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Abstract
This study introduces an adapted Fourier-cosine series (COS) method that focuses 
on numerically solving characteristic functions linked to interest rate processes. The 
adaptation extends to encompass models within the affine jump-diffusion niche to 
assess the impact of different probability distributions on path-dependent option 
prices, with emphasis on the influence of stochastic volatility models on skewness 
and kurtosis. This study leverages the COS method, modified to numerically address 
characteristic functions linked to interest rate processes, to calculate the price of 
path-dependent derivatives. It investigates diverse models within the affine jump-
diffusion framework, encompassing elements such as stochastic volatility, jumps, 
and correlated Brownian motion. An innovative approach is introduced, wherein the 
characteristic function is generated from the integral of the interest rate, as opposed 
to the interest rate itself. The research generated notable findings, highlighting 
the adaptability and effectiveness of the modified COS method. This significantly 
expands the range of applicable models for those with analytically unsolved charac-
teristic functions. Remarkably, even in cases with analytically solvable characteristic 
functions, an unexpectedly low number of terms can accurately priced options. This 
study introduces original contributions by adapting the COS method to address the 
characteristic functions associated with interest rate processes. The distinct approach 
of generating the characteristic function from the interest rate integral, rather than 
the interest rate itself, is a substantial original contribution. The application of Kib-
ble’s bivariate gamma probability distribution to correlate interest rates and volatil-
ity jump sizes further enhances the originality of this research.

Keywords  Interest rate derivatives · Multivariate AJD models · Stochastic 
volatility · COS method · Option pricing
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1  Introduction

In general, stochastic models found in finance usually assume analytical solutions 
to the associated probability function or, at least, to its characteristic function (see 
e.g. Tahani and Li 2011 and Bouziane 2008). It follows that a variety of mean-
reverting models miss analytical solutions for Laplace and Fourier transforms 
when the stochastic factors are subject to jumps and correlation, which limits the 
statistical properties of the pricing model. These stochastic differential equations 
ensure the mean reversion of the state variables towards the long-run level, which 
is an interesting property for a number of practical applications, especially for the 
interest rate market. Nevertheless, considerable difficulties arise when entering 
correlation and stochastic jumps into the model, even when numerical solutions 
for the corresponding partial differential equations are provided by finite differ-
ence or finite element methods.

In da Silva et al. (2019), the authors show how to calculate the path-depend-
ent interest rate option prices using the Fourier-cosine series (COS) method by 
recovering the probability density function associated with interest rate processes 
generated by a diversity of one-factor models. An important detail for the given 
examples is that the characteristic functions, from which the probability density 
functions stem via the Fourier-cosine series, are known analytically. This path-
dependent option is called IDI (interbank deposit index) option in the Brazilian 
market. The contract gives its holder the right to exchange a fixed value of K 
against a continuously compounded index of the short-term interest rate calcu-
lated over the contract period. This contract was designed to help mitigate market 
risks and price manipulation. Detailed discussions about the IDI options can be 
found in da Silva et al. (2016) and Carreira and Brostowicz (2016). Similar path-
dependent products, in a mathematical sense, are commonly found in commodi-
ties and FX markets, as the average rate contract.

Path-dependent interest rate options strongly depend on the term structure of 
interest rate accurate modeling. Rebonato (1996) describes the importance of 
multifactor models in calculating the prices of interest rate products and Chen 
and Scott (1993) state that one-factor models may not be able to characterize the 
term structure of interest rate changes over time.

One-factor models enhanced with jumps have been explored in the literature. 
da Silva et al. (2020) and da Silva et al. (2019) employ, respectively, one-factor 
Vasicek models with jumps and jumps with stochastic intensity to calculate the 
price of IDI options. Heidari and Wu (2009) introduce deterministic jump times 
to account for scheduled jumps. Coffie (2023) studied the solution to the gener-
alized delay Ait-Sahalia-type interest rate model with Poisson-driven jumps. da 
Silva et  al. (2023) study the IDI option pricing with the Black-76 model aug-
mented with Lévy jumps. The authors also investigated hedging strategies using 
reinforcement learning techniques. da Silva and de Mello (2024) calculate the 
term structure of interest rates and interest rate derivatives prices with a pure 
jump model in a discrete probability setting.
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Multifactor models are employed in a variety of works to enhance modeling 
capabilities, such as in Grzelak et al. (2011) for hybrid derivatives and Backus et al. 
(2001) for interest rate prediction. Almeida and Vicente (2009) employ a multi-fac-
tor Gaussian model and a three-factor Cox–Ingersoll–Ross model to assess inter-
est rate risk via bonds and IDI option prices. The multifactor CIR model was cho-
sen for its ability to produce conditional probabilities that can significantly deviate 
from normality and to fit the conditional volatilities of interest rates better because 
of its stochastic volatility structure. In contrast, the Gaussian model is preferred for 
its constant volatility structure, which is capable of reproducing the predictability 
patterns of bond excess returns and is noted for its performance in predicting future 
interest rate yields. Almeida and Vicente (2012) used a three-factor Gaussian model 
to assess term structure movements using analytical formulas. This model is used in 
two different versions for estimation: one using only bonds data and the other com-
bining bonds with at-the-money fixed-maturity options data.

Specifically, in this study we assign a multifactor affine jump-diffusion (AJD) 
representation to the interest rate model. We incorporate volatility as a stochastic 
factor and introduce additional layers of complexity and realism by allowing both 
the interest rate and volatility to jump according to stochastic arrival intensities. 
This is further enriched by correlating the Brownian motions in the AJD stochastic 
differential equations of the interest rate and volatility, capturing the intrinsic link 
between these two factors.

Bouziane (2008) discusses the concept of implementing stochastic jump intensi-
ties to extend the base model setup for interest rate derivatives, referencing the work 
of Duffie et al. (2000) on affine jump-diffusion models. These models incorporate a 
vector of stochastic jump intensities into the interest rate and stochastic volatility dif-
ferential equations, where the stochastic jump component is affine to the state vari-
ables. The vector of jump intensities is defined as a linear function of the state varia-
ble, leading to a slightly modified system of ordinary differential equations (ODEs). 
Bouziane (2008) acknowledges that, while this type of jump specification enhances 
the modeling capabilities of short-rate dynamics by allowing for more realistic and 
complex behaviors, it is not frequently implemented in practical interest rate models. 
This has not been implemented in the authors’ book. This infrequency, as stated by 
Bouziane (2008), is due to the numerical difficulties in determining the values of 
the coefficient vectors of the ODEs, both of which must be determined numerically 
owing to their complex structure, and inserted into a coherent pricing engine. These 
points are also discussed in Brigo and Mercurio (2006), who stated that “discontinu-
ous dynamics seem ideally suited for the interest rate market, where short-term rates 
can suddenly jump due to central banks’ interventions". Brigo and Mercurio (2006) 
also reported that stochastic volatility models have been designed to capture the sto-
chastic behavior of interest rate volatility and accommodate market-implied smiles 
and skews. Nevertheless, the authors recognize that the use of multifactor AJD mod-
els is rather limited because of their implementation difficulties.

In this paper, we introduce significant enhancements to the Fourier-cosine series 
method (COS) of Fang and Oosterlee (2008), enabling the application of this method 
to interest rate derivative products and extending its applicability to a broader range 
of probability distributions associated with AJD models. Our approach effectively 
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augments the range of models by incorporating stochastic intensities and stochastic 
volatility for the interest rate in a simple and fast pricing method—as suggested by 
Bouziane (2008) and Brigo and Mercurio (2006)—thereby adopting a more realis-
tic multifactor model framework that provides a better fit to observed market prices 
than one-factor models.

Our innovative approach circumvents the lack of analytical characteristic func-
tions for such complex models—as mentioned by Bouziane (2008)—by numerically 
solving the characteristic functions in terms of cosine series. This proposal also 
appears in Muroi and Suda (2022) for pricing stock options using the discrete COS 
approach. This numerical method, while introducing a trade-off in terms of compu-
tational speed and an additional source of error, allows for a significant expansion in 
the type and behavior of models that can be analyzed. We extend the application of 
this method to include multifactor affine jump-diffusion models with exponential, 
normal, and gamma jump size distributions, providing a more comprehensive under-
standing of jump behavior and its impact on prices.

To address the dynamic nature of markets, our models reflect the typical asyn-
chronous jumps in interest rates and volatility observed in real market scenarios. 
However, as mentioned in Gatheral (2006), market stresses often lead to simulta-
neous jumps in interest rates and volatility, particularly in fixed-income and stock 
markets during turbulent periods. To better approximate these market dynamics, we 
enhance the model by allowing for more correlation and imposing the interest rate 
and volatility jump simultaneously, albeit with potentially different sizes. As far as 
the authors’ knowledge, no similar models have been developed to date. This mod-
ification provides a closer alignment with the actual behavior observed in market 
downturns or abrupt changes, thus enhancing the model’s practical relevance and 
applicability.

The advancements presented in this paper, including the adapted Fourier-cosine 
series method that generates probability density functions from the integral of the 
interest rate rather than the rate itself for complex multifactor AJD models and the 
application of Kibble’s bivariate gamma probability distribution (Kibble 1941), go 
beyond previous propositions. By addressing models without closed-form expres-
sions for the conditional characteristic function and numerically solving these func-
tions as a cosine series, our work extends and deepens the applicability of the COS 
method, offering a novel and robust tool for analyzing and pricing path-dependent 
interest rate derivatives in financial markets, with special emphasis on the influence 
of stochastic volatility models on skewness and kurtosis. This original contribution 
represents a significant step forward in the field of financial modelling, providing 
both theoretical and practical advancements.

It is essential to note that when referring to path-dependent interest rate deriva-
tives in our study, we encompass not only complex instruments such as Asian 
options but also zero-coupon bonds. Through our results, specifically the formula 
for the numerical solution of the characteristic function of the integral of the inter-
est rate, we are also equipped to calculate the price of a bond by posing the com-
plex number into the argument of the function. A bond is essentially a product that 
depends on the trajectory of the interest rate until its maturity. Consequently, all the 
models we have developed and employed are immediately useful for modeling the 
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term structure of interest rates, offering a comprehensive and practical approach to 
understanding interest rate behavior. This supports the applicability of our research 
to a broad spectrum of financial instruments.

The subject matter here concerning (i) Encompassing models with no closed-
form expressions for the conditional characteristic function and (ii) The procedure 
of numerically solving the characteristic functions in terms of cosine series, goes 
beyond the proposition of Fang and Oosterlee (2008) even considering the stock 
market framework.

This work extends the results presented by Tahani and Li (2011) in two ways: 
(i) We supply the interest rate derivatives modeling with models that include cor-
relation and stochastic jumps, and (ii) We use such models to calculate the price of 
path-dependent interest rate options with the fast COS method. (iii) Additionally, we 
introduce a model for simultaneous interest rate and volatility jumps to characterize 
market crashes.

The remainder of this paper is organized as follows. In Sect. 2, we present the IDI 
Option pricing problem and some analytical results. Section 3 describes the Fourier-
cosine expansion method introduced by Fang and Oosterlee (2008). Section 4 shows 
the characteristic functions of some classes of random variables, namely short-rate 
models with stochastic intensity jumps, stochastic volatility with correlation and 
jumps, and, simultaneous jumps. In Sect. 5 we present the properties of the resulting 
probability distributions associated with each model. Section  6 presents the pric-
ing and hedging coefficients for vanilla options, computational analysis, and simula-
tions. Section 7 concludes.

2 � The IDI option

We assume an interest rate market with an underlying probability space (Ω, 𝔽 ,ℚ) 
equipped with filtration � = (Ft)t∈[0,T] where ℚ is the risk-neutral measure. The DI 
rate is the average of the interbank rate of a one-day period, calculated daily, and 
expressed as the effective rate per annum.1 So, the ID index (IDI) accumulates dis-
cretely according to

where j denotes the end of day and DIj assigns the corresponding DI rate.
If we approximate the continuous DI rate by the instantaneous continuously com-

pounding interest rate, that is, r(t) = ln(1 + DI(t)) , the index can be represented by 
the following continuous compounding expression

(1)y(T) = y(t)

t−1∏
j=1

(1 + DIj)
1

252 ,

1  See the B3 website: http://​www.​b3.​com.​br/​en_​us/.

http://www.b3.com.br/en_us/
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Given non-negative interest rates, the index y(T) is a non-decreasing function of r(s).
The price at time t of the IDI call option is given by

By put-call parity, the price at time t of the IDI put option is

where D(T − t) is the zero-coupon bond price with maturity in T.
Suppose that the instantaneous short-term interest rate evolves according to 

Vasicek’s model (Vasicek 1977):

where � is the speed the process reverts to the long-term mean � . The volatility � 
multiplies the standard Brownian Motion dW(t).

Vieira and Pereira (2000) developed a closed-form solution to this pricing 
problem under the Vasicek model hypothesis for a short rate. The IDI Call Option 
price is given by

where

and D(t, T) is the Vasicek bond price formula.
As the main characteristic, the Vasicek model considers the short-term interest 

rate as the only risk source of the market. The model also assumes the existence 
of an instantaneous interest rate that compounds the ID index.

This type of model also suffers from problems related to parameter stability. 
Volatility and the other two parameters remained constant over time. Therefore, 
the problem with the Vasicek and other equilibrium models is that they permit 
arbitrage. Calculated prices rarely match traded prices. Another characteristic of 
the Vasicek model is that it assumes that the short rate is normally distributed.

Realistic models often lack analytical tractability. To improve the model capa-
bilities with random jumps, stochastic volatilities, and correlations between sto-
chastic variables, we need to resort to numerical methods.

(2)y(T) = y(t) exp

(
∫

T

t

r(s)ds

)
.

(3)C(t) =�

[
exp

(
−∫

T

t

r(s)ds

)
max(y(T) − K, 0)

|||Ft

]
.

(4)G(T − t) = C(T − t) + KD(T − t) − y(t),

(5)dr(t) = �(� − r(t))dt + �dW(t),

(6)C(t) = y(t)N(h) − KD(t, T)N(h − k)

(7)h =

y(t)

D(t,T)K
+

k2

2

k

(8)k2 =�2 (4e
−�(T−t) − e−2�(T−t) + 2�(T − t))

2�3
,
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Among the numerical methods, finite-difference, Monte Carlo simulation, and 
Fourier transform are the most common techniques used to determine the price of a 
contingent claim.

The Finite-difference method aims to solve the partial differential equation result-
ing from the application of the Feynman-Kac theorem to the payoff formula. A mod-
ified fully implicit scheme was developed by da Silva et al. (2016) to solve the IDI 
option pricing problem. The method, confined to the Vasicek model world, typically 
takes more than a minute to calculate the price. The computational time is also a 
function of option maturity and the method is confined to the Vasicek model world.

Monte Carlo methods aim to simulate thousands of paths of the underlying source 
of risk to estimate the mean value of the discounted payoff. Glasserman (2004) pro-
vides a good reference for this approach. It is well known that this technique suffers 
from the problem of dimensionality.

Fourier-transform-based approaches seek to find—at least numerically, the char-
acteristic function of the random variable that underlies the financial derivative. 
Applications of this approach to interest rate markets can be found in Duffie (2008), 
Zhu (2009), and Bouziane (2008). In the next section we apply the Fourier-cosine 
series approach presented in Fang and Oosterlee (2008) to find the IDI option prices.

3 � Fourier‑cosine series for continuous random variables

In this section we present the COS method developed by Fang and Oosterlee (2008).
Suppose f ∶ [0,�] ⟶ ℝ is an integrable function. Then the Fourier-cosine 

series of f is given by

where

We consider the change of variable � = �
x−a

b−a
 for finite a and b. Then, the Fourier-

cosine series expansion of f in the interval [a, b] is

where

Using Euler’s identity, the coefficients of the Fourier-cosine expansion of f are

(9)f (�) =
a0

2
+

∞∑
j=1

aj cos(j�), � ∈ [0,�]

(10)aj =
2

� ∫
�

0

f (�) cos(j�)d�, j = 0, 1, 2, ...

(11)f (x) =
a0

2
+

∞∑
j=1

aj cos
(
j�

x − a

b − a

)
,

(12)aj =
2

b − a ∫
b

a

f (x) cos
(
j�

x − a

b − a

)
dx, j = 0, 1, 2, ...
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Let X be a continuous random variable. If f, with domain in ℝ , is a probability den-
sity function of X, then

where f̂  is the characteristic function of X, that is

which approximates

Therefore, f is approximated by the following Fourier-cosine series

for a given n. Fang and Oosterlee (2008) proposed the choices of the integration lim-
its for the approximation to be good as follows:

where the coefficients ck are the k-th cumulant of x given by

with the cumulant generating function h(u) in (20) is given by

Fang and Oosterlee (2008) proposed to set L = 10 in the limits (18) and (19). The 
domain of f, is typically not [a, b] given by Eqs. (18) and (19). This interval is cho-
sen to capture as much probability as possible from de probability density function f.

Let the continuous real-valued random variable Z(t,  T) be a function of 
the underlying source of risk - the interest rate process {r(s), s ∈ [t, T]} in our 

(13)
aj =

2

b − a ∫
b

a

f (x)ℜ
[
exp

(
ij�

x − a

b − a

)]
dx

=
2

b − a
ℜ

(
exp

(
−ij�

a

b − a

)
∫

b

a

f (x) exp
(
ij�

x

b − a

)
dx

)
.

(14)aj ≈
2

b − a
ℜ

(
exp

(
−ij𝜋

a

b − a

)
f̂

(
j𝜋

b − a

))
≜ Aj,

(15)f̂ (u) = ∫
ℝ

exp (ixu)f (x)dx,

(16)∫
b

a

exp (ixu)f (x)dx.

(17)f (x) ≈
A0

2
+

n∑
j=1

Aj cos
(
j�

x − a

b − a

)
, x ∈ [a, b],

(18)a = c1 − L

�
c2 +

√
c4

(19)b = c1 + L

�
c2 +

√
c4

(20)ck =
1

ik
dk

duk
h(u)|u=0,

(21)h(u) = ln�
[
exp (iuX)

]
.
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case—experienced by a European call option maturing at time T. Therefore, we may 
write Z(t, T) ≡ Z(t, {r(s), s ∈ [t, T]}) . Let f (⋅|r(t)) be the risk-neutral probability 
density function of Z(t, T) conditional on r(t) and g(Z(t, T)) be the discounted payoff 
function of the option. Then, the price of the interest rate option at time t is

where � is the expected risk-neutral value. Truncating f in an interval [a, b] as large 
as possible, we have

The integral in Eq. (23) can be calculated using the COS method proposed by Fang 
and Oosterlee (2008). The COS method is an interesting, fast, and accurate deriva-
tive pricing method based on the Fourier-cosine series. In the following, we present 
the COS method and show how it can be used to price options.

Therefore, using f(x) as in (17) we have

Hence, the series approximation of the option price is given by

where the Ak coefficients are given by (14) and

4 � Non‑analytical AJD models

4.1 � Stochastic jump intensities

By adapting the Fourier-cosine series expansion method shown in da Silva et al. 
(2019), we derive numerical series representations for option prices on the inter-
est rate index for affine jump-diffusion models in a stochastic jump intensity 
framework, focusing on European vanilla derivatives. We provide the price for 
nine different Ornstein–Uhlenbeck models enhanced with different jump size 
distributions. The option prices are efficiently approximated by solving the cor-
responding set of ordinary differential equations (ODEs) and parsimoniously 

(22)C(t, T) = 𝔼

[
g(Z(t, T))

|||r(t)
]
= ∫

ℝ

g(w)f (w|r(t))dw,

(23)C(t, T) ≈ ∫
b

a

g(w)f (w|r(t))dw.

(24)C(t, T) ≈
A0

2 ∫
b

a

g(x)dx +

n∑
j=1

Aj ∫
b

a

g(x) cos
(
j�

x − a

b − a

)
dx.

(25)C(t, T) ≈
A0B0

2
+

n∑
j=1

AjBj,

(26)Bj = ∫
b

a

g(x) cos
(
j�

x − a

b − a

)
dx, for j = 0, 1, ..., n.
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truncating the Fourier series. We see that truncations with a surprisingly small 
number of terms suffice to accurately approximate prices.

Jumps occur in financial variables. Several empirical studies have shown that 
the behavior of the interest rate process can be better explained by the jump-
diffusion process. Using 3-month T-Bill rates, Sorwar (2011) shows that adding 
jumps accurately captures the tail behavior of the short rate process. Das (2002) 
asserts that "the evidence in favor of jump models of the Fed Funds rate appears 
overwhelming". The authors demonstrated that jumps play an essential role in 
describing short-term interest rate dynamics and also showed that stochastic jump 
intensities better fit bond prices. An additional analysis can be found in Johannes 
(2004) where the author asserts that the arrival of important information regard-
ing the current or future state of the economy coincides with large movements 
in bond yields. The author states that "jumps appear to be an important conduit 
through which macroeconomic information enters the term structure" and shows 
that jumps in the short rate process have a minor impact on bond prices, but they 
are important for pricing interest rate derivatives.

Furthermore, empirical evidence suggests that their frequency may depend on 
the level of the financial variable itself as opposed to the constant intensity model 
used by da Silva et al. (2019). We use jumps where the intensity is an affine pro-
cess to preserve, the exponential solution for the characteristic function via the 
ODE structure.

So, let r(t) be the spot interest rate given by

where �(r(t), t) = �(� − r(t)) is the mean, �(r(t), t) = � is volatility, and W(t) is 
the standard Wiener process. N is a Poisson process with jump arrival intensity 
� = �0 + �1r(t) , where �0 represents the constant rate of arrivals and �1 allows � to 
be a random rate of jump arrivals. Coefficients �0 and �1 enforce � to be positive. 
The jump amplitudes in the vector J are mutually independent, identically distrib-
uted, and independent of W(t).

Theorem 1  The solution of the conditional characteristic function associated with 
the [t, T]−integral of the process r(t), namely, x(t, T) = ∫ T

t
r(s)ds where r(s) is given 

by an AJD model of the form (27), is

where

with boundary conditions �(0) = �(0) = 0 and’ denoting the derivative.

(27)dr(t) =�(r(t), t)dt + �(r(t), t)dW(t) + JdN(�t),

(28)f̂ (r(t), t, u) = �
[
exp (iux(t, T))|r(t)] = e𝛼(T−t)+𝛽(T−t)r(t),

(29)��(T − t) = ���(T − t) + �0
[
�(exp (�(T − t)J)) − 1

]
,

(30)
��(T − t) = − ��(T − t) +

1

2
�(T − t)2�2 + iu + �1

[
�(exp (�(T − t)J)) − 1

]
,
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Proof  Invoking Duffie and Singleton (2003) we apply the Feynman-Kac formula to 
the second expression of (28), which leads us to:

Substituting the conjectured solution of (28) in (31) we have

Collecting the terms with and without r(t), we obtain the ordinary differential equa-
tion shown in (29) and (30). 	�  ◻

The closed-form solutions for �
[
(exp (�(T − t)J)) − 1

]
 are found in Bouziane 

(2008) for exponential, normal and gamma jumps J.
In the case of exponentially distributed jumps with rate � we have

In the case of normally distributed jumps with mean m and variance Σ2 we have

In the case of gamma-distributed jumps with parameters � and p, we have

When dealing with the stochastic intensity for the jumps, closed-form solutions for 
the ODE (30) do not exist. By solving (29) and (30) numerically with, for instance, 
the Runge–Kutta algorithm (Duffy 2006), we recover the coefficients of the charac-
teristic function and use them in terms Aj of the series (25). The drawback here is 
that we must numerically solve the ODEs for each term of the series. This is due to 
the argument u of the characteristic function inside the series that changes for each 
term.

We deal with a variety of Ornstein–Uhlenbeck processes. In this section, we 
introduce stochastic intensities for the Vasicek model with positive and negative 
exponential jump-size distribution, Vasicek model with normal jump-size distribu-
tion, and Vasicek model with gamma jump-size distribution.

To solve the problem numerically, we need to estimate the integration limits (18) 
and (19), given that we do not pursue an analytical formula for the characteristic 
function to derive the cumulant functions. The procedure used was as follows:

(31)

𝜕f̂ (r(t), t, u)

𝜕t
+ 𝜅(𝜃 − r(t))

𝜕f̂ (r(t), t, u)

𝜕r(t)
+

𝜎2

2

𝜕2 f̂ (r(t), t, u)

𝜕r(t)2
+ iur(t)f̂ (r(t), t, u)

+ 𝜆0�[f̂ (r(t) + J, t, u) − f̂ (r(t), t, u)] + 𝜆1r(t)�[f̂ (r(t) + J, t, u) − f̂ (r(t), t, u)] = 0.

(32)
−

��(T − t)

�t
− r(t)

��(T − t)

�t
+ �(T − t)�(� − r(t)) +

�2

2
�(T − t)2

+ �0�[exp (�(T − t)J) − 1] + �1r(t)�[exp (�(T − t)J) − 1] + iur(t) = 0.

(33)�
[
exp (±�(T − t)J) − 1

]
= ±

�(T − t)�

1 ∓ �(T − t)�
.

(34)�
[
exp (�(T − t)J) − 1

]
= exp

(
�(T − t)m + 0.5Σ2�(T − t)2

)
− 1.

(35)�
[
exp (�(T − t)J) − 1

]
=

1

(1 − �(T − t)�)p
− 1.
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•	 We calculate the characteristic function at u = 0 numerically;
•	 We set dx = 10−7 and calculate again the characteristic functions at ±dx and 

±2dx;
•	 We then calculate the derivatives via the finite difference method, estimate the 

cumulant functions, and obtain the integration limits.

4.2 � Stochastic volatility

It is widely known in finance that interest rate volatility is not constant. Assuming 
stochastic volatility for the interest rate process is a natural way to capture the vola-
tility smile effect in option prices. Because the prices of options depend on interest 
rate volatility, measuring the sensitivity of the price of derivative security to interest 
rate volatility is central to the pricing of fixed-income products. Modeling interest 
rate volatility has many applications in fixed-income portfolios, such as arbitrage, 
risk management, and portfolio hedging.

Observations also suggest that the volatility process is mean-reverting and pos-
sibly correlated with interest rate level. Ball and Torous (1999) examine a series of 
short-term interest rate data and conclude that the volatility of short-term interest 
rates is stochastic. The author asserts that short-term interest rate dynamics models 
that assume deterministic volatility are misspecified. In addition, Ball and Torous 
(1999) found that short-term rate volatility presents faster mean-reverting behavior 
which is consistent with short-term interest rates being impacted by transient and 
less persistent economic shocks, such as central bank announcements of base rate 
changes.

Volatility may also experience moments of low variation and jump to higher val-
ues during stressful times. Scenarios with high volatility, while the monetary author-
ity is hiking interest rates, may be very common. In addition, as stated by Gatheral 
(2006), stochastic volatility models explain why options with different strikes and 
expirations have different Black-76 implied volatilities (Black 1976).

Gatheral (2006) also states that it is natural to try to combine stochastic volatility 
and jumps because stochastic volatility models explain well the prices of long-dated 
options and jumps help to explain short-dated options. In the following, we build 
a class of models in which volatility jumps with stochastic intensity, as suggested 
by Das (2002). The author also states that the fit to market-bond quotes improves 
dramatically with stochastic volatility and stochastic jump intensity models. In our 
setting, the Brownian motion of the volatility model is correlated with the Brownian 
motion of the short-rate process. Thus, we broaden in a huge fashion the potential 
models that can be used to price interest rate options, more specifically, IDI options.

To enhance the interest rate process (27) with stochastic volatility and jumps, we 
need to solve the corresponding characteristic function - which is not available in 
the closed form. To this end, we resort to the class of affine jump-diffusion models, 
where the characteristic functions can be obtained by solving Riccati equations.

Thus, we apply the technique explained in the previous section to recover the 
probability density function associated with a variety of Ornstein–Uhlenbeck 



1 3

Exploring non‑analytical affine jump‑diffusion models for… Page 13 of 32  29

processes driven by stochastic volatility, with a correlation between the Wiener pro-
cesses, both equipped with stochastic jump intensities.

Because we no longer have a closed-form expression for the characteristic func-
tion associated with the model, we used the Runge-Kutta technique to numerically 
solve the ODEs of the characteristic function itself. In the following, we numeri-
cally recover the corresponding probability density function. We also reveal that, 
similar to the scenario where a closed-form expression for the characteristic function 
is available, only a very small number of terms are required for a very good approx-
imation of the density function and prices for short and middle-maturity options. 
For long maturities, acceptable errors were obtained with a parsimonious number of 
terms in the COS series.

As before, solving the ODEs with some Runge–Kutta algorithm gives us the 
numerical characteristic function we use in the Aj coefficients of series (25).

We assume an interest rate market with an underlying probability space (Ω, 𝔽 ,ℙ) 
equipped with filtration � = (Ft)t∈[0,T] where ℙ is the risk-neutral measure.

Let r(t) be the spot continuously compounding interest rate given by

where �(r(t), t) = �r(�r − r(t)) is the mean of the short rate, �(r(t), v(t), t) = �r

√
v(t) 

is the volatility of the short rate, m(v(t), t) = �v(�v − v(t)) is the mean of the stochas-

tic volatility, s(v(t), t) = �v

√
v(t) is the volatility of the stochastic volatility, Wr(t) 

and Wv(t) are standard Wiener processes that can have a constant correlation � . Nr 
and Nv are Poisson processes with stochastic positive intensities �r = �r

0
+ �r

1
r(t) 

and �v = �v
0
+ �v

1
v(t) , with jump amplitudes Jr and Jv , which are mutually independ-

ent, identically distributed and independent of the Wiener processes.

Theorem  2  The conditional characteristic function associated with the integrated 
process x(t, T) = ∫ T

t
r(s)ds where r(s) is given by an affine jump-diffusion model of 

the form (36) is

where

(36)
dr(t) = �(r(t), t)dt + �(r(t), v(t), t)dWr(t) + JrdN

r(�rt),

dv(t) = m(v(t), t)dt + s(v(t), t)dWv(t) + JvdN
v(�vt),

(37)
f̂ (r(t), v(t), t, iu) = �

[
exp (iux(t, T))|r(t), v(t)]

= exp
(
𝛼(T − t) + 𝛽1(T − t)r(t) + 𝛽2(T − t)v(t)

)
,

(38)
��(T − t) = �r�r�1(T − t) + �v�v�2(T − t)

+ �r
0

[
�
(
e�1(T−t)Jr

)
− 1

]
+ �v

0

[
�
(
e�2(T−t)Jv

)
− 1

]
,

(39)��
1
(T − t) = − �r�1(T − t) + �r

1

[
�
(
e�1(T−t)Jr

)
− 1

]
+ iu,
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with boundary conditions �(0) = �1(0) = �2(0) = 0.

Proof  Invoking Duffie and Singleton (2003) we apply the Feynman-Kac formula to 
the second expression of (37), which leads us to:

Substituting the conjectured solution of (37) in (41) we have

Collecting the terms with and without r(t) and v(t), we obtain the ordinary differen-
tial equations shown in (39) and (40), and the integral in (38). 	� ◻

The terms �r
0
 and �v

0
 multiplied by the expectations in (38) give the constant inten-

sity of the jumps in both interest rate and stochastic volatility. The terms �r
1
 and �v

1
 

multiplied by the expectations in the first and second differential Eqs. ((39) and (40), 
respectively) give the stochastic rate of the stochastic intensity of the jumps in both 
interest rate and stochastic volatility, respectively.

4.3 � Simultaneous jumps

The remaining modeling problem involves simultaneous jumps in both interest rates 
and interest rate volatility and introduces a correlation between the jump magnitudes 
Jr and Jv . As argued by Gatheral (2006) for the stock market case, after the interest 

(40)
��
2
(T − t) = − �v�2(T − t) +

1

2
�2
r
�1(T − t)2 +

1

2
�2
v
�2(T − t)2

+ ��r�v�1(T − t)�2(T − t) + �v
1

[
�
(
e�2(T−t)Jv

)
− 1

]
,

(41)

𝜕f̂ (r(t), v(t), t, u)

𝜕t
+ 𝜅r(𝜃r − r(t))

𝜕f̂ (r(t), v(t), t, u)

𝜕r(t)
+ v(t)

𝜎2
r

2

𝜕2 f̂ (r(t), v(t), t, u)

𝜕r(t)

+ 𝜅v(𝜃v − v(t))
𝜕f̂ (r(t), v(t), t, u)

𝜕v(t)
+ v(t)

𝜎2
v

2

𝜕2 f̂ (r(t), v(t), t, u)

𝜕v(t)2

+ 𝜌𝜎r𝜎v
𝜕2 f̂ (r(t), v(t), t, u)

𝜕r(t)𝜕v(t)

+ (𝜆r
0
+ 𝜆r

1
r(t))�[f̂ (r(t) + Jr, v(t), t, u) − f̂ (r(t), v(t), t, u)]

+ (𝜆v
0
+ 𝜆v

1
v(t))�[f̂ (r(t), v(t) + Jv, t, u) − f̂ (r(t), v(t), t, u)]

+ iur(t)f̂ (r(t), v(t), t, u) = 0.

(42)

−
��(T − t)

�t
− r(t)

��1(T − t)

�t
+ �1(T − t)�r(�r − r(t)) + v(t)

�2
r

2
�1(T − t)2

− v(t)
��2(T − t)

�t
+ �2(T − t)�v(�v − v(t)) + v(t)

�2
v

2
�2(T − t)2

+ (�r
0
+ �r

1
r(t))�[e�1(T−t)Jr − 1] + (�v

0
+ �v

1
v(t))�[e�2(T−t)Jv − 1]

+ v(t)��r�v�1(T − t)�2(T − t) + iur(t) = 0.
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rate jumps, as it evolves in (36), typically, the volatility process will not because the 
jump process is uncorrelated with the volatility process. This is inconsistent with 
both intuition and market data.

To reproduce market crashes the model must ensure that when rates jump, vola-
tility also increases. Starting from model (36), we have

Note that the Poisson process that controls the stochastic jump times is the same, 
that is, � = �r = �v . Model (43) provides simultaneous jumps in r(t) and v(t) with Jr 
and Jv jump sizes, respectively.

It is interesting that the jump sizes Jr and Jv are correlated to simulate the pat-
tern that occurs in market turmoil. For instance, a huge market crash in which the 
interest rate explodes implies at the same time a protuberant rise in volatility. A 
bivariate gamma distribution for the jump size was chosen to introduce the cor-
relation. Its moment-generating function is given by

where �r and �v are scale parameters, � , �r and �v are shape parameters, and � is the 
Pearson’s correlation parameter between Jr and Jv . The explicit form of the probabil-
ity density function related to the moment-generating function of a bivariate gamma 
distribution was introduced by Kibble (1941). Details about this distribution class 
can be found in Chen et al. (2013).

Theorem  3  The conditional characteristic function associated with the integrated 
process x(t, T) = ∫ T

t
r(s)ds where r(s) is given by an affine jump-diffusion model of 

the form (43), is

where

(43)
dr(t) = �(r(t), t)dt + �(r(t), v(t), t)dWr(t) + JrdN(�t),

dv(t) = m(v(t), t)dt + s(v(t), t)dWv(t) + JvdN(�t), .

(44)
�
[
e�1(T−t)Jr+�2(T−t)Jv

]
=

(
1 −

�1(T − t)

�r

)−�r
(
1 −

�2(T − t)

�v

)−�v

(
1 −

�2�1(T − t)�2(T − t)

(�r − �1(T − t))(�v − �2(T − t))

)−�

(45)
f̂ (r(t), v(t), t, iu) = �

[
exp (iux(t, T))|r(t), v(t)]

= exp
(
𝛼(T − t) + 𝛽1(T − t)r(t) + 𝛽2(T − t)v(t)

)
,

(46)��(T − t) = �r�r�1(T − t) + �v�v�2(T − t) + �0�
[
e�1(T−t)Jr+�1(T−t)Jv − 1

]
,

(47)��
1
(T − t) = − �r�1(T − t) + �1�

[
e�1(T−t)Jr+�2(T−t)Jv − 1

]
+ iu,

(48)
��
2
(T − t) = − �v�2(T − t) +

1

2
�2
r
�1(T − t)2 +

1

2
�2
v
�2(T − t)2

+ ��r�v�1(T − t)�2(T − t),
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with boundary conditions �(0) = �1(0) = �2(0) = 0.

Proof  Invoking Duffie and Singleton (2003), we apply the Feynman-Kac formula to 
the second expression of (37), which leads us to:

Note that the jumps occur simultaneously with intensity �0 + �1r(t) and, according 
to the bivariate gamma distribution, the jump sizes are correlated. Substituting the 
conjectured solution of (45) into (49), we obtain:

Note that

By collecting the terms with and without r(t) and v(t), we obtain the ordinary dif-
ferential equations shown in (47) and (48) and the integral in (46). Substituting the 
moment generating function (44) into the above expectation completes the proof. 	
� ◻

In addition to the models developed above, some important characteristics of the 
interest rate market can still be improved, such as the scheduled jumps originating 
from central bank meetings. A recently introduced model for the jump distribution 
of this type appeared in da Silva et al. (2023).

(49)

𝜕f̂ (r(t), v(t), t, u)

𝜕t
+ 𝜅r(𝜃r − r(t))

𝜕f̂ (r(t), v(t), t, u)

𝜕r(t)
+ v(t)

𝜎2
r

2

𝜕2 f̂ (r(t), v(t), t, u)

𝜕r(t)

+ 𝜅v(𝜃v − v(t))
𝜕f̂ (r(t), v(t), t, u)

𝜕v(t)
+ v(t)

𝜎2
v

2

𝜕2 f̂ (r(t), v(t), t, u)

𝜕v(t)2

+ 𝜌𝜎r𝜎v
𝜕2 f̂ (r(t), v(t), t, u)

𝜕r(t)𝜕v(t)

+ (𝜆0 + 𝜆1r(t))�[f̂ (r(t) + Jr, v(t) + Jv, t, u) − f̂ (r(t), v(t), t, u)]

+ iur(t)f̂ (r(t), v(t), t, u) = 0.

(50)

−
��(T − t)

�t
− r(t)

��1(T − t)

�t
+ �1(T − t)�r(�r − r(t)) + v(t)

�2
r

2
�1(T − t)2

− v(t)
��2(T − t)

�t
+ �2(T − t)�v(�v − v(t)) + v(t)

�2
v

2
�2(T − t)2

+ (�0 + �1r(t))�[e
�1(T−t)Jr+�2(T−t)Jv − 1]

+ v(t)��r�v�1(T − t)�2(T − t) + iur(t) = 0.

�[f̂ (r(t) + Jr, v(t) + Jv, t, u) − f̂ (r(t), v(t), t, u)]

= e[𝛼(T−t)+𝛽1(T−t)r(t)+𝛽2(T−t)v(t)]�[e𝛽1(T−t)Jr+𝛽2(T−t)Jv − 1]

= f̂ (r(t), v(t), t, u)�[exp
(
𝛽1(T − t)Jr + 𝛽2(T − t)Jv

)
− 1].
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5 � Numerical results

In this section, we examine the numerical outcomes derived from extended Vasicek 
models, which incorporate various types of jumps and stochastic volatility. These 
results offer practical implications of the theoretical models discussed in the pre-
ceding section. To facilitate a comprehensive understanding of the risk profiles and 
behavior of interest rates, we present a series of graphical representations, specifi-
cally probability density functions (PDFs), which illustrate the potential distribu-
tions of future short-term interest rates under different models. These visual and 
quantitative insights are crucial for evaluating the impact of varying assumptions on 
the model’s predictions.

Market-implied PDFs are an important tool for central banks to assess market 
expectations about interest rates and other financial products, such as exchange rates 
and equity prices (Lynch and Panigirtzoglou 2002). In this context, the experiments 
in this section aim to illustrate the distinct behavioral profiles of each model con-
cerning their resulting probability distribution through examples.

In this section, using the Fourier series given by Eq. (17), we exhibit the prob-
ability density functions associated with the integrated process x(t, T) with t = 0 and 
T = 5 for each model under study. In the next section, we perform the corresponding 
error analysis of the IDI call option prices. The base parameters for the experiments 
of the models were

From the left panel of Fig. 1 up to Fig. 7, we show the probability density functions 
of the random variable x(0, T) where r evolves according to models equipped with 
stochastic volatility, jumps whose arrival intensities can be stochastic, and volatility 
of the volatility that can also be stochastic. It is important to acknowledge that we 

�r =0.25, �v = 0.15, �r = 0.1, �v = 0.05, �r = 0.04, �v = 0.1, �r
0
= 1,

�v
0
=1.25, �r

1
= 10, �v

1
= 10, � = 0.01, m = 0, Σ = 0.015 � = 0.05,

p =1.5, r(0) = 0.1, v(0) = 0.05.

Fig. 1   (Left) Probability density functions for Vasicek model with exponential jumps. (Right) Probability 
density functions for the Vasicek model with normal jumps
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assume both r(0) and v(0) to be “observed" values in order to calculate the charac-
teristic functions and prices. Actually, these values are not observed and neither r(0) 
exists as a product in financial markets. However, r(0) can be inferred with much 
more precision than picking a price out of blue for some derivatives. For instance, 
in the Brazilian markets, a precise and fully accepted value for r(0) is the SELIC 
interest rate. In turn, the models are quite robust with respect to variable v(0), which 
means that v(0) has little influence on final prices.

The left panel of Fig. 1 shows the Vasicek model with (i) No jumps, (ii) Neg-
ative and positive exponential jump sizes and constant jump arrival intensities, 
and (iii) Negative and positive exponential jump sizes and stochastic jump arrival 
intensities. The right panel of Fig. 1 shows the Vasicek model with (i) No jumps, 
(ii) Normal jump sizes plus constant jump arrival intensities, and (iii) Normal 
jump sizes plus stochastic jump arrival intensities. The left panel of Fig. 2 shows 
the Vasicek model with (i) No jumps, (ii) Gamma jump sizes plus constant jump 
arrival intensities, and (iii) Gamma jump sizes plus stochastic jump arrival inten-
sities. We note that the exponential and gamma jumps shift the probability dis-
tribution along the abscissa whereas the kurtosis of the normal cases is lower 
for the models with jumps. This seems to be the reason for the slower rate of 
approximation of options prices with normal jumps.

Comparing Figs. 1 and 2, we note that the single-factor models present sym-
metric distributions, unless we expect abnormally large jumps. Symmetric density 
functions imply a flat or symmetric volatility smile in options prices. As shown in 
the right panel of Fig. 2, we find skewed shapes in the stochastic volatility mod-
els that vary according to the correlation coefficient. Moreover, we note that the 
correlation has little impact on the fatter tail of the asymmetric distributions that 
have jumps compared with the case without jumps (see Figs. 3, 4, 5, 6, and 7). 
Heavy tails result in skewed volatility smiles, which entail richer in- or out-of-
the-money options. Merging models with interest rate jumps and stochastic vola-
tility provides skewed distributions, as shown in Figs.  3 and 4. Normal jumps, 
as depicted in Fig. 5 result in symmetrical distributions in which the correlation 

Fig. 2   (Left) Probability density functions for Vasicek model with gamma jumps. (Right) Probability 
density functions for Vasicek model with stochastic volatility
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between the interest rate and stochastic volatility has a negligible impact. The sto-
chastic jump intensities affect the distribution spread. Compared with the cases 
with constant jump intensities, we observe distributions that are more spread 
around the same mean. This effect is shown in the left panel of Fig.  4 and can 
be observed by comparing the two graphs in Fig.  6. Similar behavior can be 
observed by varying the stochastic intensity parameter of the volatility jump in 
the right panel of Fig. 8 for the gamma jumps.

Concerning option prices, symmetric distributions imply equal values for options 
in- and out-of-the-money in terms of Black volatilities (Black 1976). The higher the 
kurtosis, the richer are the at-the-money options. The lower the kurtosis, the higher 
the prices of the deep-in-the-money and deep-out-of-the-money options. The market 
data for IDI options show that out-of-the-money and deep out-of-the-money calls 

Fig. 3   (Left) Probability density functions for Vasicek model with stochastic volatility and positive expo-
nential jumps. (Right) Probability density functions for the Vasicek model with stochastic volatility and 
negative exponential jumps

Fig. 4   (Left) Probability density functions for Vasicek model with stochastic volatility and stochastic 
positive exponential jumps. (Right) Probability density functions for Vasicek model with stochastic vola-
tility and stochastic negative exponential jumps
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(higher strikes) are richer than the Vasicek model implies. In terms of Black implied 
volatilities, a positive sloping skew is observed. This suggests that models with sto-
chastic volatility and jumps are more appropriate.

Finally, we analyze the terminal distributions of Model (43) with simultane-
ous jumps. We fix the following parameters: � = 0.85 , �r = 20 , �v = 100 , �r = 1.5 , 
�v = 5 , � = 2 and � = 0.85 . In the left panel of Fig. 9 we show the terminal probabil-
ity density functions for the Vasicek model with stochastic volatility and constant 
intensity simultaneous jumps for varying �0 . In the right panel of Fig. 9 we show the 
terminal probability density functions for the Vasicek model with stochastic volatil-
ity and stochastic intensity simultaneous jumps with �1 = 0.3 for varying �0 . There-
fore, in the latter case, the jump times depend on the interest rate level.

We note that distributions with simultaneous jumps generate the most asymmet-
ric shapes among the models under study. The model implies a right long-tailed 

Fig. 5   (Left) Probability density functions for Vasicek model with stochastic volatility and normal 
jumps. (Right) Probability density functions for Vasicek model with stochastic volatility and stochastic 
normal jumps

Fig. 6   (Left) Probability density functions for Vasicek model with stochastic volatility and gamma 
jumps. (Right) Probability density functions for Vasicek model with stochastic volatility and stochastic 
gamma jumps
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distribution, which is in accordance with the observed market data. Intuitively, the 
market demands protection against a sudden increase in interest rates. This implies 
more expensive out-of-the-money options. As shown in the left panel of Fig. 9, only 
0.2% of the distribution is above the arbitrary point 0.65 in the case without jumps 
(blue line). The frequency of observations increases as �0 increases, and the prob-
abilities of observing values above the same point are 3.46 , 6.66 , 9.79 and 13.35% 
for �0 equal to 0.02, 0.04, 0.06 and 0.08, respectively. Thus, as required, the model 
with simultaneous jumps can capture the probability of outlier prices commonly 
observed in crises. Similar, but even more prominent, are the results with stochastic 
intensities shown in the right panel of  9. The probability of observing values above 
the point 0.65 is 5.27 , 8.49 , 11.63 , 15.25 and 18.32% for �0 equal to 0.00, 0.02, 0.04, 

Fig. 7   (Left) Probability density functions for Vasicek model with stochastic volatility, stochastic gamma 
jumps and gamma volatility jumps. (Right) Probability density functions for Vasicek model with stochas-
tic volatility, stochastic gamma jumps and stochastic gamma volatility jumps

Fig. 8   (Left) Probability density functions for Vasicek model with stochastic volatility and stochastic 
normal jumps for varying �r

1
 . (Right) Probability density functions for Vasicek model with stochastic 

volatility and stochastic gamma jumps for varying �v
1
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0.06 and 0.08, respectively. Note that jumps are present even for �0 = 0 because the 
fixed �1 = 0.3.

Concerning the IDI option prices, the model with simultaneous jumps gener-
ates richer deep out-of-the-money options accounting for sudden increases in the 
expected terminal index and uncertainty during the life of the option. According 
to Gatheral (2006), as opposed to other models with independent jump sizes, the 
class of simultaneous jump models can fit fairly well the market prices of both 
short and long-dated options, that is, the entire implied volatility surface.

The numerical results presented in this section reflect a wide range of scenar-
ios, each highlighting the impact of jumps, correlations, and stochastic volatility 
on the distribution of interest rates. Several key insights emerge by comparing the 
PDFs across different model configurations:

•	 The results clearly demonstrate how the incorporation of exponential, normal, 
and gamma jumps into the Vasicek model alters the mean and spread of the 
probability distributions. For instance, stochastic volatility with correlation 
introduces asymmetry and heavier tails, which are crucial for capturing the 
risk of extreme movements in interest rates. We see that exponential, normal, 
and gamma stochastic jumps further contribute to the diversity in distribution 
shapes, reflecting the complex nature of market movements.

•	 Incorporating exponential and gamma interest rates jumps to stochastic vola-
tility, which significantly affects the distribution of future interest rates, par-
ticularly in terms of dispersion and tail behavior. The results show how differ-
ent assumptions about the volatility process—especially the stochasticity of 
interest rate jumps - impact the distribution’s spread and skewness, which are 
critical for understanding pricing risk.

•	 By presenting a comparative analysis of different model configurations, the 
numerical results offer valuable insights into which models may be more 
appropriate under various market conditions. This comparative approach is 

Fig. 9   (Left) Probability density functions for Vasicek model with stochastic volatility and constant 
simultaneous jumps for varying �

0
 . (Right) Probability density functions for Vasicek model with stochas-

tic volatility and stochastic simultaneous jumps for varying �
0
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not only instructive for model selection, but also provides a deeper under-
standing of the potential trade-offs between model complexity and predictive 
accuracy.

•	 The probability density functions illustrated in this section have direct implica-
tions for risk management and financial product pricing. They provide a visual 
and analytical foundation for assessing the probability of extreme interest rates, 
which is vital for pricing derivatives, managing risk exposure, and conducting 
stress tests.

6 � Pricing and hedging IDI options

Previously, we obtained the characteristic function of the random variable ∫ T

t
rsds 

which enters in the Aj coefficients of Eq. (25). Therefore, to price the IDI options, 
we have to calculate the corresponding Bj coefficients as given by (26).

6.1 � Bj coefficients for vanilla IDI options

The vanilla IDI call option price is given by Eq. (3). This boils down to the follow-
ing theorem.

Theorem  4  The Bj coefficients shown in (26) for the vanilla IDI call options are 
given by

and

Proof  Integrating the vanillas’ payoff, as given in Eq. (3) according to Eq. (26) gives 
us (51) and (52). 	� ◻

(51)B0 = ∫
b

− ln
(
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6.2 � Hedging via Fourier series

Equation (25) is suitable for the straightforward development of the hedging param-
eters. In fact, owing to the separation quality of the COS method, only the Bj terms 
contain information about the IDI. Therefore, delta hedging is simply given by

6.2.1 � European vanilla options

Theorem 5  The coefficients for vanilla IDI call options are given by

and for j = 1, 2, ...

Proof  Both equations arise straightforwardly from (51) and (52). 	�  ◻

6.3 � Pricing error analysis

In the seminal paper of Fang and Oosterlee (2008), the authors declared that the 
COS method introduces three types of errors: integration range truncation in the 
payoff function, series truncation, and the employment of the characteristic function 
replacing an integral in a finite domain. Our generalized setting introduces a new 
type of error: the Runge–Kutta method. We then compare our numerical method 
with COS with the analytical characteristic function and with the closed-form for-
mula for the IDI call option with the Vasicek model Vasicek (1977).

We calculate the price of six months and five years of at-the-money options using 
Eq. (6) and compare it with the employment of the analytical characteristic function 
shown in da Silva et al. (2019) in the Aj coefficients (14) and with the numerically 
solved Riccati equations applied previously. We note in the left panels of Figs. 10 
and 11 that the errors coincide for the shorter maturity options, while for long matu-
rity options, the error for the Runge–Kutta method increases. For T = 5 the absolute 
error is of the order of 10−6 , which is still acceptable. Although the execution time 
for the numerical method remains at a low level compared with other numerical 
methods for solving Asian options, the execution time is more than ten times that 

(53)
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of the COS method employed with the analytical characteristic function, although it 
remains below one second. In Fig. 12, we show the times taken to calculate the IDI 

Fig. 10   (Left) 6 month IDI call option error analysis. (Right) Execution times

Fig. 11   (Left) 5 years IDI call option error analysis. (Right) Execution times

Fig. 12   (Left) Execution times for a 6-month IDI call option with numerical characteristic function. 
(Right) Execution times for a 5-year IDI call option with numerical characteristic function
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option prices using the stochastic volatility model. Note that the calculation times 
are double those of the one-factor Vasicek model. Other recently introduced numeri-
cal methods, such as Li and Wu (2019), for example, are slower and less accurate 
than ours, in addition to being restrictive model-oriented.

No significant error (above 10−10 ) was found between the analytical cumulant 
function and its finite difference approximation.

6.4 � Stability analysis of COS parameters

In this subsection, we provide a stability analysis of the COS parameters, specifically 
examining the convergence behavior of IDI option prices using the COS method. 
The focus is on various adaptations of the extended Vasicek models discussed in 
previous sections. We analyze the convergence of the IDI option prices for T = 5 
using the COS method as a function of its parameter N fixing L = 10 . The model 
base parameters were the same as those in the previous section, with

Fig. 13   (Left) Convergence analysis for Vasicek model with exponential jumps. (Right) Convergence 
analysis for Vasicek model with normal jumps

Fig. 14   (Left) Convergence analysis for Vasicek model with gamma jumps. (Right) Convergence analy-
sis for Vasicek model with stochastic volatility
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Fig. 15   (Left) Convergence analysis for Vasicek model with stochastic volatility and positive exponential 
jumps. (Right) Convergence analysis for the Vasicek model with stochastic volatility and negative expo-
nential jumps

Fig. 16   (Left) Convergence analysis for Vasicek model with stochastic volatility and stochastic positive 
exponential jumps. (Right) Convergence analysis for the Vasicek model with stochastic volatility and sto-
chastic negative exponential jumps

Fig. 17   (Left) Convergence analysis for Vasicek model with stochastic volatility and normal jumps. 
(Right) Convergence analysis for the Vasicek model with stochastic volatility and stochastic normal 
jumps
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The fast stability of prices is shown in Figs. 13, 14, 15, 16, 17, 18 and 19. The mod-
els with jumps, particularly stochastic volatility with gamma jumps shown in the 
left panel of Fig.  14 and in Fig.  18, demonstrate a notably quick convergence to 
stable prices, often requiring fewer than ten terms in the series. This rapid stability is 
especially pronounced in models with stochastic volatility and constant or stochastic 
gamma volatility jumps (see Fig. 19), highlighting the efficacy of these models in 
quickly capturing market dynamics with minimal series expansion. The normal and 
stochastic normal jumps shown in Fig. 17 also exhibited this rapid stability behavior.

Models incorporating exponential jumps are shown in Figs. 15 and 16, particu-
larly with stochastic volatility, exhibit a slower convergence rate compared to their 
gamma and normal counterparts. This differential behavior underscores the impor-
tance of jump-type selection in the stability of the COS method and highlights the 

y(t) = 100000, K = 165000

Fig. 18   (Left) Convergence analysis for Vasicek model with stochastic volatility and gamma jumps. 
(Right) Convergence analysis for the Vasicek model with stochastic volatility and stochastic gamma 
jumps

Fig. 19   (left) Convergence analysis for Vasicek model with stochastic volatility, stochastic gamma 
jumps, and gamma volatility jumps. (Right) Convergence analysis for the Vasicek model with stochastic 
volatility, stochastic gamma jumps, and stochastic gamma volatility jumps
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sensitivity of convergence rates to the underlying model dynamics. However, the 
COS method is very fast, as seen in the above execution time analysis, and a little 
more than 20 or 30 terms in the Fourier series will make little difference in the com-
putational time required to achieve price stability.

Stability analysis extends to models with stochastic volatility and various jump 
types. The figures illustrate the convergence patterns for the models with normal, 
gamma, and stochastic intensity jumps. The key observations include the following:

•	 The introduction of stochastic volatility significantly affects the convergence pat-
terns, and the degree of impact varies according to the jump type and intensity. 
The results indicate that models with stochastic volatility generally exhibit fast 
convergence, emphasizing the robustness of the COS method in these settings.

•	 The models with gamma jumps, both constant and stochastic, show a stable con-
vergence pattern, emphasizing the model’s ability to capture the risk associated 
with larger market moves rapidly. Conversely, models with normal jumps exhibit 
unique convergence behaviors, reflecting the different market conditions that 
they are designed to represent.

•	 Models with stochastic jump intensities, especially those incorporating stochastic 
volatility jumps, are better equipped to model the tail behavior observed in the 
market data. The convergence patterns in these models suggest a more nuanced 
representation of tail risks aligned with the observed market behavior during 
periods of stress or volatility.

The analysis of the stability of the COS parameters in the Vasicek model with vari-
ous jumps and stochastic components reveals significant insights into the perfor-
mance and reliability of the pricing models. The rapid stability of option prices, par-
ticularly in models with stochastic volatility and gamma jumps, is a testament to the 
efficiency of these configurations. However, the slower convergence in models with 
exponential jumps highlights the need for careful consideration in model selection 
based on the specific market conditions and the desired accuracy.

We highlight that the numerical COS method converges with a few terms in the 
Fourier series, namely, around 15 terms. It takes half a second to calculate the price 
of the Runge–Kutta method inside each term of the series, achieving an error of the 
order of 10−3 . The ode45 MATLAB function was employed to solve Riccati equa-
tions. The computer used for all experiments had an Intel Core i5 CPU, 2.53 GHz. 
The code was written using MATLAB 7.8.

7 � Conclusion

We introduce an adaptation of the COS method to numerically solve the character-
istic functions associated with interest rate processes generated by classes of models 
within the AJD niche, which goes far beyond models with analytically solved char-
acteristic functions.
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An important finding was to generate the characteristic function from the integral 
of the interest rate, instead of the interest rate per se, thus setting things to rights to 
solving the pricing problem of the IDI option - an important derivative of Brazilian 
fixed income markets.

In addition to expanding the diversity of models to be applied in the COS method, 
the numerical procedure was not limited to the interest rate market. Therefore, with 
an affine jump-diffusion model, we can numerically solve the characteristic func-
tions of a variety of models, ranging from jumps in the spot rate with stochastic 
intensity to those with stochastic volatility, jumps, and correlated Brownian motions.

Different probability distributions imply different option prices. Stochastic 
volatility models, for example, affect the skewness of the distribution, but kurto-
sis remains the same. We can infer little effect in the at-the-money options, and no 
effect in the deep-in and out-of-the-money options. Compared to the stochastic vola-
tility model without jumps, a more spread distribution with a right fatter tail, such as 
the Vasicek model with stochastic volatility, stochastic gamma jumps, and stochas-
tic gamma volatility jumps, results in cheaper in-the-money and at-the-money calls 
and richer out-of-the-money and deep out-of-the-money calls. This is suitable for 
observed market data, in contrast to the symmetric probability models.

In the case of an analytically solved characteristic function, a surprisingly low 
number of terms is required for very good price inference.

We also introduce a model with stochastic volatility and simultaneous jumps in 
both stochastic processes. This model intends to improve the pricing in such a way 
as to capture the probability of crashes present in the marketed option prices. We 
use Kibble’s bivariate gamma probability distribution to correlate the interest rate 
and volatility jump sizes, substantially increasing the volatility after a large move in 
interest rates.

Future research should focus on several promising areas to enhance the robust-
ness and applicability of the extended AJD models. Integrating advanced tech-
niques such as machine learning for regime identification can significantly improve 
the model’s adaptability and accuracy, allowing for dynamic adjustments based on 
evolving market conditions. Additionally, extensive research into the performance of 
simultaneous jump model in diverse market environments, particularly in emerging 
markets or during extreme conditions, is crucial. These environments present unique 
challenges and opportunities that can significantly influence model behavior and 
performance. Finally, conducting calibration studies to infer the stability of model 
parameters is essential. Such studies will provide deeper insights into the long-term 
reliability of the models, ensuring that they remain robust across different periods 
and market conditions.
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