
Vol.:(0123456789)

Computational Management Science (2024) 21:31
https://doi.org/10.1007/s10287-024-00517-y

1 3

ORIGINAL PAPER

Hybrid simplicial‑randomized approximate stochastic
dynamic programming for multireservoir optimization

Luckny Zephyr1 · Bernard F. Lamond2 · Pascal Lang2

Received: 17 December 2023 / Accepted: 22 April 2024 / Published online: 10 May 2024
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract
We revisit an approximate stochastic dynamic programming method that we
proposed earlier for the optimization of multireservoir problems. The method
exploited the convexity properties of the value function to sample the reservoir level
space based on the local curvature of the value function, which is estimated by the
difference between a lower and an upper bounds (error bound). Unlike the previous
approach in which the state space is exhaustively partitioned into full dimensional
simplices whose vertices formed a discrete grid over which the value function was
approximated, here we propose instead a new randomized approach for selecting
the grid points from a small number of randomly sampled simplices from which
an error bound is estimated. Results of numerical experiments on three literature
test problems and simulated midterm reservoir optimization problems illustrate
the advantages of the randomized approach which can solve models of higher
dimensions than with the exhaustive approach.

Keywords Reservoir optimization · Stochastic dynamic programming · Simplicial-
randomized approximation · Piecewise linear approximation

 * Luckny Zephyr
 lzephyr@laurentian.ca

 Bernard F. Lamond
 Bernard.Lamond@fsa.ulaval.ca

 Pascal Lang
 pascal.lang.1@ulaval.ca

1 School of Business Administration/Barthi School of Engineering and Computer Science
(Cross-Appointment), Laurentian University, Sudbury, ON P3E 2C6, Canada

2 Département Opérations et systèmes de décision, Université Laval, Québec G1V 0A6, Canada

http://crossmark.crossref.org/dialog/?doi=10.1007/s10287-024-00517-y&domain=pdf

 L. Zephyr et al.

1 3

31 Page 2 of 44

1 Introduction

This work deals with a mid-term reservoir optimization problem over a finite
planning horizon. In each period, water must be released from the reservoirs to
produce electricity. However, the release decisions are constrained by not only
the availability of water, but also the physical limits of the turbines, and bounds
on the level of the reservoirs, that may be set by legal requirements. This problem
is rightfully acknowledged to be difficult, in particular due to the uncertainty
associated with the natural inflows to the reservoirs, e.g., snow-melt, snow water
equivalent.

Thus, the mid-term reservoir optimization is inherently a multiperiod
stochastic problem. As a result, the problem is often cast as a multiperiod
stochastic program or formulated under the framework of stochastic dynamic
programming. Numerous meta-heuristic approaches have also been proposed
for reservoir optimization problems, e.g., Almubaidin et al. (2022). Two
recent systematic reviews of such methods are available in Azad et al. (2020),
Beiranvand and Ashofteh (2023).

When stochastic programming (SP) is employed to solve the problem, the
random variables, e.g., natural inflows, and demand for energy, are discretized
via a so-called scenario tree, which easily becomes intractable if a detailed
representation of the stochastic variables is needed. This issue is often dealt
with through decomposition strategies, such as Benders’ decomposition, e.g.,
Carpentier et al. (2014), Rebennack (2016), the progressive hedging algorithm,
e.g., Gonçalves et al. (2012), Carpentier et al. (2013), Zéphyr et al. (2014), in
which the so-called non-anticipativity constraints are dualized in the objective
function, stochastic dynamic programming (SDP) (Ruszczyński and Shapiro 2003;
Shapiro et al. 2009), scenario tree reduction strategies (Dupačová et al. 2003; Bin
et al. 2015), model predictive control, e.g., Nolde et al. (2008), Uysal et al. (2018),
Lin et al. (2020), etc.

Being a sequential decision-making problem, the mid-term optimization of
reservoir lends itself naturally to stochastic dynamic programming (SDP). Indeed, in
the groundbreaking theory of dynamic programming presented in Bellman (1958),
Bellman decomposed a multi-stage decision process stagewise in a coordinated
manner. Thus, it is no surprise that DP quickly found a fertile ground for reservoir
optimization applications (Labadie 2004).

The solution of SP or SDP reservoir management problems broadly consists of
two main steps, namely (i) the calculation of an expectation; and (ii) an optimization
step, or vice-versa. In models for the mid- or long-term planning of hydroelectric
production, the optimization step often has to deal with nonlinear objective
functions, due to, among others, nonlinear production functions (Cerisola et al.
2012). To take advantage of the widespread availability of linear programming
solvers, the combined power response curve of the turbines at a power plant can
often be approximated reasonably well by a concave, piecewise linear function of
turbined water flow, even though the response curves of the individual turbines
may be highly nonlinear. For instance, this strategy is used by companies like

1 3

Hybrid simplicial‑randomized approximate stochastic dynamic… Page 3 of 44 31

Hydro-Quebec (Carpentier et al. 2013) and Rio Tinto (Côté and Arsenault 2019)
(4-reservoir system) to approximate production functions; similarly in studies
on the Colombian power network (Morillo et al. 2020) (15-reservoir system), on
a “network of hydropower plants and irrigated areas in the Nile Basin” (Goor
et al. 2011), the Brazilian electrical system (Diniz and Maceira 2008) (110 hydro
plants). An immediate consequence of this approximation scheme is that under
mild assumptions on the terminal value/cost-to-go function, one can easily show
that the value/cost-to-go functions are concave/convex in the reservoir levels.
These ideas are also exploited in Zéphyr et al. (2015), Zéphyr et al. (2017)
where an approximate stochastic dynamic programming model of a multiperiod,
multireservoir hydroelectric system is presented in which the Bellman value
function is approximated by a piecewise linear function that is evaluated by linear
programming. The piecewise linear approximation is supported by a finite grid of
node points (or vertices) in the continuous state space where the Bellman function
is evaluated at the nodes. Similarly, using a finite grid for the reservoir levels, Dias
et al. (2010) approximates the expected value of the Bellman value function with
a piecewise linear function, generated by a set of hyperplanes using a convex hull
algorithm. The latter approach is applied to a power generation planning problem in
Dias et al. (2013).

Resorting to SDP to solve reservoir optimization problems poses another
technical challenge, since in theory an optimization problem has to be solved for
each possible state value, which is impossible due to the fact that the reservoir level
space is continuous. Thus, the latter must be discretized or sampled. The simplest
discretization strategy to approximate our continuous dynamic program consists
in constructing a uniform grid, obtained as the Cartesian product of same-size
and fixed-spacing grids along each dimension of the reservoir level (state) space.
However, this approach is impractical, as the complexity of the problem increases
exponentially with the dimension of the state space, limiting applications to
three to four reservoirs. This is known in dynamic programming as the curse of
dimensionality.

The above uniform discretization scheme has inspired the development of
parsimonious approaches that select sub-samples of points along each dimension
of the state space, and then use analytical functions based on multi-linear
interpolations, polynomials, cubic splines, to approximate the Bellman function
(Johnson et al. 1993). As these techniques did not prove to be a panacea against the
dimensionality issue, statistical techniques have been employed to sample the state
space more efficiently. Perhaps, one of the oldest strategies is Latin hypercube, in
which each dimension of the state space is discretized into p values, and the overall
sample is chosen so that each uni-dimensional value is selected exactly once. This
is a special case of orthogonal array with strength d, where d ≤ n , n being the
dimension of the state space. Under this scheme, each uni-dimensional grid point
is chosen exactly a same number of times in each possible d-dimensional subspace
(Chen et al. 1999).

Other sampling techniques resort to some form of Monte Carlo simulation to
sample the state space in contrast to the discretization strategies used in the above-
mentionned schemes. For instance, in stochastic dual dynamic programming

 L. Zephyr et al.

1 3

31 Page 4 of 44

(SDDP), originally developed for reservoir optimization problems in the seminal
works (Pereira and Pinto 1985, 1991), the connections between SP and SDP, e.g.,
Ruszczyński and Shapiro (2003), Shapiro et al. (2009), are exploited to efficiently
sample the reservoir level space, based on Monte Carlo simulation. Assuming the
natural inflows to be temporally independent, SDDP alternates between a backward
pass, to build the so-called value/cost-to-go functions, and a forward step, to draw
a sample of state space values to approximate the value/cost-to-go functions in the
next backward loop, until a convergence criterion is met. In contrast with classical
SDP, where the state space is distretized into an evenly spaced grid, in SDDP,
the sate space is iteratively sampled by simulating trajectories of reservoir levels
through the forward passes, thus mitigating the inherent curse of dimensionality
of SDP. By thus sampling the state space, SDDP selects grid points in regions of
operations of the reservoirs, in contrast with classical SDP, where the state space is
uniformly discretized.

On the other hand, quasi-randomized or quasi-Monte Carlo sampling techniques,
where randomly generated points are replaced with more evenly distributed ones,
based on the notion of low-discrepancy sequences, are known to enjoy faster
convergence rate than randomized techniques (Cervellera et al. 2013; Cervellera and
Muselli 2007). For further account of reservoir optimization techniques, please see
Labadie (2004), Rani and Moreira (2010), Ahmad et al. (2014) and Dobson et al.
(2019).

In Zéphyr et al. (2015), we proposed a simplicial approximate SDP approach
for the mid-term optimization of reservoirs. While the previous work laid the
foundation of the approach, in Zéphyr et al. (2017), we extended the methodology
to the optimization of multireservoir systems with highly correlated natural inflows,
in which the support of the random variable reduces from n to 1. The simplicial
approach was exploited to derive an analytical form for the expected value of the
value function under the assumptions that the natural inflows follow a truncated
normal or a log-normal distribution.

The iterative scheme amounts to partitioning the reservoir level space into a finite
but potentially large set of simplices in each period of the planning horizon. The
value function is evaluated at the extreme points of the resulting simplices, and
interpolated elsewhere. In addition, error bounds are computed for all simplices and,
at each iteration, a new grid point associated with the largest error bound is added to
the grid, and the simplex containing the point is divided into smaller simplices that
are appended to the list of existing simplices. Thus, in each period, constructing the
grid requires to maintain a complete list of simplices that spans the whole reservoir
level space. Because the number of simplices increases fast with the grid size and
with the dimension of the state space, this method becomes impractical for models
with many reservoirs.

This work is essentially a revisit of the sampling approach presented in Zéphyr
et al. (2015), in which, in each period, we avoid making a list of simplices and
randomly sample the reservoir level space to select grid points at which the
value function is approximated. We resort to linear programming to identify the
simplex containing a candidate grid point and to obtain a local error bound on the
approximation of the Bellman function. Then, the global error bound is estimated

1 3

Hybrid simplicial‑randomized approximate stochastic dynamic… Page 5 of 44 31

using a statistical model. This is motivated by the computational burden of the
simplicial scheme, induced by the exponential growth of the number of created
simplices, which limits applications to dimensions lower than ten, based on our
empirical observations.

The remainder of the paper is organized as follows. We provide a detailed
description of the problem under analysis in Sect. 2. Next, we discuss a simplicial
approximate stochastic dynamic programming (ASDP) scheme for the problem in
Sect. 3, followed by a hybrid Monte Carlo simplicial ASDP proposal in Sect. 4.
Results of extensive numerical experiments are reported in Sect. 5. The paper ends
with concluding remarks in Sect. 6.

2 Reservoir optimization problem

A hydropower system often comprises power plants that may or may not be
associated with reservoirs. Reservoir optimization problems are typically divided
into long-, mid-, and short-term, depending on, among other factors, the length of
the planning horizon (Raso and Malaterre 2017). In a mid-term problem, which
is of interest to us, the time span is typically between one and five years (van
Ackooij et al. 2014), divided into daily, weekly, or monthly time steps (Zéphyr
et al. 2017).

In this work, we consider a mid-term reservoir optimization problem over a
finite horizon of T periods. At each period t, the operator of the system wants
to find the release, ut , and storage, st , decisions that maximize the expected
total energy production. Without loss of generality, we assume each plant to
be associated with a reservoir; the random natural inflows to the reservoirs are
denoted q̃t.

At each period t, water released from each reservoir i = 1,… , n, is limited by
the turbine capacity, u , to prevent physical damage. Similarly, due to legal and
environmental considerations, at each time period, the level of the reservoirs must
be kept between lower and upper limits, s , and s , respectively.

In addition, we assume the topology of the system to form an arborescence, i.e.,
a combination of reservoirs in series and in parallel. Water released upstream are
absorbed by the immediate successors (reservoirs) at the same period, and in case of
overflow, excess of water from upstream reservoirs, yt , are absorbed by immediate
successors or spilled out of the system.

At each period t, the state of the system is governed by the standard mass balance
equation:

where entries of the square connectivity matrix, Bij , are 1 for i = j , -1 if the water
released from reservoir j is routed to reservoir i, and 0, otherwise. The elements of
the square matrix C similarly define the routing of the spilled water.

(1)st = st−1 − But − Cyt + q̃t,

 L. Zephyr et al.

1 3

31 Page 6 of 44

As in Zéphyr et al. (2015), for each plant i = 1,… , n , we assume the production
function pit to nonlinearly depend on the release and the storage at the beginning of
the period.

A typical multi-period mid-term reservoir optimization problem reads:

where, � is the expectation operator, and VT+1(sT+1) , assumed to be a concave
function, captures the terminal value of the stored water in the system.

At each time period t, assume the operator of the system observes the level of
the reservoirs, the realization qt of the random natural inflows, q̃t , and decides on
the water released, spilled and stored to find the best trade-off between utilizing the
available water for current production needs and leaving it for the future. Under
this setting, and by Bellman’s principle of optimality, Problem (2)-(7) can be
reformulated as a sequence of coordinated subproblems, moving backward in time,
i.e., for t = T , T − 1,… , 1,

where Vt(⋅) , called value function, measures the value of the stored water from
period t onward, and Vt+1(⋅) ∶= �q̃t+1|qtVt+1

(
sT+1, q̃t+1

)
 . As in Zéphyr et al. (2017),

since the terminal value function is concave, we observe that if the production
functions are concave, the problem is convex and the concavity of the value function
Vt(st, ⋅) propagates backwards.

Proposition 1 If (i) pit(uit) is concave in uit , and (ii) the support of q̃t is discrete and
finite, then Vt(st, ⋅) is concave in st.

(2)max
ut ,yt

�q̃t

[
T∑

t=1

n∑

i=1

pit(uit) + VT+1(sT+1)

]

(3)s.t., for t = 1,… , T ∶

(4)st+1 = st − But − Cyt + q̃t

(5)s ≤ st+1 ≤ s

(6)0 ≤ ut ≤ u

(7)yt ≥ 0,

(8)Vt

(
st, qt

)
∶=max

ut ,yt

{
n∑

i=1

pit(uit) + Vt+1

(
st+1, q̃t+1

)
}

(9)s.t. (4)−(7),

1 3

Hybrid simplicial‑randomized approximate stochastic dynamic… Page 7 of 44 31

Proof The feasible domain of Problem (8)–(9) is a polyhedron; since VT+1(sT+1, ⋅)
is concave in sT+1 , by the concavity of the production function, and the linearity
property of the expectation operator, it follows that VT (sT , ⋅) is concave in sT . The
concavity property then follows by backward induction on t, for t = T − 1,… , 1 . ◻

Problem (8)–(9) may be nonlinear, in particular due to the nonlinearity of
the production functions. Indeed, in practice, production functions are often
nonconcave (i) due to head effects, i.e, the difference between upstream and
downstream reservoir levels; and (ii) because the power produced by a plant
varies nonlinearly with the water release and the number of turbines, whose
efficiency may decrease beyond a maximum flow rate (Zéphyr et al. 2017). In
industry, this issue is often dealt with by approximating production functions
with their concave envelopes (e.g., Goor et al. 2011; Carpentier et al. 2013; Côté
and Arsenault 2019; Morillo et al. 2020).

As in Zéphyr et al. (2017), the nonlinearity hurdle is passed using inner
generalized linear programming (GLP) on a support grid to obtain a convex
approximation of the problem. For each plant i, assume that the production
function is evaluated over a finite grid of reservoir releases Ut ∶= {uk

i
|k ∈ Ki} ,

constructed in a preprocessing step, where Ki is the set of indices associated
with the discrete releases uk

i
, i = 1,… , n . Similarly, the expected value function

Vt+1(⋅) is evaluated over a finite set of states Gt ∶= {s
j

t+1
|j ∈ Jt} , where Jt is the

set of indices associated with the discrete storage vectors sj
t+1

 , possibly obtained
by division of simplices as explained in Sect. 3. The following GLP is a linear
approximation of Problem (8)–(9):

(10)V̂t(st, qt) ∶= max
ut ,yt ,�,�

{
n∑

i=1

∑

k∈Ki

pit(u
k
i
)𝜆k

i
+
∑

j∈Jt

V̂t+1

(
s
j

t+1
, ⋅
)
𝜇j

}

(11)s.t. (4)−(7)

(12)uit −
∑

k∈Ki

�k
i
uk
i
= 0, i = 1,… , n

(13)st+1 −
∑

j∈Jt

�js
j

t+1
= 0

(14)
∑

k∈Ki

�k
i
= 1, i = 1,… , n

(15)
∑

j∈Jt

�j = 1

 L. Zephyr et al.

1 3

31 Page 8 of 44

 Note that � and � are vectors of convex combination coefficients, as expressed
in equations (12)-(16). Thus, for each power plant i, in each period, the release is
interpolated on the discrete release values; similarly the next period storage level is
interpolated on the storage grid.

Since the calculation of the expected value is not the focus of this work, we
assume the natural inflow process to be finite, and serially independent. As a result,
in the numerical experiments, in each period, we will use Monte Carlo simulation
to generate a finite sample of natural inflows, and the expected value of the
approximate value function, V̂t+1(⋅) , will be estimated by the sample mean of the
V̂t+1(st, qt)’s. Similarly, at each time period, for a given state point sk

t
 , let �j

t be a
vector of optimal dual prices associated with the mass-balance constraints (1), for a
given observation qjt, j = 1,… , J . In the sequel, a vector of subgradient, gk

t
 , will be

taken as the sample mean of the �j

t’s.
In closing this section, observe that since (i) Problem (10)–(16) is linear and

its objective maximized; and (ii) st is in the right hand side of the water-balance
constraint (4), therefore the GLP is a parametric linear program, so that its optimal
value function V̂t(st, qt) is a piecewise linear concave function of st.

3 Simplicial approximate stochastic dynamic programming

Despite its theoretical elegance, it is well known that dynamic programming is
plagued by the so-called curse of dimensionality, in the sense that the computational
burden of Problem (10)–(16) increases exponentially with the dimension, n, of the
reservoir level space St , except for rare cases (e.g.,unconstrained linear systems with
quadratic production functions), for which analytical solutions can be derived easily.
As a result, the problem cannot be solved for all possible reservoir level vectors;
thus, we have to resort to some numerical procedure. To tackle the curse of
dimensionality, in each time period t, we need to select a sample of discrete state
vectors Gt ∶=

{
s
j

t ∈ St, j = 1, 2,… ,m
}

 , t = T , T − 1,… 1 . As discussed earlier,
popular sampling techniques include Monte Carlo simulation (Chen et al. 2020;
Morillo et al. 2020; Zéphyr and Anderson 2018; Morillo et al. 2017; De Matos et al.
2015), quasi-Monte Carlo simulation (Cervellera et al. 2013; Alessandri et al. 2010;
Mello et al. 2011), Latin hypercube (Feng et al. 2020; Mello et al. 2011), orthogonal
arrays (Feng et al. 2017; Chen 1999).

In our context, the state space is defined by the level of the reservoirs, which
is confined within the hyperrectangle St ∶= {st ∈ IRn | s ≤ st ≤ s} , as defined by the
box constraint (5). As a result, the state space is continuous, and as aforementioned,
the approximate value function (10)–(16) cannot be evaluated for all possible pairs
(st, qt) . Therefore, we have to resort to some form of discretization or sampling of
the state space St.

(16)�,� ≥ 0

1 3

Hybrid simplicial‑randomized approximate stochastic dynamic… Page 9 of 44 31

Under a simplicial approximate stochastic dynamic scheme, the set St is iteratively
partitioned into smaller convex subsets, called simplices, and the approximate value
function (10)–(16) is evaluated at their vertices, or extreme points.

Simplicial partitioning of convex sets is widespread in the global optimization
literature (e.g., Gimbutas and Žilinskas 2018; Žilinskas and Žilinskas 2002; Paulavičius
and Žilinskas 2014, 2009; Horst 1976; Tuy 1991; Bomze and Eichfelder 2013), and
less popular in the field of dynamic programming (e.g., Zéphyr et al. 2017, 2015;
Habets et al. 2006; Yershov and LaValle 2012; Sala and Armesto 2022). Perhaps
simplicial partitioning has received a lot of attention in global optimization as a simplex
is an n-dimensional polyhedron with “the minimal number of vertices”, at which the
function is evaluated (Paulavičius and Žilinskas 2009).

In our previous work (Zéphyr et al. 2015), that we revisit here, we iteratively
sampled the state space based on the curvature of the value function, which we locally
estimated by the difference between an upper and a lower bounds constructed on each
simplex.

We provide a detailed review of simplicial partitioning of hyperrectangles in
“Appendix 1”.

3.1 Simplicial piecewise linear approximation of the value function

In any period t, assume at some iteration of the simplicial algorithm, the state space St
has been partitioned into simplices, and the expected value function has been evaluated
at the extreme points sk

t
∈ St , k = 1,… ,K , f k ∶= V̂t(s

k
t
, q̃t) . (In the sequel, we drop

the time index t for ease of notation.) Then, for any point s ∈ S , the expected value
function can be approximated by the following linear program, which by the concavity
of the approximate value function yields a lower bound, BL(s):

Let B(s) be the set of indices of the nonzero components �k in a basic optimal
solution of the linear program (17); B(s) contains at most n + 1 elements so that
the point s can be expressed as a convex combination of at most n + 1 vertices, and
the set of all convex combinations of these vertices is a simplex. Also, if vectors of
subgradients gk, k ∈ B(s), are known at the grid points sk , then the expected value
function is bounded above by:

Then BL(s) ≤ f (s) ≤ BU(s) so that BU(s) − BL(s) is an upper bound on the
approximation error at the point s using the support vertices s1,… , sK . It is also
pointed out in Zéphyr et al. (2015) that the largest error bound on the simplex with
vertex set B is given by the linear program:

(17)

BL(s) ∶= max
∑

k=1,…,K

�kf
k s.t. s =

∑

k=1,…,K

�ks
k,

∑

k=1,…,K

�k = 1, and �k ≥ 0 ∀k.

(18)BU(s) ∶= min
k∈B(s)

f k + gk
⊤
(s − sk).

 L. Zephyr et al.

1 3

31 Page 10 of 44

If the error bound EB exceeds a certain criterion, then an optimal point s∗
B
 of (19)

would be a candidate vertex for being added to the set of vertices as sK+1 ∶= s∗
B
 . Sim-

ilarly, if there exists some analytical expression for the function f (s) ∶= V̂t(st, qt) ,
the largest actual approximation error on a simplex with vertices in B can be found
through the nonlinear program:

In the approach of Zéphyr et al. (2015), an initial set of vertices is first chosen, for
example the 2n vertices of the hyperrectangle S plus one interior point s(2n+1) . Next
an initial set of simplices is explicitly enumerated that spans these vertices. Then
the linear program (19) is solved for every simplex in the set and the next vertex
to be added is selected as the optimal solution s∗

B
 for the simplex B with the largest

error bound EB . Such a point s∗
B
 is called a division point and the list of simplices is

correspondingly updated by deleting the simplex with vertex set B from the list and
adding to the list the new simplices created by dividing B . Iterating this way until
a termination criterion is satisfied, the method of Zéphyr et al. (2015) stops with
a list of, say, K vertices s1,… , sK at which the approximate value function and its
expectation are evaluated, together with a potentially very large list of associated
simplices.

The advantage of this scheme is that it provides a monotonic error bound
sequence on the approximation error. However, its Achille’s heel is the exhaustive
examination of the list of created simplices that is kept in memory in each time
period, and the slow convergence. Depending on the size of such a list, this might be
very expensive in terms of memory usage; this is the focus of the next subsection.

3.2 Complexity and convergence analysis

A detailed complexity analysis of general operations on simplices (not the
simplicial approximation itself) is provided in Zéphyr et al. (2017). In particular,
at each iteration k of the procedure, assume we have a list of rk active simplices,
finding the simplex with the worst approximation error requires O(rk) operations.

Now, assume we want to partition the hypercube S into simplices until
a desired error bound, E0 , is attained. Therefore, our goal is to find a full-
dimensional simplex B ⊂ S generated by the columns of a full row rank matrix
SB ∈ IRn×(n+1) , such that the optimal value of (19) is EB ≤ E0 . Toward this end,
we first decompose the hypercube S into initial simplices, and for each created

(19)

EB ∶= max
s,𝜙,𝜆k ,k∈B

𝜙 −
∑

k∈B

𝜆kf
k

s.t. s =
∑

k∈B

𝜆ks
k,

∑

k∈B

𝜆k = 1, 𝜆k ≥ 0 and 𝜙 ≤ f k + gk
⊤
(s − sk), ∀k ∈ B.

(20)EB ∶= max
s,�k ,k∈B

f (s) −
∑

k∈B

�kf
k s.t. s =

∑

k∈B

�ks
k,

∑

k∈B

�k = 1 and � ≥ 0.

1 3

Hybrid simplicial‑randomized approximate stochastic dynamic… Page 11 of 44 31

simplex solve (19) to find the largest error bound as well as the divisison point
s . Then, the initial simplex with the largest error is divided at the corresponding
division point using the radial �-subdivision strategy (see “Appendix 1”). We
repeat the same process until the threshold E0 is met.

Proposition 2 Let Vol(S) be the volume of the hyperrectangle S, the number of sim-

plices required to achieve the error bound E0 is of the order O
(

Vol(S)n!

(n+1)E
n∕2

0

)
.

A proof of this proposition is provided in “Appendix 2”.
Furthermore,

Proposition 3 Assume at each iteration of the simplicial scheme, the �-subdivision
of simplex is used, the simplicial algorithm will converge to the desired error bound
E0 in a finite number of steps, which is proportional to an exponential factor.

Proof Under the �-subdivision strategy, at each iteration k of the simplicial parti-
tioning scheme, the number of created simplices (subdivision of the simplex with

Fig. 1 Graphical illustration of the simplicial approximation complexity for quadratic functions

 L. Zephyr et al.

1 3

31 Page 12 of 44

the highest error bound), Nk , is 2 ≤ Nk ≤ n + 1 . In addition, assume K iterations
(simplex subdivisions) are performed, and N simplices created, then we have
2K ≤ KNk ≤ K(n + 1) , i.e., K ≥

N

n+1
≥

2K

n+1
 . It follows from (32) that K is of the

order O
(

Vol(S)n!

E
n∕2

0

)
 , which concludes the proof. ◻

Let us numerically illustrate Proposition (3). First, let us consider hypothetical
quadratic expected value functions, of the form V(s) = −

1

2
s⊤As + b⊤s , where the

matrices A and vectors b are randomly generated.
Let us consider relative error bounds E

′

0
 , as the ratio of a simplex error bound to

the maximal error over the initial simplices. For each considered state dimension and
relative error threshold indicated in the results reported in Fig. 1, five replications of
the simplicial decomposition algorithm are performed.

Figure 1 depicts the natural logarithm of the average total number of created sim-
plices (N), grid points (G), iterations (K), which also is the additional simplices

Fig. 2 Graphical illustration of the simplicial approximation complexity for concave Cobb–Douglas
functions

1 3

Hybrid simplicial‑randomized approximate stochastic dynamic… Page 13 of 44 31

created (in addition to the initial ones), and the CPU time (t), for different error
thresholds and state space dimensions. These results confirm that the computational
burden to achieve a fixed error bound increases more than exponentially with the
dimension, n, of the hyperrectangles.

Let us repeat the same tests on hypothetical Cobb–Douglas expected value
functions of the form

As for the quadratic functions, for each error threshold and each state space dimen-
sion, the simplicial procedure is carried out to construct grid points to approximate
the functions, and five replications are performed. The same statistics are calculated
as above. Samples of results reported in Fig. 2 also confirm that the complexity of
the simplicial scheme is exponential in the state space dimension.

In closing,

Proposition 4 The convergence rate of the simplicial algorithm is at best linear.

Proof Since at each iteration the simplex with maximal error bound EB is divided,
the simplicial algorithm generates a non-increasing sequence {EBk} , such that, by
Proposition (3), lim

k→∞
EBk = 0 . Indeed, at any iteration of the algorithm, assume

simplex B ⊂ S , generated by the matrix SB (a matrix whose columns are the extreme
points of the simplex), is divided; consider any resulting subsimplex Bc with
generating matrix SB

c . Matrices SB and SB
c differ only by one column. The only

column of SB
c that is not in SB is the division point, s∗

B
 , of the parent simplex B , and

is a convex combination of the columns of SB.
Now, given that the approximate value function (10)–(16) and its expectation

are concave, we have
∑

k∈B 𝜆
∗
k
V̂(sk, ⋅) ≤ V̂(s∗

B
, ⋅) , where �∗ is the optimal � from

Problem (19), and the sk ’s are the vertices of the parent simplex B , or the columns
of matrix SB . Thus, we always have

∑
k∈B 𝜆

∗
k
V̂(sk, ⋅) ≤

∑
j∈Bc 𝜆jV̂(s

j, ⋅) 0 ≤ 𝜆j ≤ 1 ,
where the sj ’s (one of them being the optimal division point s∗

B
) are the extreme

points of the subsimplex Bc . Similarly, due to the concavity of the function,
V̂(s∗

B
, ⋅) ≤ mink∈B{f

k + gk
⊤
(s∗

B
− sj)} (the extrapolation of the function at sB). It is also

clear that minj∈Bc{f j + gk
⊤
(sc − sj), sc ∈ B

c} ≤ mink∈B{f
k + gk

⊤
(s − sk)}, s ∈ B.

Therefore, due to the concavity of the approximate value function, we always
have EB

c ≤ EB , where EB
c and EB are the maximal error bound on the function over

subsimplex Bc and parent simplex B , respectively. As a result, the error sequence
{EBk} is non-increasing, and lim

k→∞

EBk+1

EBk

≤ 1 ; and the proof is complete. ◻

Figure 3 illustrates the convergence of the simplicial algorithm on the
approximation of value functions for four midterm reservoir problems. We consider
a ten-period planning horizon, and the parameters of the problems are generated
as described in the numerical experiment section. For each case, we generate five

(21)V(s) =

n∏

i=1

s
�i
i

(�i ≥ 0 and

n∑

i=1

�i ≤ 1).

 L. Zephyr et al.

1 3

31 Page 14 of 44

replications. The grid sizes are fixed at 100n + 2n . The evolution of the average
relative error (ratio of the error at each iteration to that of the first iteration) for the
first period is depicted in Fig. 3.

As stated in the proof of Proposition (4), we see that the sequence of the
approximation error is non-increasing. For the four-dimensional problems, at the
last iteration, the initial error is reduced to approximately 20% , and around 75% for
the six-dimensional problems, suggesting that denser grid sizes are needed to obtain
a similar precision as for the four-dimensional problems.

In general, the approximation error decreases relatively fast over the first few
iterations, then slows down dramatically. This is due to the fact that, as the active

Fig. 3 Illustration of the convergence of the simplex algorithm

1 3

Hybrid simplicial‑randomized approximate stochastic dynamic… Page 15 of 44 31

simplices (not yet divided) become smaller, the local curvature of the function does
not vary significantly, as a result, the approximation error is relatively steady on the
existing simplices.

An apparent disadvantage of the simplicial scheme, especially for state space
dimensions greater than or equal to ten, is the extra computational burden
associated with a potentially very large list of simplices as well as the complete,
uniform exploration of the whole state space which may not be required in practical
applications where more localized approximations would be adequate.

Therefore in this paper we seek to explore other ways of constructing grid points
to evaluate the approximate value function and its expectation in each period without
enumerating an exhaustive list of associated simplices in the hope to alleviate the
inherent exponential complexity of the simplicial approach.

4 Hybrid simplicial approximate dynamic programming

We now examine some randomized approaches for selecting new grid points at
which to evaluate the approximate value function (10)–(16) in each period t that
avoid making a large list of active simplices. With these approaches, it is not
possible to identify a division point of largest error bound, so there is a need for
statistical estimation of the approximation error, and other heuristics must be called
upon for selecting a new grid point at each iteration. We first describe three such
heuristics and next we discuss statistical estimation of the approximation error.

4.1 Randomized simplex‑based sampling of the reservoir level space

Monte Carlo (MC). Instead of using a regular grid of equally spaced vertices, one
simple and very crude approach is to use a sequence of pseudo-random vertices. In
each period t, let vk be a sequence of n-vectors of independent variates, uniformly
distributed in [0, 1] . Again, we drop the time period index t for ease of notation.
Starting with the initial set of 2n extreme points of the hyperrectangle S, the i-
th component of the kth random vertex is given by s(2

n+k)

i
= s

i
+ (si − s

i
)vk

i
 , for

i = 1,… , n.
This naïve random sequence of approximation nodes can be considered neutral

with respect to the approximation error in the sense that the choice of the next vertex
to enter the support set is not based on an error criterion such as the division point
of a simplex with largest error bound in Eq. (19). Therefore one would expect that a
numerical comparison of this naïve scheme with the previous method would show a
significant difference in accuracy.

MC simplicial. This method combines the idea of using a simplicial
approximation with that of using the Monte Carlo scheme, but the way it searches
for a simplex to be divided is different than what was done in our previous
simplicial method, because here the state space is not exhaustively partitioned into
an simplices, as discussed in “Appendix 3”. In period t, suppose the approximate

 L. Zephyr et al.

1 3

31 Page 16 of 44

value function has been evaluated at K points. We then generate a random point ŝ
uniformly in S as before (̂si = s

i
+ (si − s

i
)vi), solve Eq. (17) to find the vertex set

B(ŝ) of the simplex containing ŝ and solve Eq. (19) to obtain the division point s∗
B

that has the largest error bound in that simplex. Lastly, we choose that division point
as the new vertex sK+1 = s∗

B
 . This procedure is repeated until the size of the grid

reaches a desired target.
Batch MC simplicial. As in the MC simplicial method, in period t, suppose at a

given iteration there are K vertices in the grid, with K ≥ n + 1 . Next, we generate a
sample of m random points ŝ1,… , ŝm uniformly in S. For each random point ŝj in the
sample, Eq. (17) is solved to find the vertex set Bj of the simplex that contains ŝj ,
and Eq. (19) to obtain the division point s∗

B
j
 that has the largest error bound EB

j in
that simplex. Then the new vertex is chosen as the division point of the simplex with
the largest error bound in the sample, so sK+1 = s∗

B
j∗
 where j∗ = argmaxj=1,…,m EB

j .
This way, by evaluating a small number m of simplices, we have good chances of
choosing a candidate with a relatively large error bound, but without having to
maintain a large list of simplices as in the previous papers.

By keeping one candidate out of m at each iteration, the best we can hope for
is that the selected vertices would belong to the top (1/m)th among the sampled
candidates. But there is a probability (1 − 1∕m)m that the selected vertex is not in the
top (1/m)th, and also some probability that the sample has more than one candidate
in the top (1/m)th, so that good candidates are discarded in some iterations. With
m = 3 , these probabilities are 8/27 (select bad vertex because all 3 candidates are
not in the top one third, each with probability 2/3) and 7/27 (discard a good vertex,
since at least 2 candidates are in the top one third). While this seems better than the
MC and the MC simplicial methods, where all vertices are selected (good and bad),

Fig. 4 Illustration of the convergence of the hybrid simplicial methods on the approximation of the first
period value function for one of the 4-reservoir literature test problems described in Sect. 5.3

1 3

Hybrid simplicial‑randomized approximate stochastic dynamic… Page 17 of 44 31

we can try to improve the selection process by putting some candidate vertices in a
waiting line instead of discarding them right away.

Batch MC simplicial with queue. As in the batch MC simplicial method, but
now, we keep a list, of at most r recently explored simplices, which have been
queued from previous iterations instead of being discarded. Initially, the queue is
empty. In a typical iteration, m new candidates are sampled as in the batch MC
simplicial method, which are combined into a pool with the (at most) r candidates
from the queue. The new vertex is chosen as the division point of the simplex
with the largest error bound in the pooled candidate list. The next r candidates
with largest error bounds are held in the queue, and the remaining candidates
with the smallest error bounds are discarded.

Parameters for this would need to be experimented if this turns out to be a
tempting avenue. The computational effort is similar to the batch MC simplicial
method but it is hoped that the batch MC simplicial with queue would have
smaller approximation error than the batch MC simplicial.

The above methods attempt to replace an exhaustive list of simplices with a
shorter list from which a division point is chosen with the largest error bound at
each step. It is hoped that the use of a truncated candidate list will be compen-
sated by the large number of sampled points and simplices over a large number of
steps. However, in absence of an exhaustive list of simplices, there is no uniform
upper bound on the approximation error. Also, as it is illustrated in Fig. 4, in con-
trast to the simplicial scheme, there is no guarantee as to the monotonicity of the
sequence of generated approximation errors. Thus, the next section will discuss
the statistical estimation of error.

An illustrative comparison between the original and the hybrid simplicial
methods is provided in “Appendix 3”.

Fig. 5 Examples of empirical distributions of the approximation errors

 L. Zephyr et al.

1 3

31 Page 18 of 44

4.2 Statistical estimation of the approximation error

Under the concavity of the expected value function V̂t(st, ⋅) , the approximation
error is the difference between the function and its piecewise linear approximation.
At any point st ∈ St , the approximation error is V̂t(st, ⋅) − BL(st) , where BL(st)
solves Eq. (17). Then Eq. (18) implies the approximation error is bounded by
BU(st) − BL(st) . At all points in simplex B that contains st , the approximation
error is bounded by EB of Eq. (19), while the largest error on the simplex is EB
of Eq. (20). Here we are interested in the estimation of the largest actual error
maxst∈St{V̂t(st, ⋅) − BL(st)} or the largest error bound maxB EB . In both cases, we will
use a random sample of m points ŝ1,… , ŝm ∈ S.

Since function V̂t(st, ⋅) is finite and concave everywhere on St , by construction,
the approximation error is also a well-behaved function; it is equal to zero at the
support nodes and varies smoothly on the simplices. Therefore, when sampling the
state space uniformly, it might be reasonable to assume that the corresponding dis-
tribution of the approximation error is also well-behaved. However, since we do not
know the theoretical distribution, first, we conduct an empirical investigation. To
this end, we generate samples of grid points with the different randomized methods
- except for the pure Monte Carlo and the simplicial methods, and calculate the true
approximation errors for random sample points. Examples of empirical distributions
are illustrated in Fig. 5. The true empirical distribution seems to be less scattered
than a uniform distribution, and perhaps to lie somewhere between a left triangular
distribution with mode at the minimum value, or a right triangular distribution with
mode at the maximum value.

Table 1 Formulas for sampling
distributions and quantiles

TR(0,b) U(0,b) TL(0,b)

p = Fm(y) y2m ym
[
1 − (1 − y)2

]m

y = F−1
m
(p) p1∕2m p1∕m 1 −

√
1 − p1∕m

Table 2 Formulas for unbiased
point estimate b̂ of b and limits
of confidence interval

TR (0, b) U (0, b) TL (0, b)

b̂
1−𝛼∕2

1

(1−�∕2)1∕2m
1

(1−�∕2)1∕m

1

1−
√

1−(1−�∕2)1∕m

b̂ 2m+1

2m

m+1

m

1

1−Am

b̂𝛼∕2
1

(�∕2)1∕2m
1

(�∕2)1∕m
1

1−
√
1−(�∕2)1∕m

Table 3 Numerical example
for point estimate b̂ of b and
confidence interval with m = 3
and 30, � = 0.05 and x(m) = 10

Symbol TR (0, b) U (0, b) TL (0, b)

m 3 30 3 30 3 30

b̂
1−𝛼∕2

10.04 10.00 10.08 10.01 11.01 10.30

b̂ 11.67 10.17 13.33 10.33 18.42 11.90

b̂𝛼∕2 18.49 10.63 34.20 11.31 62.97 15.16

1 3

Hybrid simplicial‑randomized approximate stochastic dynamic… Page 19 of 44 31

Therefore, we propose to use, as statistical models, four simple distributions
on (0, b): the right-angled triangular with mode at right TR (0, b) , the uniform
U (0, b) , the right-angled triangular with mode at left TL (0, b), and the sym-
metrical triangular with mode at the center TC (0, b) . For these distributions, the
parameter b can be estimated with order statistics.

If a random variable X has a uniform distribution on the interval [0, b], then it
is well known, see e.g., Gibbons (1974), that the maximum likelihood estimator
(MLE) of the parameter b is the largest observation in the sample. So with sample
size m and observed values x1,… , xm , the MLE of b is x(m) = maxi=1,…,m xi .
Estimators of the limit parameters of a right-angled triangular distribution on the
interval [a, b], with the mode at the upper limit b, are given in Kachiashvili and
Topchishvili (2016), where it is shown that the MLE of b is also x(m) . However, by
arguing as in Lamond and Zéphyr (2021), it is easily seen that x(m) is not an MLE
of b for a right-angled triangular distribution with the mode at the lower limit.
The true MLE is provided in “Appendix 4”. By the symmetry of the triangular
distribution with mode at the center, a simple unbiased estimator of the upper
limit is b̂ = x(1) + x(m) where x(1) = mini=1,…,m xi.

In addition to the point estimates of parameter b, it is useful to obtain
confidence intervals. For this, it is convenient to define the standardized random
variable Y with distribution on the unit interval [0, 1]. For a random sample of m
observations, we define the largest of them by y(m) , with the random variable Y(m)
representing its sampling distribution. Let Fm(y) be the cumulative distribution
function of Y(m) . Then p = Fm(y) is the cumulative probability and y = F−1

m
(p) , the

quantile. Formulas for these are given in Table 1 for our first three distributions.
Formulas for unbiased point estimates, b̂ , of parameter b with lower and upper

limits of confidence intervals are given in Table 2 as multipliers of x(m) , where

from adapting equation (6) of Kachiashvili and Topchishvili (2016).
A numerical example is given in Table 3. For the triangular distribution with

mode at left TL (0, b) , we see that the unbiased estimate and confidence interval
limits based on the order statistic x(m) are quite large compared to the other two
distributions. There might be an interest here in using an MLE estimate instead,
which has small bias and smaller variance as pointed out in Lamond and Zéphyr
(2021) thus allowing a smaller sample size for estimating the approximation
error, and therefore fewer computations. In the absence of a simple formula for
the cumulative distribution of x(1) + x(m) for the triangular distribution with mode
at center TC (0, b), we can use Monte Carlo simulations to obtain approximate
confidence intervals for b. For instance, for x(1) + x(m) = 10 the point estimate is
b̂ = 10 and the 95% confidence intervals are respectively 6.1 ≤ b ≤ 27 for m = 3 ,
and 8.1 ≤ b ≤ 13 for m = 30.

(22)Am =

m∏

j=1

j

j + 0.5
,

 L. Zephyr et al.

1 3

31 Page 20 of 44

5 Numerical experiments

Three types of analysis are carried out in the numerical experiments. First, in
Sect. 5.1, we appraise the sensitivity of the performance of the two Monte Carlo
simplicial methods with respect to their underlying parameters. Second, in Sect. 5.2
the methods are compared on the trade-off between accuracy and computational
burden on (i) the approximation of concave functions; and (ii) several simulated
reservoir optimizations problems. Lastly, in Sect. 5.3, we compare the methods on
three reservoir optimization problems available in the literature.

5.1 Sensitivity of solution performance to parameter values: batch MC simplicial
and bath MC simplicial with queue methods

Recall that in the batch MC simplicial method, in each period t, at each iteration, a
sample of m random points is chosen in the state space, St . Intuitively, this approach is
approximately m times slower than the MC simplicial scheme, in which one random
point is selected at each iteration. One natural question is how to determine the appro-
priate sample size m. Though we do not have any theoretical answer to this question,
we perform numerical experiments to analyze the sensitivity of solution performance
on the approximations of Cobb–Douglas type functions (in dimension n=3, 6, and 9,

Fig. 6 Performance of the batch MC simplicial method on different types of problems and by sample size

1 3

Hybrid simplicial‑randomized approximate stochastic dynamic… Page 21 of 44 31

respectively), with randomly generated parameters, and the approximation of value func-
tions for reservoir management problems (in dimension n=3, 4, and 6, respectively).

We approximate the Cobb–Douglas functions on grids of size 100n, then interpo-
late the values of the functions on other grids (out-of-sample) of size 200n (solving
Problem (17)) and calculate the true approximation errors. For the reservoir man-
agement problems, we approximate the value functions (in each time period) on
grids of size 100n as well, then solve the first period problem for a sample of 200n
(s1, q1) state pairs. For each case (Cobb–Douglas function approximations and value
function approximations), five replications are performed for values of m ranging
from one to ten. The average results are reported in Fig. 6. Note that smaller values
are better in the upper portion of the figure, and the opposite in the lower portion of
the figure. The figure displays an “imperfect elbow shape”, and seems that values of
m between three to five would suffice to obtain good approximation performance.
The computational burden grows linearly with the parameter m; since we strive for

Fig. 7 Average CPU time in seconds of the batch MC simplicial with queue method for different types of
problems and by sample size

 L. Zephyr et al.

1 3

31 Page 22 of 44

a good trade-off between computational burden and accuracy, in the sequel, we will
fix m at 3.

Similarly, the batch MC simplicial with queue method features two parameters m
(same as the previous method), and r, the size of the queue of previously generated
random points. We perform the same experiments as above to assess the sensitivity
of solution performance with respect to these parameters. We vary the values of m
between one and six (based on the above observations), and the values of r between
one and eight. Overall, the computational burden is linear in m, and does not seem
to be influenced by the lenght of the queue, r (Fig. 7); similarly for the performance
of the solution (Fig. 8). In addition, in Fig. 8, in most of the cases, for fixed value
r, we observe an elbow shape at m = 3 (except for the last picture), suggesting that
m = 3 seems to be a good enough sample size. Extensive numerical experiments
have demonstrated that this method exhibits similar performance (both in terms of
computational burden and accuracy) than the batch MC simplicial scheme; thus,
results for this method will not be reported in the sequel for the sake of brevity.

Fig. 8 Performance of the batch MC simplicial with queue method on different types of problems and by
sample size

1 3

Hybrid simplicial‑randomized approximate stochastic dynamic… Page 23 of 44 31

5.2 Accuracy versus computational burden

Here, we focus on the trade-off between accuracy and computation time. First, in
Sect. 5.2.1, we compare the performance of the methods on the approximation of
Cobb–Douglas concave functions of the form (21) for different state dimensions
n. Though the primary interest of this work is mid-term reservoir management
problems, this first setting is motivated by the fact that (i) the simplex-based
approximations exploit the concavity property of the functions to be approximated,
in contrast to the pure Monte Carlo (MC) scheme; (ii) in the reservoir management
context, to handle the nonlinearity of the production functions, we approximate the
latter by piecewise concave linear functions (Problem (10)–(16)); (iii) similarly, the
value functions are approximated by piecewise concave linear functions (Problem
(10)–(16)). Thus, it is no easy task isolating the sole effects of the methods, due to
the multiple layers of approximation embedded in the dynamic programs.

Next, in Sect. 5.2.2, the schemes are gauged on several simulated reservoir
management problems.

5.2.1 Approximation of concave functions

Grid points of size 2n + 100n are generated with each method; then the out-of-sam-
ple interpolation errors - the difference between the true and interpolated values- are
calculated on randomly generated samples of sizes 200n. In addition, under each

Table 4 Statistics pertaining to interpolation errors of Cobb–Douglas concave functions

Relative averages

 n Method Abs. CPU time ti Emin Emax Eav Estd

3 Monte Carlo (MC) 0.0053 0.0052 0.5900 16.9683 3.0710 11.0501
3 MC simplicial 2.6148 2.5680 0.5494 6.7624 0.9346 3.3748
3 Batch MC simplicial 7.1774 7.0491 0.7292 1.5631 0.5604 0.9166
3 Simplicial 1.0182 1 1 1 1 1
5 Monte Carlo (MC) 0.0195 0.0032 0.2967 1.9246 0.7857 1.9677
5 MC simplicial 6.8779 1.1196 0.3354 0.9538 0.3653 0.7031
5 Batch MC simplicial 21.8420 3.5556 0.4331 1.0314 0.3080 0.5134
5 Simplicial 6.1430 1 1 1 1 1
8 Monte Carlo (MC) 0.0353 0.0001 0.2867 0.9061 0.5261 1.1074
8 MC simplicial 10.5880 0.0347 0.3358 0.5883 0.3364 0.5819
8 Batch MC simplicial 32.6510 0.1070 0.3689 0.5450 0.3217 0.4596
8 Simplicial 305.2224 1 1 1 1 1
10 Monte Carlo (MC) 0.0891 1.3808E−06 0.3499 0.9094 0.6171 1.2257
10 MC simplicial 22.1880 3.4376E−04 0.4115 0.7349 0.4438 0.7686
10 Batch MC simplicial 66.3756 1.0284E−03 0.5561 0.6184 0.4227 0.5881
10 Simplicial 64,544.1457 1 1 1 1 1

 L. Zephyr et al.

1 3

31 Page 24 of 44

method and at each iteration, we record the time in seconds to build the grid (ti), the
minimum (Emin), the maximum (Emax), the mean (Eav), and the standard deviation of
the interpolation error (Estd). We take the simplicial method as our benchmark, and
for each method, we calculate relative performance measures as the ratio of the cor-
responding measure to that of the simplicial. Furthermore, in additional to the rela-
tive computation times (in seconds), we also report the absolute times. The results
are depicted in Table 4.

As expected, the pure MC method is the fastest as no additional optimization
problem is solved except for the approximate dynamic Problems (10)–(16). Also,
notice that as we conjectured, the batch MC simplicial scheme is about three times
slower than its MC simplicial counterpart, as in the former, in each iteration, we
generate three sample points, compared to one in the latter. For three-dimensional
functions, the average CPU time of the simplicial method is lower than that of the
MC simplicial scheme; for five-dimensional problems, the computation times are
comparable. For dimensions equal to eight, the relative average CPU time of the
MC simplicial method is only 3% that of the simplicial benchmark, which becomes
practically intractable for ten-dimensional problems.

Accuracy-wise (average interpolation errors), except for the three-dimensional
problems on which it performs better than the pure MC scheme, the simplicial
approach features the worst performance. The batch MC simplicial is the top
performer on all cases, followed by its MC simplicial counterpart; however, the
difference grows smaller as the dimensions of the functions increase, and the MC
simplicial scheme still remains about three times faster.

Table 5 Statistics pertaining to interpolation errors of 11- to 15-dimensional Cobb–Douglas concave
functions using the hybrid methods

n Method ti Emin Emax Eav Estd

11 MC 0.344 59.028 412.691 218.829 59.242
11 MC simplicial 58.226 81.156 326.580 181.372 40.439
11 Batch MC simplicial 172.198 89.063 324.405 178.096 34.672
12 MC 0.654 68.220 355.558 199.278 47.175
12 MC simplicial 104.374 81.156 300.623 171.980 32.605
12 Batch MC simplicial 308.748 97.082 285.989 169.595 28.850
13 MC 1.420 82.863 380.341 226.818 48.482
13 MC simplicial 191.568 108.638 329.196 199.129 34.918
13 Batch MC simplicial 583.787 107.968 317.029 197.336 31.458
14 MC 2.649 92.604 392.457 234.484 45.704
14 MC simplicial 350.843 117.821 339.119 209.566 33.505
14 Batch MC simplicial 1,035.349 119.204 323.903 208.207 30.196
15 MC 5.803 101.726 348.771 220.790 37.342
15 MC simplicial 717.993 110.628 312.374 204.199 27.734
15 Batch MC simplicial 2,265.467 127.493 301.875 203.217 26.217

1 3

Hybrid simplicial‑randomized approximate stochastic dynamic… Page 25 of 44 31

Ta
bl

e
6

 S
ta

tis
tic

s p
er

ta
in

in
g

to
 in

te
rp

ol
at

io
n

er
ro

rs
 o

f C
ob

b–
D

ou
gl

as
 c

on
ca

ve
 fu

nc
tio

ns
 fo

r fi
xe

d
C

PU
 ti

m
e

To
ta

l s
et

 C
PU

 ti
m

e
in

 se
co

nd
s

1
2

3
4

5

n
M

et
ho

d
K

E
av

K
E
av

K
E
av

K
E
av

K
E
av

3
M

C
24

6.
04

43
0.

01
70

21
1.

64
83

0.
03

84
23

3.
56

93
0.

02
12

25
0.

92
39

0.
01

95
26

9.
76

63
0.

01
43

3
M

C
 si

m
pl

ic
ia

l
0.

45
94

1.
63

58
0.

45
73

1.
49

19
0.

47
70

1.
44

66
0.

49
60

1.
41

37
0.

49
56

1.
26

04
3

B
at

ch
 M

C
 si

m
pl

ic
ia

l
0.

15
38

4.
08

73
0.

14
28

3.
77

45
0.

15
01

3.
37

76
0.

15
64

2.
96

79
0.

16
18

2.
91

84
3

Si
m

pl
ic

ia
l

1
1

1
1

1
1

1
1

1
1

To
ta

l s
et

 C
PU

 ti
m

e
in

 se
co

nd
s

2
5

10
15

20

n
M

et
ho

d
K

E
av

K
E
av

K
E
av

K
E
av

K
E
av

5
M

C
25

3.
53

91
0.

05
96

26
1.

54
83

0.
05

37
25

3.
03

94
0.

05
04

27
4.

11
72

0.
04

95
28

6.
45

62
0.

04
44

5
M

C
 si

m
pl

ic
ia

l
1.

02
34

0.
45

20
0.

81
93

0.
46

95
0.

71
82

0.
45

65
0.

71
74

0.
47

03
0.

72
65

0.
45

14
5

B
at

ch
 M

C
 si

m
pl

ic
ia

l
0.

50
78

0.
66

83
0.

35
83

0.
72

44
0.

28
76

0.
75

24
0.

28
37

0.
73

23
0.

28
57

0.
67

07
5

Si
m

pl
ic

ia
l

1
1

1
1

1
1

1
1

1
1

To
ta

l s
et

 C
PU

 ti
m

e
in

 se
co

nd
s

5
10

15
20

25

n
M

et
ho

d
K

E
av

K
E
av

K
E
av

K
E
av

K
E
av

8
M

C
19

9.
68

36
0.

17
17

40
0.

39
06

0.
13

07
61

9.
59

77
0.

11
24

76
8.

62
11

0.
10

36
96

9.
91

80
0.

09
69

8
M

C
 si

m
pl

ic
ia

l
1.

60
94

0.
57

08
2.

17
97

0.
46

93
2.

74
22

0.
41

87
3.

27
73

0.
38

80
3.

81
64

0.
36

74
8

B
at

ch
 M

C
 si

m
pl

ic
ia

l
1.

20
31

0.
69

14
1.

40
23

0.
61

65
1.

60
16

0.
54

36
1.

80
47

0.
51

57
1.

98
83

0.
48

26
8

Si
m

pl
ic

ia
l

1
1

1
1

1
1

1
1

1
1

 L. Zephyr et al.

1 3

31 Page 26 of 44

Furthermore, we test the scalability of the randomized methods on the approx-
imation of 11- to 15-dimensional Cobb–Dougblas concave functions. As above,
we use all the methods, but the simplicial one (as it is intractable for such high-
dimensional problems) to generate sample points of size 2n + 100n ; then interpo-
lation errors are calculated on samples of size 100n. We also perform five repli-
cations with each method and calculate the same performance statistics, which
are reported in Table 5. In addition to being tractable for all the cases, the hybrid
methods still outperform the naïve approach (MC) in terms of the maximum and
average interpolation errors; they also feature lower standard deviations of the
approximation errors. The batch MC simplicial method still outperforms the MC
simplicial one, but at the expense of higher computation time.

Lastly, instead of a fixed grid size per period, we fix the total CPU time to
build the grids for three-, five- and eight-dimensional Cobb–Douglas concave
functions. As above, the constructed grids are then used to calculate interpolation
errors on samples of size 100n. We report in Table 6 the relative average of the
size of the grids K , and interpolation errors Eav calculated over five replications.
Being the fastest method, the MC approach generates grids, on average, between
200 and 970 times denser than the simplicial approach. Consistent with the
observation from Table 4 that the simplest method is faster than the hybrid
ones on three- and five-dimensional problems, the latter schemes generate grids
less dense than the simplicial method (on average). As the hybrid methods are
faster on the eight-dimensional problems, they generate grids of bigger size (on
average) than the simplicial approach. The overwhelmingly larger size of the
grids generated by the MC approach allows for smaller interpolations errors
compared to all three other methods. While smaller average interpolations errors
are obtained with simplicial scheme compared to the hybrid ones, the latter
outperform the simplicial approach on the five- and eight-dimensional problems.

5.2.2 Simulated mid‑term reservoir optimization problems

As in Zéphyr et al. (2015), for each plant i = 1,… , n , we assume the production
function to be of the form

Table 7 Model parameters
borrowed from Zéphyr et al.
(2017)

Parameter Lower limit Upper limit

s
it

150 600
s̄it 800 7,000
u
it

0 0
ūit 0.05s̄it 1.5s̄it

�i 0.9 1.5
�i 0.7 0.9
�i 125ui 170ui

qit 500 3,000

1 3

Hybrid simplicial‑randomized approximate stochastic dynamic… Page 27 of 44 31

These production functions are linearized as in (10)–(16). Furthermore, we consider
a planning horizon of length T=10, and three reservoir configurations in dimension
n = 4, 6, 8 , respectively. The problems’ parameters, including bounds on the
reservoir and water release levels, borrowed from Zéphyr et al. (2017), are shown in
Table 7.

For each reservoir configuration, problem instances are randomly generated
based on the experimental framework depicted in Table 7. To mitigate boundary

(23)pit(uit) ∶= 𝛽i
((
uit + 𝛾i

)𝛼i − 𝛾
𝛼i
i

)
, 𝛽i > 0, 𝛾i ≥ 0, 0 ≤ 𝛼i ≤ 1

Table 8 Statistics pertaining to the first period evaluations of the value functions for three reservoir con-
figurations (n = 4, 6, 8) taking the simplicial method as our baseline

Relative averages

 n Method Abs. CPU time ti V1min V1max V1av V1std

4 Monte Carlo (MC) 10.0974 0.2921 1.0001 1.0006 1.0006 0.9996
4 MC simplicial 30.7411 0.8892 1.0012 1.0012 1.0012 0.9979
4 Batch MC simplicial 76.9120 2.2248 1.0012 1.0012 1.0012 0.9977
4 Simplicial 34.5699 1 1 1 1 1
6 MC 105.5044 0.3082 0.9954 1.0021 1.0021 1.0131
6 MC simplicial 228.4980 0.6676 1.0026 1.0023 1.0026 1.0030
6 Batch MC simplicial 475.4854 1.3892 1.0029 1.0023 1.0026 1.0020
6 Simplicial 342.2702 1 1 1 1 1
8 MC 158.9624 0.0161 0.9949 0.9952 0.9951 1.0000
8 MC simplicial 433.8685 0.0439 1.0000 1.0000 1.0000 1.0000
8 Batch MC simplicial 882.3298 0.0893 1.0000 1.0000 1.0000 1.0000
8 Simplicial 9,879.5983 1 1 1 1 1

Table 9 Statistics pertaining to the first period evaluations of the value functions for three reservoir con-
figurations (n = 4, 6, 8) using the MC method as our baseline

Relative averages

 n Method ti V1min V1max V1av V1std

4 MC 1 1 1 1 1
4 Simplicial MC 3.044443 1.001166 1.000615 1.000577 9.982757E-01
4 Batch simplicial MC 7.616980 1.001174 1.000578 1.000548 9.981081E-01
6 MC 1 1 1 1 1
6 Simplicial MC 2.165768 1.007247 1.000158 1.000503 9.899871E-01
6 Batch simplicial MC 4.506782 1.007507 1.000169 1.000530 9.890111E-01
8 MC 1 1 1 1 1
8 Simplicial MC 2.729379 1.005094 1.004841 1.004930 1.000000
8 Batch simplicial MC 5.550558 1.005094 1.004841 1.004930 1.000000

 L. Zephyr et al.

1 3

31 Page 28 of 44

effects, the terminal value function, VT+1(sT+1) , is chosen as a concave function of
the form (21).

In addition, in each period of the planning horizon, we use each method to
generate samples of 2n + 200n grid points to evaluate the approximate value function
(10)–(16). Then, we randomly generate a sample of 1, 000n initial reservoir levels
and natural inflows. Next, as in Cervellera et al. (2017), the first period approximate
problem is solved with each method for each state observation of the sample, and
we record the minimum (V1min), the maximum (V1max), the average (V1av), and
the standard deviation (V1std) of the first period value function evaluation. Five
replications are performed for each case, then we calculate the average of each such
statistic as well as the average time (ti) to build the ten value functions. As in the
above comparisons, we take the simplicial scheme as the benchmark method. The
results (relative measures) are reported in Table 8 as well as the average absolute
CPU times (in seconds).

Again, without any surprise, the pure MC method is the fastest. The average
CPU time is relatively the same under the simplicial and its MC simplicial variant
on the four-dimensional problems; the latter scheme features lower computational
burden on the 6- and eight-dimensional instances. Both hybrid methods outperform
the simplicial scheme on all the other metrics on the 6-dimensional problems. The
performance of the methods is similar on the 8-dimensional problems, however at
lower computational burden for the MC variant methods. Indeed, the CPU time of
the MC method is approximately 2% of that of the simplicial scheme, and 4% and
9%, for the MC simplicial and its batch variant, respectively.

Let us now take the MC approach as our benchmark against the two hybrid
schemes. Results depicted in Table 9 show that, on average, the MC approach is
between two and three times as fast as the MC simplicial counterpart, and between
4.5 and 7.6 times faster than the batch simplicial MC. On the other hand, the two
hybrid methods provide slightly better accuracy than the MC scheme.

In addition, we conduct an analysis of the sensitivity of the solution accuracy of
the different methods to the size of the grids. We repeat the above experiments on
four- and six-dimensional reservoir problems. The parameters are generated as in

Table 10 Variation rate of the average first period value functions with the size of the grid for two reser-
voir configurations (n = 4, 6)

Grid size

 n Method 2n + 20n 2n + 40n 2n + 60n 2n + 80n 2n + 100n

4 MC – 1.00017 1.00007 1.00020 1.00022
4 MC simplicial – 1.00012 1.00003 0.99999 1.00002
4 Batch MC simplicial – 1.00008 1.00002 1.00001 1.00004
4 Simplicial – 1.00009 1.00005 1.00006 1.00004
6 MC – 1.00001 1.00001 1.00000 1.00000
6 MC simplicial – 1.00002 1.00000 1.00000 1.00000
6 Batch MC simplicial – 1.00002 1.00000 1.00000 1.00000
6 Simplicial – 1.00007 1.00023 0.99999 1.00002

1 3

Hybrid simplicial‑randomized approximate stochastic dynamic… Page 29 of 44 31

Table 7. In each period, for each problem, we construct grids of sizes varying
between K1 = 2n + 20n , and K5 = 2n + 100n , in increment of 20n. As before, the
first period value functions are solved for 1, 000n randomly generated initial
reservoir levels and inflows, then the average is taken. For each grid size
Kj, j = 2,… , 5 , Table 10 depicts the relative average value function Vj

Vj−1

 . The results

show that the average evaluations of the first period value functions are relatively
steady.

We repeat same experiments as above on four- and six-dimensional simulated
reservoir problems, now instead of fixing the grid size per time period, we set the
total CPU time to build the ten value functions, which is split evenly between the ten
periods. We also solve the first period approximate problem (10)–(16) for 1, 000n
pairs of reservoir levels and natural inflows. The average relative first period value
function V1av

 , as well as the average relative first period grid size K1 under each
method are depicted in Table 11. As above, we perform five replications.

Again, as expected, being the fastest, the MC method generates denser grids com-
pared to the other approaches, ranging approximately between two times and five
times the sizes of the grids generated by the simplicial scheme. For the four reservoir
problems, on average, the size of the grids generated by the MC simplicial scheme
varies between approximately 94.24% and 1.02% of those generated under the
simplicial method. However, similarly to our previous observations, the simplicial

Table 11 Statistics pertaining to the first period evaluations of the value functions for two reservoir con-
figurations (n = 4, 6) using the simplicial method as our baseline and with fixed CPU time to build the
value functions

Total set CPU time in seconds

10 20 30 40

 n Method K1 V1av
K1 V1av

K1 V1av
K1 V1av

4 MC 2.473451 1.003137 2.315663 1.002313 2.161074 1.001947 2.047120 1.001562
4 MC

simplicial
1.022124 1.002838 0.983133 1.002253 0.956376 1.001941 0.942408 1.001601

4 Batch MC
simplicial

0.637168 1.001262 0.537349 1.001413 0.505034 1.001453 0.485602 1.001224

4 Simplicial 1 1 1 1 1 1 1 1

Total set CPU time in seconds

50 100 150 200

 n Method K1 V1av
K1 V1av

K1 V1av
K1 V1av

6 MC 5.037500 1.008982 5.339506 1.009966 2.731495 1.007931 1.833631 1.007668
6 MC

simplicial
2.675000 1.009712 4.305556 1.010693 2.718433 1.008498 2.064401 1.008599

6 Batch MC
simplicial

1.771875 1.009169 2.586420 1.010249 1.593614 1.008249 1.201252 1.008350

6 Simplicial 1 1 1 1 1 1 1 1

 L. Zephyr et al.

1 3

31 Page 30 of 44

Table 12 Optimality gap of the first four-reservoir problem (Problem 1) described in Chow and Cortes-
Rivera (1974), Murray and Yakowitz (1979) across the tested methods for different grid size

Grid size

 Method 2n + 50n 2n + 100n 2n + 200n 2n + 300n 2n + 500n 2n + 1000n

MC 1.34% 0.88% 0.67% 0.56% 0.46% 0.40%
Simplicial MC 0.73% 0.49% 0.38% 0.27% 0.26% 0.18%
Batch simplicial MC 0.52% 0.31% 0.19% 0.19% 0.15% 0.11%
Simplicial 1.24% 0.55% 0.53% 0.36% 0.20% 0.15%

Table 13 CPU time in seconds to approximate the value functions for the first four-reservoir problem
(Problem 1) reported in Chow and Cortes-Rivera (1974), Murray and Yakowitz (1979) for different grid
size across the tested methods

Grid size

 Method 2n + 50n 2n + 100n 2n + 200n 2n + 300n 2n + 500n 2n + 1000n

MC 0.6255 1.4599 4.2737 8.7034 21.3315 97.0282
Simplicial MC 32.6700 51.0181 196.8790 293.7830 487.9010 1,411.0400
Batch simplicial MC 52.9183 102.4470 225.4920 369.6240 1324.6700 3,024.9700
Simplicial 7.8186 17.4825 64.3685 156.5440 338.2210 1,082.5300

Table 14 Optimality gap of the second four-reservoir problem (Problem 2) described in Chow and Cor-
tes-Rivera (1974), Murray and Yakowitz (1979), Moravej and Hosseini-Moghari (2016) across the tested
methods for different grid size

Grid size

 Method 2n + 50n 2n + 100n 2n + 200n 2n + 300n 2n + 500n 2n + 1000n

MC 2.86% 2.16% 1.81% 1.75% 1.35% 1.09%
MC simplicial 1.55% 1.21% 0.80% 0.69% 0.52% 0.33%
Batch MC simplicial 1.04% 0.61% 0.40% 0.28% 0.25% 0.19%
Simplicial 1.97% 1.73% 0.89% 0.84% 0.48% 0.28%

Table 15 CPU time in seconds to approximate the value functions for the second four-reservoir prob-
lem (Problem 2) reported in Chow and Cortes-Rivera (1974), Murray and Yakowitz (1979), Moravej and
Hosseini-Moghari (2016) for different grid size across the tested methods

Grid size

 Method 2n + 50n 2n + 100n 2n + 200n 2n + 300n 2n + 500n 2n + 1000n

MC 0.6298 1.3913 3.8732 7.7293 18.9845 137.1070
MC simplicial 16.7826 35.4257 87.7464 136.9160 274.4680 1,118.660
Batch MC simplicial 48.6417 102.1330 225.0250 370.3550 725.1740 2,259.890
Simplicial 7.9736 17.7167 81.9990 110.7210 165.5750 954.704

1 3

Hybrid simplicial‑randomized approximate stochastic dynamic… Page 31 of 44 31

algorithm is slower on the six-dimensional problems; the MC simplicial approach
generates grids, on average, more than twice as dense as those generated under the
simplicial counterpart. In terms of accuracy, all three other methods sightly outper-
form the simplicial one. The MC and MC simplicial schemes exhibit similar accu-
racy level, with a slight edge for the MC simplicial on the six-dimensional problems.

5.3 Performance comparisons on three literature reservoir
optimization problems

Our last comparison setting is three literature reservoir optimization problems:
two four-dimensional and one ten-dimensional problems. The planning horizons
are one year divided into monthly time steps. These problems were designed to
assess the effectiveness of reservoir optimization solution methods. For details
about their characteristics, please see Chow and Cortes-Rivera (1974), Murray
and Yakowitz (1979), Moravej and Hosseini-Moghari (2016). The main difference
between the two four-dimensional problems is that in one of them (hereafter
Problem 1), the release decisions are less constrained, and the upper bounds on
the reservoirs are stationary (do not vary with time), in contrast with the second
one (Problem 2).

Table 16 Optimality gap of the ten-reservoir problem described in Chow and Cortes-Rivera (1974),
Murray and Yakowitz (1979), Moravej and Hosseini-Moghari (2016) across the tested methods for dif-
ferent grid size

Grid size

 Method 2n + 50n 2n + 100n 2n + 200n 2n + 300n 2n + 500n 2n + 1000n

MC 3.15% 3.07% 3.00% 2.73% 2.39% 2.39%
MC simplicial 3.99% 3.21% 2.45% 2.14% 2.20% 1.61%
Batch MC simplicial 4.24% 3.31% 2.73% 2.59% 1.79% 1.31%
Simplicial n/a n/a n/a n/a n/a n/a

Table 17 CPU time in seconds to approximate the value functions for the ten-reservoir problem reported
in Chow and Cortes-Rivera (1974), Murray and Yakowitz (1979), Moravej and Hosseini-Moghari (2016)
for different grid size across the tested methods

Grid size

 Method 2n + 50n 2n + 100n 2n + 200n 2n + 300n 2n + 500n 2n + 1000n

MC 25.401 59.020 124.719 141.087 332.738 1,993.690
MC simplicial 132.705 531.597 745.877 1,135.720 2,603.180 8,319.800
Batch MC simplicial 311.661 667.861 1899.350 4107.330 6143.250 27,818.900
Simplicial n/a n/a n/a n/a n/a n/a

 L. Zephyr et al.

1 3

31 Page 32 of 44

In all three problems, the first period reservoir level (s1) is fixed, similarly for the
terminal one (s13) . Though these constraints can easily be handled in a multi-period
model, this is not the case in dynamic programming-like methods, as in period
t = 12 , the algorithms can pick a reservoir level that violates the terminal value con-
straints on the reservoir levels. Similarly, in any period t, the bounds may also be

Table 18 Optimality gap of the first four-reservoir problem (Problem 1) described in Chow and Cor-
tes-Rivera (1974), Murray and Yakowitz (1979) across the tested methods for different total CPU time
budget

Total set CPU time in seconds

360 480 600

 Method K
t

� K
t

� K
t

�

MC 3228 1.696% 3,317 1.5792% 3,700 1.5837%
MC simplicial 2096 0.789% 2,879 0.2628% 1807 0.2411%
Batch MC simplicial 491 0.229% 675 0.5363% 774 0.1169%
Simplicial 1761 0.520% 2215 0.3152% 2524 0.3579%

Table 19 Optimality gap of the second four-reservoir problem (Problem 2) described in Chow and Cor-
tes-Rivera (1974), Murray and Yakowitz (1979), Moravej and Hosseini-Moghari (2016) across the tested
methods for different fixed CPU time budget

Total set CPU time in seconds

360 480 600

 Method K
t

� K
t

� K
t

�

MC 1696 0.4782% 1925 0.401% 3130 0.4114%
MC simplicial 483 0.4755% 905 0.355% 1294 0.3569%
Batch MC simplicial 186 0.5691% 343 0.323% 548 0.2506%
Simplicial 813 0.3907% 1389 0.197% 1760 0.0612%

Table 20 Optimality gap of the ten-reservoir problem described in Chow and Cortes-Rivera (1974),
Murray and Yakowitz (1979), Moravej and Hosseini-Moghari (2016) across the tested methods for dif-
ferent CPU time budget

Total set CPU time in seconds

360 480 600

 Method K
t

� K
t

� K
t

�

MC 4520 1.1303% 6571 2.5484% 8601 0.1422%
MC simplicial 2705 2.2250% 3359 3.0712% 3899 2.5599%
Batch MC simplicial 1734 7.2165% 2054 3.6955% 2332 3.7240%
Simplicial n/a n/a n/a n/a n/a n/a

1 3

Hybrid simplicial‑randomized approximate stochastic dynamic… Page 33 of 44 31

violated. We mitigate this issue by introducing linearized penalty functions in the
objective functions. We calibrate the penalty coefficients through trial-and-errors,
until we obtain solutions that meet all the constraints (solving the value functions
forward in time as explained below).

We build the value functions moving backward in time. Then, starting from
the initial reservoir level, we solve the value functions forward in time, using the
previous period suboptimal reservoir level as initial value. In each time period,
we calculate the suboptimal current period objective value (say the current period
suboptimal production in our context). Thus, the suboptimal value of the problem is
the sum of such suboptimal objective values.

Under each method, first, we use different grid sizes to build the value functions,
as illustrated in Tables 12, 13, 14, 15, 16 and 17. Under the simplicial method, each
problem is solved once (one backward and one forward steps), as the problems are
deterministic and the simplicial method is also a deterministic algorithm. Under the
hybrid methods, we perform five replications, and calculate the averages (solution
times and suboptimal values).

Tables 12, 14, and 16 report the optimality gaps (difference between the known
optimal values and the suboptimal ones obtained with the methods) for each grid
size and each method. No results are reported for the simplicial method for the
largest problem (ten-dimensional), which proved intractable for this method (we
stopped the algorithm after several hours spent in the last period recursion).

The optimality gaps decreases as the grid size increases, regardless of the
method. Overall, the batch MC simplicial scheme consistently exhibits the lowest
optimality gaps, followed by the MC simplicial method, though the latter is
outperformed by the simplicial approach on the two four-dimensional problems
for the two largest grid sizes. The pure MC method consistently features the
highest optimality gaps. The associated CPU times (in seconds) are reported in
Tables 13, 15, 17, respectively.

Second, as for the simulated problems, we also compare the performance of the
methods by fixing a total computation time to build the 12 value functions. The total
time is evenly split between the 12 periods. In addition to the optimality gap, � , we
also calculate the average grid size per period, Kt . For each problem, we consider
three total CPU times. The results are reported in Tables 18, 19 and 20. Since the
MC approach is the fastest, it generates the highest average number of grid points per
period. Detailed analysis of the results (not reported here) show that in the backward
pass, the MC method alternates between very high and relatively low number of grid
points. This is due to the fact that when a very dense grid is generated in a period
t, then the computational burden of the approximate problem (10)–(16) increases
in period t − 1 , as the grid generated in period t is used to approximate the value
function in the previous period, as well as to interpolate the next period reservoir
levels. Thus, a low-size grid is generated in period t − 1 . If this behaviour, combined
with the uniform discretization of the reservoir level space (not taking into account
information about the curvature of the value function), seems to put the MC scheme
at a disadvantage in terms of optimality gap compared to the other three methods
on the two four-reservoir problems, this is not the case on the ten-dimensional one,

 L. Zephyr et al.

1 3

31 Page 34 of 44

on which it outperforms the other methods. The simplicial method systematically
outperforms the two MC variants on the second four-reservoir problem, but it is
intractable for the largest dimension problem, due to the exponential complexity of
the initial partitioning of the hypercube into simplices.

We close the numerical experiments section with the following remarks about the
scalability of the hybrid methods to problems with more than ten reservoirs, the largest
size problems solved in this work.

On the one hand, in addition to function evaluations, the complexity of the hybrid
methods depends on the sizes of the linear programs (17) and (19). The former program
features K decision variables and n + 1 constraints, and the latter at most 2n + 2
decision variables and at most 2n + 2 constraints; K, being the size of the grid at each
iteration. At each iteration, the MC simplicial scheme solves each of the two programs
once, as one additional grid point is added to the grid. Under the batch MC variants,
at each iteration, each program is called m times; m being the size of the randomly
generated candidate sample points. Also notice that the size of Program (17) varies with
K, which is not the case of Program (19). Results of extra numerical experiments not
reported in this paper suggested that the computational burden of the hybrid methods
is proportional to the grid sizes. Thus, we believe the proposed methods are scalable to
more than ten reservoirs.

On the other hand, the value functions are typically built off-line. Then, in each time
period, once the pair (st, qt) is observed, the approximate problem (10)–(16) is solved
online using the previously built value function to make operational decisions. Solving
this problem is relatively fast. The value functions are updated off-line as more data
(natural inflows) become available.

6 Conclusions

This work has revisited a simplicial approximate stochastic dynamic programming
scheme presented in Zéphyr et al. (2015) for the mid-term sub-optimal operations of
multi-period multi-reservoir systems. This iterative method relies on the exhaustive
examination of a list of created simplices, whose vertices define grid points at
which the value functions are evaluated at each period. The scheme is limited by the
computational burden of partitioning a hypercube into simplices.

We have proposed two hybrid methods that combine random sampling
strategies with the approach proposed in Zéphyr et al. (2015) to locally estimate
the approximation error. Simulation results of randomly generated and three
literature mid-term reservoir management test problems showed that, compared to
the simplicial methods, the hybrid methods seem to offer a good trade-off between
solution time and accuracy, in particular when the state space dimension is greater
than nine. Approximation of functions of dimension up to 15 within reasonable
computation time illustrated the potential scalability of the proposed randomized
methods, which might further be leveraged through parallelization.

1 3

Hybrid simplicial‑randomized approximate stochastic dynamic… Page 35 of 44 31

Appendices

Appendix 1: Simplicial partioning of hypercubes

Definition 1 Let S be some set in the Euclidean space IRn , its affine envelope is the
set of all affine combinations of points in S, or equivalently the smallest affine set
that contains S, i.e., the set aff S ∶=

�∑k

i=1
�ix

i � xi ∈ S, i = 1,… , k,
∑k

i=1
�i = 1

�
 ;

its convex envelope is the set of all convex combinations of points in S, or
equivalently, the smallest convex set that contains S, i.e., the set conv
S ∶=

�∑k

i=1
�ix

i � xi ∈ S, �i ≥ 0, i = 1,… , k,
∑k

i=1
�i = 1

�
.

Furthermore,

Definition 2 A closed convex set B ∈ IRn is called a simplex if it is the convex enve-
lope of n + 1 affinely independent points s1, s2,… , sn+1 in IRn , i.e.,
B ∶= conv {s1,… , sn+1} ∶=

�∑n+1

i=1
�is

i � �i ≥ 0, i = 1,… , n + 1,
∑n+1

i=1
�i = 1

�
.

As examples, a one-dimensional simplex is a line segment, a two-dimensional
simplex a triangle, and a three-dimensional simplex a tetrahedron.

Partitioning the hyperrectangular state set St into simplices entails two steps,
namely, (i) its initial partitioning into simplices; and (ii) the iterative subdivision
of existing simplices until a prescribed criterion is met. The popular Kuhn
triangulation, implemented in this work for our benchmark method, partitions
St into n! initial simplices (Moore 1992; Munos and Moore 2002). By a simple
change of scale, each point st ∈ St can be mapped to a point 0 ≤ xt ≤ e ; e
being an n-vector filled with 1’s. Then each simplex in the Kuhn triangulation
corresponds to one possible permutation, p, of the indices (1,… , n) of the

Fig. 9 Illustrative examples of simplicial subdivision

 L. Zephyr et al.

1 3

31 Page 36 of 44

dimension of xt , and is given by the set of points xt whose coordinates satisfy
the inequalities 0 ≤ x

p(1)
t ≤ x

p(2)
t ≤ … ≤ x

p(n)
t ≤ 1 (Davies 1997).

A less expensive strategy, called Delaunay triangulation, partitions a
hyperrectangle into at most O(N⌈ n

2
⌉) simplices, where N = 2n Žilinskas and

Žilinskas (2002). In Zéphyr et al. (2015), starting with its 1-dimensional faces
(line segments), k-dimensional faces of the hyperrectangle are iteratively
lifted into k + 1-dimensional simplices until the hyperrectangle is partitioned
into n-dimensional simplices. The complexity of this proposal is more than
exponential in the dimension n of the hyperrectangle.

If either the Kuhn or the Delaunay triangulation is used, the initial step
generates a grid of 2n points, i.e., the vertices of the hyperrectangle, at which
the approximate value function (10)–(16) is evaluated. If one wants to densify
the initial grid in the hope of improving the approximation, the initial simplices
can iteratively be subdivided into smaller ones. A popular technique used
in global optimization consists in bisecting edges of simplices based on their
diameter or local Lipschitz lower bounds (e.g., Žilinskas and Žilinskas 2002;
Paulavičius and Žilinskas 2014). Another population strategy, called radial or
�-subdivision (Žilinskas and Žilinskas 2002), consists in choosing a point in
some d-dimensional subset of a simplex B, d = 1,… , n − 1 , called a face of B ,
and creating subsimplices around this point (e.g., Horst 1976; Tuy 1991; Bomze
and Eichfelder 2013; Zéphyr et al. 2015).

More specifically, let B ⊂ IRn be an n-dimensional simplex generated
by the n + 1 affinely independent points {s1, s2,… , sn+1} , and denote
SB ∶= [s1, s2,… , sn+1] ∈ IRn×(n+1) the full row rank associated matrix. It follows
from Definition 2 that a point s lives in B if and only if the system

has a unique solution � ∈ IRn+1 . In addition, let B(s) be a subset of {1,… , n + 1}
such that in Eq. (24), 𝜆j > 0, j ∈ B(s) . Let SB(s)j be the n × (n + 1) matrix obtained
by replacing the jth column of SB, j ∈ B(s) , with the point s , which we assume is
not a vertex of the simplex. Clearly, the columns of SB(s)j are affinely independent;
as a result, their convex envelope defines a simplex. This way, B is subdivided into d
simplices, d being the cardinality of B(s).

Illustrative examples of simplicial subdivision are provided in Fig. 9. In case
(i), the division point C is located in the relative interior of the simplex [A, B],
which is subdivided into two simplices, namely [A, C] and [C, B]. In case (ii),
the division point, v, lies in the relative interior of the simplex [x, y, z]; the latter
is partitioned into three simplices. Lastly, the simplex [x�, y�, z�] is partioned into
two simplices, since the division point v′ is located on the line segment [x�, y�].

(24)
[
SB
e⊤

]
� =

(
s

1

)
, � ≥ 0,

1 3

Hybrid simplicial‑randomized approximate stochastic dynamic… Page 37 of 44 31

Appendix 2: Proof of proposition

Proof of Proposition 2 We will derive our complexity results in two steps. First, we
will show that the error bound on a simplex B can be approximated by a quadratic
function of the function values at its vertices. This result will be used next to show
that the number of simplices required to obtain the desired threshold on the approxi-
mation error is proportional to an exponential factor.

In (19), let us collect the evaluations of the function at the vertices of
simplex B in the vector fB ∶=

(
f 1,… , f n+1

)⊤ ; similarly, let us define the vector
�B ∶=

(
𝜆1,… , 𝜆n+1

)⊤ . Substituting s with its expression in the inequalities, and
rearranging terms, we see that (19) is the same as:

For simplicity, let us relax the non-negativity constraints on �B , allowing the
division point to be located outside the simplex, and thus overestimating the error
bound EB . The relaxed problem can be re-written in compact form as:

where GB ∶=
(
g1,… , gn+1

)⊤ , and d is an (n + 1) × (n + 1) block diagonal matrix
filled with the gi’s, i = 1,… , n + 1, on the main diagonal, and with an n-dimensional
zero-vector in each off-diagonal position. Furthermore, assuming that at optimality
all the inequalities of (26) are binding, with the only risk of underestimating the
error bound, we have the solution:

where A ∶= −GBSB , and h ∶= dS⊤
B
.

It is easy to see that
[
A e

e⊤ 0

]−1
=

[
A−1 − cA−1eeTA−1 cA−1e

ce⊤A−1 − c

]
, where the constant

c ∶= e⊤A−1e . We then have:

In (28), let B ∶= A−1 − cA−1eeTA−1 , an (n + 1) × (n + 1) matrix, b ∶= cA−1e , an
n + 1-dimensional column vector, and �⊤ ∶= ce⊤A−1 , an n + 1-dimensional row
vector. With some algebra, if follows from (28) that:

(25)

EB ∶= max𝜙,�B 𝜙 − f⊤
B
�B

s.t. 𝜙 − g1
⊤
SB�B ≤ f 1 − g1

⊤
s1,

⋮ ⋮ ⋮

𝜙 − gn+1
⊤
SB𝜆B ≤ f n+1 − gn+1

⊤
sn+1

e⊤�B = 1, �B ≥ 0.

(26)E
�

B
∶= max𝜙,�B 𝜙 − f⊤

B
�B

s.t. − GBSB�B + e𝜙 ≤ fB − dS⊤
B
, e⊤�B = 1.

(27)
(
�B

𝜙

)
=

[
A e

e⊤ 0

]−1 (
fB − h

1

)
,

(28)E
�

B
∶= 𝜙 − f⊤

B
�B =

(
−fB
1

)⊤ [
A−1 − cA−1eeTA−1 cA−1e

ce⊤A−1 − c

](
fB − h

1

)
.

 L. Zephyr et al.

1 3

31 Page 38 of 44

Thus, we see in (29) that the error on simplex B is a quadratic function of fB ∈ IRn+1

.
Now, we need to find the number of required simplices to guarantee that E

′

B
≤ E0 .

Though this answer is not straightforward, we argue that this number may depend
upon the dimension n of the state space and the size of the generated simplices.
Let B(1) be a unit-volume simplex in IRn , and denote SB(1) the matrix formed by its
vertices. In addition, assume this simplex may be scaled by a factor � to a higher
volume simplex B(�) , i.e., B(�) ∼ �B(1).

Similarly, assume the matrix of the vertices of B(1) may be scaled by the same
factor � to the matrix of B(�) , i.e., SB(�) ∼ �SB(1) . Therefore, we can take as an
estimate of the required number of simplices, Nn(E0) , the ratio of the volume of the
hyperrectange S to the volume of a simplex B(�) , such that the error on that simplex
does not exceed the desired threshold, i.e.,

Lastly, ignoring the lower order terms in (29), we see that the error bound is a
quadratic function of � , such that E

�

B
(�) ∼ k1�

2 , where k1 is a proportionality
constant. As a result, to guarantee the desired error threshold E0 , we must have
k1�

2 ≤ E0 , or

The volume of a simplex B(�) being Vol(B(𝜅)) = 1

n!

||||
𝜅SB(1)

e⊤
||||
=

𝜅n

n!

||||
SB(1)

e⊤
||||
∶= k2

𝜅n

n!
 ,

it follows from the inequality (31) that to guarantee the prescribed error bound, E0 ,

the volume Vol(B(�)) should be of the order k2
n!

(
E0

k1

)n∕2

 . Thus, the total number of
such simplices should be:

(29)E
�

B
∶= −f⊤

B
BfB +

(
(Bh)⊤ + � + b⊤

)
fB − �h − c.

(30)Nn(E0) =∶ max
�

{
Vol(S)

Vol(B(�))
| E

�

B(�)
≤ E0

}
.

(31)� ≤

√
E0

k1
.

Table 21 Data for quadratic example in two dimensions

1 3

Hybrid simplicial‑randomized approximate stochastic dynamic… Page 39 of 44 31

which is of the order O
(

Vol(S)n!

(n+1)E
n∕2

0

)
 . ◻

Appendix 3: Comparison of the original and hybrid simplicial
methods

To summarize, we make a brief comparison between the original and hybrid
simplicial methods. Conceptually, the original simplicial method makes an initial
list of simplices using the extreme points of the state set as vertices, for instance via
Kuhn’s triangulation. The function to be approximated is evaluated at the vertices,
and corresponding subgradients are calculated. For each simplex in the list, an error
bound is obtained by solving Eq. (19) which also returns a division point. Then new
vertices are iteratively added by selecting the simplex with largest error bound in
the current list, adding its division point as a new vertex where the function and
subgradient are evaluated, deleting the simplex from the list, replacing it with the
new simplices obtained following its division, and evaluating the error bounds
and division points of the new simplices, and so on. Once a sufficiently large list
of simplices has been obtained, it provides a partition of the state set S. The value
function, call it f (s) for simplicity, at any given point s ∈ S is approximated by
finding a simplex in the list containing the point s and interpolating the (known)
function values at its vertices.

By contrast, the hybrid methods iteratively build a list of vertices but do not make
an explicit list of simplices. This way, the value function f (s) is approximated at
any point s ∈ S by solving the linear program (17) whose optimal basis identifies a
set of vertices that define a simplex containing the point s . Since the linear program
selects the largest interpolated value among all feasible simplices (not necessary
full-dimensional) containing the point s , it may provide a better approximation of
f (s) than the original simplicial method in which there is only one full-dimensional
simplex containing the point s . The list of vertices is obtained iteratively by sampling
a point ŝ at random in the state set S, using Eq. (17) to identify an optimal simplex
containing the point ŝ , then using Eq. (19) to find an error bound and a division
point for this simplex, and adding this division point as a new vertex in the list, and
so on.

In the original simplicial method, by construction the largest error bound in the
list of simplices provides an upper bound on the approximation error for all points
s ∈ S although it might be somewhat overestimated. In the hybrid methods, the error
bounds are tighter, since, as aforementioned, the largest interpolated value is taken
among all feasible simplices.

To illustrate these ideas, Let us consider the 2-dimensional concave quadratic
function:

(32)NB ∶=
Vol(S)

Vol(B(�))
= Vol(S)

n!

k2

(
k1

E0

)n∕2

,

 L. Zephyr et al.

1 3

31 Page 40 of 44

The state set S is the unit square whose vertices are given counterclockwise in
Table 21 with their coordinates and function values:

Suppose a Kuhn triangulation was used to partition S into the two simplices
 and . Then Eq. (19) would yield an error bound of 3.6964 in

both cases with a division point at s1 = s2 = 0.6786 for ABC and at s1 = s2 = 0.3214
for ACD. So the original simplicial method would divide one of the two simplices
ABC or ACD at its division point.

By comparison, the MC simplicial method would first sample a point ŝ ∈ S at
random and then would use Eq. (17) to find a simplex over which the interpolation
of the function is the largest at that point ŝ . Unlike the original method in which
only the simplices already in the list would be considered, in the MC simplicial
scheme all possible simplices would be taken into account. For example, suppose
the coordinates of the sampled point ŝ happened to be ŝ1 = 0.6 and ŝ2 = 0.9 , the
supporting simplex found by Eq. (17) would be with an interpolated value
of 11.15. Next, Eq. (19) applied to simplex BCD would find an error bound of 1.8
with a division point at coordinates s1 = 1 and s2 = 0.6.

We notice that if the sampled point ŝ had been interpolated with simplex ACD
from the list, instead of BCD, its interpolated value would have been smaller, i.e.,
10.65 instead of 11.15.

Appendix 4: MLE estimation of the upper limit of TL(0,b)

AAdapting the approach of Lamond and Zéphyr (2021), it is possible to find a
MLE for parameter b by solving a nonlinear equation. If a random variable X has
a right-angle triangular distribution on the interval [0, b] with mode at the origin,
then its density function is

so the likelihood function for an observed sample x is

Then with lnL(x|b) the first-order optimality condition for the MLE of parameter b
is the nonlinear equation

which needs to be solved numerically, except in special cases.

f (s1, s2) = 9s1 + 15s2 − 2s2
1
− 5s1s2 − (9∕2)s2

2
.

g(x) =

{
2(b−x)

b2
if 0 ≤ x ≤ b,

0 else,

L(x�b) =
2m

∏m

i=1
(b − xi)

b2m

(33)
m∑

i=1

1

b − xi
−

2m

b
= 0,

1 3

Hybrid simplicial‑randomized approximate stochastic dynamic… Page 41 of 44 31

Proposition 5 Let b∗ be the unique solution of Eq. (33) and let x(m) = maxi=1,…,m xi .
Then

Proof When x(m) > 0 , the bounds in Eq. (34) are attained in the extreme cases with
x1 = ⋯ = xm−1 = 0 for the lower bound, and x1 = ⋯ = xm = x(m) for the upper
bound. In the limiting case when all observations are 0, i.e. x(m) = 0 , then Eq. (34)
implies that b̂ = 0 (the unbiased point estimate of b) which is expected since the den-
sity function goes to ∞ when b → 0 . In order to show that b∗ is between the bounds
for any sample x, we argue that b∗ increases when any observation xi increases with-
out changing x(m) . To do this, we rewrite Eq. (33) as

We see in Eq. (35) that the function G(x, b) is increasing with xi and that it is
decreasing with b. If G(x, b) = 0 for given x and b, then having x�

i
= xi + � , say,

implies that G(x�, b) > 0 so we must have b′ < b in order for G(x�, b�) = 0 . This
monotonicity property of b∗ thus implies that for any sample x there must be an
increasing trajectory from the lower bound to the upper bound that goes through x.
 ◻

The bounds provided by Proposition 5 can be used for initializing a search
algorithm for solving Eq. (33). They also imply that the MLE is strictly larger than
x(m) . However it is not obvious what is the expected value of b∗ in general, although
in the special case with m = 1 it is equal to 2b/3. Monte Carlo simulations indicate
that b∗ has a smaller variance than b̂ so that, even for small samples, the mean square
error of b∗ is slightly smaller than that of b̂ . But in practice the unbiased estimator
b̂ seems attractive due to its ease of computation. However, the MLE computation
might be justified when it saves the effort of obtaining a larger sample.

Acknowledgements The authors acknowledge constructive comments from two anonymous reviewers
that helped improve the quality of the paper.

Author contributions LZ contributed to the methodology, performed the numerical experiments and
contributed to the write-up. BFL contributed to the methodology and the write-up. PL contributed to the
methodology.

Funding The authors did not receive support from any organization for the submitted work, and have no
relevant financial or non-financial interests to disclose.

Declarations

Conflict of interest The authors declare no competing interests.

(34)
m + 1

m
× x(m) ≤ b∗ ≤ 2x(m).

(35)G(x, b) =

m∑

i=1

1

1 − xi∕b
− 2m = 0.

 L. Zephyr et al.

1 3

31 Page 42 of 44

References

Ahmad A, El-Shafie A, Fatin Mohd Razali S, Samba Mohamad Z (2014) Reservoir optimization in water
resources: a review. Water Resour Manag 28:3391–3405

Alessandri A, Cervellera C, Maccio D, Sanguineti M (2010) Optimization based on quasi-Monte Carlo
sampling to design state estimators for non-linear systems. Optimization 59(7):963–984

Almubaidin MAA, Ahmed AN, Sidek LBM, Elshafie A (2022) Using metaheuristics algorithms
(MHAs) to optimize water supply operation in reservoirs: a review. Arch Comput Methods Eng
29(6):3677–3711

Azad AS, Rahaman MSA, Watada J, Vasant P, Vintaned JAG (2020) Optimization of the hydropower
energy generation using meta-heuristic approaches: a review. Energy Rep 6:2230–2248

Beiranvand B, Ashofteh P-S (2023) A systematic review of optimization of dams reservoir operation
using the meta-heuristic algorithms. Water Resources Manag 1–70

Bellman R (1958) Dynamic programming. Princeton University Press, Princeton
Bomze IM, Eichfelder G (2013) Copositivity detection by difference-of-convex decomposition and �

-subdivision. Math Program 138(1):365–400
Carpentier P-L, Gendreau M, Bastin F (2013) Long-term management of a hydroelectric multires-

ervoir system under uncertainty using the progressive hedging algorithm. Water Resour Res
49(5):2812–2827

Carpentier P-L, Gendreau M, Bastin F (2014) Managing hydroelectric reservoirs over an extended
horizon using benders decomposition with a memory loss assumption. IEEE Trans Power Syst
30(2):563–572

Cerisola S, Latorre JM, Ramos A (2012) Stochastic dual dynamic programming applied to nonconvex
hydrothermal models. Eur J Oper Res 218(3):687–697

Cervellera C, Muselli M (2007) Efficient sampling in approximate dynamic programming algorithms.
Comput Optim Appl 38(3):417–443

Cervellera C, Gaggero M, Macciò D, Marcialis R (2013) Quasi-random sampling for approximate
dynamic programming. In: The 2013 international joint conference on neural networks (IJCNN).
IEEE, pp 1–8

Cervellera C, Gaggero M, Macciò D (2017) Lattice point sets for state sampling in approximate dynamic
programming. Optimal Control Appl Methods 38(6):1193–1207

Chen VCP (1999) Application of orthogonal arrays and mars to inventory forecasting stochastic dynamic
programs. Comput Stat Data Anal 30(3):317–341

Chen VCP, Ruppert D, Shoemaker CA (1999) Applying experimental design and regression splines to
high-dimensional continuous-state stochastic dynamic programming. Oper Res 47(1):38–53

Chen Y, Liu F, Rosenberger JM, Chen VCP, Kulvanitchaiyanunt A, Zhou Y (2020) Efficient approximate
dynamic programming based on design and analysis of computer experiments for infinite-horizon
optimization. Comput Oper Res 124:105032

Chow VT, Cortes-Rivera G (1974) Application of DDDP in water resources planning. Technical report,
University of Illinois at Urbana-Champaign. Water Resources Center

Côté P, Arsenault R (2019) Efficient implementation of sampling stochastic dynamic programming
algorithm for multireservoir management in the hydropower sector. J Water Resour Plan Manag
145(4):05019005

Davies S (1997) Multidimensional triangulation and interpolation for reinforcement learning. In:
Advances in neural information processing systems, pp 1005–1011

De Matos VL, Philpott AB, Finardi EC (2015) Improving the performance of stochastic dual dynamic
programming. J Comput Appl Math 290:196–208

Dias Bruno H, Marcato Andre LM, Souza Reinaldo C, Soares Murilo P, Silva Ivo C Junior, de Oliveira
Edimar J, Brandi Rafael, Ramos Tales P, et al. (2010) Stochastic dynamic programming applied to
hydrothermal power systems operation planning based on the convex hull algorithm. Math Probl
Eng 2010

Dias BH, Tomim MA, Marcato ALM, Ramos TP, Brandi RBS, da Silva ICJ, Filho JAP (2013) Paral-
lel computing applied to the stochastic dynamic programming for long term operation planning of
hydrothermal power systems. Eur J Oper Res 229(1):212–222

Diniz AL, Maceira MEP (2008) A four-dimensional model of hydro generation for the short-term
hydrothermal dispatch problem considering head and spillage effects. IEEE Trans Power Syst
23(3):1298–1308

1 3

Hybrid simplicial‑randomized approximate stochastic dynamic… Page 43 of 44 31

Dobson B, Wagener T, Pianosi F (2019) An argument-driven classification and comparison of reservoir
operation optimization methods. Adv Water Resour 128:74–86

Dupačová J, Gröwe-Kuska N, Römisch W (2003) Scenario reduction in stochastic programming. Math
Program 95:493–511

Feng Z, Niu W, Cheng C, Liao S (2017) Hydropower system operation optimization by discrete differen-
tial dynamic programming based on orthogonal experiment design. Energy 126:720–732

Feng Z, Niu W, Jiang Z, Qin H, Song Z (2020) Monthly operation optimization of cascade hydropower
reservoirs with dynamic programming and Latin hypercube sampling for dimensionality reduction.
Water Resources Manag 34(6)

Gibbons JD (1974) Estimation of the unknown upper limit of a uniform distribution. Sankhya Indian J
Stat Ser B (1960–2002) 36(1):29–40

Gimbutas A, Žilinskas A (2018) An algorithm of simplicial Lipschitz optimization with the bi-criteria
selection of simplices for the bi-section. J Global Optim 71(1):115–127

Gonçalves REC, Finardi EC, da Silva EL (2012) Applying different decomposition schemes using the
progressive hedging algorithm to the operation planning problem of a hydrothermal system. Electric
Power Syst Res 83(1):19–27

Goor Q, Kelman R, Tilmant A (2011) Optimal multipurpose-multireservoir operation model with vari-
able productivity of hydropower plants. J Water Resour Plan Manag 137(3):258–267

Habets LCGJM, Collins PJ, van Schuppen JH (2006) Reachability and control synthesis for piecewise-
affine hybrid systems on simplices. IEEE Trans Autom Control 51(6):938–948

Mello TH, De Matos VL, Finardi EC (2011) Sampling strategies and stopping criteria for stochastic dual
dynamic programming: a case study in long-term hydrothermal scheduling. Energy Syst 2(1):1–31

Horst R (1976) An algorithm for nonconvex programming problems. Math Program 10(1):312–321
Johnson SA, Stedinger JR, Shoemaker CA, Li Y, Tejada-Guibert JA (1993) Numerical solution of contin-

uous-state dynamic programs using linear and spline interpolation. Oper Res 41(3):484–500
Kachiashvili KJ, Topchishvili AL (2016) Parameters estimators of irregular right-angled triangular distri-

bution. Model Assist Stat Appl 11(2):179–184
Labadie JW (2004) Optimal operation of multireservoir systems: State-of-the-art review. J Water Resour

Plan Manag 130(2):93–111
Lamond BF, Zéphyr L (2021) Note on “Parameters estimators of irregular right-angled triangular distri-

bution”. Model Assisted Stat Appl 16(4) (to appear)
Moore DW (1992) Simplical mesh generation with applications. Technical report, Cornell University
Moravej M, Hosseini-Moghari S-M (2016) Large scale reservoirs system operation optimization: the

interior search algorithm (ISA) approach. Water Resour Manag 30:3389–3407
Morillo JL, Pérez JF, Zéphyr L, Anderson CL, Cadena A (2017) Assessing the impact of wind variability

on the long-term operation of a hydro-dominated system. In: 2017 IEEE PES innovative smart grid
technologies conference Europe (ISGT-Europe). IEEE, pp 1–6

Morillo JL, Zéphyr L, Pérez JF, Lindsay Anderson C, Cadena Á (2020) Risk-averse stochastic dual
dynamic programming approach for the operation of a hydro-dominated power system in the pres-
ence of wind uncertainty. Int J Electr Power Energy Syst 115:105469

Munos R, Moore A (2002) Variable resolution discretization in optimal control. Mach Learn
49(2–3):291–323

Murray DM, Yakowitz SJ (1979) Constrained differential dynamic programming and its application to
multireservoir control. Water Resour Res 15(5):1017–1027

Lin NM, Tian X, Rutten M, Abraham E, Maestre JM, van de Giesen N (2020) Multi-objective model pre-
dictive control for real-time operation of a multi-reservoir system. Water 12(7):1898

Nolde K, Uhr M, Morari M (2008) Medium term scheduling of a hydro-thermal system using stochastic
model predictive control. Automatica 44(6):1585–1594

Paulavičius R, Žilinskas J (2009) Global optimization using the branch-and-bound algorithm with a com-
bination of Lipschitz bounds over simplices. Technol Econ Dev Econ 15(2):310–325

Paulavičius R, Žilinskas J (2014) Simplicial global optimization. Springer, Berlin
Pereira MVF, Pinto LMVG (1991) Multi-stage stochastic optimization applied to energy planning. Math

Program 52(1):359–375
Pereira MVF, Pinto LMVG (1985) Stochastic optimization of a multireservoir hydroelectric system: a

decomposition approach. Water Resour Res 21(6):779–792
Rani D, Moreira MM (2010) Simulation-optimization modeling: a survey and potential application in

reservoir systems operation. Water Resour Manag 24:1107–1138

 L. Zephyr et al.

1 3

31 Page 44 of 44

Raso L, Malaterre PO (2017) Combining short-term and long-term reservoir operation using infinite
horizon model predictive control. J Irrig Drain Eng 143(3):B4016002

Rebennack S (2016) Combining sampling-based and scenario-based nested benders decomposition meth-
ods: application to stochastic dual dynamic programming. Math Program 156:343–389

Ruszczyński A, Shapiro A (2003) Stochastic programming models. Handbooks Oper Res Management
Sci 10:1–64

Sala A, Armesto L (2022) Adaptive polyhedral meshing for approximate dynamic programming in con-
trol. Eng Appl Artif Intell 107:104515

Shapiro A, Dentcheva D, Ruszczynski A (2009) Lectures on stochastic programming: modeling and the-
ory. SIAM, Philadelphia

Tuy H (1991) Effect of the subdivision strategy on convergence and efficiency of some global optimiza-
tion algorithms. J Global Optim 1(1):23–36

Uysal G, Schwanenberg D, Alvarado-Montero R, Şensoy A (2018) Short term optimal operation of water
supply reservoir under flood control stress using model predictive control. Water Resour Manag
32:583–597

van Ackooij W, Henrion R, Möller A, Zorgati R (2014) Joint chance constrained programming for hydro
reservoir management. Optim Eng 15(2):509–531

Xu B, Zhong P-A, Zambon RC, Zhao Y, Yeh WW-G (2015) Scenario tree reduction in stochastic pro-
gramming with recourse for hydropower operations. Water Resour Res 51(8):6359–6380

Yershov DS, LaValle SM (2012) Simplicial Dijkstra and A* algorithms: From graphs to continuous
spaces. Adv Robot 26(17):2065–2085

Zéphyr L, Anderson CL (2018) Stochastic dynamic programming approach to managing power system
uncertainty with distributed storage. CMS 15(1):87–110

Zéphyr L, Lang P, Lamond BF (2014) Adaptive monitoring of the progressive hedging penalty for reser-
voir systems management. Energy Syst 5(2):307–322

Zéphyr L, Lang P, Lamond BF (2015) Controlled approximation of the value function in stochastic
dynamic programming for multi-reservoir systems. CMS 12(4):539–557

Zéphyr L, Lang P, Lamond BF, Côté P (2017) Approximate stochastic dynamic programming for hydro-
electric production planning. Eur J Oper Res 262(2):586–601

Žilinskas A, Žilinskas J (2002) Global optimization based on a statistical model and simplicial partition-
ing. Comput Math Appl 44(7):957–967

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

	Hybrid simplicial-randomized approximate stochastic dynamic programming for multireservoir optimization
	Abstract
	1 Introduction
	2 Reservoir optimization problem
	3 Simplicial approximate stochastic dynamic programming
	3.1 Simplicial piecewise linear approximation of the value function
	3.2 Complexity and convergence analysis

	4 Hybrid simplicial approximate dynamic programming
	4.1 Randomized simplex-based sampling of the reservoir level space
	4.2 Statistical estimation of the approximation error

	5 Numerical experiments
	5.1 Sensitivity of solution performance to parameter values: batch MC simplicial and bath MC simplicial with queue methods
	5.2 Accuracy versus computational burden
	5.2.1 Approximation of concave functions
	5.2.2 Simulated mid-term reservoir optimization problems

	5.3 Performance comparisons on three literature reservoir optimization problems

	6 Conclusions
	Appendices
	Appendix 1: Simplicial partioning of hypercubes
	Appendix 2: Proof of proposition
	Appendix 3: Comparison of the original and hybrid simplicial methods
	Appendix 4: MLE estimation of the upper limit of TL(0,b)
	Acknowledgements
	References

