2) and has a makespan equal to C H

max = 2q+2ε while the optimal sequence is (2, 1)

and C∗
max = q + 4ε (see Fig. 5). Thus, C H

max/C∗
max = (2q + 2ε) / (q + 4ε) →

q→+∞ 2.

Therefore, the result holds.
In this special case, the worst-case bound is less or equal to 2 (from Theorem 3).

Consequently, we have the following theorem.

Theorem 4 If for every j = 1, 2, . . . , n we have r j = 0, then the worst-case perfor-
mance bound of Heuristic H is equal to 2 and this bound is tight.

Note that Lee (1996) considered an equivalent problem with due dates instead of
tails in order to minimize the maximum lateness. He proved that the deviation of the
Earliest Due Date sequence (EDD) to the optimal one is less than the maximum of

123



90 I. Kacem, M. Haouari

 2 1

q+ε q   0

  Solution (1,2) 

0

ε

q+2ε

  Solution (2,1) 

2

  q q+ε

1

2q+ε

Fig. 5 Worst case example in the case where r j = 0

the processing times. Note that the EDD sequence is exactly the same yielded by
Heuristic H and that Lee’s result remains valid for the makespan minimization with
tails. Therefore, the last result of Theorem 4 refines the one proposed by Lee for the
analysis of the EDD sequence.

3.4.2 Asymptotical worst case bound

Theorem 5 The asymptotical worst-case performance bound of Heuristic H is
equal 2.

Proof First, the asymptotical bound is less than or equal to the absolute bound. This
implies that the asymptotical bound is less or equal to 2. On the other hand, consider
the following n-job instance: r j = 0; p j = 2/(n − 1); q j = 1; ∀ j ∈ J \ {n}, rn = 1;
pn = n − 1; qn = 1/2; T1 = n; T2 = n + 1. For this instance, we have C H

max/C
∗
max =

(2n + 1/2)/(n + 2 +  n−1
2 �. 2

n−1 ) →
n→+∞ 2 (see Fig. 6). Therefore, the result follows.

��

3.4.3 Worst case analysis for an improved heuristic

Now, we consider an enhanced variant of H that we denote by H ′. This latter could
be described in the following way:

(i) Use Heuristic H to get a sequence S = ([1], [2], . . . , [n]),

jobs 1, 2, …, n-1 

job n

 1+n  n  0

  Solution H 

0

  2 

 Optimal solution 

job n 

 n  n+1 

2n

   1 

Fig. 6 Example for the asymptotical worst case
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(ii) Identify job [g + 1] that is the very first job scheduled after T2,

(iii) Select among the subset {[g + 2], [g + 3], . . . , [n]} the first job [l] that can be
inserted prior to T1 (i.e. satisfying r[l] ≤ T1 − p[l] and t[g] + p[g] + p[l] ≤ T1).
If [l] exists, then schedule this job at the position (g + 1), update the sequence
S and go to step (ii). Else, STOP.

Theorem 6 The absolute and asymptotical worst case bounds of H ′ are both equal
to 2.

Proof Clearly, these bounds are less or equal to 2 since H ′ outperforms H . On the
other hand, by considering the two examples used in the previous proofs, it can be
established that H and H ′ yield the same solutions for such examples. Therefore the
result follows. ��

4 Conclusion

In this paper, we have proposed some approximation algorithms for the single machine
scheduling problem under one unavailability constraint. We have shown the existence
of an FPTAS for the problem when the tails are equal. A (2 + ε)-approximation algo-
rithm has been proposed for the general case. Moreover, we have established that the
worst-case performance of Schrage’s algorithm is not affected by one unavailability
period. We believe that this analysis constitutes a first step toward the investigation of
more sophisticated approximation algorithms for machine scheduling with unavail-
ability constraints. An interesting issue that deserves future investigation is whether
the worst-case performance of the algorithms of Potts and/or Hall and Shmoys would
be affected in the presence of an unavailability period. More generally, the existence
of an approximation algorithm, for the one-machine problem with an unavailability
period, having a worst-case performance strictly less than 2 remains an open question.
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