
4OR (2007) 5:61–73
DOI 10.1007/s10288-006-0018-0

R E G U L A R PA P E R

An effective and fast heuristic for the Dial-a-Ride
problem

Roberto Wolfler Calvo · Alberto Colorni

Received: 15 June 2005 / Accepted: 15 June 2006 /
Published online: 26 July 2006
© Springer-Verlag 2006

Abstract Dial-a-Ride is an emerging transport system, in which a fleet of
vehicles, without fixed routes and schedules, carries people from the desired
pickup point to the desired delivery point, during a pre-specified time inter-
val. It can be modeled as an NP-hard routing and scheduling problem, with
a suitable mixed integer programming formulation. Exact approaches to this
problem are too limited to tackle real-life instances (hundred of trips), there-
fore heuristics are needed. The heuristic method proposed in this paper builds
an auxiliary graph and then solves an assignment problem on this graph. The
auxiliary graph is obtained by replacing pairs of nodes with a single one and
associating an ad hoc cost function to the new set of arcs. Two different sim-
ple methods are employed to transform the infeasible solution given by the
assignment problem into a feasible one. The proposed algorithms have been
tested on instances created using the Milan network and shown to be fast and
effective.

Keywords Dial-a-Ride · Routing · Scheduling · Heuristic

MSC classification 90B06 · 90C11 · 90C59

R. Wolfler Calvo (B)
Institut Charles Delaunay (ICD), FRE CNRS 2848,
University of Technology of Troyes,
BP 2060, 10010 Troyes, France
e-mail: roberto.wolfler@utt.fr

A. Colorni
Departement of Industrial Design,
Arts and Comunications (INDACO), Politecnico di Milano,
Piazza Leonardo da Vinci, 32, 20133 Milano, Italy
e-mail: alberto.colorni@polimi.it

62 R. Wolfler Calvo, A. Colorni

1 Introduction

The Dial-a-Ride (DAR) system concerns the management of a fleet of vehicles
used for public transport. The customers demand the service by calling a central
unit and specifying: the desired pickup point, the delivery point (respectively,
origin and destination), the number of passengers and some limitations on
the service time (e.g., the earliest departure time). Such transportation system
is called demand-responsive: the routes and schedules of the vehicles change
dynamically on the basis of the current requests of the users. By better exploit-
ing vehicle capacity, they offer the comfort and flexibility of private cars and
taxies at a lower cost. DAR is suited to service sparsely populated areas, or
densely populated areas during weak demand periods or for special classes of
passengers with specific requirements (elderly, disabled).

Several models of DAR service have been proposed in the literature: with or
without time windows, with a fixed or unlimited fleet of vehicles and so on. In
the “static” DAR, the customers ask for service in advance and the plan is made
before the system starts to operate; in the “dynamic” DAR, the customers can
call during the service period (see Savelsbergh and Sol 1995) and the solution
is updated on-line. Different objective functions have been taken into account:
minimization of the number of vehicles used or of the total travel time, maximi-
zation of the number of customers served or of the level of service provided to
the user. This paper addresses the static DAR Problem (DARP) with time win-
dows and a fleet of fixed size. Each request corresponds to a single passenger,
and the objective function maximizes firstly the number of customers served,
and then the level of service provided on average.

DARP is NP-hard in the strong sense, as it generalizes the Pickup and Deliv-
ery Problem with Time Windows (PDPTW). Moreover, it is important to stress
that the number of vehicles is fixed and that even finding a feasible solution
is itself a NP-complete problem (see, e.g., Savelsbergh 1985). Nevertheless,
exact algorithms for the single-vehicle case have been developed by Psaraftis
(1980, 1983), Desrosiers et al. (1986); Sexton and Choi (1986). The last refer-
ence, in particular, considers the minimization of customer uncomfort. An exact
approach for the multi-vehicle case has been proposed by Dumas et al. (1991).
Recently, a Branch and Cut algorithm for this problem has been proposed by
Cordeau (2003). However, most of the time the exact approaches are unable to
solve real-life instances (typically hundreds of trips).

As for heuristics, parallel insertion algorithms have been presented by Jaw
et al. (1986) and Madsen et al. (1995). A heuristic for the transport of hand-
icapped people with a homogeneous fleet of vehicles has been proposed by
Ioachim et al. (1995). In Toth and Vigo (1997) a specific heuristic for a par-
ticular type of DARP related to the transport of handicapped people with
an heterogeneous fleet of vehicles has been presented. Finally, Cordeau and
Laporte (2003b) described a tabu search heuristic for a variant of the prob-
lem addressed in this paper. For an overview on PDPTW, DARP and related
problems,see Dumas et al. (1991), Savelsbergh and Sol (1995) and Cordeau and
Laporte (2003a).

A fast heuristic for the DARP 63

This paper describes a very fast, simple and effective heuristic to solve the
DARP. The main contribution of the paper is the adaptation of a method sim-
ilar to the one proposed in Wolfler Calvo (2000) to a more complex problem.
The algorithm builds an auxiliary graph having one node (instead of two) for
each customer. Each new arc connecting the new nodes has an associated cost
function measuring both space and time distance between two customers (in
two different ways). This graph can be obtained thanks to several non-trivial
transformations on the original formulation (i.e., several families of constraints
are relaxed and used to build the cost function). The number of vehicles being
fixed to nv, the solution given by the assignment problem defined on the auxil-
iary graph is a set of nv main paths (one for each vehicle) and a very small set
of subtours. A main path is a chain of nodes (customers) containing the node
depot. The subtours involve only customers (two or three on average, hardly
more), thus are easily inserted in the main paths. The chains of customers rep-
resent a first step towards a feasible solution for the original problem, since all
they are missing is the set of delivery nodes. The algorithm inserts the delivery
nodes both in a straightforward way (each delivery node follows the corre-
spondent pickup node) and in a less trivial one. The next section presents the
mathematical formulation. The method is illustrated in Sect. 3. Computational
results and conclusions close the paper.

2 The problem

Let R = {1, . . . , n} be a set of requests (customers). For each request i, two nodes
(i+ and i−) are defined: a load qi must be taken from i+ and delivered to i−. Let
N+ = {

i+|i ∈ R
}

be the set of pick up nodes and N− = {
i−|i ∈ R

}
denote the set

of delivery nodes. A positive amount qi+ = qi is associated to the pickup node,
a negative amount qi− = −qi to the delivery node. A time window is also asso-
ciated with each node, whether it is a pickup node [ei+ , li+] or a delivery node
[ei− , li−]. The fleet of vehicles is denoted as V; all vehicles have the same capacity
Q and time window at the depot

[
e0, l0

]
. Let G = (N, A) be a directed graph,

whose set of vertices is defined as N = N+ ∪ N− ∪ {0}, where node 0 represents
the vehicle depot. The set of arcs is defined as A = {(i, j) : i, j ∈ N, i �= j} and
each arc (i, j) ∈ A has an associated distance di,j or a travel time ti,j. Another set
E = {

(i, j) : i, j ∈ N+ ∪ N−, i �= j
}

represents the subset of arcs whose adjacent
nodes are customer nodes.

The problem is to find a set of routes starting and ending at the depot, such
that all the customer requests are satisfied and the pickup node of each customer
is visited before the delivery node. Moreover, the solution should be feasible
with respect to the capacity constraints and the time window constraints. The
variables xv

i,j are equal to 1 if vehicle v uses arc (i, j) ∈ A and equal to 0 otherwise;
pi represents the departure time from node i ∈ N+ ∪ N−; yi is the load of the
vehicle leaving node i. The problem is defined as follows:

64 R. Wolfler Calvo, A. Colorni

max
∑

i∈N+
αi

∑

v∈V

∑

j∈N

xv
i,j −

∑

i∈N−
Si (1)

s.t.
∑

v∈V

∑

j∈N

xv
i,j ≤ 1 ∀i ∈ N+, (2)

∑

j∈N

xv
i,j −

∑

j∈N

xv
j,i = 0 ∀v ∈ V, ∀i ∈ N+ ∪ N−, (3)

∑

j∈N

xv
i+,j −

∑

j∈N

xv
i−,j = 0 ∀v ∈ V, ∀i+, i− ∈ N+ ∪ N−, (4)

xv
i,j(yi + qj) ≤ yj ∀v ∈ V, ∀ (i, j) ∈ E, (5)

qi ≤ yi ≤ Q ∀i ∈ N+, (6)

0 ≤ yi ≤ Q − qi ∀i ∈ N−, (7)

xv
i,j(pi + ti,j) ≤ pj ∀v ∈ V, ∀ (i, j) ∈ E, (8)

ei ≤ pi ≤ li ∀i ∈ N, (9)

pi+ + ti+,i− ≤ pi− ∀i = i+, i− ∈ N+ ∪ N−, (10)

xv
i,j ∈ {0, 1} ∀v ∈ V, ∀ (i, j) ∈ A. (11)

The objective function (1) has two terms. The first term is the number of
serviced customers, suitable weighted with the coefficient α. The second term
represents the level of service over the set of serviced customers. A reasonable
measure of the quality of service perceived by the customers (indicated in the
following with S) is introduced as the ratio between the service time offered by
the DAR system for the trip and the minimum time the customer would need
to go from the origin to the destination (i.e., the value associated to the arc
(i+, i−)). More precisely, the quality of service for customer i is defined as

Si = (ai− − ei+)

ti+i−
, (12)

where ai− is the arrival time in node i−, (ai− −ei+) denotes the total time needed
to reach the destination using the DAR transportation system and ti+i− denotes
the minimum time needed to go from the origin to the destination directly.
Obviously Si ≥ 1 ∀i and the higher its value, the lower the service quality for
customer i. Quantity α is high enough to guarantee that maximizing the number
of serviced customers is the main objective.

The first three groups of constraints ensure that each customer is serviced by
at most one vehicle. More precisely, constraints (2) make sure that at most one
vehicle exits from each origin node i+. Constraints (3) impose that the number
of vehicles entering and exiting each node has to be the same. Finally, constraints

A fast heuristic for the DARP 65

(4) establish that the same vehicle, if any, visits the pickup and the delivery node
(pairing constraints). Constraints (5), (6) and (7) ensure the feasibility of the
loads: (a) the number of passengers in a given vehicle varies according to the
number of people boarding it or getting off it; (b) the maximum capacity of
the vehicle cannot be exceeded. The last three classes of constraints impose the
feasibility of the schedule. Constraints (8) represent the compatibility require-
ments between routes and schedules. Constraints (9) ensure that the departure
takes place during the time window: when the vehicle arrives at node i before
time ei the driver must wait; it is infeasible to arrive at node i after li. Finally,
constraints (10) imply that for each trip the delivery node is visited after the
pickup node. Constraints (8) and constraints (5) can be linearized respectively
as M(1−xv

ij) ≥ pi + tij −pj and P(1−xv
ij) ≥ yi +qj −yj. The former equations are

a generalization of the classical TSP subtour elimination constraints proposed
by Miller et al. (1960).

3 The algorithm

The framework of the proposed heuristic can be described as follows:

step 1 Build the auxiliary graph (which turns out to be smaller than the original
one).

step 2 Calculate the fleet dimension (nv).
step 3 Add the nv nodes to the graph.
step 4 Solve the assignment problem.
step 5 Insert the subtours in the main paths.
step 6 Modify the infeasible paths so that they become feasible.

The auxiliary graph has one node for each customer and no associated time
window. For each pair of nodes an arc (i, j) is defined with associated cost pij.
This cost coefficient measures the proximity of two customers i, j by combining
their spatial and temporal distances. These two distances are obtained using
the information contained in the subgraph induced by {i+, i−, j+, j−} (i.e., travel
time, waiting time and time windows). The algorithm then calculates a lower
bound of the fleet size (nv = |V|) and adds another set of nv nodes to the graph.
An assignment problem is then solved on the auxiliary graph.

The assignment problem is the easiest and classical relaxation for routing
problems, but it is very weak since the solution obtained is hardly feasible in the
original problem. The solution can be a long way from satisfying precedence
constraints, time window constraints and pairing constraints. The assignment
problem solved on the auxiliary graph, however, gives a solution which is close
to a feasible one. Two procedures, transforming the infeasible solution in a
feasible one, are the last steps of the algorithm.

A similar approach can be found in Wolfler Calvo (2000). Nevertheless, the
TSPTW formulation is much easier to transform, since it is enough to relax
the time windows constraints (i.e., the subtour elimination constraints). On the
other hand, the DARP has a more complex formulation, since each customer is

66 R. Wolfler Calvo, A. Colorni

represented with two nodes imposing to introduce the precedence constraints
(10), the pairing constraints (4) and the capacity constraints (5), (6) and (7).
The following paragraph explains in detail how to reduce the problem in the
DARP case.

3.1 The auxiliary graph

Denote the (directed) auxiliary graph by G̃ = (R, Ã). The set of vertices is the
set of customers R and the set of arcs is defined as Ã = {(i, j) : i, j ∈ R, i �= j}. This
graph has half of the nodes and less than a quarter of the arcs of G and there
are no time windows. The coefficient pij associated to each arc of Ã measures
the distance between customer i and customer j by combining all the values
(i.e., travel times, waiting times and time windows) necessary to evaluate the
feasibility and the cost of any possible direct path from customer i to customer
j, starting with node i+ (i.e., {i+, j+, i−, j−}, {i+, i−, j+, j−}, {i+, j+, j−, i−}).

To compute pij constraints (8) and (9) are used. These constraints state
that pj = max(pi + tij, ej). When the sequence is composed by only two nodes
(xij = 1), the equation becomes

pj = max(ei + tij, ej) = ei + tij + w̃ij, (13)

where w̃ij = max(ej − ei − tij, 0). For a generic sequence of s nodes � =
{π1, . . . , πs}, the departure time in node s is defined as

pπs = pπ1 + Tπ1,πs + Wπ1,πs (14)

where Tπ1,πs is the total travel time along � (
∑s−1

k=1 tπk,πk+1), Wπ1,πs is the total
waiting time (

∑s
k=2 wπk , where wπk = pπk − aπk) and aπ1 and pπ1 are, respec-

tively, the arrival and the departure time in the first node of the sequence (see
Cordone and Wolfler Calvo 1996).

Applying Eq. (14) to the first sequence (i.e., {i+, j+, i−, j−}) it is possible to
calculate p1

j− as follows:

p1
j− = ei+ + ti+,j+ + tj+,i− + ti−,j− + wj+ ,

since, πs = j−, π1 = i+, pπ1 = ei+ , Wπ1,πs = wj+ and Tπ1,πs = Ti+,j− = ti+,j+ +
tj+,i− + ti−,j− .

There is only one possible waiting time, i.e., wj+ in node j+, since the sequence
starts in i+ and delivery nodes have no waiting time (i.e., ei− = ei+ + ti+i−). If
ei− > ei+ + ti+i− , the customer should wait before getting off, which makes no
sense; if ei− < ei+ + ti+i− , the time window can be reduced, since part of it will
be never used (Desrosiers et al. 1995). So pi− = ai− .

A fast heuristic for the DARP 67

In the same way it is easy to calculate p2
j− for the second sequence: p2

j− =
ei++ti+,i−+ti−,j++tj+,j−+wj+ , and the last one p3

i− = ei++ti+,j++tj+,j−+tj−,i−+wj+ .
The values pij are defined as follows:

pij =
∑3

r=1 pr
n(r)yr

∑3
r=1 yr

,

where n = {j−, j−, i−} and yr = 1 if pr < ∞ and yr = 0 otherwise. Of course,
when

∑3
r=1 yr = 0 the procedure set directly pij = ∞: there is no feasible way

to go from customer i to customer j. The values pji are defined in the same way
and it is clear that pij �= pji. The value pij can be seen as the sum of two terms:
one measures the straightforward path length (the travel time) and the other
one measures the distance between the time windows (wj+). Notice that Toth
and Vigo (1997) use an average travel time measure which is different from the
one proposed here.

3.2 The fleet of vehicles

In order for the solution of the assignment problem to be useful, it would be
desirable to enlarge the auxiliary graph with the minimum number of vehicles
necessary to satisfy the requests. Since this number is unknown we settle for a
lower bound. Two lower bounds for this number are proposed, namely b1 and
b2. The fleet dimension nv is then set equal to the maximum of this two (i.e.,
nv = max(b1, b2)).

b1 is derived from the maximal set of customers which cannot be loaded
by the same vehicle, since going from customer i to customer j violates some
time windows. Let G′ = (R, A′) denote the incompatibility graph derived from
G̃ = (R, Ã) linking each pair of incompatible customers (i.e., p = ∞). On this
new graph the algorithm looks for the maximal clique and b1 is the cardinality
of the maximal clique. The algorithm used is the one proposed in Carraghan
and Pardalos (1990).

b2 considers the time horizon T and it has been proposed in Kontoravdis
and Bard (1995) for the Vehicle Routing Problem with Time Windows. Request
i takes up an amount of time t̃i given by the travel time tij used to reach the next
node along the route, and, possibly, a waiting time wj = max

(
ej − pi − tij, 0

)
.

Hence, t̃i can be underestimated as t̃i = minj∈N
[
max

(
tij, ej − li − tij

)]
and all of

the requests must be serviced from e0 to l0:

b2 =
⌈∑

i∈N t̃i
l0 − e0

⌉
. (15)

68 R. Wolfler Calvo, A. Colorni

3.3 The assignment problem

The assignment problem is therefore defined on a new complete graph
Ĝ = (R̂, Â), as follows:

min
∑

(ij)∈Â

pijxij (16)

s.t ∑

j∈R̂

xij = 1 ∀i ∈ R̂, (17)

∑

j∈R̂

xji = 1 ∀i ∈ R̂, (18)

xij ∈ {0, 1} ∀(i, j) ∈ Â, (19)

where R̂ = R ∪ {n + 1, . . . , n + nv} is the set of nodes, Â = {(i, j) : i, j ∈ R̂, i �= j}
is the set of arcs and each arc (i, j) has associated a cost coefficient pij. When i
and j are both vehicles pij = ∞. The values given to pij, when i ∈ V and j ∈ N
or vice versa is pij = tij + wj

It is easy to show that this assignment problem is a useful relaxation of the
DARP. Indeed, the constraints involving the time windows, namely constraints
(8) and (9), can be relaxed, since they have already been incorporated in the
computation of pij. Moreover, the minimization of the objective function takes
care of the right part of constraints (9) (i.e., pi ≤ li). Constraints (4) and con-
straints (10) are irrelevant to this graph Ĝ, hence removed. Constraints (2), (3),
(5), (6) and (7) have to be taken into account. The last three constraints, ensur-
ing the feasibility of the loads, are relaxed and the feasibility of the solution
obtained is verified at a later stage. Moreover, thanks to the assumption qi = 1,
capacity usually is not one of the most stringent constraints. Constraints (2) and
(3) are replaced by constraints (17) and (18).

The solution of problem (16)–(19) is a set of cycles. Some of these cycles,
called main paths, contain several customers and the node depot and can be
seen as chains of customers starting and ending with the node depot. The oth-
ers, called subtours, contain only customers. The objective function leads the
assignment towards a set of nv long chains of customers and a small number
of subtours. Most of the “two customers” subtours are eliminated thanks to
the fact that pij �= pji. Longer subtours (three or more customers) occur very
infrequently, since they are related to a set of customers close to each other
temporally and spatially. The next section explains how the infeasible solution
can be easily transformed in a feasible one, but before a second slightly different
assignment problem is introduced below.

A fast heuristic for the DARP 69

3.3.1 The “level of service” instead of the “departure time”
as objective function

A tight relationship exists between pi, the time windows associated to a customer
i, respectively, [ei+ , li+] and [ei− , li−], and Si. Starting with the value ei+ , the time
windows are calculated as follows: li− = Sm ∗ ti+i− + ei+ ; ei− = ti+i− + ei+ ; and
li+ = li− − ti+i− (see also Amaldi et al. 2000). The value Sm represents the level
of service guaranteed to the customer in the worst case: its trip cannot be longer
than Sm times the minimum travel time. Therefore Sm ≥ Si ≥ 1 and, recalling
that pi− = ai− , the normalized value of Si, indicated with S̃, is

S̃i = pi− − ei−

fi−
, (20)

where fi− = li− − ei− is the width of the delivery time window and 1 ≥ S̃ ≥ 0.
The idea consists of calculating the S̃ for the two delivery nodes i−, j− in each

sequence of four nodes starting with node i+ (i.e., {i+, j+, i−, j−}, {i+, i−, j+, j−},
{i+, j+, j−, i−}). Then, the proposed procedure chooses the maximum between
the two values, since it corresponds to the customer with the worst level of ser-
vice in a two-customers sequence. This new value is defined as S̃r

ij = max(S̃i, S̃j)

where r denotes which sequence, among the possible three ones, is under con-
sideration and i, j represents the considered pair of customers. The average
value is

Sij =
∑3

r=1 S̃r
ijδr

∑3
r=1 δr

,

where δr = 1 if S̃r
ij < ∞ and δr = 0 otherwise. The value Sji is calculated in the

same way and Sij �= Sji. When i and j are both vehicles Sij = ∞. The values
given to Sij, when i ∈ V and j ∈ N or vice versa is Sij = wj.

This value Sij can be associated to arc (ij) instead of pij. Thus, the assignment
problem becomes

min
∑

(ij)∈Â

Sijxij

subject to constraints (17) and (18).

3.4 Make feasible an infeasible solution

The solution obtained with the assignment problem consists of a set of nv main
paths and few subtours. The customers in the same subtour are close together
both temporally and spatially, otherwise the algorithm will be unable to connect

70 R. Wolfler Calvo, A. Colorni

them together. To obtain a solution of the DARP, it is necessary to deal with
the subtours and to make each one of the nv paths a feasible route (sequence
of pickup and delivery nodes).

The nodes (clients) involved in the subtours are inserted in a simple way
in the main paths: whenever a feasible insertion point exists the customer
is inserted. Then, it is sufficient to transform the solution of the assignment
problem for each vehicle into a feasible route. The solution of the assignment
problem for each vehicle can be seen as a sequence of pick up nodes (e.g.,
{d, i+, j+, k+, . . . , d}). To obtain a route, it is necessary to insert the delivery
nodes. A simple idea is to insert them in a straightforward and trivial way such
as {d, i+, i−, j+, j−, k+, k−, . . . , d}. The procedure starts inserting node i−; if the
arrival time in i− is feasible (i.e., pi− ≤ li−), it goes on, otherwise it removes
node i and considers node j. This goes on until the depot is reached and the
same is done for the whole fleet of vehicles. The result is a set of v feasible
trivial paths and a set of un-serviced customers. In the following, this procedure
is called trivial.

The second procedure starts with the complete sequence of pick up and
delivery nodes (e.g., {d, i+, i−, j+, j−, k+, k−, ..., d}). Then, it starts with the first
delivery node (e.g., i−) and tries to insert it in all the possible positions of the
sequence starting after its pickup node (e.g., i+). For each position the procedure
checks only the local feasibility: if the time window of the delivery node under
consideration is respected (i.e., pi− ≤ li−). The procedure stops to try to insert
the delivery node when it arrives at the end of the route or it is clearly infeasible
to go on due to the delivery node time window. Then, for each feasible position
the procedure calculates the objective function for the whole route summing
∞ for each infeasibility in the sequence, and among all the feasible positions it
chooses the cheapest. As in the procedure trivial customer i is removed from the
sequence if there are no feasible insertion positions for the delivery node. Once
the procedure has finish to evaluate the current delivery node (i−) it starts again
with the next (j−) and it stops when all the delivery nodes have been evaluated.
This procedure is called smart.

4 Computational results and conclusion

As far as the authors know, there are no benchmark instances for both the
PDPTW and the DARP. For this reason the data set has been created using the
complete Milan network (about 17,000 arcs and 7,000 nodes); these instances
are proposed as benchmark problems for the future. The set of random instances
have been created by extracting randomly a pair of nodes for each customer.
Each customer requiring either the arrival time or the departure time. The time
is generated randomly in a time interval of 240 min (4 h) and in the same way
it is associated to the pickup node or to the delivery node. The machine used
to solve the problem is a Pentium III with a 600 MHz processor and 256 MB
of RAM. In each table, columns with the same label have the same meaning,
which is the following. N is the number of customers, V the number of vehicles,

A fast heuristic for the DARP 71

Table 1 Results obtained using p as objective function of the assignment problem

Trivial Smart

N V I Sub.(%) S Uns.(%) S Uns.(%)

10 2.1 (10) 0.0 0.040 11.0 0.131 3.0
20 3.0 (10) 0.0 0.088 18.5 0.209 8.5
30 3.4 (10) 4.7 0.106 22.3 0.285 13.0
40 4.0 (10) 4.0 0.107 19.8 0.275 10.3
50 4.5 (10) 8.0 0.127 25.6 0.286 18.6
60 5.0 (10) 6.5 0.165 26.0 0.321 15.3
70 5.4 (10) 6.6 0.176 28.6 0.316 19.1
80 6.0 (10) 10.1 0.164 32.3 0.310 22.5
90 6.0 (10) 8.2 0.171 35.2 0.336 23.8
100 7.0 (10) 6.6 0.199 32.7 0.330 20.9
110 7.2 (10) 7.5 0.201 35.8 0.341 25.5
120 7.3 (10) 10.6 0.220 40.8 0.359 29.3
130 7.9 (9) 8.5 0.213 39.1 0.327 29.0
140 8.2 (10) 9.5 0.223 40.0 0.364 28.9
150 8.7 (10) 9.7 0.222 41.0 0.359 28.5
160 9.0 (10) 9.9 0.229 40.8 0.356 28.9
170 9.2 (10) 10.8 0.238 42.6 0.367 30.6
180 9.4 (10) 11.4 0.250 44.3 0.365 33.4

I the number of instances generated and solved, Sub. the number of customers
involved in the subtours, Uns. the number of unserved customers (the number
of customers removed to make the solution feasible), S the average level of
service. All the tables provide average values out of the number of instances.
The computation time is omitted in all the tables, since it is less than a 5

100 of
second (≤0.05) on average for each instance solved with the total set of four
algorithms.

Tables 1 and 2 report the computational results with the set of data generated:
the number of customers goes from 10 to 180. The results have been obtained
without inserting the subtours in the main paths (i.e., without step 5 in the
framework), since the purpose of this first comparison is to understand which
procedure, among the four presented, is the best one without any additional
help. Table 1 presents the results of the algorithm with p as objective function.
Table 2 presents the results of the algorithm with S as objective function. The
results obtained with the procedure (trivial) are reported in columns 5 and 6,
while columns 7 and 8 reports those obtained with the (smart) procedure. The
quality of the solution is measured in terms of customers served, since the fleet
of vehicles is fixed. For the same number of customers the average level of
service must be optimum. The smart algorithm is always better than the trivial
one, as expected. The solution obtained with p as objective function of the
assignment problem seems often better than the one obtained with S in terms
of number of satisfied customers. The solution obtained with S as objective
function are competitive for the small problem (10 and 20 customers), while for
larger instances p gives always better solutions. When the number of custom-

72 R. Wolfler Calvo, A. Colorni

Table 2 Results obtained using S as objective function of the assignment problem

Trivial Smart

N V I Sub.(%) S Uns.(%) S Uns.(%)

10 2.1 (10) 0.0 0.043 11.0 0.118 3.0
20 3.0 (10) 0.7 0.048 25.3 0.144 15.0
30 3.4 (10) 1.0 0.082 26.3 0.224 13.7
40 4.0 (10) 2.9 0.105 23.8 0.209 16.5
50 4.5 (10) 4.5 0.093 31.8 0.211 22.4
60 5.0 (10) 4.5 0.121 35.5 0.230 26.0
70 5.4 (10) 4.4 0.122 37.0 0.265 25.7
80 6.0 (10) 7.8 0.123 40.1 0.268 28.8
90 6.0 (10) 10.3 0.151 42.1 0.280 32.4
100 7.0 (10) 11.0 0.122 41.5 0.233 31.0
110 7.2 (10) 8.9 0.150 42.2 0.274 33.5
120 7.3 (10) 13.5 0.164 45.8 0.292 37.3
130 7.9 (9) 10.6 0.139 46.3 0.282 36.6
140 8.2 (10) 14.9 0.152 46.7 0.290 38.4
150 8.7 (10) 15.4 0.168 47.6 0.303 38.1
160 9.0 (10) 16.5 0.167 47.9 0.281 40.1
170 9.2 (10) 19.1 0.146 50.8 0.292 40.6
180 9.4 (10) 20.9 0.180 52.1 0.309 41.6

Table 3 A comparison
between the proposed
algorithm and a
straightforward insertion
heuristic

Smart Insertion

N V Uns.(%) S Uns.(%) S

10 2 3 0.18 5 0.27
30 3 10 0.33 15 0.42
60 5 12 0.35 18 0.45
90 6 20 0.42 27 0.49

120 7 25 0.43 33 0.50
150 9 27 0.44 35 0.52
180 9 30 0.47 39 0.53

ers inserted is equal, it is clear that S gives solutions with a better S and that
the smart procedure increases the number of customers served, decreasing the
quality of S. The total number of removed customer is less than 20% for the
first set of instances (from 10 to 100 customers). Whereas for larger instances
(from 110 to 180 customers) the number of removed customers is always less
or equal to 30% except that for the biggest instances.

Table 3 compares the results obtained with the best of the proposed algo-
rithms (i.e., the (smart) procedure with p as objective function) with those
obtained by a simple straightforward insertion procedure. For this compari-
son the complete described algorithm has been used (step 5 included). The
comparison has been done on a subset of the proposed instances: 10, 30, 60,
90, 120, 150, 180. The number of vehicles is fixed. The proposed algorithm
finds always a better solution: in terms of served customers it is able to satisfy
from 3% up to 8% plus on average and with a lower value of S, despite the

A fast heuristic for the DARP 73

larger number of clients on board. The computation time is less than 0.005 s,
therefore omitted. These results shown that the proposed heuristic is fast and
effective, since it obtains better results than a simple insertion heuristic in a
similar computation time. The difference increases when the algorithms have
been tested on a real-time (on-line) instances with time-dependent network. In
this case the proposed algorithm gives better solutions and at the same time it
is 30% faster (on average).

References

Amaldi E, Colorni A, Fiorenzo Catalano S (2000) Feasibility study of a dial-a-ride system for a
suburban area of milan. Ric Oper, 30(94–95):5–28

Carraghan R, Pardalos PM (1990) An exact algorithm for the maximum clique problem. Oper Res
Lett 9: 375–382

Cordeau J-F (2003) A branch and cut algorithm for a dial-a-ride problem. Oper Res (in press)
Cordeau J-F, Laporte G (2003a) The dial-a-ride problem (darp): variants, modeling issues and

algorithms. 4OR 1:89–101
Cordeau J-F, Laporte G (2003b) A tabu search heuristics for the static multi-vehicle dial-a-ride

problem. Transp Res B 37:579–594
Cordone R, Wolfler Calvo R (1996) Note about time window constraints in routing problems.

Internal report 96-005. Dipartimento di Elettronica e Informazione, Politecnico di Milano,
Milano

Desrosiers J, Dumas Y, Soumis F (1986) A dynamic programming solution of the large-scale sin-
gle-vehicle Dial-a-Ride problem with time windows. Am J Math Manag Sci 6

Desrosiers J, Dumas Y, Solomon MM, Soumis F (1995) Time constrained routing and schedul-
ing. In: Network routing. Handbooks in operations research and management science, vol 8,
pp 35–139. North-Holland

Dumas Y, Desrosiers J, Soumis F (1991) The pickup and delivery problem with time windows. Eur
J Oper Res 54:7–22

Ioachim I, Desrosiers J, Dumas Y, Solomon MM, Villeneuve D (1995) A request clustering algo-
rithm for dorr-to-door handicapped transportation. Transp Sci 29:63–78

Jaw J, Odoni A, Psaraftis H, Wilson N (1986) A heuristic algorithm for the multi-vehicle advance-
request dial-a-ride problem with time windows. Transp Res 20B:243–257

Kontoravdis G, Bard JF (1995) A GRASP for the vehicle routing problem with time windows.
ORSA J Comput 7:10–23

Madsen OBG, Ravn HF, Rygaard JM (1995) A heuristic algorithm for a dial-a-ride problem with
time windows, multiple capacities and multiple objectives. Ann Oper Res 60:193–208

Miller CE, Tucker AW, Zemlin RA (1960) Integer programming formulations and traveling sales-
man problems. J Assoc Comput Mach 7:326–329

Psaraftis HN (1980) A dynamic programming solution to the single vehicle many-to-many imme-
diate request dial-a-ride problem. Transp Sci 14(2):130–154

Psaraftis HN (1983) An exact algorithm for the single vehicle many-to-many dial-a-ride problem
with time windows. Transp Sci 17(3):351–357

Savelsbergh MWP (1985) Local search in routing problems with time windows. Ann Oper Res
4:285–305

Savelsbergh MWP, Sol M (1995) The general pickup and delivery problem. Transp Sci 29(1):17–29
Sexton T, Choi Y (1986) Pick-up and delivery of partial loads sith time windows. Am J Math Manag

Sci 6:369–398
Toth P, Vigo D (1997) Heuristic algorithms for the handicapped persons transportation problem.

Transp Sci 31(1):60–71
Wolfler Calvo R (2000) A new heuristic for the traveling salesman problem with time windows.

Transp Sci 34(1):113–124

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

