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Abstract. This paper presents a direct extension of the label setting algorithm
proposed by Martins in 1984 for the shortest path problem with multiple objectives.
This extended version computes all the efficient paths from a given source vertex, to
all the other vertices of the network. The algorithm copes with problems in which the
“cost values” associated with the network arcs are positive. The proposed extension
can handle objective functions that are either of the “sum” type or of the “bottleneck”
type. The main modifications to Martins’algorithm for multi-objective shortest path
problems are linked to the dominance test and the procedure for identifying efficient
paths. The algorithmic features are described and a didactic example is provided to
illustrate the working principle. The results of numerical experiments concerning
the number of efficient solutions produced and the CPU time consumed for several
configurations of objectives, on a set of randomly generated networks, are also
provided.
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1 Introduction

The Multi-Objective Shortest Path (MOSP) problem is one of the most inten-
sively studied problems in Multi-Objective Combinatorial Optimization (Ehrgott
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and Gandibleux 2002). Two types of objectives formulated by a linear function or
a max-min function are usually considered. These objectives correspond respec-
tively to the “sum” problem and the “bottleneck” problem, which are denoted in
the general case as (σ −S |µ−M), meaning that a situation concerns respectively
σ objectives of the first type and µ objectives of the second. For example, cost or
delay are S-type objectives to be minimized, and quality or bandwidth are M-type
ones to be maximized.

There are two principal classes of algorithms for solving multi-objective shortest
path problems with linear functions: labelling-based algorithms and ranking path-
based algorithms. The former may be split into two main families: label setting
algorithms (see Hansen 1979; Martins 1984a) in which one label is set permanently
at each iteration, and label correcting algorithms (see Brumbaugh-Smith and Shier
1989; Mote et al. 1991; Skriver and Andersen 2000) in which all the labels become
permanent only at the last iteration. Ranking-based techniques, like those proposed
in Clímaco and Martins (1982), use a k-shortest path routine to solve the problem. In
addition, specific network problems may be solved by using dynamic programming-
based algorithms (see Henig 1985; Kostreva and Wiecek 1993; Sniedovich 1988).

When all the objectives lead to sum problems (σ −S) only, the set of efficient
paths can, under assumptions concerning the cost values, be computed by applying
Martins’ label setting algorithm. In this paper, we propose an extension of Martins’
algorithm for solving (σ −S |1−M)-class multi-objective shortest path problems.
Several real-world contexts are addressed by this (σ −S | 1−M) problem. For
example, Internet traffic routing could be enhanced if based on a multi-objective
routing procedure which would prevent network congestion. MOSP between one
router and all the other routers of the network must be computed in real-time, by
simultaneously optimizing (σ −S |1−M) (Randriamasy et al. 2002; Randriamasy
and Gandibleux 2003). The routing operation includes a procedure for computing
the MOSPs. In the context of vehicle routing, selecting a route in a transportation
network, according to the objectives of capacity, distance or time, is the same type
of problem (Moore et al. 1978).

This paper is organized as follows. Section 2 provides the mathematical back-
ground (definitions and notation) and recalls the principles of the Martins label set-
ting algorithm. Section 3 describes our revision of this algorithm for (σ−S |1−M)
shortest path problems. In Sect. 4, the results of numerical experiments on a set of
randomly generated networks are reported and discussed. Finally, Sect. 5 presents
our conclusions and suggests several directions for future research.

2 Mathematical background

2.1 Fundamental definitions

A network is defined as a directed and connected graph G = (V , A), where
V = {1, . . . , n} is the set of vertices with cardinality |V | = n and A =
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{(i1, j1), . . . , (im, jm)} is the set of arcs with cardinality |A|= m. The directed arc
linking vertices i and j is denoted by (i, j), and the vector (c1(i, j), . . . , ck(i, j))

represents the “cost values” associated with the arc (i, j). C refers to the cost matrix
for all arcs (i, j) in G. In the set V , we identify a source vertex s and a sink vertex t .
A path r from s to t in G is a sequence of arcs and vertices from s to t , where the tail
vertex of a given arc coincides with the head vertex of the next arc in the path. The
decision space is denoted by Rs,t , the set of all paths from s to t in G, or by Rs,• the
set of all the paths from s to all others vertices V \ {s} in G. Let zp(r) denote the
value of a path r with respect to the objective p, for p = 1, . . . , k, with k = σ +µ,
the number of objectives. Hence, the vector z(r) = (z1(r), . . . , zk(r)) represents
the performance vector of path r ∈ Rs,t in the objective space Z = z(Rs,t ). The
formulation of the objectives is zp(r) = ∑

(i,j)∈r cp(i, j) for the linear function,
and zp(r) = min(i,j)∈r cp(i, j) for the max-min function. These functions corre-
spond respectively to the (1−S) problem min

∑
(i,j)∈r cp(i, j), and the (1−M)

problem max min(i,j)∈r cp(i, j).
Let r1, r2 be two paths, and z1 = z(r1), z2 = z(r2) the performance vec-

tors. When all the objectives are to be minimized, z1 dominates z2 iff z1
p(r1) ≤

z2
p(r2), p = 1, . . . , k, and z1 �= z2. z is non-dominated iff z ∈ Z and �z′ ∈ Z

such that z′ dominates z. A path re is efficient iff re ∈ Rs,t and �r ∈ Rs,t such that
z(r) dominates z(re). When re is an efficient solution then z(re) is a non-dominated
vector. When a path is not efficient, it is dominated. Also, z1 dominates strictly z2

iff z1
p(r1) < z2

p(r2), p = 1, . . . , k. According to this definition of dominance, a
path re is weakly efficient iff re ∈ Rs,t and �x ∈ Rs,t such that z(x) < z(re).
When re is a weakly efficient solution then z(re) is a weakly non-dominated vector.
When a path is not weakly efficient, it is dominated.

2.2 Multi-objective shortest paths

The multi-objective shortest path problem is a well-known NP -hard (Serafini 1986)
MOCO problem. The version considered in this paper can be summarized as:

“ min
r∈Rs,t

”(z1(r), . . . , zk(r)) ∀t ∈ V \ {s} (MOSP)

Let E(Rs,•) denote the maximal complete set of efficient paths in Rs,• for a given
source vertex s, i.e. the set of all paths of Rs,• in which each path corresponds to
a non-dominated point. Several distinct efficient paths r1, r2, r3 can correspond
to the same non-dominated point z(r1) = z(r2) = z(r3) in the objective space.
In this case, the paths r1, r2, r3 are said to be equivalent in the objective space
(Hansen 1979). The minimal complete set of efficient paths is a subset of E(Rs,•)
that contains no equivalent solutions, and for any r ∈ E(Rs,•), there exists r ′ in the
minimal complete set, such that r and r ′ are equivalent.

Hansen (1979) studied ten shortest path problems with two objectives. In that
paper, the author reported the following important results:
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– Minimizing or maximizing a (1−M) problem is equivalent (one problem can
be transformed to the other). Thus, (1−M) problem can be considered either as
max min or min max.

– For the (2−S) problem, the number of solutions |E(Rs,t )| is equal to 2|A| for
some specific networks.

– An algorithm yielding a minimal complete set of efficient paths E(Rs,t ) for a
given t for the (1−S | 1−M) problem in O(m2 log n) operations is provided.
This problem is also studied in Martins (1984b).

In terms of complexity, the enumeration of all efficient paths in a multi-objective
shortest path problem may not be tractable in polynomial time. However, the ex-
ample considered in Hansen makes use of exponential arc values. In practice, arc
values are far from that specific case, and the number of efficient paths is generally
not exponential as illustrated in Sect. 4 (which provides experimental results on
the number of efficient paths collected for randomly generated networks). Martins
(1984a) proposed a label setting algorithm for computing the maximal complete
set of efficient paths when all the cost values are non negative (cp(i, j) ≥ 0 for all
(i, j) ∈ A, and p = 1, . . . , k) with at least one strict inequality holding for some
value of p. It is a generalisation for (σ −S) objectives of the algorithm presented
by Hansen in 1979.

The Martins algorithm is a multiple objective extension of the Dijkstra algorithm
in which the ‘min’ operator is replaced by a dominance test. This modification
is valid since the Bellman principle of optimality can be applied to the multiple
objective path case: for the networks being considered, any subpath of an efficient
path is an efficient subpath. Martins’ algorithm ensures the computation of the
maximal complete set of efficient paths from one vertex to all the other vertices of
a network.

The main idea of Martins algorithm is quite simple. At each iteration, for each
vertex, there are two different sets of labels to qualify paths: permanent labels and
temporary labels. The algorithm selects the lexicographically smallest label from
all the sets of temporary labels, converts it to a permanent label, and propagates the
information contained in this label to all the temporary labels of its successors. The
procedure stops when there are no more temporary labels. Each permanent label
corresponds to a unique efficient path. A proof of the validity of the algorithm is
given in Ehrgott (2000), p. 171.

The characteristics of Martins’ algorithm have motivated us to extend this algo-
rithm to simultaneously optimise S-type and M-type objectives. S-type objectives
are to be minimized and M-type ones are to be maximized in the continuation.
The revised version presented in the next section deals with (σ −S | µ−M) in
which σ ≥ 1 and µ = 1, and computes the maximal complete set of efficient paths
E(Rs,•).
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i j
(c1(i,j),...,cσ(i,j),cµ(i,j))

z1i,1,...,zσi,1 , zµi,1 ,*,*]

z1i,2,...,zσi,2 , zµi,2 ,*,*]
Fig. 1. View of two labels on a vertex

3 The revised Martins algorithm for (σ −S |1−M)

The main change concerns the dominance test for ensuring that the maximal com-
plete set of efficient paths is computed for (σ−S |1−M). For short, the indices noted
as 1, . . . , σ refer to the S-type objectives and µ refers to the M-type objective in
the following description.

A label lj can be represented as lj = [ z1, . . . , zk, i, h ] where (z1, . . . , zk)

is the performance vector extracted; i is the preceding adjacent vertex from which
it was possible to label the vertex j ; and h is the position of the label in the list
of labels on vertex i. Let us focus on a vertex i connected to a successor vertex j

(Fig. 1).
The costs of the arc (i, j) are given by (c1(i, j), . . . , cσ (i, j), cµ(i, j)). Con-

sider two temporary labels [ z
i,h
1 , . . . , zi,h

σ , zi,h
µ , ∗, ∗ ] where h = 1, 2 on vertex i.

When z
i,1
p = z

i,2
p ∀p = 1, . . . , σ and zi,1

µ > zi,2
µ , label 2 is weakly non-dominated

by label 1. According to the dominance test in Martins algorithm, label 2 should
be deleted. Now, consider these two labels on vertex j according to the value of
cµ(i, j). If cµ(i, j) ≤ min(zi,1

µ , zi,2
µ ), then the two labels become equivalent on ver-

tex j and thus, label 2 must be kept; else, label 2 remains weakly non-dominated
on vertex j . Thus, the dominance test used in the original version of the algorithm
cannot find all the efficient paths for this configuration of objectives. To do so, a
modification is necessary to handle this case.

Table 1 recapitulates the five situations to consider using a (2 − S | 1 − M)
problem as illustration. For a given objective, let us denote by symbols {+, =, −},
which mean respectively ‘better’, ‘equal’ and ‘worse’, the result of the comparison
between z1 and z2, the vectors extracted from two labels l1, l2.

Because some weakly non-dominated labels (situation C) can be made perma-
nent, not every permanent label corresponds to an efficient path when the labelling
phase is completed. However these weakly non-dominated labels cannot be deleted
because they contribute to the determination of the efficient paths. Such a label can
correspond to an intermediate vertex for an efficient path; however, it cannot be
a sink vertex of an efficient path because, by definition, there is another label on
this vertex with a better performance. Weakly non-dominated labels (crossed out
twice in Fig. 2) are thus hidden in the list of permanent labels that will be used for
the construction procedure as a sink vertex of an efficient path. The others remain
visible and correspond to individual efficient paths.



52 X. Gandibleux et al.

Table 1. In A, z1 is better than z2 at least on one objective. In B, the
vectors are equivalent for all objectives. In C, according to the value
of cµ(i, j), these two labels can become equivalent on vertex j . In D,
under the assumptions of non-negative costs, these two labels cannot
become equivalent in the next iterations. Finally, in E, z1 is worse
than z2 for all objectives

p=1 p=2 p=3 Situation l1 is deleted

+ +, =, − +, =, − A no
+, =, − + +, =, − A no
+, =, − +, =, − + A no

= = = B no
= = − C no
− =, − =, − D yes

=, − − =, − D yes
− − − E yes

Fig. 2. Example of (2−S |1−M). The deleted labels are crossed out. The labels that have been crossed
out twice correspond to the hidden labels for the determination of a sink vertex of an efficient path.
Paths re ∈ E(R1,t ) are, for t = 2: the path 1 → 3 → 2 with z(re)=(5, 5, 6); for t = 3: the path 1 → 3
with z(re)=(3, 4, 6); for t = 4: the paths 1 → 2 → 4 and 1 → 3 → 2 → 4, both with performances
z(re) equal to (6, 6, 5)

Thus, to determine any efficient paths, choose one visible permanent label on
a vertex j and extract the values corresponding to i and h for this label. So, i is
the vertex just before j in the efficient path. To determine the label on vertex i that
has produced this current path, the value of h is needed. This value indicates the
hth label on vertex i that has produced the current path. By moving backwards, the
first vertex of the path (s) will be reached. Figure 2 illustrates the shortest paths for
(2−S |1−M) from source vertex s = 1 to sink vertices t = {2, 3, 4}.
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1. The temporary label [0, 0, ∞, ⊥, ⊥], assigned to vertex s = 1, is selected
and becomes permanent. Two temporary labels are computed: [5, 5, 5, 1, 1] for
vertex 2 and [3, 4, 6, 1, 1] for vertex 3.

2. Of these temporary labels, the smallest lexicographically is [3, 4, 6, 1, 1]. It is
selected and becomes permanent. The vertex 3 successors are labelled, yield-
ing temporary labels [5, 5, 6, 3, 1] for vertex 2 and [6, 6, 4, 3, 1] for vertex 4.
Label [5, 5, 5, 1, 1] on vertex 2 is weakly non-dominated by [5, 5, 6, 3, 1], case
where performances on the sum objectives are equal. Therefore, this label is
not deleted.

3. [5, 5, 6, 3, 1] is the next temporary label selected to become permanent. The
vertex 2 successors are labelled, yielding temporary labels: [6, 7, 6, 2, 2] for
vertex 3 and [6, 6, 5, 2, 2] for vertex 4. The new temporary label for vertex
3 is weakly non-dominated by permanent label [3, 4, 6, 1, 1]. This situation
corresponds to the case D presented earlier. Consequently, label [6, 7, 6, 2, 2]
is deleted.

4. In the next iteration, [5, 5, 5, 1, 1] is the temporary label selected and made
permanent. The vertex 2 successors are labelled, yielding two temporary labels:
[6, 7, 5, 2, 1] on vertex 3 and [6, 6, 5, 2, 1] on vertex 4. The new temporary label
on vertex 3 is dominated by [3, 4, 6, 1, 1] (case E), and consequently, is deleted.

5. [6, 6, 5, 2, 1] and [6, 6, 5, 2, 2] are lexicographically the smallest temporary
labels. Assuming that [6, 6, 5, 2, 1] is selected and becomes permanent, vertex
4 has no successor, and thus no new temporary label is created.

6. The list now contains only a single temporary label, [6, 6, 5, 2, 2]. This label
is selected and becomes permanent. Again, vertex 4 has no successor, and no
new temporary label is created. The list of temporary labels now being empty,
the labelling phase is concluded.

To summarize, the revision affects three aspects of the original algorithm. First,
it replaces the value 0 in the initial label with ∞ for the corresponding max−min
objective. Second, it extends the dominance test on labels, and third, it disables the
weakly non-dominated permanent labels for the determination of efficient paths
at the end of the labelling phase. The following section presents the numerical
experiments.

4 Numerical experiments

4.1 Experimental conditions

The aim of these experiments is to provide feedback on the number of efficient so-
lutions observed and the CPU time required in practice, for selected configurations
of randomly generated networks. The networks are generated for a given number
of vertices n and a given density d (with d = 100 × m/(n × (n − 1)) ). In all
networks, each node can be reached from the source node. The network topology is
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Fig. 3. Number of efficient paths observed for the (2−S |1−M) configuration

built as follows: first a rooted tree is elaborated, and then, arcs are added randomly
to the tree in order to reach the desired density.

Twenty-seven parameter configurations are selected for generating the random
networks: (i) the number of vertices: 50, 100, and 200; (ii) the density of the network:
5%, 10%, and 20%; (iii) three classes of ranges for cost values cp(i, j):

– range 1: [1, 100] for p = 1, 2, 3
– range 2: [1, 1000] for p = 1, 2, 3
– range 3: [1, 255] for p = 1; [1, 50000] for p = 2 ; [1, 1000000] for p = 3

Ten numerical instances are generated for each configuration. Four configurations
of objectives are considered for computing the efficient paths: (2−S), (1−S |1−M),
(3 − S), and (2 − S | 1 − M), with all S-type objectives minimized and the M-
type maximized. For each configuration of objectives, the maximal complete set
of efficient paths from node s = 1 to all other network vertices is computed.
For each network configuration, the experiments yield results on: (i) the CPU time
(minimum/avg/maximum); (ii) the number of efficient paths observed (avg); for the
(2−S |1−M) objective configuration, (iii) the number of efficient paths observed,
in regard to the node with the minimum number of solutions (min avg), and (iv)
the number of efficient paths observed, in regard to the node with the maximum
number of solutions (max avg).
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The computer used for the experiments is a laptop equipped with a PowerPC G4
1GHz processor, 512 Mb of RAM memory installed, running under the MacOSX
10.3.2 operating system. The algorithms are implemented in C. The binary code is
obtained using the gcc-3.3 compiler without any compiler optimization.

4.2 Results and discussion

Figures 3 and 4 present, respectively, the number of efficient paths and the CPU
time observed for the (2−S |1−M) configuration. We found no significant difference
between the three value range sets used in the experiment. Our algorithm does not
seem to be sensitive to the ranges.

The number of efficient paths grows with the density and network size. In
general, the average minimum number of efficient paths is low. Thus, there are
apparently some vertices in the network where few efficient backup paths are avail-
able from s to these vertices. On the other hand, the maximum number is generally
high, almost twice the average value. Thus, there are also several vertices with a
huge number of backup paths. Consequently, it is not surprising to observe that
more CPU time is needed in large networks with a high density of arcs.

Figures 5 and 6 summarize the average values of the efficient paths and the
CPU time observed for the four configurations of objectives. Remember that all
S-type objectives were minimized and the M-type objective was maximized in
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these experiments. For the configurations with two or three objectives, plus one
M-type objective enabled, the number of efficient paths is generally greater than
the configurations with only S-type objectives. In examining the 1080 resolutions
performed, it appears that this is true for 96,30 % of the configurations.

Compared to the (2−S |1−M) configuration, all the other configurations need
less CPU time. The expected use of this algorithm in real world problems related
to computer communication, involves a target configuration for the network of 100
vertices with a density of less than 20 %, and typical cost values in “range 3”. To
be used in this environment, the algorithm must be able to produce solutions in less
than one second, using a conventional computer. Given that the most pessimistic
measurements are far under this temporal limit, the results shown in Figs. 4 and
6 appear very promising. Thus, the algorithm satisfies the ressource constraints of
the real world problem, for all of the configurations in the experiment.

5 Conclusion

We have presented a revised version of the Martins algorithm for multi-objective
shortest path problems with (σ −S | 1−M) objectives. Our revision concerns the
initial label, the dominance test for labels during the labelling procedure, and the
extraction procedure for the labelled efficient paths. Numerical experiments allowed
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us to verify that the number of efficient paths generated is not exponential in practice,
even when simultaneously optimizing these S- and M- type objectives. In addition,
the computational effort required by the revised algorithm is comparable to the
Martins version although more labels are handled in the revised version.

By combining two types of objectives, this revised version provides a flexible
algorithmic solution to deal with real world problems in which the configuration
of objectives to be considered depends on external factors. It can be used in a real-
time environment, such as the computer communication problem mentioned in this
paper. Finally, although this paper examined the configuration with only one M-
type objective, our revised version of the Martins algorithm is capable of handling
more than one of these objectives.
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