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Abstract
It is common that strategic investment decisions are made at a slow time-scale, 
whereas operational decisions are made at a fast time-scale. Hence, the total num-
ber of decision stages may be huge. In this paper, we consider multistage stochastic 
optimization problems with two time-scales, and we propose a time block decom-
position scheme to address them numerically. More precisely, (i) we write recursive 
Bellman-like equations at the slow time-scale and (ii), under a suitable monotonicity 
assumption, we propose computable upper and lower bounds—relying respectively 
on primal and dual decomposition—for the corresponding slow time-scale Bellman 
functions. With these functions, we are able to design policies. We assess the meth-
ods tractability and validate their efficiency by solving a battery management prob-
lem where the fast time-scale operational decisions have an impact on the storage 
current capacity, hence on the strategic decisions to renew the battery at the slow 
time-scale.
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1  Introduction, motivation and context

In energy management, it is common that strategic investment decisions (storage 
capacities, production units) are made at a slow time-scale, whereas operational 
decisions (storage management, production) are made at a fast time-scale. The total 
number of decision stages may be huge, which leads to numerically untractable 
optimization problems—for instance, a two-time-scale stochastic optimal problem 
where fast controlled stochastic dynamics (e.g. a change every 15 or 30 min) affect 
a controlled long term stochastic behavior (e.g. a change every day or every week) 
over several years. How can we nevertheless provide numerical solutions (policies) 
to such problems?

1.1  Literature review

Stochastic Dynamic Programming (SDP) based on the Bellman equation (Bellman 
1957) is a standard method to solve a multistage stochastic optimization problem 
by time decomposition. This method suffers the so called curses of dimensionality 
as introduced in Bellman (1957), Bertsekas (2017), Powell (2007). In particular the 
complexity of the most classical implementation of SDP (that discretizes the state 
space) is exponential in the number of state variables.

A major contribution to handle a large number of state variables is the well-
known Stochastic Dual Dynamic Programming (SDDP) algorithm Pereira and 
Pinto (1991). This method is adapted to problems with linear dynamics and convex 
costs. Other similar methods have been developed such as Mixed Integer Dynamic 
Approximation Scheme (MIDAS) Philpott et al. (2016) or Stochastic Dual Dynamic 
Integer Programming (SDDiP) Zou et al. (2018) for nonconvex problems, in particu-
lar those displaying binary variables. The performance of these algorithms is sensi-
tive to the number of time steps (Leclère et al. 2020; Philpott et al. 2016).

Other classical stochastic optimization methods are even more sensitive to the 
number of time stages. It is well-known that solving a multistage stochastic optimi-
zation problem on a scenario tree displays a complexity exponential in the number 
of time steps.

Problems displaying a large number of time stages, in particular problems with 
multiple time-scales, require to design specific methods. A class of stochastic opti-
mization problems to deal with two time-scales has been introduced in Kaut et al. 
(2014) and further formalized in Maggioni et al. (2019). It is called Multi-Horizon 
Stochastic Optimization Problems and it frames problems where uncertainty is mod-
eled using multi-horizon scenario trees as rigorously studied in Werner et al. (2013). 
Several authors have studied stochastic optimization problems with interdependent 
strategic/operational decisions or intrastage/interstage problems (Abgottspon and 
Andersson 2016; Abgottspon 2015; Abgottspon and Andersson 2014; Skar et  al. 
2016; Pritchard et al. 2005), but most of the time the developed methods to tackle 
the difficulties are problem-dependent. In Kaut et al. (2014) the authors present dif-
ferent particular cases where the two time-scales (called operational and strategic 
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decision problems) can be easily decomposed. In Maggioni et al. (2019) a formal 
definition of a Multi Horizon Stochastic Program is given and methods to compute 
bounds are developed: formal Multi Horizon Stochastic Program is a stochastic opti-
mization problem with linear cost and dynamics where uncertainties are modeled as 
multi time-scale scenario trees.

1.2  Paper contributions and organization

In this paper, we propose a framework to formally define stochastic optimization 
problems naturally displaying two time-scales, that is, a slow time-scale (like days) 
and a fast time-scale (like half hours). The ultimate goal is to design tractable algo-
rithms for such problems with hundreds of thousands of time steps, without requir-
ing a stationary/infinite horizon assumption (contrarily to Haessig et al. (2015)) and 
in a stochastic setting [which extends Heymann and Martinon (2018)].

The paper is organized as follows. In Sect. 2, we outline the setting of a generic 
two-time-scale multistage stochastic optimization problem. In Sect. 3, we show how 
to write Bellman equations at the slow time-scale (the resulting Dynamic Program-
ming equation is referred to as the Bellman equation by time blocks, and is detailed 
in Carpentier et al. (2023, Sect. 5). If we suppose slow time-scale stagewise inde-
pendence of the noise process, the corresponding Bellman functions provide both 
the optimal cost and optimal policies. If not, we nevertheless are able to derive fea-
sible policies from the Bellman functions, which is our main objective. Then, under 
a monotonicity-inducing assumption, we obtain a more tractable version of the Bell-
man equation, by relaxing the problem dynamics without changing the slow time-
scale Bellman functions. In Sect.  4, we devise two decomposition methods. The 
first one, akin to the so-called price decomposition, gives a lower bound of the slow 
time-scale Bellman functions, whereas the second one, based on resource decompo-
sition, gives an upper bound. This upper bound is relevant, that is, not almost surely 
equal to +∞ , for monotone multistage stochastic optimization problems. In Sect. 5, 
we indicate how to obtain policies, and we discuss optimality. In Sect. 6, we present 
an application of the above method to a battery management problem incorporat-
ing a very large number of time steps. The appendices of the paper are available 
as supplementary material on the journal web site. In the supplementary material, 
we discuss how to take advantage of periodicity properties at the slow time-scale 
in Appendix A, we give some insights on the numerical complexity of the decom-
position methods in Appendix B, and we prove the desired monotonicity-inducing 
assumptions for the battery problem in Appendix C.

2  Two‑time‑scale stochastic optimization problems

We present a formal definition of a two-time-scale stochastic optimization problem, 
that is, with a slow time-scale and a fast time-scale.
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2.1  Notations for two time‑scales

Given two natural numbers r ≤ s , we use either the notation [[r, s]] or the notation r∶s 
for the set {r, r + 1,… , s − 1, s}.

To properly handle two time-scales, we adopt the following notations. For a given 
constant time interval Δt > 0 , let M ∈ ℕ

∗ be such that (M + 1) is the number of time 
steps in the slow time step, e.g. for Δt = 30 min, M + 1 = 48 , when the slow time step 
correspond to a day. A decision-maker has to make decisions on two time-scales over a 
given number of slow time steps (D + 1) ∈ ℕ

∗ : 

1. one type of (say, operational) decision every fast time step m ∈ [[0,M]] of every 
slow time step d ∈ [[0,D]],

2. another type of (say, strategic) decision every slow time step d ∈ [[0,D]] ∪ {D+1}.

In our model the time flows between two slow time steps d and d + 1 as follows:

A variable z will have two time indexes zd,m if it changes every fast time step m of 
every slow time step d. An index (d, m) belongs to the set

which is a totally ordered set when equipped with the following lexicographical 
order ⪯:

We also use the following notations for describing sequences of variables and 
sequences of spaces. For (d, m) and (d,m�) ∈ �  , with m ≤ m′:

• the notation zd,m∶m� refers to the sequence of variables 
(
zd,m, zd,m+1,… , zd,m�−1, zd,m�

)
,

• the notation ℤd,m∶m� refers to the Cartesian product 
∏m�

k=m
ℤd,k of spaces 

{
ℤd,k

}
k∈[[m,m�]]

.

2.2  Two‑time‑scale multistage stochastic optimization setting

We consider a probability space (Ω,F,ℙ) . Random variables are denoted using bold 
letters, and we denote by �

(
�
)
 the �-algebra generated by the random variable �.

We consider an exogenous noise process � =
{
�d

}
d∈[[0,D]]

 at the slow

time-scale, as detailed below. For any d ∈ [[0,D]] , the random variable �d consists 

of a sequence of random variables 
{
�d,m

}
m∈[[0,M]]

 at the fast time-scale:

d, 0 ����������������������→

Δt
d, 1 ����������������������→

Δt
… ����������������������→

Δt
d,M ����������������������→

Δt
d + 1, 0

(1)� = [[0,D]] × [[0,M]] ∪ {
(
D+1, 0

)
} ,

(2)(d,m) ⪯ (d�,m�) ⟺
(
d ≤ d�

)
or

(
d = d� and m ≤ m�

)
.

(3)�d = (�d,0,… ,�d,m,… ,�d,M) .
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Each random variable  �d,m ∶ Ω → �d,m takes values in a Borel space1 �d,m 
(“uncertainty” space), so that �d ∶ Ω → �d takes values in the product space 
�d = �d,0∶M . For any (d,m) ∈ �  , we denote by Fd,m the �-field generated by all 
noises up to time (d, m), that is, 

We also introduce the filtration F[[0,D]] at the slow time-scale:

In the same vein, we introduce a decision process � =
{
�d

}
d∈[[0,D]]

 at the slow 

time-scale, where each �d consists of a sequence 
{
�d,m

}
m∈[[0,M]]

 of decision varia-
bles at the fast time-scale:

Each random variable �d,m ∶ Ω → �d,m takes values in a Borel space �d,m (“control” 
space), and we denote by �d the Cartesian product �d,0∶M . We finally introduce a 

state process � =
{
�d

}
d∈[[0,D+1]]

 at the slow time-scale, where each random varia-

ble �d ∶ Ω → �d takes values in a Borel space �d (“state” space). Note that, unlike 
processes � and � , the state process �  is defined only at the slow time-scale. Thus, 
for any d ∈ [[0,D+1]] , the random variable �d represents the system state at 
time (d, 0).

We also consider Borel spaces �d such that, for each d ∈ [[0,D+1]] , �d and �d are 
paired spaces when equipped with a bilinear form ⟨⋅, ⋅⟩ . In this paper, we assume that 
each state space �d is the vector space ℝnd , so that 𝕐d = ℝ

nd , the bilinear form ⟨⋅, ⋅⟩ 
being the standard scalar product.

For each d ∈ [[0,D]] , we introduce a nonnegative Borel-measurable instantane-
ous cost function Ld ∶ �d × �d ×�d → [0,+∞] and a Borel-measurable dynam-
ics fd ∶ �d × �d ×�d → �d+1 . Note that both the instantaneous cost  Ld and the 
dynamics  fd depend on all the fast time-scale decision and noise variables constitut-
ing the slow time step d. We also introduce a nonnegative Borel-measurable final 
cost function K ∶ �D+1 → [0,+∞].2

With all these ingredients, we write a two-time-scale stochastic optimization 
problem 

(4a)Fd,m = �
(
�0,… ,�d−1,�d,0,… ,�d,m

)
.

(4b)F[[0,D]] = {Fd,M}d∈[[0,D]] =
(
F0,M ,… ,FD,M

)
.

(5)�d = (�d,0,… ,�d,m,… ,�d,M) .

(6a)Ve(x) = inf
�,�

�

[ D∑

d=0

Ld(�d,�d,�d) + K(�D+1)

]
,

1 We call Borel space (�,B
�
) a Borel set � equipped with its Borel �-field B

�
 (Bertsekas and Shreve 

1996, Definition 7.7, p. 118).
2 We could also consider either bounded function, or uniformly bounded below function. However, for 
the sake of simplicity, we deal in the sequel with nonnegative cost functions Ld and K.
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The expected cost value in  (6) is well defined, as all functions are nonnegative 
measurable. Constraint  (6c)—where �(�d,m) is the �-field generated by the ran-
dom variable �d,m — expresses the fact that each decision �d,m is Fd,m-measurable, 
that is, is nonanticipative. The function Ve is called the optimal value function of 
Problem (6).

The notation Ve(x) for the optimal value of Problem (6) emphasizes the fact that 
the dynamics equations (6b) correspond to equality constraints (as is classical). We 
also introduce a relaxation of Problem (6). For this purpose, we consider the follow-
ing multistage stochastic optimization problem: 

We have relaxed the dynamic equality constraints  (6b) into inequality con-
straints (7b). Thus, Problem (7) is less constrained than Problem (6), so that the opti-
mal value function V i of Problem (7) is less than the optimal value function Ve of 
Problem (6):

Remark 1 We just consider as explicit constraints the dynamic constraints (6b) and 
the nonanticipativity constraints (6c), but other constraints involving the state and 
the control can be incorporated in the instantaneous cost Ld and in the final cost K 
by means of indicator functions3 as Ld and K can take the value +∞.

Problem (6) seems very similar to a classical discrete time multistage stochastic 
optimization problem. But an important difference appears in the nonanticipativity 
constraints (6c) that express the fact that the decision vector �d = (�d,0,… ,�d,M) at 
every slow time step d does not display the same measurability for each component 
(information grows every fast time step). This point of view is not referred to in the 
literature and is one of the novelty of our approach.

(6b)s.t �0 = x , �d+1 = fd(�d,�d,�d) , ∀d ∈ [[0,D]] ,

(6c)𝜎(�d,m) ⊂ Fd,m , ∀(d,m) ∈ [[0,D]] × [[0,M]] .

(7a)V i(x) = inf
�,�

�

[ D∑

d=0

Ld(�d,�d,�d) + K(�D+1)

]
,

(7b)s.t �0 = x , fd(�d,�d,�d) ≥ �d+1 , ∀d ∈ [[0,D]] ,

(7c)𝜎(�d,m) ⊂ Fd,m , ∀(d,m) ∈ [[0,D]] × [[0,M]] ,

(7d)𝜎(�d+1) ⊂ Fd,M , ∀d ∈ [[0,D]] .

(8)V i(x) ≤ Ve(x) , ∀x ∈ �0 .

3 The indicator function �A of a set A is defined as �A(a) = 0 if a ∈ A and �A(a) = +∞ if a ∉ A.
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3  Time block decomposition, Bellman functions and monotonicity 
assumptions

In  Sect.  3.1, we introduce Bellman functions at the slow time scale, as a way to 
decompose a two-time-scale stochastic optimization problem in time blocks. 
In Sect. 3.2, we introduce assumptions on the data of Problem (6) which allow us 
to make the link between the sequence of Bellman functions associated with Prob-
lem (6) and the sequence of Bellman functions associated with Problem (7).

3.1  Time block decomposition and Bellman functions at the slow time‑scale

Stochastic Dynamic Programming, based on Bellman optimality principle, is a clas-
sical way to decompose multistage stochastic optimization problems into multiple 
but smaller static optimization problems. In this paragraph, we apply the Bellman 
recursion by time blocks to decompose the multistage two-time-scale stochastic 
optimization Problem (7) into multiple smaller problems that are stochastic optimi-
zation problems over a single slow time step.

We first introduce a sequence 
{
Ve
d

}
d∈[[0,D+1]]

 of slow time-scale Bellman functions 
associated with Problem (6). These functions are defined by backward induction as 
follows. At time D+1 , we set Ve

D+1
= K , and then, for d ∈ [[0,D]] and for all x ∈ �d , 

we set 

 the expectation in (9a) being taken with respect to the marginal probability of the 
random vector �d . We also introduce a sequence of slow time-scale Bellman func-
tions 

{
V i
d

}
d∈[[0,D+1]]

 associated with Problem (7). At time D+1 , we set V i
D+1

= K , and 
then, for d ∈ [[0,D]] and for all x ∈ �d , we set 

Problem (10) is less constrained than Problem (9) because the (dynamics) equal-
ity constraints (9b) are more binding than the inequality constraints (10b), and also 

(9a)Ve
d
(x) = inf

�d+1,�d

�
[
Ld(x,�d,�d) + Ve

d+1
(�d+1)

]
,

(9b)s.t �d+1 = fd(x,�d,�d) ,

(9c)𝜎(�d,m) ⊂ 𝜎(�d,0∶m) , ∀m ∈ [[0,M]] ,

(10a)V i
d
(x) = inf

�d+1,�d

�
[
Ld(x,�d,�d) + V i

d+1
(�d+1)

]
,

(10b)s.t fd(x,�d,�d) ≥ �d+1 ,

(10c)𝜎(�d,m) ⊂ 𝜎(�d,0∶m) , ∀m ∈ [[0,M]] ,

(10d)𝜎(�d+1) ⊂ 𝜎(�d,0∶M) .
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because (9b) implies the new constraint (10d). Since Ve
D+1

= V i
D+1

= K , we obtain 
by backward induction that the Bellman functions (10) associated with Problem (7) 
are lower bounds to the Bellman functions (9) associated with Problem (6):

3.2  Bellman functions under monotonicity‑inducing assumption

We introduce assumptions on the data of Problem (6) which allow us to make the link 
between the sequence of Bellman functions 

{
Ve
d

}
d∈[[0,D+1]]

 associated with Problem (6) 

and the sequence of Bellman functions 
{
V i
d

}
d∈[[0,D+1]]

 associated with Problem (7).
We first formulate an assumption that we call monotonicity-inducing assumption 

as it is the key ingredient to obtain both the monotonicity of the 
{
Ve
d

}
d∈[[0,D+1]]

 Bell-
man functions and, for d ∈ [[0,D+1]] , the inequality V i

d
≥ Ve

d
—the opposite of ine-

quality (11). It is worth noting that this assumption, which seems an ad hoc trick for 
proving that inequality (11) is in fact an equality, is satisfied in the case study (devel-
oped in Sect. 6) which motivates this paper. The fact that this assumption is satisfied 
for the case study is shown in Appendix C.

Assumption 1 (Monotonicity-inducing) We assume that the data of Problem (9) sat-
isfies the following properties. 

1. The final cost function K is nonincreasing on its effective domain: 

2. For all d ∈ [[0,D]] , the effective domain of the Bellman function Ve
d
 is induced by 

the effective domain of the instantaneous cost function Ld , namely 

3. For all d ∈ [[0,D]] , for any two states x′ ≥ x both in domVe
d
 (where the Bellman 

function Ve
d
 is given by (9)) and for any (control) random variable �d satisfy-

ing (9c) and such that �
[
Ld(x,�d,�d)

]
< +∞ , there exists a (control) random 

variable �̃d satisfying (9c) such that (almost surely) 

Let us comment the three items of Assumption  1. The first assumption con-
cerning the final cost function K is rather natural in stock management, as it just 
expresses the fact that the more in the stock the more value (hence the less it costs). 

(11)V i
d
≤ Ve

d
, ∀d ∈ [[0,D+1]] .

(12a)∀(x, x�) ∈
(
domK

)2
, x� ≥ x ⟹ K(x�) ≤ K(x) .

(12b)domV
e

d
=
{
x ∈ � | ∃� satisfying (9c) s.t. �

[
Ld(x,�d,�d)

]
< +∞

}
.

(12c)fd
(
x�, �̃d,�d

)
∈ domVe

d+1
and fd

(
x�, �̃d,�d

)
≥ fd

(
x,�d,�d

)

(12d)Ld
(
x′, �̃d,�d

)
≤ Ld

(
x,�d,�d

)
.
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Moreover, in long term optimization problem, as it is the case in the case study of 
the paper, the final cost is set to zero so that the assumption is indeed satisfied.

The second assumption concerning the effective domain of the Bellman func-
tions is akin to the relatively complete recourse assumption (Rockafellar and 
Wets 1976). It is a usual assumption in multistage stochastic optimization, and it 
is satisfied in our case study.

The third assumption is more involved. However, it is rather natural as it expresses 
the fact that the higher the state, the higher the next state and the lower the cost. Nev-
ertheless, to achieve higher future state and lower cost, one may have to change con-
trol, hence the existence of �̃d in Eqs. (12c) and (12d). Once again, this assumption is 
satisfied in our case study and more generally in energy problems where having more 
stock at time t is better for the induced cost and for the stock at the next time step.

Proposition 2 We suppose that monotonicity-inducing Assumption  1 holds true. 
Then, for all d ∈ [[0,D+1]] , the (original) Bellman function Ve

d
 given by backward 

induction (9) is nonincreasing on its effective domain, that is,

Proof The proof is done by backward induction. At time D+1 , the Bellman func-
tion Ve

D+1
= K is nonincreasing on its effective domain by Condition 1 of Assump-

tion 1. For d ∈ [[0,D]] , assume that Ve
d+1

 is nonincreasing on its effective domain. 

Let (x, x�) ∈ domVe
d
× domVe

d
 such that x ≤ x′ . For any 𝜖 > 0 , let �d be an �-solution 

of Problem (9) starting at state x. We have that

which implies Ld(x,�d,�d) < +∞ and  fd(x,�d,�d) ∈ domVe
d+1

 , ℙ-a.s.. From Con-
dition 3 of Assumption 1, there exists a random variable �̃d satisfying the measur-
ability constraint (9c) and satisfying ℙ-a.s. Eqs. (12c) and (12d). Using the induction 

assumption and Eq. (12c) we obtain that Ve
d+1

(
fd(x

�, �̃d,�d)
)
≤ Ve

d+1

(
fd(x,�d,�d)

)
 

almost surely which, combined with Eq.  (13), implies that the random variable 
Ve
d+1

(
fd(x

�, �̃d,�d)
)
 is integrable. Using Eq.  (12d) combined with Eq.  (13) we 

also obtain that the random variable Ld(x�, �̃d,�d) is integrable and smaller than 
Ld(x,�d,�d) . We therefore have

This ends the proof.   ◻

We are now able to formulate the main proposition of this section.

∀d ∈ [[0,D+1]] , ∀(x, x�) ∈ domVe
d
× domVe

d
, x ≤ x� ⟹ Ve

d
(x) ≥ Ve

d
(x�) .

(13)Ve
d
(x) + � ≥ �

[
Ld(x,�d,�d) + Ve

d+1

(
fd(x,�d,�d)

)]
,

Ve
d
(x) + � ≥ �

[
Ld(x,�d,�d) + Ve

d+1

(
fd(x,�d,�d)

)]
(by (13))

≥ �
[
Ld(x

�, �̃d,�d) + Ve
d+1

(
fd(x

�, �̃d,�d)
)]

(as shown above)

≥ Ve
d

(
x�
)
. (as �̃d satisfies (9c))
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Proposition 3 We suppose that monotonicity-inducing Assumption  1 holds true. 
Then, for any d ∈ [[0,D+1]] , the (original) Bellman function Ve

d
 in (9) coincides with 

the (relaxed) Bellman function V i
d
 in (10):

Proof By Eq. (11), we have that V i
d
≤ Ve

d
 for all d ∈ [[0,D+1]] . To obtain the reverse 

inequality, we proceed by backward induction. At time D + 1 , the two functions Ve
D+1

 
and V i

D+1
 are both equal to the function K . Let d be fixed in [[0,D]] and assume that 

V i
d+1

= Ve
d+1

 . For any x ∈ domV i
d
 and for any 𝜖 > 0 , let (�d+1,�d) be an �-optimal 

solution of Problem (10). We have that fd(x,�d,�d) ≥ �d+1 by Eq. (10b) and

by the induction assumption. From (14), we deduce that 
[
Ld(x,�d,�d)

]
< +∞ and 

that �d+1 ∈ domVe
d+1

 , ℙ-a.s.. Using Condition  2 of  Assumption  1 we obtain that 
x ∈ domVe

d
 and using Condition 3 of Assumption 1 with x� = x we obtain that there 

exists a random variable �̃d satisfying the measurability constraint (9c) and satisfy-
ing both Eqs. (12c) and (12d). Using Eq. (12c) we obtain that, ℙ-a.s.,

Now, we obtain successively

We thus obtain the reverse inequality V i
d
≥ Ve

d
 , hence the result.   ◻

The issue is that performing the backward induction (10) requires to solve a mul-
tistage stochastic optimization problem at the fast time-scale for each d ∈ [[0,D]] and 
for each x ∈ �d . In the next section, we present two methods to compute bounds of 
the Bellman functions V i

d
 at the slow time-scale, that allow to simplify the backward 

induction.

4  Price/resource decomposition of the dynamics in the Bellman 
functions

We aim at finding tractable algorithms to numerically solve the backward induc-
tion (10) and obtain the corresponding sequence of Bellman functions {V i

d
}d∈[[0,D+1]] . 

Indeed, these Bellman functions are not easily obtained. The main issue is that each 

V i
d
= Ve

d
, ∀d ∈ [[0,D+1]] .

(14)
V i
d
(x) + � ≥ �

[
Ld(x,�d,�d) + V i

d+1
(�d+1)

]
,

= �
[
Ld(x,�d,�d) + Ve

d+1
(�d+1)

]
,

(15)fd(x, �̃d,�d) ≥ fd(x,�d,�d) ≥ �d+1 and fd(x, �̃d,�d) ∈ domVe
d+1

.

V i
d
(x) + � ≥ �

[
Ld(x,�d,�d) + Ve

d+1
(�d+1)

]
(by (14))

≥ �
[
Ld(x, �̃d,�d) + Ve

d+1
(fd(x, �̃d,�d))

]
(by (12d), (15) and Proposition 2)

≥ Ve
d

(
x
)
. (as �̃dsatisfies (9c))
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optimization problem (10) is a multistage stochastic optimization problem at the fast 
time-scale, that has to be solved for every d ∈ [[0,D]] and every x ∈ �d , and each 
numerical solving might be in itself hard.

To tackle this issue, we propose in  Sects.  4.1 and  4.2 to compute respectively 
lower and upper bounds of the Bellman functions at the slow time-scale. Comput-
ing the lower (resp. upper) bounds of the Bellman functions is done by Algorithm 2. 
(resp. Algorithm 1) based on so-called price (resp. ressource) decomposition tech-
niques [see Bertsekas (1999, Chap. 6) and Carpentier and Cohen (2017)] applied to 
Problem (10). These two algorithms are precisely described in Appendix A. These 
two Bellman functions bounds can then be used to design admissible two-time-scale 
optimization policies (see Sect. 5).

Both algorithms involve the computation of auxiliary functions that gather the 
fast time-scale computations, and that are numerically appealing because they allow 
to exploit some potential periodicity of two-time-scale problems, as well as parallel 
computation. This point is developed in Appendix A.

4.1  Lower bounds of the Bellman functions

We present lower bounds for the Bellman functions 
{
V i
d

}
d∈[[0,D+1]]

 given by Eq. (10). 
These bounds derive from an algorithm which appears to be connected to the one 
developed in Heymann and Martinon (2018), called “adaptive weights algorithm”. 
We extend the results of Heymann and Martinon (2018) in a stochastic setting and in 
a more general framework, as we are not tied to a battery management problem and 
as we use a more direct way to reach similar conclusions.

To obtain lower bounds of the sequence {V i
d
}d∈[[0,D+1]] of Bellman functions, we 

dualize the dynamic equations  (10b) with Lagrange multipliers, and we use weak 
duality. The multipliers (called prices here) could be chosen in the class of nonposi-
tive F[[0,D]]-adapted processes but it is enough, to get lower bounds, to stick to deter-
ministic price processes. Following these lines, we obtain a lower bound as follows.

For each d ∈ [[0,D]] , we define the function LP
d
∶ 𝕏d × 𝕐d+1 → ℝ ∪ {±∞} by4

 where Ld and  fd are respectively the instantaneous cost function and the dynamics 
of Problem (6).

(16a)LP
d
(xd, pd+1) = inf

�d

�
�
Ld(xd,�d,�d) + ⟨pd+1fd(xd,�d,�d),

�
] ,

(16b)s.t. 𝜎(�d,m) ⊂ 𝜎(�d,0∶m) , ∀m ∈ [[0,M]] ,

4 Recall that 𝕐d+1 = 𝕏d+1 = ℝ
nd+1.
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Proposition 4 Consider the sequence 
{
VP
d

}
d∈[[0,D+1]]

 of Bellman functions which is 

defined by VP
D+1

= K and for all d ∈ [[0,D]] , and for all x ∈ �d by5

where 
(
VP
d+1

)⋆
∶ 𝕐d+1 → ℝ ∪ {±∞} is the Fenchel conjugate of VP

d+1
 [see Rockafel-

lar (2015)]. Then, the Bellman functions 
{
VP
d

}
[[0,D+1]]

 given by Eq.  (17) are lower 

bounds of the corresponding Bellman functions 
{
V i
d

}
d∈[[0,D+1]]

 given by Eq. (10), that 
is,

Proof We start the proof by a preliminary interchange result. We consider a subset 
X  of the space of random variables taking values in a Borel space � and a measur-
able function � ∶ 𝕏 → ℝ ∪ {±∞} . We assume that X  contains all the constant ran-
dom variables. We prove that

• The ≤ inequality inf�∈X �
[
�(�)

]
≤ infx∈� �(x) is clear as X  contains all the con-

stant random variables.

• The reverse inequality holds true if infx∈� �(x) = −∞ since 

inf�∈X �
[
�(�)

]
≤ infx∈� �(x) . Assume now that infx∈� 𝜑(x) = 𝜑 > −∞ . Then 

�(�) ≥ � ℙ-a.s. for all � ∈ X  and hence inf�∈X �
[
�(�)

]
≥ � . Consider an arbi-

trary 𝜖 > 0 and �� such that �
[
�(��)

]
≤ inf�∈X �

[
�(�)

]
+ � . We successively 

obtain infx∈� �(x) = �
[
infx∈� �(x)

]
≤ �

[
�(��)

]
≤ inf�∈X �

[
�(�)

]
+ � . Thus, 

the reverse inequality inf�∈X �
[
�(�)

]
≥ infx∈� �(x) follows, hence the equality 

in (19).

We turn now to the proof of (18), that we do by backward induction. First, we have 
that VP

D+1
= K = V i

D+1
 . Second, consider d ∈ [[0,D]] and assume that VP

d+1
≤ V i

d+1
 . 

(17)VP
d
(x) = sup

pd+1≤0

(
LP
d
(x, pd+1) −

(
VP
d+1

)⋆
(pd+1)

)
,

(18)VP
d
≤ V i

d
, ∀d ∈ [[0,D+1]] .

(19)inf
�∈X

�
[
�(�)

]
= inf

x∈�
�(x) .

5 As we manipulate functions with values in ℝ = [−∞,+∞] , we need to take care with the addition of 
extended reals. When not explicitly specified, we adopt by default that + is the Moreau lower addition ⨥ 
Moreau (1970), which extends the usual addition to extended reals by 

(
+∞

)
+
(
−∞

)
=
(
−∞

)

+
(
+∞

)
= −∞ . So Eq. (17) has to be understood as VP

d
(x) = suppd+1≤0

(
LP
d
(x, pd+1)

+.
(
−
(
VP

d+1

)⋆
(pd+1)

))
.
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Explicitly using the Moreau lower addition  ⨥ (see Footnote  5), we successively 
have6

by substituting  (16), and by using subadditivity of the infimum operation with 
respect to the Moreau lower addition ⨥

This ends the proof.   ◻

Remark 5 In the presentation above, we could have defined the 
sequence 

{
VP
d

}
d∈[[0,D+1]]

 as

that is, by maximizing over the whole space �d+1 instead of the set of nonpositive 
prices. Then, in Proposition 4, we would have obtained the inequalities

the Bellman functions Ve
d
 replacing the V i

d
 . We did not do that in order to be coher-

ent with the computation of the upper bounds in the next section, in which using the 
Bellman functions V i

d
 is mandatory.

VP
d
(x) = sup

pd+1≤0

�
LP
d
(x, pd+1)

+.
�
−
�
VP
d+1

�⋆
(pd+1)

��
(by (17))

= sup
pd+1≤0

�
LP
d
(x, pd+1)

+. inf
Xd+1

�
− ⟨pd+1, xd+1⟩ + VP

d+1
(xd+1)

��
(definition of)

�
VP
d+1

�⋆

≤ sup
pd+1≤0

�
LP
d
(x, pd+1)

+. inf
Xd+1

�
− ⟨pd+1, xd+1⟩ + V i

d+1
(xd+1)

��
(induction assumption)

= sup
pd+1≤0

�
LP
d
(x, pd+1)

+. inf
�d+1

�
�
− ⟨pd+1,�d+1⟩ + V i

d+1
(�d+1)

��
(interchange result)

≤ sup
pd+1≤0

inf
�d

�
�
Ld(xd,�d,�d) + ⟨pd+1, fd(x,�d,�d)⟩

�

+. inf
�d+1

�
�
− ⟨pd+1,�d+1⟩ + V i

d+1
(�d+1)

�

= sup
pd+1≤0

inf
�d ,�d+1

�
�
Ld(xd,�d,�d) + ⟨pd+1, fd(x,�d,�d) − �d+1⟩ + V i

d+1
(�d+1)

�

≤ inf
�d ,�d+1

sup
pd+1≤0

�
�
Ld(xd,�d,�d) + ⟨pd+1, fd(x,�d,�d) − �d+1⟩ + V i

d+1
(�d+1)

�

≤ inf
�d+1,�d

�
�
Ld(x,�d,�d) + V i

d+1
(�d+1)

�
s.t fd(x,�d,�d) ≥ �d+1 (by weak duality)

= V i
d
(x) .

VP
d
(x) = sup

pd+1∈�d+1

(
LP
d
(x, pd+1) −

(
VP
d+1

)⋆
(pd+1)

)
,

VP
d
≤ Ve

d
, ∀d ∈ [[0,D+1]] ,

6 Here below, we use ⨥ to stress that there might be an addition of two conflicting ±∞ . When we leave 
the notation + , it is because either we sum real numbers or we sum a real number with ±∞ or we sum 
elements of [0,+∞].
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4.2  Upper bounds of the Bellman functions

We present upper bounds for the Bellman functions 
{
V i
d

}
d∈[[0,D+1]]

 given by Equa-
tion (10). They are obtained using a kind of resource decomposition scheme associ-
ated with the dynamic equations, that is, by requiring that the state at time d + 1 be 
set at a prescribed deterministic value, so that new constraints have to be added. This 
is made possible by the fact that we relax the almost sure target equality con-
straint (6b) into the inequality constraint (7b).

We define the function LR
d
∶ �d ×�d+1 → [0,+∞] by 

 where Ld and  fd are respectively the instantaneous cost function and the dynam-
ics of Problem  (6). Note that the function LR

d
 can take the value +∞ since Con-

straint  (20b) may lead to an empty admissibility set. Having replaced the equality 
constraint  (6b) by the inequality constraint  (7b) in Problem  (7) makes it possible 
to have the inequality constraint (20b) in the definition of the function LR

d
 . This last 

inequality ensures that a random variable is almost surely greater or equal to a deter-
ministic quantity, a much more easier situation that ensuring the equality between a 
random variable and a deterministic quantity.

Proposition 6 Consider the sequence 
{
V
R

d

}

d∈[[0,D+1]]
 of Bellman functions defined 

inductively by V
R

D+1
= K and for all d ∈ [[0,D]] and for all x ∈ �d by

Then, the Bellman functions 
{
V
R

d

}

[[0,D+1]]
 given by Eq. (21) are upper bounds of the 

Bellman functions 
{
V i
d

}
d∈[[0,D+1]]

 given by Eq. (10), that is,

Proof The proof is done by backward induction. We first have that V
R

D+1
= K = V i

D+1
 . 

Now, consider d ∈ [[0,D]] and assume that V i
d+1

≤ V
R

d+1
 . We successively have

(20a)LR
d
(xd, rd+1) = inf

�d

�
[
Ld(xd,�d,�d)

]
,

(20b)s.t. fd(xd,�d,�d) ≥ rd+1 ,

(20c)𝜎(�d,m) ⊂ 𝜎(�d,0∶m) , ∀m ∈ [[0,M]] ,

(21)V
R

d
(x) = inf

rd+1∈�d+1

(
LR
d
(x, rd+1) + V

R

d+1
(rd+1)

)
.

(22)V i
d
≤ V

R

d
, ∀d ∈ [[0,D+1]] .



1 3

Decomposition methods for monotone two‑time‑scale stochastic… Page 15 of 37 28

This ends the proof.   ◻

5  Mixing time block and price/resource decomposition 
of the dynamics in the Bellman functions

In  Sect.  5.1, we show how we can design (not necessarily optimal) policies by 
means of Bellman functions as obtained in Sect. 3 and Sect. 4. In Sect. 5.2, we dis-
cuss optimality.

5.1  Computation of policies

We assume that we have at disposal Bellman functions {Ṽd}d∈[[0,D+1]] obtained either 
by resource decomposition ( ̃Vd = V

R

d
 ), or by price decomposition ( ̃Vd = VP

d
 ). The 

computation of the Ṽd’s, that is, the computation of the V
R

d
 ’s or VP

d
’s, constitutes the 

offline part of the optimization procedure, as described in Algorithms 1 and 2.
Then, for a given slow time step d ∈ [[0,D]] and a given current state xd ∈ �d , 

we can use Ṽd+1 as an approximation of the Bellman function Ve
d+1

 in order to state a 
new fast-time-scale problem starting at d for computing the decisions to apply at d. 
This constitutes the online part of the procedure [in this paper, we do not discuss 
conditions ensuring that the control below is indeed a random variable, see Bertse-
kas and Shreve (1996)]: 

This fast-time-scale optimization problem can be solved by any method that 
provides an online policy as presented in Bertsekas (2005). The presence of a final 
cost Ṽd ensures that the effects of decisions made at the fast time-scale are taken into 
account at the slow time-scale.

V i
d
(x) = inf

�d+1,�d

�
[
Ld(x,�d,�d) + V i

d+1
(�d+1)

]

s.t fd(x,�d,�d) ≥ �d+1, and (10c)–(10d), (by (10))

≤ inf
rd+1∈�d+1

inf
�d

�
[
Ld(x,�d,�d)

]
+ V i

d+1
(rd+1)

s.t fd(x,�d,�d) ≥ rd+1 and (10c) (by considering only constant r.v.�d+1)

= inf
rd+1∈�d+1

(
LR
d
(xd, rd+1) + V i

d+1
(rd+1)

)
(by (20))

≤ inf
rd+1∈�d+1

(
LR
d
(xd, rd+1) + V

R

d+1
(rd+1)

)
(induction assumption)

= V
R

d
(x) . (by (21))

(23a)�∗
d
∈ argmin

�d

�
[
Ld(xd,�d,�d) + Ṽd+1

(
fd(xd,�d,�d)

)]
,

(23b)s.t. 𝜎(�d,m) ⊂ 𝜎(�d,0∶m) , ∀m ∈ [[0,M]] .
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Nevertheless, it would be time-consuming to produce online policies using the 
numerical solving of Problem (23) for every slow time step of the horizon in simula-
tion. We present in the next two paragraphs how to obtain two-time-scale policies 
with prices or resources in less time.

Obtaining a policy using the Bellman function lower bounds (Algorithm  2) 
In the case where we decompose the problem using deterministic prices, we 
possibly solve Problem  (16) for every couple of initial state and determinis-
tic price (xd, pd+1) ∈ �d × �d+1 and for every d ∈ [[0,D]] . This process pro-
duces, for each d ∈ [[0,D]] and for each (xd, pd+1) ∈ �d × �d+1 , an optimal policy 
�P
d

[
xd, pd+1

]
∶ �d → �d and an optimal value LP

d
(xd, pd+1).

At the beginning of a slow time step d in a state xd ∈ �d , we compute a price pd+1 
solving the following optimization problem

where the sequence of Bellman functions lower bounds sequence 
{
VP
d

}
d∈[[0,D+1]]

 is 
obtained by solving Eq. (17) using Algorithm 2.

Thanks to this deterministic price  pd+1 , we apply the corresponding pol-
icy �P

d

[
xd, pd+1

]
 to simulate decisions and states drawing a scenario wd out of the ran-

dom process �d . The next state xd+1 at the beginning of the slow time step d + 1 is 
xd+1 = fd

(
xd,�

P
d

[
xd, pd+1

]
(wd),wd

)
.

Obtaining a policy using the Bellman function upper bounds (Algorithm 1)
In the case where we decompose the problem using deterministic resources, we 

possibly solve Problem (20) for every couple of initial state and deterministic resource 
(xd, xd+1) ∈ �d ×�d+1 and for every d ∈ [[0,D]] . This leads, for each d ∈ [[0,D]] and 
for each (xd, xd+1) ∈ �d ×�d+1 , to an optimal policy �R

d

[
xd, xd+1

]
∶ �d → �d and to 

an optimal value LR
d
(xd, xd+1).

At the beginning of a slow time step d in a state xd ∈ �d , we compute a resource 
(state) xd+1 solving the following optimization problem

where the sequence of Bellman functions lower bounds sequence 
{
V
R

d

}

d∈[[0,D+1]]
 is 

obtained by solving Eq. (21) using Algorithm 1. We apply the corresponding pol-
icy �R

d

[
xd, xd+1

]
 to simulate decisions and states drawing a scenario wd out of �d . 

The next state  xd+1 at the beginning of the slow time step  d + 1 is then 

xd+1 = fd
(
xd,�

R
d

[
xd, xd+1

]
(wd),wd

)
.

(24)pd+1 ∈ argmax
p≤0

(
LP
d
(xd, p) −

(
VP
d+1

)⋆
(p)

)
,

(25)xd+1 ∈ argmin
x∈�d+1

(
LR
d
(xd, x) + V

R

d+1
(x)

)
,
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5.2  Discussion on optimality

Without any specific assumption (independence, monotonicity), we have obtained by 
Propositions 4 and 6 that the price Bellman functions VP

d
 and the resource Bellman 

functions V
R

d
 are respectively lower and upper bounds for the Bellman functions associ-

ated with (relaxed) Problem (7):

Then, if monotonicity-inducing Assumption 1 holds true, we have by Proposition 3 
that these price Bellman functions and resource Bellman functions are also lower 
and upper bounds for the Bellman functions associated with (original) Problem (6):

The link between the optimal value functions Ve (resp. V i ) and the Bellman func-
tions Ve

d
 (resp. Ve

d
 ) is obtained thanks to a specific independence assumption for the 

noise process �.

Assumption 2 (White noise assumption) The sequence of random vec-
tors 

{
�d

}
d∈[[0,D]]

 is white, that is, 
{(

�d,0,… ,�d,m,… ,�d,M

)}
d∈[[0,D]]

 is a sequence 
of D+1 independent random vectors.

Then the Bellman’s principle of optimality applies at the slow time-scale for 
the optimization problem  (6), leading to a Stochastic Dynamic Programming 
equation at the slow time-scale.

Remark 7 We do not assume that each random vector �d = (�d,0,… ,�d,M) is 
itself composed of independent random variables.

Proposition 8 Under the white noise Assumption 2, the optimal value function Ve 
(resp. V i ) solution of (original) Problem (6) (resp. solution of (relaxed) Problem (7)) 
coincides with the Bellman function Ve

0
 at time  t = 0 (resp. V i

0
 ) given by Bellman 

Eqs. (9) (resp. (10)). More explicitly, we have that

Proof The fact that the function Ve is equal to the function Ve
0
 is a consequence of 

Carpentier et  al.  (2023,  Proposition  4.1) where the machinery for establishing a 
Dynamic Programming equation in a two-time-scale multistage stochastic optimiza-
tion setting is developed. To establish the equality between the functions V i and V i

0
 , 

we proceed as follows. First, it is easily established that Problem (7) is equivalent to 
Problem (28) stated below which involves a new decision process � =

{
�d+1

}
d∈[[0,D]]

 , 
each control variable �d+1 taking values in �d+1 : 

(26)VP
d
≤ V i

d
≤ V

R

d
, ∀d ∈ [[0,D+1]] .

(27)VP
d
≤ Ve

d
≤ V

R

d
, ∀d ∈ [[0,D+1]] .

Ve(x) = Ve
0
(x) and V i(x) = V i

0
(x) , ∀x ∈ �0 .
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Second, Problem (28) involves standard equality constraints in the dynamics, so 
that the machinery developed in Carpentier et  al.  (2023,  Proposition  4.1) applies 
to it. We therefore obtain a Dynamic Programming equation associated with Prob-
lem  (28) involving the new decision process � . This last Dynamic Programming 
equation reduces to the Bellman Eq. (10) when replacing the extra nonnegative deci-
sion variables by inequality constraints.   ◻

As an immediate consequence of Propositions 3 and 8, we obtain the following 
proposition which is the main result of this section.

Proposition 9 Suppose that both monotonicity-inducing Assumption  1 and white 
noise Assumption 2 hold true. Then, the optimal value function Ve of Problem  (6) 
can be computed by solving Problem (7) at the slow time-scale by the Bellman back-
ward induction (10), that is,

Moreover, if both monotonicity-inducing Assumption 1 and white noise Assump-
tion 2 hold true, we have by Proposition 8 that the price Bellman function VP

0
 and 

the resource Bellman function V
R

0
 at time d = 0 are respectively lower and upper 

bounds for the optimal value function of Problem (6):

Equation (29) provides an interval in which the optimal value of the original prob-
lem  (6) lies. But this interval is valid only under the time-block independence 
Assumption  2. This last assumption is generally not satisfied in practical cases, 
and we cannot therefore guarantee the quality of the Bellman functions obtained 
by the price and resource decomposition algorithms. This being so, the price Bell-
man functions VP

d
 and the resource Bellman functions V

R

d
 always allow to compute 

admissible policies for Problem (6), as explained in Sect. 5.1.

(28a)V i(x) = inf
�,�,�

�

[ D∑

d=0

Ld(�d,�d,�d) + K(�D+1)

]
,

(28b)s.t �0 = x , �d+1 = fd(�d,�d,�d) − �d+1 , ∀d ∈ [[0,D]] ,

(28c)�d+1 ≥ 0 , ∀d ∈ [[0,D]] ,

(28d)𝜎(�d,m) ⊂ Fd,m , ∀(d,m) ∈ [[0,D]] × [[0,M]] ,

(28e)𝜎(�d+1) ⊂ Fd,M , ∀d ∈ [[0,D]] .

V i(x) = V i
0
(x) = Ve

0
(x) = Ve(x) , ∀x ∈ �0 .

(29)VP
0
≤ Ve

≤ V
R

0
.
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6  Case study

In this section, we apply the previous theoretical results to a long term aging and 
battery renewal management problem. In  Sect.  6.1, we formulate the problem. 
In Sect. 6.2, we simplify the intraday problems. In Sect. 6.3, we describe the data 
used for the numerical experiments. Finally, in Sect.  6.4, we sketch how to apply 
resource and price decomposition algorithms, and we compare the results given by 
each of these methods.

6.1  Problem formulation

We consider the following energy storage management problem over 20  years. We 
manage the charge and discharge of an battery every time step m of 30 min. A deci-
sion of battery replacement is taken every day, so that the number of days consid-
ered in the problem is 20 × 365 = 7300 . Since the number of time steps during a day 
is 24 × 2 = 48 , the total number of time steps of the problem is 48 × 7300 = 350,400 . 
The state of charge of the battery has to remain between prescribed bounds at each 
time step. We also consider the evolution over time of the amount of remaining 
exchangeable energy in the battery (related to the number of cycles remaining), that 
is, the health of the battery. Once this variable reaches zero, the battery is considered 
unusable. In addition to the battery, the studied system includes a local renewable 
energy production unit and a local energy consumption: the net demand (consump-
tion minus production) at each time step is an exogenous random variable affecting the 
system. Finally we pay for the local system energy consumption, that is, net demand 
minus energy exchanged with the battery. When this quantity is negative (excess 
energy production), the energy surplus is assumed to be wasted. The aim of the prob-
lem is to minimize the energy bill over the whole time horizon by providing an opti-
mal strategy for the storage charge and the battery renewal.

As we are dealing with the energy storage management problem of a battery 
over a very long term (20 years) involving two time scales, we adopt the notations 
defined in Sect. 2.1. The total number of slow time steps (days) in the time horizon 
is denoted by D + 1 ( D = 20 × 365 = 7300 ), and each slow time interval [d, d + 1[ 
contains M + 1 fast time steps (half hour), hence M + 1 = 24 × 2 = 48.

At the fast time-scale, the system control is the energy �d,m transferred in and 
out of the battery. We denote the charge of the battery by �+

d,m
= max{0,�d,m} , 

and the discharge of the battery by  �−
d,m

= max{0,−�d,m} . For all time7 
(d,m) ∈ [[0,D]] × [[0,M+1]] , the state of the battery consists of

• the amount of energy �d,m in the battery (state of charge), whose dynamics is 
given by the simple storage dynamics equation 

7 There is here a slight difference with the notations presented in Sect. 2.1: we have added a new time 
step (d,M+1) at the end of day d in order to apply the last fast control of day d and the slow control of 
day d+1 at distinct time steps, hence the introduction of a fictitious time step—denoted by (d,M+1)—
between (d, M) and (d+1, 0) (see Eq. (31) and comments above).
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 where �c and �d are the charge and discharge coefficients of the battery,
• the amount of remaining exchangeable energy �d,m (health of the battery), with 

 so that the battery health decreases with any energy exchange,
• the capacity �d,m of the battery (assumed to be constant at the fast time-scale) 

These equations at the fast time-scale are gathered as

At the slow time-scale, that is, for each slow time step  d, there exists another 
control �d modeling the possible renewal of the battery at the end of the slow time 
step. To take it into account, we add a fictitious time step (d,M+1) between (d, M) 
and (d+1, 0) . The dynamics of the battery for this specific time step are

meaning that, when renewed, a new battery is empty,

meaning that, when renewed, the health of a battery is the product of the new bat-
tery capacity �d by an integer-valued function � ∶ ℝ+ → ℕ estimated at �d,

corresponding to the renewal of the battery. These equations are gathered as:

We assume that the initial state of the battery is known: (�0,0,�0,0,�0,0) = (s0, h0, c0).
All the control variables are subject to bound constraints

(with U < 0 and U > 0 ), as well as the state variables:

(30a)�d,m+1 = �d,m + �c�+

d,m
− �d�−

d,m
, ∀m ∈ [[0,M]] ,

(30b)�d,m+1 = �d,m − �+

d,m
− �−

d,m
, ∀m ∈ [[0,M]] ,

(30c)�d,m+1 = �d,m , ∀m ∈ [[0,M]] .

(30d)
(�d,m+1,�d,m+1,�d,m+1) = �

(
�d,m,�d,m,�d,m,�d,m

)
, ∀(d,m) ∈ [[0,D]] × [[0,M]] .

(31a)�d+1,0 =

{
0 if �d > 0 ,

�d,M+1 otherwise ,

(31b)�d+1,0 =

{
�(�d)�d if �d > 0 ,

�d,M+1 otherwise ,

(31c)�d+1,0 =

{
�d if �d > 0 ,

�d,M+1 otherwise ,

(31d)
(�d+1,0,�d+1,0,�d+1,0) = �

(
�d,M+1,�d,M+1,�d,M+1,�d

)
, ∀d ∈ [[0,D]] .

(32a)�d,m ∈
[
U,U

]
, �d ∈

[
0,B

]
,

(32b)�d,m ∈
[
0, ��d,m

]
, �d,m ∈

[
0,�(�d,m)�d,m

]
, �d,m ∈

[
0,B

]
.
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The amount of remaining exchangeable energy  �d,m has to be nonnegative for 
the battery to operate, and the upper bound on the state of charge �d,m is a frac-
tion � ∈ [0, 1] of the capacity �d,m.

At each fast time step (d, m), a local renewable energy production unit produces 
energy and a local demand consumes energy: we denote by �d,m the net demand 
(consumption minus production) and we suppose that it is an exogenous random 
variable. The excess energy consumption 

(
�d,m + �+

d,m
− �−

d,m

)+ is paid at a given 
price �e

d,m
 , assumed to be deterministic and known, whereas excess energy produc-

tion is assumed to be wasted. The price �b
d
 of a new battery is supposed to be ran-

dom, so that the operating cost Ld during the slow time step d is

The value of battery at the end of the optimization horizon is represented by a cost 
function  K depending on the state of the battery. Then, the objective function to 
be minimized is the expected sum over the time span of the discounted daily costs 
(discount factor � ), plus the final cost K. We assume that the effective domain of the 
final cost K is ℝ3 and that K is a nonincreasing function. In the numerical application 
the final cost K is taken identically equal to 0.

Finally, the optimization problem under consideration is 

subject, for all (d,m) ∈ [[0,D]] × [[0,M]] , to state dynamics

 to bounds constraints

and tononanticipativity constraints

(33)
M∑

m=0

�e
d,m

(
�d,m + �+

d,m
− �−

d,m

)+
+ �b

d
�d .

(34a)
inf

{�d,0∶M ,�d}d∈[[0,D]]

�

[ D∑

d=0

�d
( M∑

m=0

�e
d,m

(
�d,m + �+

d,m
− �−

d,m

)+
+ �b

d
�d

)

+ K(�D+1,0,�D+1,0,�D+1,0)

]
,

(34b)(�0,0,�0,0,�0,0) = (s0, h0, c0) ,

(34c)(�d,m+1,�d,m+1,�d,m+1) = �
(
�d,m,�d,m,�d,m,�d,m

)
,

(34d)(�d+1,0,�d+1,0,�d+1,0) = �
(
�d,M+1,�d,M+1,�d,M+1,�d

)
,

(34e)�d,m ∈
[
0, ��d,m

]
, �d,m ∈

[
0,�(�d,m)�d,m

]
, �d,m ∈

[
0,B

]
,

(34f)�d,m ∈
[
U,U

]
, �d ∈

[
0,B

]
,

(34g)𝜎(�d,m) ⊂ 𝜎
(
�0,0,… ,�d,m,�

b
0
,… ,�b

d−1

)
,
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We denote by �d the vector of decision variables to be taken during the slow time step d

We also denote by �d the vector of noise variables occurring during the slow time 
step d

and by �d the vector of state variables at the beginning of the slow time step d

 Problem (34) is amenable to the form (6) given in Sect. 2.2, as explained below.

• In the expression of �d+1 = (�d+1,0,�d+1,0,�d+1,0) given by  (34d), replacing 
the variable  �d,m recursively from  m = M + 1 to  m = 1 by using  (34c), one 
obtains a slow-time-scale dynamics of the form (6b): 

• The cost function of slow time step d in (33) is obviously a function depending 
on �d and �d . The bound constraints on the control (34f) (resp. the bound con-
straints on the state (34e)) only depend on �d (resp. on (�d,�d,�d) : indeed, in 
the same way we obtained Eq. (36), replacing in the right-hand side of (34c) the 
state variable �d,m′ recursively from m� = m to m� = 0 by using (34c), we obtain 
that the state (�d,m+1,�d,m+1,�d,m+1) is a function of (�d,0,�d,0,�d,0,�d,0∶m) for 
all m ∈ [[0,M]] . These constraints are incorporated in the cost of slow time step d 
(see Remark  1), which makes it an extended real-valued function of the form 
Ld(�d,�d,�d) as in (6a). The final cost K is, by definition, a function of �D+1.

• Since �d (resp. �b
d
 ) represents a control (resp. a noise) at the fictitious time step 

between (d,M + 1) and (d + 1, 0) , the nonanticipativity constraints (34g) – (34h) 
are of the form (6c).

Thus, Problem  (34) fits the framework developed in Sect.  4 for two-time-scale 
optimization problems. Moreover, Assumption 1 is fulfilled for Problem (34) (see 
Appendix C), so that Proposition 3 applies: relaxing the dynamics (36) as inequality 
constraints allows to compute price and resource Bellman functions that are lower 
and upper bounds for the Bellman functions associated with Problem (34).

6.2  Simplifying the intraday problems

We turn now to the computation of the functions LP
d
 in (16) and LR

d
 in (20), that we 

call intraday functions in this case study. As explained in Sect. 4.1, (resp. Sect. 4.2), 

(34h)𝜎(�d) ⊂ 𝜎
(
�0,0,… , �d,M , �

b
0
,… , �b

d

)
.

(35a)�d =
({

�d,m

}
m∈[[0,M]]

,�d

)
.

(35b)�d =
({

�d,m

}
m∈[[0,M]]

,�b
d

)
,

(35c)�d =
(
�d,0,�d,0,�d,0

)
.

(36)(�d+1,0,�d+1,0,�d+1,0) = fd(�d,0,�d,0,�d,0,�d,0∶M ,�d) , ∀d ∈ [[0,D]] .
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the intraday functions LP
d
 (resp. LR

d
 ) depend on the couple (xd, pd+1) (resp. (xd, rd+1) ), 

namely the 6-uple  (sd, hd, cd, psd+1, p
h
d+1

, pc
d+1

) (resp.  (sd, hd, cd, sd+1, hd+1, cd+1) ) in 
the case study under consideration. We use here some characteristics of the problem 
to make approximations to alleviate the computation of these intraday functions.

6.2.1  Intraday problem associated with resource decomposition

As explained in Sect.  4.2, the aim of the resource decomposition algorithm is to 
compute, for all slow time steps d ∈ [[0,D+1]] , upper bounds V

R

d
 of the Bellman 

functions associated with Problem  (34), which can be put in the form of Prob-
lem (6). These upper bounds are obtained by solving a collection of intraday prob-
lems such as (20) for each slow time step d ∈ [[0,D]] , and then by solving the Bell-
man recursion  (21). The intraday problems have a priori to be solved for every 
6-tuple (sd, hd, cd, sd+1, hd+1, cd+1) , that is, the state (sd, hd, cd) at the beginning of the 
slow time step and the resource target (sd+1, hd+1, cd+1) at the end of the slow time 
step. This extremely computationally demanding task is greatly simplified thanks to 
the following considerations.

Resource intraday function reduction

Since the capacity component �d,m of the state can only change at the end of a slow 
time step (see Eqs. (30c) and (31c)), it is possible to take the capacity dynamics �d,m , 
the capacity control �d and the associated bound constraint, and the cost term �b

d
�d , 

out of the intraday problem and to take them into account in the Bellman recursion. 
To achieve that, resource decomposition is performed by dealing with Eq.  (30d) 
for m = M , instead of Eq. (31d). We introduce the two resources sd+1 and hd+1 for the 
state of charge and the health of the battery.8 Then, the intraday problem (20) becomes 

with, for all m ∈ [[0,M]],

(37a)

LR
d
(sd, hd, cd, sd+1, hd+1) = inf

�d,0∶M

�

[ M∑

m=0

�e
d,m

max(0,�d,m + �+

d,m
− �−

d,m
)

]
,

(37b)s.t. (�d,0,�d,0) = (sd, hd) ,

(37c)�d,m+1 = �d,m + �c�+

d,m
− �d�−

d,m
,

(37d)�d,m+1 = �d,m − �+

d,m
− �−

d,m
,

(37e)�d,M+1 ≥ sd+1 , �d,M+1 ≥ hd+1 ,

8 We do not associate a resource variable cd+1 with the capacity of the battery since this component of 
the state is taken into account in the Bellman recursion.
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and is parameterized by the 5-tuple (sd, hd, cd, sd+1, hd+1) . The sequence 
{V

R

d
}d∈[[0,D+1]] of Bellman functions is computed by the following recursion: 

In order to further simplify the computation of the intraday functions, we remark 
that, in the Bellman recursion (38), we can replace the function LR

d
 by the function L̃R

d
 

with

where �A denotes the indicator function of the set  A (see Footnote  3 on page  6). 
Indeed, the last term �[

0,�(cd) cd

](hd+1) is obtained by moving the right-hand side of 

Constraint (38c) to the minimized cost LR
d
 and the two other terms can be added as it 

is easily seen that LR
d
(sd, hd, cd, sd+1, hd+1) = +∞ when hd+1 > hd or when 

hd ∉
[
0,�(cd) cd

]
 . Then, it is straightforward to prove that

Indeed, as the health dynamics is linear nonincreasing, any admissible con-
trol for Problem  (37) for the ordered pair (hd, hd+1) , with hd+1 ≤ hd and 
(hd, hd+1) ∈

[
0,�(cd) cd

]2 is also admissible for the ordered pair (hd − hd+1, 0) and 
conversely. Moreover, the resulting cost is the same since the cost does not depend 
on the health variable. We thus obtain Eq. (39).

(37f)�d,m ∈
[
U,U

]
,

(37g)�d,m ∈
[
0, � cd

]
, �d,m ∈

[
0,�(cd) cd

]
,

(37h)𝜎(�d,m) ⊂ 𝜎
(
�d,0,… ,�d,m

)
,

(38a)
V
R

d
(sd, hd, cd) = inf

sd+1,hd+1,�d

�

[
�
(
LR
d
(sd, hd, cd, sd+1, hd+1) + �b

d
�d

)

+ V
R

d+1
(�d+1,0,�d+1,0,�d+1,0)

]
,

(38b)s.t. (�d+1,0,�d+1,0,�d+1,0) = �
(
sd+1, hd+1, cd,�d

)
,

(38c)sd+1 ∈
[
0, � cd

]
, hd+1 ∈

[
0,�(cd) cd

]
,

(38d)�d ∈
[
0,B

]
,

(38e)𝜎(�d) ⊂ 𝜎
(
�b
d

)
.

L̃R
d

(
sd, hd, cd, sd+1, hd+1

)
= LR

d

(
sd, hd, cd, sd+1, hd+1

)

+ 𝛿[
0,�(cd) cd

](hd
)
+ 𝛿{hd+1≤hd}

(
hd, hd+1

)
+ 𝛿[

0,�(cd) cd

](hd+1
)
,

(39)L̃R
d
(sd, hd, cd, sd+1, hd+1) = L̃R

d
(sd, hd−hd+1, cd, sd+1, 0) .
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Resource intraday function approximation

As suggested in Kaut et al. (2014), we decide to neglect the state of charge target at the 
slow time-scale. As a matter of fact, the operation of the battery is daily periodic and 
such that it is more or less empty at the beginning (and thus at the end) of a slow time 
step (day). It is thus reasonable to assume that the battery is empty at the beginning and 
at the end of every slow time step, which is a pessimistic but rather realistic assump-
tion. Combined with Eq. (39), we obtain a new function L̂R

d
 approximating the original 

function LR
d
 , that is

The approximated intraday function  L̂R
d
 now only depends on two variables, 

which significantly reduces the time needed to compute it. Then, the sequence 

{V
R

d
}d∈[[0,D+1]] of Bellman functions in  (38) is approximated by the sequence 

{
̂
V
R

d
}d∈[[0,D+1]] given by the following recursion 

where the new dynamics �H,C is deduced from � in (31) by keeping only the last 
two dynamics (31b) and (31c), which do not depend on the state of charge.

As explained in Appendix A, we consider in this study I periodicity classes ( I = 4 , 
that is, one class for each season of the year), so that the computation of the resource 
intraday problem is done only for I different days denoted d1,… , dI . The complexity of 
the associated resource decomposition algorithm is sketched in Appendix B.

6.2.2  Intraday problem associated with price decomposition

As detailed in Sect. 4.1, the aim of the price decomposition algorithm is to compute, 
for all slow time steps d ∈ [[0,D+1]] , lower bounds VP

d
 of the Bellman functions asso-

ciated with Problem (34). These lower bounds are obtained by solving a collection of 
intraday problems such as (16) for each slow time step d ∈ [[0,D]] , and then by solving 
the Bellman recursion (17). The intraday problems have a priori to be solved for every 
6-tuple (sd, hd, cd, psd+1, p

h
d+1

, pc
d+1

) , that is, the state (sd, hd, cd) at the beginning of the 

(40)�LR
d
(hd−hd+1, cd) = L̃R

d
(0, hd−hd+1, cd, 0, 0) ≈ L̃R

d
(sd, hd, cd, sd+1, hd+1) .

(41a)

̂
V
R

d
(hd, cd) = inf

hd+1,�d

�

[
�
(
L̂R
d
(hd−hd+1, cd) + �b

d
�d

)
+
̂
V
R

d+1

(
�H,C

(
hd+1, cd,�d

))]
,

(41b)s.t. hd+1 ∈
[
0,�(cd) cd

]
,

(41c)�d ∈
[
0,B

]
,

(41d)𝜎(�d) ⊂ 𝜎
(
�b
d

)
,
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slow time step and the prices (ps
d+1

, ph
d+1

, pc
d+1

) associated with the dualization of the 
equality dynamics equations.

Price intraday function reduction
As in the resource intraday function reduction, it is possible to take the capacity 

dynamics, its associated control and bound constraints as well as the cost term �b
d
�d 

out of the intraday problem and to take them into account in the Bellman recursion, so 
that the intraday problem does not depend on the price pc

d+1
 associated with the capac-

ity dynamics. To achieve that, price decomposition is not performed on Eq. (31d), but 
on Eq.  (30d) for m = M , which leads to an intraday function whose arguments are (
sd, hd, cd, p

s
d+1

, ph
d+1

)
 . But another possible reduction occurs here: from the health 

dynamics (30b) summed over the fast time steps of day d, we derive the inequality

Following the framework of Sect. 4.1, we dualize this induced constraint by incor-
porating, on the one hand, the terms �+

d,m
+ �−

d,m
 in the definition of the price intra-

day function for m ∈ [[0,M]] and, on the other hand, the term hd −�d,M+1 in the 
computation of the Bellman functions. Doing so, the intraday function LP

d
 does not 

depend anymore on the health hd , and is defined as 

subject to, for all m ∈ [[0,M]],

 The associated sequence of Bellman functions {VP
d
}d∈[[0,D+1]] is computed by the fol-

lowing recursion: 

(42)hd −�d,M+1 −

M∑

m=0

(
�+

d,m
+ �−

d,m

)
≥ 0 .

(43a)
LP
d
(sd, cd, p

s
d+1

, ph
d+1

) = inf
�d,0∶M

�

[ M∑

m=0

(
�e
d,m

max(0,�d,m + �+

d,m
− �−

d,m
)

− ph
d+1

(
�+

d,m
+ �−

d,m

))
+ ps

d+1
�d,M+1

]
,

(43b)�d,0 = sd , �d,m+1 = �d,m + �c�+

d,m
− �d�−

d,m
,

(43c)�d,m ∈
[
U,U

]
, �d,m ∈

[
0, �cd

]
,

(43d)𝜎(�d,m) ⊂ 𝜎
(
�d,0,… ,�d,m

)
.

(44a)

VP
d
(sd, hd, cd) = sup

(ps
d+1

,ph
d+1

)≤0

(
LP
d
(sd, cd, p

s
d+1

, ph
d+1

) + inf
sd,M+1,hd,M+1

inf
�d

�

[
��b

d
�d

− ps
d+1

sd,M+1 +
(
ph
d+1

(
hd − hd,M+1

)
+ VP

d+1
(�d+1,0,�d+1,0,�d+1,0)

)])
,
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Price intraday function approximation
As in the resource decomposition algorithm, it is possible to consider that the 

state of charge of the battery has no influence at the slow time-scale. Doing so, we 
obtain a new function L̂P

d
 approximating the original function LP

d
 , that is,

The approximated price intraday function L̂P
d
 only depends on the 2-tuple (cd, phd+1) , 

which significantly reduces the time needed to compute it. Then, the sequence 
{VP

d
}d∈[[0,D+1]] of Bellman functions in  (44) is approximated by the sequence 

{V̂
P

d
}d∈[[0,D+1]] given by the following recursion: 

As explained in  Appendix  A, we consider in this study  I periodicity classes 
( I = 4 ), that is, one class for each season of the year), so that the computation of the 
price intraday problem is done only for I different days denoted d1,… , dI . The com-
plexity of the associated price decomposition algorithm is sketched in Appendix B.

6.3  Experimental setup

The data used in the application come from case studies provided by a Schneider 
Electric industrial site, equipped with solar panels and a battery, and submitted to 
three sources of randomness—namely, solar panels production, electrical demand 
and prices of batteries per kWh. We present hereby the different parameters of the 
instance under consideration.
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• Horizon: 20 years.
• Fast time step: 30 min.
• Slow time step: 1 day.
• Number of time steps: 350,400 (= (24 × 2) × (20 × 365)).
• Battery renewal capacity: between 0 and 1500 kWh with a increment 

of 100 kWh.

Fig. 1  Scenarios of battery prices over a twenty-year timespan

Fig. 2  Daily half hourly distribution of net demand (kWh)
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• Periodicity class: 4 classes, one per trimester of the year.

Data to model the cost of batteries and electricity

For the prices of batteries, we obtained a yearly forecast over 20 years from Statista.9 
We added a Gaussian noise to generate synthetic random batteries prices scenarios. 
We display in Fig. 1 the scenarios we generated.

Three scenarios are highlighted in Fig. 1; they correspond to the three scenarios 
we comment in the numerical results in Sect. 6.4.

For the price of electricity, we chose a “time of use” tariff defined by three rates:

• an off-peak rate at 0.0255$ between 22:00 and 7:00,
• a shoulder rate at 0.0644$ between 7:00 and 17:00,
• a peak rate at 0.2485$ between 17:00 and 22:00.

Data to model demand and production

In order to have a realistic dataset in the model described in Sect. 6.1, we use the 
data collected on 70 anonymized industrial sites monitored by Schneider Electric. 
This data set is openly available.10 We extracted the data of the site numbered 70. 
For this site, we display in Fig.  2 the half hourly distribution of the net demand 
(demand minus solar production) during one day.

Remark 10 (About the probabilistic independence of the data). Both batterie prices 
and net demands correspond to realistic data that are given as scenarios, and there is a 
priori no independence property for these data. Of course, it is possible to compute mar-
ginal probability distributions from these scenarios: at a given time step (d, m), collect all 
the values �d,m (the value �b

d
 if m = M+1 ) available from the scenarios and build a dis-

crete probability distribution from these values. This procedure gives probability distri-
butions at the half-hourly scale. This way of proceeding will be implemented to compute 
the resource and price intraday functions by Dynamic Programming (see Sect. 6.4.1).

6.4  Numerical experiments

The aim of the numerical experiments is to compute and evaluate policies induced 
by resource (resp. price) decomposition, that is, first solving an approximation 
of Problem  (34) by computing the resource intraday functions  L̂R

d
 in  (40) and the 

associated resource Bellman functions ̂V
R

d
 in (41) (resp. price intraday functions L̂P

d
 

in  (45) and price Bellman functions  V̂
P

d
 in  (46)) after all simplifications presented 

in Sect. 6.2.1 (resp. Sect. 6.2.2), and second evaluating the policies induced by the 

Bellman functions ̂V
R

d
 and  V̂

P

d
.

9 https:// www. stati sta. com/ stati stics/ 883118/ global- lithi um- ion- batte ry- pack- costs/.
10 https:// zenodo. org/ record/ 55104 00.

https://www.statista.com/statistics/883118/global-lithium-ion-battery-pack-costs/
https://zenodo.org/record/5510400
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6.4.1  Computation of the resource and price intraday functions

To compute the approximated resource intraday functions  L̂R
d
 as given in Eq.  (40) 

and the approximated price intraday functions L̂P
d
 as given in Eq. (45), we compute 

the marginal probability distributions of the noises at the fast time-scale as explained 
in Remark 10 and we apply the Dynamic Programming algorithm. Indeed, comput-
ing the intraday functions using Stochastic Programming would be very costly due 

Fig. 3  Resource (left) and price (right) intraday functions for each trimester

Fig. 4  Resource and price Bellman functions at day 1
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to the large number of fast time steps inside a slow time step: for example computing 
a price intraday function  (45) would require forming a scenario tree over 48 time 
steps for every possible (discretized) value of the pair (cd, phd+1) and solving the asso-
ciated optimization problem, i.e. a task too expensive in computation time.

We recall that the intraday functions are not computed for all possible days in 
the time horizon, but only for a day representing each periodicity class. Here we 
split the year of the industrial site data into the four traditional trimesters, each tri-
mester corresponding to one periodicity class. For each trimester, we model the net 
demand at a given half hour of the day by a discrete random variable with a support 
of size 10. The probability distribution of each discrete random variable is obtained 
by quantization, using k-means Kaut (2021), algorithm, the net demand realizations 
in the dataset associated with the half hour under consideration.

In the case of resource (resp. price) decomposition, we compute the intraday 
functions L̂R

d
 (resp. L̂P

d
 ) for every possible capacity cd and every possible exchange-

able energy hd − hd+1 (resp. every possible price  ph
d+1

 ). In this study, the possible 
values of the capacity cd are {0, 100… , 1500} kWh, whereas the possible values of 
the price ph

d+1
 are {0, 0.025, 0.05,… , 0.2}.

We display in Fig. 3 the resource and price intraday functions for each season 
(trimester) of a year. Resource intraday functions depend on daily exchangeable 
energy and capacity, whereas price intraday functions depend on the price associ-
ated with aging and capacity.

6.4.2  Computation of the resource and price Bellman functions

Once obtained all possible intraday functions L̂R
d
 and L̂P

d
 , the Bellman functions ̂V

R

d
 

and  V̂
P

d
 are respectively computed by the Bellman recursions  (41) and  (46), 

for  d ∈ [[0,D]] . We display in Fig.  4 the resource and price Bellman functions 
obtained for the first day of the time horizon.

Table 1  Computing times 
of the price and resource 
decomposition methods

Price (s) Resource (s)

Intraday functions CPU time 1053 2836
Value functions CPU time 6221 1515
Total CPU time 7274 4351
Intraday functions wall time 267 714
Value functions wall time 2227 1310
Total wall time 2494 2024

Table 2  Bounds obtained 
by resource and price 
decomposition

Price Resource

Lower (price) and upper (resource) bounds 2.14 M$ 2.24 M$



 T. Rigaut et al.

1 3

28 Page 32 of 37

We observe that the resource and price Bellman functions present approximately 
the same shape and are just separated by a relatively small gap. The same observa-
tion holds true for all days of the time span. The largest relative gap between these 
bounds is 7.90%. The relative gap at the initial state (s0, h0, c0) = (0, 0, 0) , that is, the 
battery no longer works and has to be replaced, is around 4.84%.

We gather in Table 1 the computing times of the price and resource decomposi-
tion algorithms, namely the total CPU times and the total wall times11 when paral-
lelization is on.

The computation is run on an Intel i7-8850H CPU @ 2.60 GHz 6 cores with 16 
GB RAM. Table 1 displays the times needed to compute the intraday functions and 
the Bellman functions. We observe that, whereas the price decomposition algorithm 
requires a significantly longer CPU time than the resource decomposition algorithm, 
the two decomposition algorithms require a comparable wall time when paralleliza-
tion is on. The main reason is that the parallelization of the computation of price 
Bellman functions decreases more significantly the computing time than the paral-
lelization for resource Bellman functions. The explanation is that the computation 
done in parallel is longer in the price case, hence the CPU time saved is not compen-
sated by too frequent memory sharings. The price intraday functions are also faster 
to compute because the price space is more coarsely discretized than the exchange-
able energy space.

Finally, in Table 2, we give the values ̂V
R

0
(x0) and V̂

P

0
(x0) of the resource and price 

Bellman functions at day d = 0 for the initial state x0 = (s0, h0, c0) = (0, 0, 0).
According to Sect. 4, these values are respectively an upper bound and a lower 

bound of the optimal value of Problem (34). Note however that the numerically com-
puted values given in Table 2 may fail to be upper and lower bounds of the optimal 
cost of Problem (34) since the resource and price intraday functions are obtained (i) 
using approximations as explained in Sects. 6.2.1 and 6.2.2, and (ii) using the mar-
ginal probability distributions of the noises at the fast time-scale (see Remark 10), 
thus these intraday functions are optimal only if the noises are independent random 
variables at the fast time-scale.

Table 3  Computing times of 
simulation

Price Resource

Average time to simulate a 
scenario

6.19 s 5.22 s

Average time to compute a 
decision

17.7 μs 14.9 μs

Table 4  Average simulation 
costs using original scenarios

Price Resource

Average cost over 1000 true scenarios 2.83 M$ 2.86 M$

11 Wall time measures how much time has passed for executing the code, as if you were looking at the 
clock on your wall.
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6.4.3  Simulation of the resource and price policies

We present now several simulation results. Table 3 displays the times needed to per-
form a 20 years simulation over one scenario of battery prices and net demands, 
from which we deduce the average time needed to compute a decision at each time 
step.

Simulation using scenarios

We draw  1000 “true” scenarios of battery prices and net demands over 20  years, 
that is, scenarios extracted from the realistic data of the problem. There is thus no 
more independence assumption available for these scenarios. Then, as explained 
in Sect. 5.1, we simulate the charge and renewal decisions that are made when using 
the intraday functions and the Bellman functions obtained by resource and price 
decomposition, in order to compare the performances of both methods. All simu-
lations start from the initial state (s0, h0, c0) = (0, 0, 0) . The average costs of these 
scenarios are given in Table 4.

The comparison of the average costs shows that both decomposition methods pro-
vide comparable performances. However, the price decomposition outperforms the 
resource decomposition by achieving on average 1.05% of additional economic sav-
ings. This slightly superior performance of the price decomposition is observed on 
every simulation scenario.

Fig. 5  Three simulations of the evolution of the battery health over 20 years

Table 5  Simulation results 
along three scenarios

Scenario 1 Scenario 2 Scenario 3

Total cost (resource) 2.757 M$ 2.825 M$ 3.200 M$
Total cost (price) 2.722 M$ 2.820 M$ 3.199 M$
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We also note that the average costs are 20–25% higher than the corresponding 
values of the Bellman functions at the initial day for the initial state given in Table 2. 
This is a somewhat surprising result since the values in Table 2 are lower (price) 
and upper (resource) bounds of the optimal value of the problem, provided that the 
white noise Assumption 2 is fulfilled. But, as explained at the end of Sect. 6.4.2, 
the intraday functions have been computed by dynamic programming, and thus the 
values obtained are optimal only if the noises are independent at the fast time-scale. 
The computation of the price and resource Bellman functions makes use of these 
intraday functions and moreover are optimal only if the battery prices are day by 
day independent. However, the simulations are made with scenarios where the net 
demands and the prices are likely to be strongly correlated, hence the discrepancies.

Analysis of some scenarios

We select three scenarios (the colored scenarios in Fig.  1) among the  1000 sce-
narios of battery prices and net demands over 20 years that we used in the previ-
ous paragraph, and we analyse the behavior of the policies induced by resource 
and price decompositions. We recall that all simulations start from the initial state 
(s0, h0, c0) = (0, 0, 0) , that is, the battery no longer works and has to be replaced. Fig-
ure 5 displays the health (or exchangeable energy in kWh) of the batteries at the end 
of each day for the three scenarios,and Table 5 gives the associated simulation costs. 
In the first simulation, price and resource decompositions lead to significantly dif-
ferent renewal decisions and different costs. A small battery, (100 kWh, that is, 400 

Fig. 6  Bellman function of first renewal day of Scenario 1 for health fixed at 100 %
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kWh of exchangeable energy12) is purchased at day d = 0 for both price and resource 
decomposition. But at day d = 2328 , another small battery is purchased in resource 
decomposition, whereas a large battery (1500 kWh, that is, 6 MWh of exchangeable 
energy) is purchased in price decomposition. Then, over the remaining time horizon, 
there is one battery renewal in price decomposition and two renewals in resource 
decomposition, hence a lower cost for price decomposition. In the second simula-
tion, resource and price decompositions produce very similar health trajectories and 
costs. This is even clearer for the third simulation for which the health trajectories 
and the costs are almost identical. The third simulation shows a case where battery 
prices are high, hence only small batteries, that is, 100 kWh, are purchased.

Price decomposition outperforms resource decomposition on the three scenar-
ios, but only by 1.27 % on Scenario 1 while the renewal decisions are significantly 
different. Our interpretation is that, in Scenario 1, it is almost as rewarding to buy 
either a big battery or a small battery taking into account the investment. Moreover, 
it seems that resource decomposition slightly underestimates the benefits of using a 
large battery compared to a small one. Indeed, we present in Fig. 6 the resource and 
price Bellman functions of the day d = 2328 (first battery renewal in Scenario 1), 
when the health of the battery is fixed to the value H associated with a large battery 

renewal (1500 kWh), that is, ̂V
R

2328
(H, ⋅) in (41) and V̂

P

2328
(H, ⋅) in (46). We observe 

that the resource Bellman function is significantly higher than the price Bellman 
function.

7  Conclusion

We have introduced the formal definition of a two-time-scale stochastic optimi-
zation problem. The motivation for two-time-scale modeling originated from a 
battery management problem over a long term horizon (20 years) with decisions 
being made every 30  min (charge/discharge). We have presented two algorith-
mic methods to compute daily Bellman functions to solve these generic prob-
lems—with an important number of time steps and decisions on different time-
scales–when they display monotonicity properties. Both methods rely on a 
Bellman equation applied at the slow time-scale, producing Bellman functions at 
this scale.

Our first method, called resource decomposition algorithm, is a primal decompo-
sition of the daily Bellman equation that requires to compute the value of a multi-
stage stochastic optimization problem parameterized by a stochastic resource. Some 
monotonicity properties here make it possible to relax the coupling constraint and to 
replace the stochastic resource by a deterministic one, yielding an upper bound for 
the slow time-scale Bellman functions. Instead of this simplification, we could have 
turned the almost sure coupling constraint into a constraint in expectation. It would 
be interesting to compare this with our approach.

12 The integer function � in Eq. (31b) is such that �(100) = �(1500) = 4.
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We address a similar and related difficulty in our price decomposition algorithm. 
It requires the computation of the value of a stochastic optimization problem param-
eterized by a stochastic price. Once again we replace it by a deterministic price, 
which is equivalent to dualize an expectation target constraint. This makes the pre-
vious enhancement proposal even more relevant. Our algorithm produces a lower 
bound for the slow time-scale Bellman functions that reveals to produce better 
results in simulation than the ones obtained by using the resource Bellman functions 
(we already have observed this numerical favorable phenomenon in Carpentier et al. 
(2020)).

Finally, we have shown with a realistic numerical application that these methods 
make it possible to compute design and control policies for problems with a very 
large number of time steps. But they could also be used for single-time-scale prob-
lems that exhibit monotonicity, periodicity and a large number of time steps.

Supplementary Information The online version contains supplementary material available at https:// doi. 
org/ 10. 1007/ s10287- 024- 00510-5.
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