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Abstract
Higher order risk measures are stochastic optimization problems by design, and for 
this reason they enjoy valuable properties in optimization under uncertainties. They 
nicely integrate with stochastic optimization problems, as has been observed by the 
intriguing concept of the risk quadrangles, for example. Stochastic dominance is 
a binary relation for random variables to compare random outcomes. It is demon-
strated that the concepts of higher order risk measures and stochastic dominance 
are equivalent, they can be employed to characterize the other. The paper explores 
these relations and connects stochastic orders, higher order risk measures and the 
risk quadrangle. Expectiles are employed to exemplify the relations obtained.

Keywords Higher order risk measure · Higher order stochastic dominance · Risk 
quadrangle

Mathematics Subject Classification 62G05 · 62G08 · 62G20

1 Introduction

Risk measures are considered in various disciplines to assess and quantify risk. 
Similarly to assigning a premium to an insurance contract with random losses after 
appraising its risk, risk measures assign a number to a random variable, which itself 
has stochastic outcomes.

This paper focuses on higher order risk measures, as these risk measures natu-
rally combine with stochastic optimization problems or in ‘learning’ objectives, as 
they are the result of optimization problems. In addition, these risk measures relate 
to the risk quadrangle.

The paper derives explicit representations of higher order risk measures for general, 
elementary risk measures in a first main result. These characterizations are employed 
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to characterize stochastic dominance relations, which are built on general norms. The 
second main result is a verification theorem. This is a characterization of higher order 
stochastic dominance relations, which is numerically tractable.

For the norm in Lebesgue spaces, stochastic dominance relations have been con-
sidered for example in Dupačová and Kopa (2014), Kopa et al. (2016, 2023), Post and 
Kopa (2017) and Consigli et al. (2023), in portfolio optimization involving commodi-
ties (cf. Frydenberg et al. (2019)), and by Dentcheva and Martinez (2012) and Mag-
gioni and Pflug (2016, 2019) in a multistage setting. The paper employs the charac-
terizations obtained to establish relations for general norms. A comparison of these 
methods is given in Gutjahr and Pichler (2013). The paper illustrates these connections 
for expectiles (Bellini et al. 2016; Bellini and Caperdoni 2007) and adds a comparison 
with other risk measures.

Outline of the paper The following Sect.  2 recalls the mathematical framework for 
higher order risk measures. Section 3 addresses the higher order risk measure associ-
ated with the spectral risks, as these risk measures constitute an elementary building 
block for general risk measures. This section develops the first main result, which is an 
explicit representation of a spectral risk’s higher order risk measure. As a special case, 
the subsequent Sect.  4 links and relates stochastic dominance and higher order risk 
measures. This section presents the second main result, which allows verifying a sto-
chastic dominance relation by involving only finitely many risk levels. The final Sect. 5 
addresses the expectile and establishes the relations of the preceding sections for this 
specific risk measure. Section 6 concludes.

2  Mathematical framework

Higher order risk measures are a special instance of risk measures, often also termed 
risk functionals. To introduce and recall their main properties we consider a space Y of 
ℝ-valued random variables on a probability space with measure P containing at least all 
bounded random variables, that is, L∞(P) ⊆ Y . A risk measure then satisfies the fol-
lowing axioms, originally introduced by Artzner et al. (1999).

Definition 2.1 (Risk functional) Let Y be a space of ℝ-valued random variables on a 
probability space (Ω,Σ,P) . A mapping R ∶ Y → ℝ is 

 (i) monotone, if R(X) ≤ R(Y) , provided that X ≤ Y  almost everywhere;
 (ii) positively homogeneous if R(�Y) = �R(Y) for all 𝜆 > 0;
 (iii) translation equivariant, if R(c + Y) = c +R(Y) for all c ∈ ℝ;
 (iv) subadditive, if R(X + Y) ≤ R(X) +R(Y) for all X and Y ∈ Y.

A mapping satisfying (i)–(iv) is called a risk functional, or a risk measure.
The risk quadrangle (cf. Rockafellar and Uryasev (2013)) relates risk measures with 

the measure of regret by



Connection between higher order measures of risk and stochastic… Page 3 of 28    41 

where V is called regret function. Equation  (2.1) was first introduced for the con-
ditional value-at-risk in Rockafellar and Uryasev (2000). For the expectation 
type function, i.e., V(X) = � v(X) , the relationship  (2.1) is studied in Ben-Tal and 
Teboulle (2007), where V was called optimized certainty equivalent; also, Krokhmal 
(2007) study the relation (2.1).

It follows from relation (2.1) that R—if given as in (2.1)—is translation equiv-
ariant, i.e, R  satisfies R(Y + c) = c +R(Y) for any c ∈ ℝ (cf.  (iii) above). In an 
economic interpretation, the amount c in (2.1) corresponds to an amount of cash 
spent today, while the remaining quantity Y − c is invested and consumed later, 
thus subject to V.

The risk functional R is positively homogeneous, if the regret function V is 
positively homogeneous. If V is not positively homogeneous, then one may con-
sider the positively homogeneous envelope

where 𝛽 ≥ 0 is a risk aversion coefficient. The combined functional

is positively homogeneous and translation equivariant (cf.  (ii) and  (iii)). The �
-divergence risk measure is an explicit example of a risk measure, which is defined 
exactly as (2.2), cf. Dommel and Pichler (2021).

The paper suggests a regret for a higher-order risk starting from a given risk R . 
To this end consider a space Y ⊂ L1(P) endowed with norm ‖ ⋅ ‖ . We shall assume 
the norm to be monotone, that is, ‖X‖ ≤ ‖Y‖ provided that 0 ≤ X ≤ Y  almost eve-
rywhere. We associate the following family of risk measure with a given norm.

Definition 2.2 (Higher order risk measure) Let ‖ ⋅ ‖ be a monotone norm on 
Y ⊂ L1(P) with ‖1‖ = 1 , where 1(⋅) = 1 is the identically one function on Y . The 
higher order risk measure at risk level � ∈ [0, 1) associated with the norm ‖ ⋅ ‖ is

where � ∈ [0, 1) is the risk aversion coefficient and x+∶=max(0, x).
We shall also omit the superscript and write R� instead of R‖⋅‖

�
 in case the norm 

is unambiguous given the context. We shall demonstrate first that the higher order 
risk measure is well-defined for any � ≥ 0.

(2.1)R(Y) = inf
c∈ℝ

c + V(Y − c),

V𝛽(Y) = inf
t>0

t
(
𝛽 + V

(
Y

t

))
,

(2.2)

R𝛽(Y) = inf
c∈ℝ

c + V𝛽(Y − c)

= inf
t > 0

q ∈ ℝ

t
(
𝛽 + q + V

(
Y

t
− q

))

(2.3)R
‖⋅‖
�
(Y) = inf

t∈ℝ
t +

1

1 − �
‖(Y − t)+‖,
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Proposition 2.3 Let (Y, ‖ ⋅ ‖) be a normed space of random variables. For the func-
tional R� defined in (2.3) it holds that

so that R�(⋅) is indeed well-defined on (Y, ‖ ⋅ ‖) for every � ∈ [0, 1).

Proof The upper bound follows trivially from the definition by choosing t = 0 in the 
defining equation (2.3).

For t ≤ 0 , it holds that −t = −Y + (Y − t) ≤ −Y + (Y − t)+ . It follows from the 
triangle inequality that −t ≤ ‖Y‖ + ‖(Y − t)+‖ and thus

To establish the relation also for t ≥ 0 , we start by observing the following monoto-
nicity property of the objective in (2.3) in addition: for Δt ≥ 0 , it follows from the 
reverse triangle inequality that

where we have used that 0 ≤ Y+ − (Y − Δt)+ ≤ Δt together with monotonicity of 
the norm. Replacing Y by Y − t in the latter expression gives

that is, the function t ↦ t + ‖(Y − t)+‖ is non-decreasing, which finally establishes 
that

The lower bound in (2.4) thus follows from the latter inequality, as R0(Y) ≤ R�(Y) 
for any � ≥ 0 .   ◻

Example 2.4 For Lebesgue spaces Lp(P) and norm ‖Y‖p∶=(� �Y�p)1∕p , p ≥ 1 , the 
higher order risk measure has been introduced in Krokhmal (2007) and studied in 
Dentcheva et al. (2010). For the norm ‖ ⋅ ‖∞ , the higher order risk measure is

indeed, it follows from (2.3) that

the subgradient of the convex function in the latter expression at t = ess sup Y  . The 
infimum in (2.3) is attained at t = ess sup Y  , and thus (2.5).

(2.4)−‖Y‖ ≤ R�(Y) ≤ 1

1 − �
‖Y‖,

−‖Y‖ ≤ t + ‖(Y − t)+‖ for all t ≤ 0.

‖Y+‖ − ‖(Y − Δt)+‖ ≤ ‖Y+ − (Y − Δt)+‖ ≤ ‖Δt 1‖ = Δt,

t + ‖(Y − t)+‖ ≤ t + Δt + ‖(Y − (t + Δt))+‖;

−‖Y‖ ≤ t + ‖(Y − t)+‖ for all t ∈ ℝ.

(2.5)R
‖⋅‖∞
𝛽

(Y) = ess sup Y , 𝛽 > 0;

0 ∈

�
1 −

1

1 − �
, 1

�
= �t

�
t +

1

1 − �
‖(Y − t)+‖∞

������t=ess sup Y
,
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Lemma 2.5 R�(⋅) is a risk functional, provided that the norm is monotone. Further, 
R� is Lipschitz continuous with respect to the norm, the Lipschitz constant is 1

1−�
.

Proof The assertions (ii)–(iv) in Definition 2.1 are straight forward to verify; to ver-
ify (i) it is indispensable to assume that the norm is monotone.

As for continuity, it follows from subadditivity together with  (2.4) that 
R�(Y) −R�(Z) ≤ R�(Y − Z) ≤ 1

1−�
‖Y − Z‖ , and �R�(Y) −R�(Z)� ≤ 1

1−�
‖Y − Z‖ 

after interchanging the roles of Y and Z. Hence, the assertion.   ◻

Note that the higher order risk measure as defined in (2.3) defines a risk functional 
based on a norm. In contrast to this construction, a risk functional R defines a norm via

and a Banach space with Y =
{
Y ∈ L1 ∶ R(|Y|) < ∞

}
 (cf. Pichler (2013)). Its natu-

ral dual norm for Z ∈ Z∶=Y∗ is

The following relationship allows defining a regret functional to connect a risk func-
tional R with the higher-order risk quadrangle.

Proposition 2.6 (Duality) Let R be a risk functional with associated norm ‖ ⋅ ‖ and 
dual norm ‖ ⋅ ‖∗ . For the higher order risk functional it holds that

where � ∈ [0, 1).

Remark 2.7 By the interconnecting formula  (2.1), the higher order risk functional 
R

‖⋅‖
�

 associated with the norm ‖ ⋅ ‖ is the regret function V‖⋅‖
�
(⋅)∶=

1

1−�
‖(⋅)+‖.

Proof It holds by the Hahn–Banach theorem and as (Y − t)+ ≥ 0 that

This establishes the first inequality ‘ ≤ ’ in (2.9) with t + (Y − t)+ ≥ Y  , as

(2.6)‖Y‖∶=R(�Y�)

(2.7)
‖Z‖∗∶= sup {�YZ ∶ ‖Y‖ ≤ 1}

= sup {�YZ ∶ R(�Y�) ≤ 1}.

(2.8)R�(Y) = sup

�
� YZ ∶ Z ≥ 0, � Z = 1 and ‖Z‖∗ ≤ 1

1 − �

�

(2.9)= inf
t∈ℝ

t +
1

1 − �
‖(Y − t)+‖,

1

1 − �
⋅ ‖(Y − t)+‖ = sup

‖Z‖∗≤ 1

1−�

�Z(Y − t)+ ≥ sup

� Z = 1, Z ≥ 0,

‖Z‖∗ ≤ 1

1−�

� Z(Y − t)+.
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As for the converse inequality assume first that Y is bounded. Note, that

so that it follows that

Further, it holds that �YZ = t∗ + � Z(Y − t∗)+ for t∗ ≤ Y  a.s. and thus

thus the desired converse inequality, provided that Y is bounded; if Y is not bounded, 
then there is a bounded Y� with Y ≤ Y� ( 𝜀 > 0 ) and ‖Y𝜀 − Y‖ < 𝜀 , so that

so that we may conclude that (2.9) holds for every Y ∈ Y .   ◻

Example 2.8 (Lebesgue spaces) The dual norm of the genuine norm 
‖X‖p∶=(� �X�p)1∕p in the Lebesgue space Lp(P) is ‖Z‖∗ = (� �Z�q)1∕q for the Hölder 
conjugate exponent q with 1

p
+

1

q
= 1 . With Proposition 2.6 it follows that

cf. also Pichler and Shapiro (2015) and Pichler (2017).

In what follows, we shall elaborate the higher order risk measure and the associ-
ated regret function for specific risk measures, specifically the spectral risk measure.

t +
1

1 − �
⋅ ‖(Y − t)+‖ ≥ sup

� Z = 1

Z ≥ 0, ‖Z‖∗ ≤ 1

1−�

�
�
t + (Y − t)+

�
Z

≥ sup

� Z = 1

Z ≥ 0, ‖Z‖∗ ≤ 1

1−�

�YZ.

inf
t∈ℝ

t + 𝔼 (Y − t)Z = 𝔼YZ + inf
t∈ℝ

t ⋅ (1 − 𝔼 Z) =

{
𝔼YZ if 𝔼Z = 1,

−∞ else,

sup

𝔼Z = 1

Z ≥ 0, ‖Z‖∗ ≤ 1

1−�

𝔼YZ = sup

Z ≥ 0,

‖Z‖∗ ≤ 1

1−�

inf
t∈ℝ

t + 𝔼 (Y − t)Z.

sup
� Z = 1, Z ≥ 0,
‖Z‖∗ ≤ 1

1−�

� YZ = sup
Z ≥ 0,

‖Z‖∗ ≤ 1
1−�

t∗ + � Z(Y − t∗)+ = t∗ + 1
1 − �

‖(Y − t∗)‖ ≥ inf
t∈ℝ

t + 1
1 − �

‖(Y − t)+‖,

�Z(Y� − t)+ − �� Z ≤ � Z(Y − t)+ ≤ � Z(Y� − t)+,

R
‖⋅‖p
�

(Y) = inf
t∈ℝ

t +
1

1 − �
‖(Y − t)+‖p

= sup

�
𝔼 YZ ∶ ‖Z‖q ≤ 1

1 − �
, Z ≥ 0 and 𝔼 Z = 1

�
,
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3  Higher order spectral risk

By Kusuoka’s theorem (cf. Kusuoka (2001)), every law invariant risk functional 
can be assembled by elementary risk functionals, each involving the average 
value-at-risk.

The following section develops the explicit representations of the higher order 
risk measures associated with spectral risk measures first. The explicit represen-
tation then is extended to general risk functionals.

Definition 3.1 (Spectral risk measures) The function � ∶ [0, 1) → ℝ is called a spec-
tral function, if 

 (i) �(⋅) ≥ 0,
 (ii) ∫ 1

0
�(u) du = 1 and

 (iii) �(⋅) is non-decreasing.

The spectral risk measure with spectral function � is

where

is the value-at-risk, the generalized inverse or quantile function.

The higher order risk measure of the spectral risk measure is a spectral risk 
measure itself. The following theorem presents the corresponding spectral func-
tion explicitly and generalizes (Pflug 2000). The result is central towards the main 
characterization presented in the next sections.

Theorem 3.2 (Higher order spectral risk) Let � ∈ [0, 1) be a risk level. The higher 
order risk functional of the risk functional R� with spectral function �(⋅) has the 
representation

where �� is the spectral function

here, u� ∈ ℝ is the �-quantile with respect to the density � , that is, the solution of

R�(Y)∶=∫
1

0

�(u)F−1
Y
(u) du,

F−1
Y
(u)∶=�@� u(Y)∶= inf {x ∈ ℝ ∶ P(Y ≤ x) ≥ u}

(3.1)inf
t∈ℝ

t +
1

1 − �
R�

(
(Y − t)+

)
= R��

(Y),

(3.2)𝜎𝛽(u)∶=

{
0 if u < u𝛽 ,
𝜎(u)

1−𝛽
else;
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which is unique for 𝛽 > 0.

Proof We remark first that �� indeed is a spectral function, as 
∫ 1

0
��(u) du =

1

1−�
∫ 1

u�
�(u) du =

1−�

1−�
= 1 by the defining property  (3.3) and  (ii) in 

Definition  3.1. The quantile u� is uniquely defined for 𝛽 > 0 , as the function � is 
non-decreasing by  (iii). In what follows we shall demonstrate that the infimum 
in (3.1) is attained at t∗∶=F−1

Y
(u�) . Note first that

so that

and

Assume first that t ≤ t∗ . The inequality u ≤ FY (t) is equivalent to F−1
Y
(u) ≤ t (cf. 

van der Vaart (1998); this relation of functions FY and F−1
Y

 is occasionally called a 
Galois connection), and thus

or equivalently

Assume next that u� ≤ FY (t
∗) , then ∫ 1

FY (t
∗)
�(u) du ≤ 1 − � so that

Combining the inequalities in the latter displays gives

(3.3)∫
u�

0

�(u) du = �,

F−1
(Y−t)+

(u) =

{
0 if u < FY (t),

F−1
Y
(u) − t else,

R�

(
(Y − t)+

)
= ∫

1

0

�(u)F−1
(Y−t)+

(u) du = ∫
1

FY (t)

�(u)
(
F−1
Y
(u) − t

)
du

(3.4)(R�)�(Y) = inf
t∈ℝ

t +
1

1 − � ∫
1

FY (t)

�(u)
(
F−1
Y
(u) − t

)
du.

�
FY (t

∗)

FY (t)

�(u)
(
F−1
Y
(u) − t

)
du ≤ 0,

�
1

FY (t)

�(u)
(
F−1
Y
(u) − t

)
du ≤ �

1

FY (t
∗)

�(u)
(
F−1
Y
(u) − t

)
du.

t − t∗

1 − � �
1

FY (t
∗)

�(u) du ≤ t − t∗.

(3.5)

t∗ +
1

1 − � �
1

FY (t
∗)

�(u)
(
F−1
Y
(u) − t∗

)
du ≤ t +

1

1 − � �
1

FY (t)

�(u)
(
F−1
Y
(u) − t

)
du
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and thus the assertion, provided that u� ≤ FY (t
∗) and t∗ ≤ t.

Conversely, assume that t ≤ t∗ . Then the inequality u ≤ FY (t
∗) is equivalent to 

F−1
Y
(u) ≤ t∗ and thus

which is equivalent to

Assume further that FY (t
∗) ≤ u� , then ∫ 1

FY (t
∗)
�(u) du ≥ 1 − � so that

Combining the latter inequalities gives

It follows from (3.5) and (3.6) that t∗∶=F−1
Y
(u�) is optimal in (3.4). That is,

and thus the assertion.   ◻

The following statement expresses the higher order risk functional by at the base 
value u� , and the random variable’s aberrations to the right, involving the survival 
function instead of its inverse distribution function.

Corollary 3.3 The higher order spectral risk measure is

(with u� as in (3.3)) or, provided that Y is bounded,

�
FY (t

∗)

FY (t)

�(u)
(
F−1
Y
(u) − t∗

)
du ≤ 0,

�
1

FY (t)

�(u)
(
F−1
Y
(u) − t∗

)
du ≤ �

1

FY (t
∗)

�(u)
(
F−1
Y
(u) − t∗

)
du.

t∗ − t ≤ t∗ − t

1 − � �
1

FY (t
∗)

�(u) du.

(3.6)

t∗ +
1

1 − � �
1

FY (t)

�(u)
(
F−1
Y
(u) − t∗

)
du ≤ t +

1

1 − � �
1

FY (t
∗)

�(u)
(
F−1
Y
(u) − t

)
du.

(3.7)

(R�)�(Y) = t∗ +
1

1 − � ∫
1

u�

�(u)
(
F−1
Y
(u) − t∗

)
du

=
1

1 − � ∫
1

u�

�(u)F−1
Y
(u) du

= ∫
1

0

��(u)F
−1
Y
(u) du

(3.8)
(
R�

)
�
(Y) = �@� u�

(Y) +
1

1 − � ∫
∞

�@� u�
(Y)

Σ
(
FY (y)

)
dy
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where

is the cumulative spectral function and Σ(u)∶=Σ0(u) = ∫ 1

u
�(p) dp.

Proof Notice first that Σ�(u) = 1 for u ≤ u� , where u� is given in  (3.3). By Theo-
rem 3.2, Riemann-Stieltjes integration by parts and changing the variables it holds 
that

where we have used that F−1
Y
(0) = ess inf Y  and Σ�(1) = 0 in (3.11). This gives (3.9).

The equation  (3.8) results from sticking to the lower bound u� (instead of 0) 
in (3.10). That is,

which is assertion (3.8).   ◻

Corollary 3.4 The higher order spectral risk measure has the representation

(3.9)
(
R�

)
�
(Y) = ess inf Y + ∫

∞

ess inf Y

Σ�

(
FY (y)

)
dy,

Σ�(u)∶=min

(
1,

1

1 − � ∫
1

u

�(p) dp

)

(3.10)

(
R�

)
�
(Y) = R��

(Y)

=
1

1 − � ∫
1

u�

�(u)F−1
Y
(u) du

= −∫
1

0

F−1
Y
(u) dΣ�(u)

(3.11)
= −F−1

Y
(u)Σ�(u)

|||
1

u=0
+ ∫

1

0

Σ�(u) dF
−1
Y
(u)

= ess inf Y + ∫
∞

ess inf Y

Σ�

(
FY (y)

)
dy,

(
R�

)
�
(Y) = −∫

1

u�

F−1
Y
(u) dΣ�(u)

= −F−1
Y
(u)Σ�(u)

|||
1

u=u�
+ ∫

1

u�

Σ�(u) dF
−1
Y
(u)

= �@� u�
(Y) + ∫

∞

�@� u�
(Y)

Σ�

(
FY (y)

)
dy,

R��
(Y) = sup{� [Y ⋅ ��(U)] ∶ U ∈ [0, 1] is uniformly distributed}.
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Proof Recall first that Y ∼ F−1
Y
(U) for U uniformly distributed. By the rearrange-

ment inequality, �Y��(U) ≤ �F−1
Y
(U)��(U) , because F−1

Y
(U) and ��(U) are 

comonotone and both, F−1
Y
(⋅) and ��(⋅) are non-decreasing functions. The assertion 

follows with (3.7).   ◻

The celebrated formula (cf. Pflug (2000), Rockafellar and Uryasev (2000), 
Ogryczak and Ruszczyński (2002))

for the average value-at-risk is a special case of Theorem 3.2 for the spectral func-
tion �(⋅) = 1

1−�
1[�,1](⋅).

The following corollary estabilshes this risk functional’s higher order variant.

Corollary 3.5 (Average value-at-risk) The higher order average value-at-risk is

where Y ∈ L1 ; equivalently,

where � ≥ �.

Proof The spectral function of the average value-at-risk is ��(⋅) =
1
⋅≥�

1−�
 . It follows 

from  (3.3) that u� = � + �(1 − �) = 1 − (1 − �)(1 − �) and 

(��)� =

{
0 if u ≤ u� ,

1

(1−�)(1−�)
else.

 This is the spectral function of the average value-

at-risk at risk level u�.
The assertion (3.13) follows by replacing � with �−�

1−�
 in (3.12).   ◻

Corollary 3.6 (Kusoka representation spectral risk measures)Suppose the risk func-
tional is

where � is a probability measure on [0, 1]. Then the higher order risk measure is

where ��(⋅) is the measure

��@� �(Y) =
1

1 − � ∫
1

�

�@� u(Y) du = inf
t∈ℝ

t +
1

1 − �
𝔼 (Y − t)+

(3.12)(��@� �)�(Y) = ��@� 1−(1−�)(1−�)(Y),

(3.13)��@� �(Y) = inf
t∈ℝ

t +
1

1 −
�−�

1−�

��@� �

(
(Y − t)+

)
,

(3.14)R(Y) = ∫
1

0

��@� � (Y)�(d�),

R�(Y) = ∫
1

0

��@� � (Y)��(d�),
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and u� and p0 are determined by the equation and definition

Proof Above all, �� is a probability measure, because p0 ≥ 0 and

The spectral function of the average value-at-risk at risk level � is ��(⋅) =
1
⋅≥�

1−�
 . The 

quantile condition (3.3) thus is

and thus (3.16).
For u < u𝛽 , the spectral function corresponding to the measure R� in (3.14) is 0, 

which coincides with (3.2). For u > u𝛽 , the spectral function for R� is

which is the desired result in light of (3.2).   ◻

In situations of practical interest, the risk measure is often given as finite combi-
nation of average values-at-risk at varying levels. The following corollary addresses 
this situation explicitly.

Corollary 3.7 Suppose that

with pi ≥ 0 , 
∑n

i=1
pi = 1 and �i ∈ [0, 1] for i = 1,… , n . Then

(3.15)��(A)∶=p0 ⋅ �u� (A) +
1

1 − �
�
(
A ∩ (u� , 1]

)

(3.16)∫
u�

0

u� − �

1 − �
�(d�) = � and p0∶=

1 − u�

1 − � ∫
u�

0

�(d�)

1 − �
.

��([0, 1]) = p0 +
1

1 − � ∫
1

u�+

�(d�)

=
1

1 − � ∫
u�

0

1 − � − (u� − �)

1 − �
�(d�) +

1

1 − � ∫
1

u�+

�(d�)

=
1

1 − � ∫
1

0

�(d�) −
�

1 − �
= 1.

� = ∫
1

0

max(0, u� − �)

1 − �
�(d�)

p0

1 − u�
1u≥u� + �

1

u�

1

1 − �

1u≥�
1 − �

�(d�) =
1

1 − � �
u�

0

1u≥u�
1 − �

�(d�) + �
1

u�

1

1 − �

1u≥�
1 − �

�(d�)

=
1

1 − � �
1

0

�(d�)

1 − �
,

(3.17)R(Y) =

n∑
i=1

pi ⋅ ��@� �i
(Y)
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where u� satisfies � =
∑n

i=1
pi

max(0,u�−�i)

1−�i
 and p0∶=

∑
i∶�i≤u�

pi

1−�i

1−u�

1−�
.

For large risk levels � , specifically if

the involved risk measure (3.18) collapses to the average value-at-risk, it holds that

where �̃� is the weighed risk quantile �̃�∶=
∑n

i=1

pi

1−𝛼i
𝛼i∑n

i=1

pi

1−𝛼i

.

Proof The result corresponds to the measure � =
∑n

i=1
pi ��i in  (3.14), which is a 

special case in Corollary 3.6.
For u� ≥ �i , i = 1,… , n , it holds that 

� =
∑n

i=1
pi

u�−�i

1−�i
=
∑n

i=1
pi

1−�i−(1−u� )

1−�i
= 1 − (1 − u�)

∑n

i=1

pi

1−�i
 , so that 

u� ≥ maxi=1,…,n �i is equivalent to (3.19). It follows that

and p0 =
∑ pi

1−�i

1−u�

1−�
= 1 , thus the result with (3.18).   ◻

Remark 3.8 Corollary 3.5 is a special case of  (3.18) in the preceding corollary, as 
�̃� = 𝛼 in this case.

The following statement generalizes the statements from and provides the 
higher order risk functional for general risk measures.

Theorem 3.9 (Kusuoka representation of higher order risk measures) Let R be a law 
invariant risk measure with Kusuoka representation

The higher order risk measure is

(3.18)R𝛽(Y) = p0 ⋅ ��@� u𝛽
(Y) +

∑
i∶𝛼i>u𝛽

pi

1 − 𝛽
��@� 𝛼i

(Y),

(3.19)� ≥ 1 −
(
1 − max

i=1,…,n
�i

)
⋅

n∑
i=1

pi

1 − �i
,

R𝛽(Y) = ��@� 1−(1−�̃�)(1−𝛽)(Y),

(3.20)

u𝛽 = 1 −
1 − 𝛽∑n

i=1

pi

1−𝛼i

= 1 − (1 − 𝛽)

⎛⎜⎜⎝
1 −

∑n

i=1

pi

1−𝛼i
−
∑n

i=1

pi(1−𝛼i)

1−𝛼i∑n

i=1

pi

1−𝛼i

⎞⎟⎟⎠
= 1 − (1 − 𝛽)(1 − �̃�),

(3.21)R(Y) = sup
�∈M

R�(Y).
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where the truncated measures �� are given in (3.15).

Proof For the risk functional defined in (3.21) it follows from the min-max inequal-
ity that

where we have used Corollary 3.6.
For the reverse inequality in (3.22) consider the function

on ℝ ×M([0, 1]) , where M([0, 1]) collects the probability measures on [0, 1] (with 
its Borel �-algebra). By its definition  (3.14), this function is linear in � , and con-
vex in t, where t ∈ ℝ and � is a measure on  [0,  1]. By Prokhorov’s theorem, the 
set M([0, 1]) of probability measures is sequentially compact, as  [0,  1] is com-
pact. From Sion’s minimax theorem (cf. Sion (1958)) it follows that equality holds 
in (3.22). Thus, the result.   ◻

Theorem 3.9 provides an explicit characterization for the general higher order 
risk measure. The following section exploits this representation to characterize 
general stochastic dominance relations.

4  General stochastic dominance relations

As Sect.  2 mentions above, the risk measure R defines a norm via the setting 
‖ ⋅ ‖∶=R(� ⋅ �) (cf. (2.6)), and conversely, the norm ‖ ⋅ ‖ defines a risk measure via 
R

‖⋅‖
�

 , cf. (2.3). In what follows we connect a specific stochastic dominance rela-
tion with the norm. This stochastic dominance relation can be described by higher 
order risk measures, developed in the preceding Sect. 3.

We start by defining the stochastic dominance relation based on a monotone 
norm and consider the Lebesgue norm and stochastic dominance for integer 
orders in below.

R�(Y) = sup
�∈M

R��
(Y),

(3.22)

R�(Y) = inf
t∈ℝ

t + sup
�∈M

R�

(
(Y − t)+

)

≥ sup
�∈M

inf
t∈ℝ

t +
1

1 − �
R�

(
(Y − t)+

)

= sup
�∈M

(R�)�(Y) =

= sup
�∈M

R��
(Y),

(t,�) ↦ t +R�

(
(Y − t)+

)
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Definition 4.1 (Stochastic dominance) Let X, Y ∈ Y be ℝ-valued random variables 
in a Banach space (Y, ‖ ⋅ ‖) . The random variable X is dominated by Y, denoted

if

If the norm is unambiguous from the context, we shall also simply write ≼ instead 
of ≼‖⋅‖.

The cone of random variables triggered by a single variable is convex.

Lemma 4.2 (Convexity of the stochastic dominance cone) For X ∈ Y given, the set

is convex.

Proof The map y ↦ (t − y)+ is convex, as follows from reflecting and translating 
the convex function x ↦ x+ . Suppose that X ≼ Y0 and X ≼ Y1 . Then it follows for 
Y�∶=(1 − �)Y0 + �Y1 , together with monotonicity of the norm and (4.1), that

That is, it holds that X ≼ Y𝜆 and thus the assertion.   ◻

4.1  Characterization of stochastic dominance relations

Stochastic dominance relations can be fully characterized by higher order risk 
measures. The following theorem presents this main result, which integrates 
the details developed above for these risk functionals and stochastic dominance 
relations.

Theorem  4.3 (Characterization of stochastic dominance, cf. Gómez et  al. (2022)) 
The following are equivalent: 

 (i) X ≼‖⋅‖ Y ,
 (ii) R�(−X) ≥ R�(−Y) for all � ∈ [0, 1) , and

X ≼‖⋅‖ Y ,

(4.1)‖(t − X)+‖ ≥ ‖(t − Y)+‖ for all t ∈ ℝ.

{Y ∈ Y ∶ X ≼ Y}

‖(t − Y�)+‖ ≤ ���
�
(1 − �)(t − Y0) + �(t − Y1)

�
+

���
≤ (1 − �)‖(t − Y0)+‖ + �‖(t − Y1)+‖
≤ (1 − �)‖(t − X)+‖ + �‖(t − X)+‖
= ‖(t − X)+‖.
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 (iii) infZ∈Z�
�ZX ≤ infZ∈Z�

� ZY  for every � ∈ (0, 1) , where 

 is the positive cone ( Z ≥ 0 ) in the dual ball with radius 1

1−�
 ( ‖Z‖∗ ≤ 1

1−�
 ), 

intersected with the simplex ( �Z = 1).

Proof Suppose that X ≼‖⋅‖ Y  , then, by definition, ‖(t − X)+‖ ≥ ‖(t − Y)+‖ for every 
t ∈ ℝ . It follows that t + 1

1−�
‖(−X − t)+‖ ≥ t +

1

1−�
‖(−Y − t)+‖ for all t ∈ ℝ , and 

thus assertion (ii) after passing to the infimum.
As for the contrary, assume that  (ii) holds. To demonstrate  (i) note first 

that q ↦ ‖(q − X)+‖ is convex; indeed, with q�∶=(1 − �)q0 + � q1 and 
(a + b)+ ≤ a+ + b+ it holds that

and thus

by the triangle inequality of the norm.
For q ∈ ℝ fixed, choose

that is, the subdifferential (of the convex function � ↦ ‖(� − Y)+‖ ) evaluated at 
� = q , and note that � ∈ [0, 1] . Set �∶=1 − � , and observe that

so that

by (2.3). Employing the definition (2.3) again and assumption (ii), it follows that

or equivalently

Z�∶=

�
Y ∈ Y∗ ∶ ‖Z‖∗ ≤ 1

1 − �
, � Z = 1, Z ≥ 0

�

(q� − X)+ =
(
(1 − �)(q0 − X) + �(q1 − X)

)
+
≤ (1 − �)(q0 − X) + �(q1 − X)+

‖(q� − X)‖ ≤ (1 − �) ⋅ ‖(q0 − X)+‖ + � ⋅ ‖(q1 − X)+‖

� ∈ �� ‖(� − Y)+‖����=q,

0 ∈ �q − q +
1

1 − �
‖(q − Y)+‖

R�(−Y) = −q +
1

1 − �
‖(q − Y)+‖

−q +
1

1 − �
‖(−X + q)+‖ ≥ R�(−X)

≥ R�(−Y)

= −q +
1

1 − �
‖(q − Y)+‖,

‖(q − X)+‖ ≥ ‖(q − Y)+‖.
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The assertion (i) follows, as q ∈ ℝ was arbitrary; this establishes equivalence of (i) 
and (ii).

Finally, let � ∈ (0, 1) . With (ii) and Proposition 2.6 we have that

where the infimum in both expressions is among Z ∈ Z� =
�
Z ∈ Z ∶ ‖Z‖∗ ≤ 1

1−�

�
 , 

as the set Z� collects the constraints in  (2.8). This establishes equivalence 
between (ii) and (iii).   ◻

Remark 4.4 The quantity −R(−Y) =∶ A(Y) arising naturally in Theorem  4.3  (ii) 
above is often called an acceptability functional, cf. Pflug and Römisch (2007).

Corollary 4.5 Suppose that

then X is dominated by Y, X ≼‖⋅‖ Y  . Further, the assertion (4.2) is equivalent to

Proof Fix � ∈ (0, 1) , then infZ∈Z�
�ZX ≤ infZ∈Z�

� ZY  by  (4.2). With  (iii) in the 
preceding Theorem 4.3 it follows that X ≼ Y .

With (2.7), the statement (4.3) is equivalent with �Z(X − Y) ≤ 0 for Z ∈ Z and 
hence the assertion.   ◻

Remark 4.6 The assertion  (4.3), however, is strictly stronger than  (ii) in Theo-
rem 4.3. Indeed, it follows with convexity and (4.3) that

and hence (ii), the assertion, although the reverse implication does not hold true.

Example 4.7 (Uniform norm) For the uniform norm ‖ ⋅ ‖∞ , the defining relation (4.1) 
is equivalent to

this relation derives from the characterization (i) in Theorem 4.3 as well.

inf
Z∈Z�

� ZX ≤ inf
Z∈Z�

� ZY ,

(4.2)�ZX ≤ �ZY for all Z ∈ Z∶=
⋃

�∈(0,1)

Z� ,

(4.3)R�(X − Y) ≤ 0 for all � ∈ (0, 1).

R(−Y) ≤ R(X − Y) +R(−X) ≤ R(−X),

X ≼‖⋅‖∞ Y ⟺ ess inf X ≤ ess inf Y;
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4.2  Higher order stochastic dominance

A traditional way of introducing stochastic dominance relations is by iterating inte-
grals of the cumulative distribution function. This is a special case of the Lebesgue 
norm ‖ ⋅ ‖p , p ∈ [1,∞) , with p ∈ ℕ.

Definition 4.8 (Higher order stochastic dominance, cf. Müller and Stoyan (2002)) 
The random variable X is dominated by Y in first order stochastic dominance, if

where FX(x)∶=P(X ≤ x) is the cumulative distribution function. We shall write 
X ≼(1) Y  . For p ∈ [1,∞] , the random variable X is stochastically dominated by Y in 
pth-stochastic order, if

we write X ≼(p) Y .

By (4.1) in Definition 4.1,

where ‖ ⋅ ‖p is the usual norm in the Lebesgue space Lp . It is for historical—although 
unfortunate—reasons that the p-indici in the preceding display do not match. The 
higher order stochastic dominance of integral orders has been indtroduced and con-
sidered in earlier publications.

Lemma 4.9 (Cf. Ogryczak and Ruszczyński (1999, 2001)) With F(1)

X
(⋅)∶=FX(⋅) , 

the kth ( k = 2, 3,… ) repeated integral is F(k)

X
(x)∶= ∫ x

−∞
F
(k−1)

X
(y) dy . The following 

two points are equivalent, they characterize stochastic dominance of integer orders 
( k = 1, 2,… ) by repeated integrals: 

 (i) X ≼(k) Y ,
 (ii) F

(k)

Y
(x) ≥ F

(k)

X
(x) for all x ∈ ℝ.

Proof It holds with Cauchy’s formula for repeated integration that

By integration by parts, the latter is

so that

FX(x) ≥ FY (x) for all x ∈ ℝ,

(4.4)𝔼 (x − X)
p−1
+ ≥ 𝔼 (x − Y)

p−1
+ for all x ∈ ℝ;

X ≼(p+1) Y is equivalent to X ≼‖⋅‖p Y , p ≥ 1,

F
(k)

X
(x) =

1

(k − 2)! ∫
x

−∞

(x − y)k−2FX(y) dy.

F
(k)

X
(x) =

1

(k − 1)! ∫
x

−∞

(x − y)k−1 dFX(y),
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from which the assertion follows from the defining condition (4.1) in Definition 4.1.  
 ◻

Remark 4.10 It follows from the iterated integral and  (ii) in Lemma  4.9 that 
X ≼(k) Y ⟹ X ≼(k+1) Y  for all natural numbers k = 1, 2,… . We notice next that

To this end note first that the characterization (4.4) is equivalent to

With ∫ x

z
(x − y)�−1(y − z)�−1 dy = B(�, �)(x − z)�+�−1 (B  is Euler’s integral of the 

first kind) and integration by parts it follows that

where we have used the characterization  (4.6) in  (4.7), as x − y ≥ 0 and that 
B(p, p� − p) is well-defined and positive for p′ > p . The assertion again follows 
with (4.6).

4.3  Characterization of stochastic dominance for spectral risk measures

The following builds on the spectral risk measure R�(⋅) introduced in Definition 3.1 
and considers the norm

for the spectral function � . Theorem  4.3 and the characterization of higher order 
spectral risk measures (Theorem 3.2) give rise to the following result.

Theorem 4.11 The stochastic dominance relation

F
(k)

X
(x) =

1

(k − 1)! ∫
∞

−∞

(x − y)k−1
+

dFX(y) =
1

(k − 1)!
� (x − X)k−1

+
,

(4.5)X ≼(p) Y ⟹ X ≼(p�) Y for all real numbers 1 ≤ p ≤ p� ∈ ℝ.

(4.6)�
x

−∞

(x − z)p−1dFX(z) ≥ �
x

−∞

(x − z)p−1dFY (z) for all x ∈ ℝ.

(4.7)

�
x

−∞

(x − z)p
�−1 dFX(z) =

1

B(p, p� − p) �
x

−∞ �
x

z

(x − y)p
�−p−1(y − z)p−1 dy dFX(z)

=
1

B(p, p� − p) �
x

−∞

(x − y)p
�−1−p �

y

−∞

(y − z)p−1 dFX(z) dy

≥ 1

B(p, p� − p) �
x

−∞

(x − y)p
�−1−p �

x

−∞

(y − z)p−1 dFY (z) dy

= �
x

−∞

(x − z)p
�−1 dFY (z),

‖ ⋅ ‖�∶=R�(� ⋅ �)
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with respect to the norm associated with the spectral risk measure R� is equivalent 
to

where �p∶= ∫ 1

1−p
�(u) du and SX(x)∶=1 − FX(x) = P(X > x) is the survival function 

of the random variable X.

Proof We argue with the norm ‖Y‖�∶=R�(�Y�) . Note, that (Y − t)+ ≥ 0 , hence the 
defining equation (2.3) is

where we have used Theorem 3.2 in (4.8).
From (3.8) we have that

where we have used that F−Y (y) = P(−Y ≤ y) = P(Y ≥ −y) = 1 − FY (−y) = SY (−y) 
and �@� �(−Y) = −�@� 1−�(Y) at points of continuity of FY (⋅).

Now set 1 − u�=∶p . Then, by employing the characterizing relation (3.3) for the �
-quantile of � , it holds that

so that

X ≼‖⋅‖𝜎 Y

− �p ⋅ �@� p(Y) + �
�@� p(Y)

−∞

Σ
(
SY (y)

)
dy

≤ −�p ⋅ �@� p(X) + �
�@� p(X)

−∞

Σ
(
SX(x)

)
dx for all p ∈ (0, 1),

(4.8)

R
‖⋅‖�
�

(Y) = inf
t∈ℝ

t +
1

1 − �
‖(Y − t)+‖�

= inf
t∈ℝ

t +
1

1 − �
R�

�
(Y − t)+

�

= R��
(Y),

R�(−Y) = �@� u�
(−Y) +

1

1 − � ∫
∞

�@� u�
(−Y)

Σ
(
F−Y (y)

)
dy

= −�@� 1−u�
(Y) +

1

1 − � ∫
∞

−�@� 1−u�
(Y)

Σ
(
SY (−y)

)
dy

= −�@� 1−u�
(Y) +

1

1 − � ∫
�@� 1−u�

(Y)

−∞

Σ
(
SY (y)

)
dy,

1 − � = ∫
1

u�

�(u) du = ∫
1

1−p

�(u) du = �p,

R�(−Y) = −�@� p(Y) +
1

�p ∫
�@� p(Y)

−∞

Σ
(
SY (y)

)
dy.
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By Theorem 4.3, the relation X ≼‖⋅‖𝜎 Y  is equivalent to R‖⋅‖�
�

(−Y) ≤ R
‖⋅‖�
�

(−X) for 
all � ∈ (0, 1) . With that, the assertion follows.   ◻

4.4  Comparison of stochastic order relations

Different stochastic dominance relations may vary in strength (the implication (4.5) 
in the preceding Remark  4.10 is an example). In what follows, we provide an 
explicit relation to compare stochastic dominance relations, which are built on dif-
ferent spectral functions.

Proposition 4.12 (Comparison of spectral stochastic orders) Suppose that

for some probability measure � , where u� is as defined in (3.3). Then the stochas-
tic order associated with �� is weaker than the genuine stochastic order associated 
with � . Specifically, for different spectral functions � and �� , it holds that

Remark 4.13 The function �� in (4.9) is indeed a spectral function. It is positive, as � 
is a positive measure (thus (i) in Definition 3.1). The function is non-decreasing, as 
u� is non-decreasing for � increasing. Finally, the function �� is a density: indeed, it 
holds that

by integration by parts, where we have used the definition of u� in (3.3).

Proof of Proposition 4.12 Since x ≼‖⋅‖𝜎 Y  , it holds with Theorem  4.3 that 
R��

(−X) ≥ R��
(−Y) for all � ∈ (0, 1) , where �� is defined in (3.2). By the charac-

terization (3.1), this is

Integrating the latter expression with respect to �(d�) establishes the inequality

Interchanging the order of integration together with (3.17) gives that

(4.9)��(u) = �(u) ⋅ ∫
u�

0

�(d�)

1 − �

X ≼‖⋅‖𝜎 Y ⟹ X ≼
‖⋅‖𝜎𝜇 Y .

∫
1

0

��(u) du = ∫
1

0

�(u) ⋅ ∫
u�

0

�(d�)

1 − �
du = ∫

1

0 ∫
1

�u

�(u) du
�(d�)

1 − �
= ∫

1

0

�(d�) = 1

�
1

u�

�(u)

1 − �
F−1
−X
(u) du ≥ �

1

u�

�(u)

1 − �
F−1
−Y
(u) du, � ∈ (0, 1).

�
1

� �
1

u��

�(u)

1 − ��
F−1
−X
(u) du�(d��) ≥ �

1

� �
1

u��

�(u)

1 − ��
F−1
−Y
(u) du�(d��), � ∈ (0, 1).
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which in turn is

This is the assertion.   ◻

5  Example: the expectile

The expectile risk measure, originally introduced by Newey and Powell (1987), has 
recently gained additional interest (cf. Malandii et al. (2024), Balbás et al. (2023) 
or Farooq and Steinwart (2018) for conditional regressions). A main reason for the 
additional interest in this risk measure is because it is the only elicitable risk func-
tional (cf. Ziegel (2014)).

As Proposition 2.6 indicates, the higher order risk measure can be based on the 
dual norm. For this reason, the following section establishes the dual norm of expec-
tiles first, as it is crucial in understanding its regret function in the risk quadrangle. 
Next, we provide an explicit characterization of the higher order expectiles, that is, 
the higher order risk measure based on the expectile risk measure.

The expectile is defined as a minimizer. Its Kusuoka representation is central in 
elaborating the corresponding higher order risk functional.

Definition 5.1 For � ∈ (0, 1) , the expectile is

where

is the asymmetric loss, or quadratic error function.

The expectile satisfies the first order condition

and e�(⋅) is a risk measure for � ∈ [1∕2, 1] . We mention that condition (5.2) provides 
a definition for Y ∈ L1 , it is thus more general than (5.1), which requires Y ∈ L2 . The 
Kusuoka representation of the expectile (cf. Bellini et al. (2014, Proposition 9)) is 
given by

�
1

u�
�

�u

�

�(u)

1 − ��
�(d��)F−1

−X
(u) du ≥ �

1

u�
�

�u

�

�(u)

1 − ��
�(d�)F−1

−Y
(u) du, � ∈ (0, 1),

�
1

u�

��(u)F
−1
−X
(u) du ≥ �

1

u�

��(u)F
−1
−Y
(u) du, � ∈ (0, 1).

(5.1)e�(Y) = argmin
x∈ℝ

𝔼��(Y − x),

��(x) =

{
� x2 if x ≥ 0,

(1 − �)x2 else

(5.2)(1 − �)� (x − Y)+ = � � (Y − x)+,
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where � =
1−�

�
 , so that the risk level in  (5.3) is 1 − �

1−�

�

1−�
=

�(2−�)−1

(2�−1)(1−�)
 . Involving 

spectral risk measures, the expectile can be recast as

where S =
{
�� ∶ � ∈ [0, 1 − �]

}
 collects the spectral functions

The higher order expectile can be described by involving its dual norm (cf. (2.9)), as 
well as its Kusuoka representation (cf. Corollary 3.6). The following two (sub)sec-
tions elaborate these possibilities for the expectile.

5.1  The dual norm of expectiles

The higher order expectile can be described with the dual representation (2.8), for 
which the dual norm of the expectile is necessary.

By the characterization of the loss function  (5.2) it holds that e�(Y) is well-
defined for Y ∈ L1(P) . This is enough to conclude that � |Y| ≤ C� ⋅ e�(|Y|) for some 
constant C𝛼 > 0 (Lakshmanan and Pichler 2023, Corollary 2.16) elaborate the tight 
bound C� =

�

1−�
 ). It follows that Y∗ = L∞ , so that ‖Z‖∞ is well-defined for Z ∈ Y∗.

The following result provides the dual norm of the expectile explicitly.

Proposition 5.2 (Dual norm of the expectile) For � ≥ 1∕2 , the dual norm is

(cf. (2.7)) . It holds that

Notably, the norm ‖ ⋅ ‖∗
�
 is not a risk measure itself, and (5.5) is not a Kusuoka 

representation; indeed, the total weight in the representation (5.5) is

for � ∈ (1∕2, 1].

Proof of Proposition 5.2 We may assume that Z ≥ 0 , as otherwise we may consider 
sign (Z) ⋅ Y  instead of Y. For arbitrary sets B and G with B ⊂ G and P(G) < 1 define 
the random variable

(5.3)e�(Y) = max
�∈[0,1−�]

(1 − �) ⋅ �Y + � ⋅ ��@� 1−
�

1−�

�

1−�

(Y),

e�(Y) = sup
{
R��

(Y) ∶ �� ∈ S

}
,

s� (u) =

{
1 − � if u ≤ 1 −

�

1−�

�

1−�
,

1−�

�
else.

(5.4)‖Z‖∗
�
∶= sup

�
�YZ ∶ e�(�Y�) ≤ 1

�

(5.5)‖Z‖∗
�
= sup

�∈(0,1)

(1 − �) ⋅ ��@� �(�Z�) + �
1 − �

�
‖Z‖∞.

(1 − 𝛽) + 𝛽
1 − 𝛼

𝛼
< 1
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Note, that

and hence e𝛼(ỸB,G) = 1 by the defining equation (5.2). It follows with (5.4) that

As B ⊂ G are arbitrary, we conclude in particular that

because the random variables

satisfy all conditions from above for any uniform variable U. Now let P(G) → 1 and 
by denoting � = P(B) it follows that

as 𝖠𝖵@𝖱 � (Z) → ess supZ for � → 1.
As for the converse observe that we may assume e�(Y) = 1 for the optimal ran-

dom variable in (5.4). Consider the Lagrangian

where the Lagrangian multiplier � ∈ ℝ is associated with the equality constraint 
e�(Y) = 1 , i.e., (5.2), and the measurable variable � ∈ L1 , � ≥ 0 , is associated with 
the inequality constraint Y ≥ 0 . Provided That the derivative exists, the first order 
conditions are

or

Now note that the left-hand side of  (5.8) involves the variable Z, while the right-
hand side only involves constants, except on {Y = 0} , where � is not necessarily 
constant. The first order conditions  (5.8) thus hold true on plateaus of Z, if they 

(5.6)ỸB,G(𝜔)∶=

⎧
⎪⎨⎪⎩

0 if 𝜔 ∈ B,

1 if 𝜔 ∈ G ⧵ B, and
1−𝛼

𝛼
⋅

P(B)

1−P(G)
+ 1 else.

(1 − �) ⋅ P(B)(1 − 0) = � ⋅
(
1 − P(G)

)( (1 − �)P(B)

�(1 − P(G))
+ 1 − 1

)
,

‖Z‖∗
�
≥ �Z YB,G.

‖Z‖∗
�
≥ �

(1 − P(B)
�
⋅ ��@� P(B)(Z) + P(B)

1 − �

�
⋅ ��@� P(G)(Z),

ỸB,G =
(
1 − P(B)

)
⋅

1

1 − P(B)
1[P(B),1](U) + P(B)

1 − 𝛼

𝛼
⋅

1

1 − P(G)
1[P(G),1](U)

‖Z‖∗
�
≥ sup

�∈(0,1)

(1 − �) ⋅ ��@� �(Z) + �
1 − �

�
ess sup Z,

(5.7)L(Y;�,�)∶=�ZY − �
(
(1 − �)� (1 − Y)+ − � � (Y − 1)+

)
+ ��Y ,

0 =
�

�Y
L(Y;�,�),

(5.8)Z = 𝜆
(
−(1 − 𝛼)1{Y<1} − 𝛼 1{Y>1}

)
− 𝜇 ⋅ 1{Y=0}.
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coincide with {Y < 1} or {Y > 1} ; for {Y = 0} , equation (5.8) is � = −Z − �(1 − �) ; 
for {Y = 1} , the derivative of (5.7) does not exist or depends on the direction.

It follows, that the optimal Y in (5.4) exactly is of form (5.6) and hence the asser-
tion.   ◻

5.2  Higher order expectiles

The Kusuoka representation  (5.3) is the basis for the expectile’s higher order risk 
measure.

Proposition 5.3 For � ∈ (0, 1) , the higher order expectile is

where � =
1−�

�
 (as above) and �̃�∶=1 − 1

1−𝛾
.

Proof The measure in the Kusuoka representation  (5.3) is 
�(⋅) = (1 − �)�0 + � ⋅ �1− �

1−�

�

1−�

 . To apply Corollary  3.7 we set p1∶=1 − � and 
p2 = � , the corresponding risk levels are �1 = 0 and �2 = 1 −

�

1−�

�

1−�
 . The mixed 

risk level is �̃�∶=
𝛼1

p1

1−𝛼1
+𝛼2

p2

1−𝛼2
p1

1−𝛼1
+

p2

1−𝛼2

=
𝛼(2−𝛾)−1

𝛼(1−𝛾)
= 1 −

𝜂

1−𝛾
.

We distinguish the cases 𝛾

1−𝛽
< 1 − 𝜂 and 𝛾

1−𝛽
< 1 − 𝜂 , which are equivalent to 

u𝛽 ≶ 𝛼2 , i.e., 1 − 1−𝛽
𝛾

1−𝛼1
+

1−𝛾

1−𝛼2

≶ 𝛼2 in view of (3.20). In the first case, the critical equa-

tion (3.16) is (1 − �)u� = � , while it is (1 − �)u� + �
u�−�2

1−�2
= � in the other case; the 

solutions thus are u� =
�

1−�
 and u� =

�(2−�−�)−1+�

�(1−�)
 . The corresponding weights p0 

(cf. (3.16) again) are p0 =
1−u�

1−�
(1 − �) , or p0 =

1−u�

1−�

(
1−�

1−0
+

�

1−�2

)
= 1 . Finally, note 

that u𝛽 = 1 − (1 − 𝛽)(1 − �̃�).
The assertion follows with (3.17) and (3.18) in Corollary 3.7.   ◻

The average value-at-risk is ‘closed under higher orders’, as its higher order vari-
ant is an average value-at-risk as well (cf. (3.12)). This is not the case for the expec-
tile, as the first term in (5.9) is not an expectation as in the genuine Kusuoka repre-
sentation  (5.3). Repeating the construction and passing to higher order expectiles 
leads to more complicated risk measures.

Remark 5.4 The results in Mafusalov and Uryasev (2016) on stochastic properties of 
the average value-at-risk reveal relations and risk measures, which are similar to the 
risk measures exposed in (5.9).

(5.9)

(
e𝛼
)
𝛽
(Y) = max

𝛾∈[0,1−𝜂]

{(
1 −

𝛾

1−𝛽

)
��@� 𝛽

1−𝛾

(Y) +
𝛾

1−𝛽
��@� 1−

𝛾

1−𝛾

𝜂

1−𝜂

(Y) if
𝛾

1−𝛽
< 1 − 𝜂,

��@� 1−(1−𝛽)(1−�̃�)(Y) else,
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6  Summary

Higher order risk measures naturally integrate with stochastic optimization, as they 
are stochastic optimization problems themselves. This paper presents and derives 
explicit forms of higher order risk measures, specifically for spectral risk measures. 
These risk measures constitute the central building block of general law invariant 
risk measures.

Extending these results result it is demonstrated that stochastic dominance rela-
tions can be characterized by employing higher order risk measures, and vice versa. 
We provide a verification theorem, which makes higher stochastic dominance rela-
tions accessible to numerical computations.

The results are exemplified for expectiles, a specific risk measure with unique 
properties.
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