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Abstract. In this paper, the use of queueing theory for modeling uninterrupted
traffic flows is evaluated. Empirical data on speeds and flows are used to evaluate
speeds generated by the different queueing models. Using the Theil inequality
coefficient as evaluation criterion, the speeds generated by the queueing models
are compared to the empirical speeds. Queueing models that best fit the observed
speeds are obtained. It appears that traffic flow on a highway during non-congested
hours is best described using a M/G/1 queueing model. During the congested
hours however, the state dependent queueing G1/G/z models are more realistic.
Because the queueing models describe the empirical data well, they can also be
used to evaluate potential improvements in existing traffic conditions.
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1 Introduction

The combination of increasing traffic (demand) on the existing road networks to-
gether with a stagnation of investments in new infrastructures (supply), leads to an
inevitable increase of congestion. This in turn leads to an increase in travel time,
decreasing vehicle flows, higher fuel consumption, negative environmental effects,
etc. In general, three strategies for this demand-supply gap are possible (Button
1993).
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First, the existing road networks (supply) can be expanded. Investments in
new roads lead to an increase in capacity, resulting in a (temporary) decrease of
congestion. New investments can be useful to dispose of existing bottlenecks, but
are not a structural solution to congestion because increased supply will probably
result in a more than proportional increase of demand. Secondly, the number of
cars on the roads (demand) can be decreased. This can for example be achieved
by developing pricing tools (congestion pricing), facilitating public transport, etc.
This approach is a more structural solution to congestion than the first one. It is,
however, in practice, very difficult to decrease traffic demand or to force a shift to
public transport. A third solution is to efficiently manage the existing traffic flows
on the existing road network i.e. traffic management. Efficiently tuning demand
and supply will lead to a better use of the capacity and a better control of traffic
demand. This third solution can for example be achieved by a temporary and local
intervention on supply and demand. Measures that can be implemented in this
solution approach are arrival management, DRIPS (Dynamic Route Information
Panel Systems) that give information about the state of the road network, incident
management (quick response to accidents), dynamic adjustment of the number
of lanes, time-dependent pricing policies, etc. Of course the global solution for
congestion should be a mixture of the above partial solutions.

Quantifying the above actions that cope with congestion is not straightforward
however. The first step should always be a good understanding of the complex
phenomenon of congestion itself (e.g. what are its driving forces?). In this paper,
traffic congestion is modeled using queueing models. This analytical basis (rather
than an empirical one) has the advantage to adequately pinpoint possible problems
and allowing to perform sensitivity analysis, what-if questions, etc. Once traffic
is analytically analyzed and modeled, the second step tries to adequately improve
the traffic conditions, using these mathematical models (e.g. what is the effect of
certain actions?). Starting from the existing traffic state, the potential improvements
can be quantified and compared (and implemented).

Traffic flow modeling is divided into two primary types of flows: uninterrupted
versus interrupted traffic flows (Transportation Research Board 1996). The first
type, uninterrupted flows, is defined as all the flows regulated by vehicle-vehicle
interactions and interactions between vehicles and the roadway. For example, ve-
hicles traveling on a highway are participating in uninterrupted flows. Interrupted
flows, the second type of traffic flows, are all flows regulated by an external means,
such as a traffic signal. Under interrupted flow conditions, vehicle-vehicle interac-
tions and vehicle-roadway interactions play a secondary role in defining the traffic
flow. Understanding what type of flow is occurring in a given situation will lead to
different methods for analyzing traffic situations. In this paper, only uninterrupted
flows are considered, i.e. only traffic on highways is considered and modeled. Tra-
ditionally, uninterrupted traffic flows are modeled empirically: speed and flow data
are collected for a specific road and econometrically fitted into curves (Daganzo
1997). This traditional approach is limited in terms of predictive power and sen-
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sitivity analysis. Queueing theory is almost exclusively used to describe traffic
behavior at signalized and unsignalized intersections (Heidemann 1991, 1994 and
1997). However, Vandaele et al. (2000) and Heidemann (1997), showed that queue-
ing models can also be used to explain uninterrupted traffic flows and thus offering
a more practical approach, useful for sensitivity analysis, forecasts, etc. Jain and
Smith (1997) describe in their paper a state-dependent M /G /C/ C queueing model
for traffic flows. Also a lot of research is done on a travel time-flow model origi-
nating from Davidson (1978), which is also based on some concepts of queueing
theory (see also Akgelik 1991 and 1996).

In this paper, the applicability of the queueing models for traffic flows is eval-
uated. Empirical data for the speeds, flows and densities are used to evaluate the
speeds generated by the different queueing models. In Sect. 2, the general method-
ology for modeling traffic flows with queueing models is explained in detail. The
third section describes the chosen evaluation criteria. In Sect. 4, the datasets used
and the cleaning operations performed are described. In Sect. 5, results are re-
ported in two steps: first, the results for the calibration phase are presented and
secondly, the results of the validation phase are discussed. This paper ends with
some conclusions.

2 Queueing models for traffic flows

It is often observed that the speed for a certain time period tends to be reproduced
whenever the same flow is observed. Based on this observation, it seems reasonable
to postulate that, if traffic conditions on a given road are stationary, there should
be a relationship between flow, speed, and density. This relationship results in the
concept of speed-flow-density diagrams. These diagrams describe the interdepen-
dence of traffic flow (¢), density (k) and speed (v). The seminal work on speed-
flow-density diagrams was the paper by Greenshields in 1935. Using well-known
formulas of queueing models, these diagrams can be constructed (Fig. 1).

The speed-flow diagram is the envelope of all possible combinations of the ef-
fective speed and traffic flow. Figure 1 (upper right) illustrates that, although every
speed v corresponds with one traffic flow g, the reverse is not true. There are two
speeds for every traffic flow: an upper branch (v;) where speed decreases as flow
increases and a lower branch (v) where speed increases. Intuitively it is clear that,
as the flow moves from O (at free flow speed v ¢) to gy qx, cOngestion increases but
the flow rises because the decline in speed is over-compensated by the higher traffic
density. If traffic tends to grow past gy, flow falls again because the decline in
speed more than offsets the additional vehicle numbers, further increasing conges-
tion (Daganzo 1997). The flow-density diagram and the speed-density diagrams
are an equivalent representation and can be interpreted in the same way.

In a queueing approach to traffic flow analysis, roads are subdivided into seg-
ments, with length equal to the minimal space needed by one vehicle on that road
(Fig. 2). Define k; as the maximum traffic density (i.e. maximum number of cars on
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Fig. 1. The relations between the speed-flow, the speed-density, and the flow-density diagrams

CQusue Serwice Station {1/kj)

ey ey Ry

Fig. 2. Queueing representation of traffic flows

aroad segment). This segment length is then equal to 1/ k; and matches the minimal
space needed by one vehicle on that road. Each road segment is then considered
as a service station, in which vehicles arrive at a certain rate A and get served at
another rate u (Vandaele et al. 2000; Van Woensel et al. 2001; Heidemann 1997).

Vandaele et al. (2000) developed different queueing models. In this paper,
queueing models are referred to using the Kendall notation, consisting of sev-
eral symbols, e.g. GI/G/z. The first symbol is shorthand for the distribution of
inter-arrival times, the second for the distribution of service times and the last
one indicates the number of servers in the system. The M /M /1 queueing model
(exponential arrival and service rates) is considered as a base case, but due to its
specific assumptions regarding the arrival and service processes, it is not useful
to describe real-life situations. Relaxing the specifications for the service process
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of the M /M /1 queueing model, leads to the M/G/1 queueing model (generally
distributed service rates). Relaxing both assumptions for the arrival and service
processes results in the GI1/G/z queueing model (with z being the number of
servers). Moreover, following Jain and Smith (1997), a state dependent GI/G/z
queueing model is considered. This model assumes that the service rate is a (linear,
exponential, etc.) function of the traffic flow. In this case vehicles are served at a
certain rate, which depends upon the number of vehicles already on the road.

Following Heidemann (1997), the arrival rate A is defined as the product of the
traffic density k and the free flow speed vy, or A = kv . Similarly, the service rate
w is defined as the product of free flow speed vy with the maximum traffic density
kj,or u = kjvy. Vandaele et al. (2000) and Heidemann (1997) showed that the
speed v can be calculated by dividing the length of the road segment (kl/) by the
total time in the system (W): '

1/k;

v = W (1

The total time in the system W in equation (1) is different depending upon the

specific queueing model used. The total time spent in the system W equals the sum of

the waiting time W, and the service time W,. For the GI/G/z queueing models,

no exact formulas for W, are available and one must rely on approximations.

Here, three approximations are considered: the Kraemer-Lagenbach-Belz (K L B)

approximation (1976), the heavy traffic or Kingman approximation (K) (1964) and
the Whitt (W) approximations (1993) are used.

In general, Eq. (1) can be rewritten in the following basic form (see Van Woensel

2003 for the details):

vy
_ 2
TTx @

Equation (2) shows that the speed is only equal to the free flow speed vy if
the factor €2 is zero. For positive values of €2, vy is divided by a number strictly
larger than 1 and speed is reduced. The factor €2 is thus the influence of congestion
on speed. High congestion (reflected in a high 2) leads to lower speeds than the
maximum. The factor €2 is a function of a number of parameters depending upon the
queueing model chosen: the traffic intensity p, the coefficient of variation of service
times c;, the coefficient of variation of inter-arrival times c,, the jam density k; and
the free flow speed v s. High coefficients of variation or a high traffic intensity will
lead to a value of 2 strictly larger than zero. Actions to increase speed (or decrease
travel time) should then be focused on decreasing variability or on influencing
traffic intensity, for example by manipulating the arrivals (arrival management and
ramp metering). Table 1 shows the specific form of 2 for each queueing model.
Instead of using a fixed service rate i for the queueing models, the service rate can
also be made a function of the traffic flow g. This results in the state dependent
queueing models, with the state being the number of vehicles ¢ on the road at that
moment.
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Table 1. The specific form of €2 for each queueing model

Queueing model
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With ¢ a correction factor defined in Whitt (1993)
and W, p1/m/; the formula for the waiting time in an
M /M /z queue (See Vandaele et al. 2000).

For a detailed discussion of the queueing models and some applications, the
interested reader is referred to Vandaele et al. (2000), Van Woensel (2003) and Van
Woensel et al. (2001).

3 Evaluation criteria

The reliability of the queueing models depends upon the ability to produce results
close to reality. The process of determining whether the queueing models generate
speeds close enough to real speeds is achieved through the validation of the models.
This is an iterative process involving calibration of the model parameters, comparing
the output with the real speeds and improving the model until the accuracy is
acceptable. When several days of observations are available, the calibration and
the final validation of the queueing models are done on different datasets. This
will generate the trust that the model is not only accurate for the day(s) for which
it was calibrated but that the calibration also holds in general. To validate the
queueing model, it should be able to emulate the actual traffic process and produce
a series of speeds which are close to the actual observed speeds. In short, to evaluate
the speed difference between the speeds obtained from the queueing models and
the ones empirically observed, an evaluation tool is needed. Some of the most
used tool in traffic simulation is the root mean square error, the root mean square
percentage error, residual variance, etc. These statistical methods and techniques
for validating models are presented in most textbooks and specialized papers (see
e.g., Kleijnen 1995; Balci 1998; Law and Kelton 2000). These tools however have a
drawback because they square the errors and as a consequence have the risk of over-
emphasizing large errors (Barcel6 2001). Alternatively, the correlation coefficient
cannot be used to evaluate either because it is inadequate to evaluate the difference
between the queueing speed and the observed speed. For example, the two series
of speeds can be perfectly correlated but have a (large) constant difference.

In this paper, the Theil inequality coefficient (Theil 1966), which does take
into account for this disproportionate weight of large errors is used. Moreover, in
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situations where little data is available it is possible that neither the observed speeds
nor the queueing speeds are independent. The Theil coefficient can still be used in
these situations. This coefficient is thus a more significant indicator on how similar
the observed and simulated series are compared to the other measures mentioned.
Moreover it is a measure that can be used adequately to compare and evaluate the
similarities of two different time series and it overcomes the major drawbacks of
the other tools mentioned (Barcel6 2001). The Theil coefficient T heilyg, yops of the
queueing speed v, and the observed speed vy, is defined as:

| Z(0g—vobs)*
n
v [ 3 vahe
nq + l’lh

This measure is frequently used to assess the accuracy of econometric forecasts
compared to actual observations. The forecasts are in our case the speeds calculated
with the queueing model and the actual observations are then the observed speeds. If
all forecasts are on target, the value of T heilyg, vops is 0. If however the forecasts are
very inaccurate, the Theil coefficient goes to 1 (Holden et al. 1990). Concluding, a
low value of T heilyy, yops means that the speeds obtained from the queueing models
are close to the observed speeds.

One extra advantage of using the Theil inequality coefficient is the decomposi-
tion into the three proportions of inequality. These proportions are useful as a means
of breaking down the error down into three different characteristic sources: bias
(error due to the difference in means), variance (error due the difference in variance)
and covariance (error due to randomness) (Holden et al. 1990). The bias proportion
gives information about how far the mean of the series of queueing speeds vy is
from the mean of the actual series of observed speeds v,;. The variance proportion
gives information about how far the variation of the series of queueing speeds v,
is from the mean of the variation of the series of observed speeds v,,. The covari-
ance proportion measures the remaining unsystematic errors. The bias, variance
and covariance proportions all add up to one. The best results are those for which
the bias and variance proportions are small or where the covariance proportion is
the largest.

3)

Theilvq,uobs =

4 The datasets

A dataset collected by the ministry of transportation of the Flemish Government
(Belgium) is used in the analysis. This ministry is responsible for collecting and
reporting the counting data results on all Flemish highways. The original dataset
contains minute-per-minute observations for the period from February 7, 2000 to
February 13, 2000. For each minute, data are available for all counting points
on the Beltway R1 around Antwerp and all counting points immediately before
the Beltway R1 that are located on highways leading to the Beltway R1. More
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Table 2. The decomposition of the Theil coefficient
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Covariance  Theilqoy =

oq The standard error of the queueing speeds
oops  The standard error of the observed speeds
r The correlation coefficient of the two series

specifically, the dataset contains all data for the number of trucks, the number of
passenger cars, the speed and the density. All these data are available for each
counting point on a minute-per-minute basis for each direction and for each lane.
As a consequence, for each counting point 10080 records (60 minutes times 24
hours times 7 days) are available. The counting points are distributed all over the
ring road R1 around Antwerp, starting at the on-and off-ramp complex at the left
bank of Antwerp (at highway E17) and going to the end of the ring road R1 where
highway E19 starts. Besides data for the ring road R/, data is also available for all
incoming highways (i.e. from/to Gent on the left bank of Antwerp: E17; from/to
Brussels: A12 and E19; from/to Liege: E34; from/to Breda: E£19). In total, 64
counting points were available in the original dataset, resulting in a total dataset
size of over 600000 records (64 counting points times 10080 records for each
counting point).

As a first step, one counting point of the total dataset (Kaaien-Merksem in the
North of Antwerp, in the direction of Antwerp coming from Breda, The Netherlands)
is randomly selected. All trucks and passenger cars are converted to a vehicle
equivalent, i.e. cars are 1 vehicle equivalent and trucks are 2 vehicle equivalents (see
e.g., Daganzo 1997). The concept of the vehicle equivalents is based on observations
of freeway conditions in which the presence of heavy vehicles (e.g., trucks, buses,
etc.) create less-than-ideal conditions, including longer and more frequent gaps of
excessive lengths both in front of and behind these heavy vehicles. Physical space
taken up by a heavy vehicle is typically two to three times greater in length than
that of a passenger car (Transportation Research Board 1996).

In a second step all minute-per-minute observed flows and speeds are aggre-
gated to a 10-minute time interval and over the different lanes. More specifically,
the minute-by-minute speeds are averaged over 10 minutes and the minute-by-
minute flows are summed over 10 minutes (see e.g., Transportation Research Board
(1996)). In the dataset, missing values were denoted with a value —9999. Missing
values are replaced by the mean value of the other observations during the time
interval under consideration (i.e., 10 minutes). The speed for the time interval is
calculated as the mean of the minute-per-minute speed over all lanes. This pro-
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cedure works well for time intervals with little missing observations. Due to this
limitation, not enough observations are available during the hours 1 to 4 and 24 to
correct for the missing data.

To increase the usability of the dataset, one day is selected to calibrate the
models in the analysis: February 8, 2000. The validation phase is performed with
data collected on February 10, 2000 at the same counting point.

5 Queueing speed versus observed speed

Using the queueing models described, one can calculate the speeds for the observed
flows (from the dataset) and compare them with the real observed speeds. As such
for the same observed flow, two speeds are available: an observed speed and a
queueing model speed. The difference between the two speeds series over all flow
observations is then evaluated using the Theil coefficient. By changing the input
parameters, the queueing model that minimizes the Theil coefficient is obtained
(Fig. 3). The parameters in the evaluation are the queueing model itself (M /M1,
M/G/1,GI/G/z and the state dependent ones, refered to as S D) and its respective
parameters (the traffic intensity p, the coefficient of variation of service times c;,
the coefficient of variation of inter-arrival times c,, the jam density k; and the free
flow speed v ). When the best model is chosen using this methodology, the Theil
coefficient is decomposed into its three proportions to identify the source of the
error made.

Ohserrations Cheneing model
Chsermed flonar g ]
-\-\_\_‘-\—\_\_\_\.‘\-\—\-\
Ohserved speed v, Chieneing speed v,
[ +

[Theil cosaffiient)

Fig. 3. Evaluation methodology

In a first step, the queueing models are calibrated. Calibration means determin-
ing the right values for the parameters governing the queueing models. In a second
step, the calibrated queueing models are used to calculate the speeds for a second
similar day in the dataset (i.e., validation).
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Table 3. Results for the unstratified dataset (Calibration)

Model Approximation Theil Correlation
M/M/1 0.08948 0.5450
M/G/1 0.08970 0.5394
GI/G/1 KLB 0.11722 0.7348

K 0.11003 0.7011

w 0.10730 0.7074

GI/G/3 K 0.11003 0.7808
w 0.11352 0.7741

SD GI1/G/1 KLB 0.11351 0.5184
K 0.08011 0.5253

w 0.07974 0.5239

SD GI/G/3 K 0.08012 0.5244
w 0.07906 0.5185

5.1 Calibration

This section describes the results of the calibration phase of the queueing models.
As explained above, the observed flow together with the parameters of the chosen
queueing model is the basic input needed. All values of the parameters in the models
are evaluated within a certain range: ¢, and ¢, both ranging between 0.5 and 1 with
step-size 0.05, k; is varied from 60 veh/km to 100 veh/km with a step-size of 1
veh/km and v is varied from 80 km/hr to 150 km/hr with a step-size of 1 km/hr.
The ranges for these values are partially found in the literature (Transportation
Research Board 1996) and are partially based on some feasibility constraints taking
into account physical space on the road (e.g., for the jam density), technology of
cars (e.g., maximum speeds). Due to the limited number of possible combinations
and values of the parameters, all parameter combinations (i.e. a full enumeration)
are evaluated and the combination with the lowest Theil coefficient is retained
and labelled as best. Moreover, due to the analytical character of the queueing
models, the computation time needed to find the best parameter combination for
the queueing model was always limited (less than one minute).

For the first day of the described dataset, the queueing speeds for the observed
flows are obtained. Each queueing model with its respective parameter combina-
tion is evaluated in terms of the Theil coefficient. The best parameter setting that
minimizes the Theil coefficient is then retained. Table 3 shows the key results for
the different queueing models. In general, the state dependent GI1/G/z queueing
models (SD G1/G/z) result in speeds closest to the observed speeds (as reflected
in the lowest Theil coefficient).

In all results, one common factor can be distinguished: in hours 7 to 9 and 16 to
18 the speeds obtained with the queueing models lie far away from the real observed
speeds. These hours are typically congestion hours with large peaks in flow (see
also Van Woensel 2003). Especially during these hours the speed from the queueing
model was deviating largely from the observed speeds. The reason is that apparently
one queueing model with one parameter setting is inadequate to represent the traffic
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Table 4. Results for the stratified dataset (Calibration)

Model Approximation No Morning Evening
congestion  congestion  congestion
M/M/1 0.03928 0.04650 0.05939
M/G/1 0.03440 0.04552 0.08375
GIl1/G/1 KLB 0.09853 0.07357 0.14962
K 0.08401 0.06169 0.14546
w 0.07806 0.05683 0.14765
G1/G/3 K 0.10778 0.07830 0.12028
w 0.09876 0.07033 0.11551
SD GI1/G/1 KLB 0.05335 0.05070 0.03656
K 0.05640 0.06010 0.03634
w 0.05564 0.06021 0.03590
SD GI/G/3 K 0.04809 0.03516 0.03760
w 0.05137 0.04647 0.03641
Table 5. The Theil decomposition (Calibration)
Decomposition
Total dataset Theil Bias Variance  Covariance

SDGI/G/3W 0.07906  0.00787  0.14581 0.84631

Decomposition

Stratified dataset Theil Bias Variance  Covariance
No congestion 0.03440  0.13453  0.11088 0.75459
Morning congestion ~ 0.03516  0.40983  0.01921 0.57096
Evening congestion ~ 0.03590  0.00557  0.13437 0.86006
Complete day 0.03472  0.02342  0.02495 0.95163

process for the full day. It is often observed that the traffic process during the
congested hours is different than in the uncongested hours (Button 1993). To verify
for this phenomenon and to increase the model performance, the dataset is split up
into three more coherent subsets: i.e. morning congestion, evening congestion and
all other hours (no congestion) (see also Ichouia et al. 2003 for a similar approach).
Then, for each subset the queueing models are again evaluated in terms of the Theil
coefficient. Table 4 summarizes all relevant results for this stratified set.

Combining the best results for each considered period of the day (no congestion,
morning congestion and evening congestion), the best fit for the whole day is
obtained. More specifically, the best queueing model for the uncongested hours of
the day is the M/G/1 queueing model. During the congested hours however, the
state dependent queueing models (SD) seem to perform better. The overall Theil
coefficient using the above models for the different periods of the day, is 0.03472.
Figure 4 compares the observed speed and the queueing speed. The Theil inequality
coefficient is decomposed into the three proportions of inequality: bias, variance
and covariance proportion (Table 5).

It appears that 85% of the error made when using one queueing model for the
whole day can be attributed to random errors (covariance proportion). Using the
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Fig. 4. Queueing speed vs Observed speed (Calibration)

Table 6. Results for the stratified dataset (Validation)

Decomposition

Total dataset Theil Bias Variance  Covariance
SDGI/G/3W 0.09132  0.20343  0.00000 0.79657

Decomposition

Stratified dataset Theil Bias Variance =~ Covariance
No congestion 0.04953  0.00421  0.29180 0.70399
Morning congestion ~ 0.05847  0.00829  0.18053 0.81118
Evening congestion ~ 0.09553  0.59873  0.32716 0.07411
Complete day 0.04932  0.00657  0.00601 0.98742

stratified sample and the period specific queueing models (improved model), does
not change this results in terms of the decomposition.

5.2 Validation

In a second step, the calibrated queueing models obtained above are used to evaluate
another comparable day. In other words, the queueing models and its parameters
obtained in the calibration step are used again with a different day. Again, the
evaluation is done in terms of the Theil coefficient and its decomposition. Addi-
tionally, the correlation coefficient is given. Table 6 gives the results and the Theil
decomposition of the calibrated queueing models.
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In terms of the Theil inequality coefficient, the queueing models lose a bit of
their power to generate speeds that are close to the observed speeds. When looking
at the Theil decomposition, only for the evening congestion, it appears that the
queueing model used is not adequate to model the speeds on this day. Because the
largest part of the error made lies in the bias proportion, it is suspected that the
characteristics of the evening congestion are substantially different from the day
used for the calibration of the models. This is typically the case if the process during
this time period is not stationary. In general, the queueing models seem to be fairly
robust if the underlying situation for the different days is not very different. These
results are similar to what is found by Van Woensel (2003).

6 Conclusions

In this paper, the applicability of queueing models for traffic flows is validated.
Using empirical speed and flow data, the best queueing model is searched for such
that the difference between the observed speed and the queueing speed is minimal.
The mathematical instrument used to measure this difference is the Theil coefficient.
It appeared that an overall analysis using one single queueing model for the whole
day is inadequate. Therefore the analysis is extended towards a more stratified
sample based on the hours of the day, using different queueing models for different
periods of the day. The rationale is that for some hours of the day (congestion hours)
the best queueing model will be different. Model validation is central in this paper,
parameter validation is of second importance here. The parameters are optimized
using the Theil coefficient on a limited number of observations. This approach
confirms that the use of queueing models is justified to model traffic flows. On the
other hand, if one (e.g., policy makers) would use these models then a periodic
re-evaluation of the parameters used will be necessary. Then much more data is
needed to adequately pinpoint the values of the parameters. Other research via
simulation showed that the current methodology is already to a large extent robust
with regards to the estimated parameters (Wuyts et al. 2003).

Traffic flows on a highway during non-congested hours are best described us-
ing a M/ G/1 queueing model in most cases. During the congested hours, the state
dependent queueing GI/G/z models are more realistic. Moreover, the Theil de-
composition shows that the largest part of the errors made are random. Results
showed that the queueing models developed can be adequately used to model un-
interrupted traffic flows. As such, these models can be used to evaluate potential
improvements in existing traffic conditions. Starting from the existing traffic state,
potential improvements are easily quantified and compared with one another. Im-
provements that can be evaluated using this queueing approach are e.g. congestion
pricing (Van Woensel et al. 2005), environmental impact of traffic (Van Woensel et
al. 2001), optimal number of lanes, investment analysis, etc. Moreover, due to the
analytical character of the queueing models developed, they are very suitable to be
incorporated in other models, e.g., V R P models.
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