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Abstract
Multi-horizon stochastic programming includes short-term and long-term uncer-
tainty in investment planning problems more efficiently than traditional multi-stage 
stochastic programming. In this paper, we exploit the block separable structure of 
multi-horizon stochastic linear programming, and establish that it can be decom-
posed by Benders decomposition and Lagrangean decomposition. In addition, we 
propose parallel Lagrangean decomposition with primal reduction that, (1) solves 
the scenario subproblems in parallel, (2) reduces the primal problem by keeping one 
copy for each scenario group at each stage, and (3) solves the reduced primal prob-
lem in parallel. We apply the parallel Lagrangean decomposition with primal reduc-
tion, Lagrangean decomposition and Benders decomposition to solve a stochastic 
energy system investment planning problem. The computational results show that: 
(a) the Lagrangean type decomposition algorithms have better convergence at the 
first iterations to Benders decomposition, and (b) parallel Lagrangean decomposi-
tion with primal reduction is very efficient for solving multi-horizon stochastic pro-
gramming problems. Based on the computational results, the choice of algorithms 
for multi-horizon stochastic programming is discussed.
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1  Introduction

Multi-horizon stochastic programming (MHSP) is a powerful modelling approach 
that can include long-term and short-term uncertainty for long-term investment 
planning problems with much smaller model size than traditional multi-stage sto-
chastic programming (Kaut et al. 2014). MHSP was further formalised in Escudero 
and Monge (2018). In addition, the bounds and formulation of MHSP have been 
studied (Maggioni et al. 2020). The literature on MHSP is much more sparse com-
pared with multi-stage stochastic programming. Existing literature mainly centres 
around the application of MHSP for long-term investment planning problems, espe-
cially in energy system planning (Zhang et al. 2022; Backe et al. 2022). The applica-
tions show that although MHSP reduces the problem size, the monolithic model can 
still be hard to solve. Therefore, in this paper, we extend the literature by proposing 
and comparing decomposition algorithms for MHSP.

Fewer decomposition methods for MHSP have been proposed. Mazzi et  al. 
(2021) proposed adaptive Benders decomposition to solve large-scale optimisation 
problems with column bounded block-diagonal structure, where subproblems differ 
in right-hand side and cost coefficients. MHSP belongs to this class of optimisation 
problems if it is formulated using a node formulation and the operational scenarios 
are identical in all nodes. They apply the adaptive Benders decomposition to solve 
a stochastic investment planning problem, and show that the computational time 
reduces significantly. The limitation of Mazzi et al. (2021) is that adaptive Benders 
cannot solve problems where operational scenarios are different in each node. Zhang 
et  al. (2022) proposed stabilised adaptive Benders decomposition to solve MHSP, 
and apply it to solve a large-scale power system planning problem. Furthermore, 
Zhang et al. (2023) proposed centre point stabilised adaptive Benders decomposi-
tion for solving large scale problem with integer variables. The existing literature 
only has focused on developing Benders type decomposition utilising the node for-
mulation of MHSP. Decomposition algorithms that utilise the scenario formulation 
of MHSP are missing in the literature.

In this paper, we propose Parallel Lagrangean decomposition with Primal Reduc-
tion (PLPR) to solve linear programming based MHSP with a scenario formulation. 
In addition, we show that scenario based MHSP can be decomposed by Lagrangean 
decomposition. Compared with Lagrangean decomposition, the PLPR solves the 
scenario subproblem in parallel, and reduces the primal problem by keeping one 
copy in each scenario group at each stage, and solves the primal problem in par-
allel. The choice of Lagrangean type decomposition and Benders type decomposi-
tion is not clear for MHSP. Therefore, we apply Lagrangean decomposition, Benders 
decomposition and PLPR to solve MHSP problem instances to provide some com-
putational insights.

The following assumptions are made in this paper: (1) each operational problem 
can be solved using commercial linear programming solvers, (2) the operational 
problem in each strategic node has several scenarios but not a multi-stage stochastic 
programming problem itself, and (3) the problem has relatively complete recourse at 
every stage.
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We apply the proposed algorithms to solve the REORIENT model (Zhang et al. 
2023). The REORIENT model is an MHSP proposed for integrated energy system 
planning considering investment, retrofit and abandonment. In this paper, we turn 
off the retrofit and abandonment options. Therefore, the problem instances only have 
continuous variables.

The contributions of this paper are the following: (1) it is the first paper formal-
ising and proposing decomposition methods based on node formulation and sce-
nario formulation of MHSP, (2) PLPR is proposed to utilise the special structure 
of MHSP to potentially reduce computational time significantly, and (3) the per-
formance of Benders decomposition and Lagrangean decomposition is compared 
and analysed.

The outline of the paper is as follows: Sect. 2 provides definition of MHSP and 
highlight the differences between MHSP and traditional multi-stage stochastic pro-
gramming. Section 3 first introduces a node formulation of MHSP and formalises 
that it can be decomposed by Benders type algorithms. Section 4 provides a scenario 
formulation of MHSP, and shows that MHSP can be decomposed by Lagrangean 
decomposition. Section 5 proposes the PLPR algorithm. Section 6 presents the sto-
chastic investment planning model used in the case study. Section 7 reports the com-
putational results and numerical analysis. Section  8 discusses the implications of 
the method and results and summarises the limitations of the research. Section  9 
concludes the paper and suggests further research.

2 � MHSP and multi‑stage stochastic programming

MHSP is a modelling approach for stochastic programming with short-term and 
long-term uncertainty. The spirit of MHSP is to branch only based on long-term 
uncertainty between the long-term stages. The operational nodes can be seen as 
embedded into their respective long-term nodes. This is based on the assumption 
that long-term decisions typically do not depend directly on any particular short-
term scenario but rather on the overall short-term problem during the time since the 
previous long-term decisions. In this way, the short-term nodes that are embedded in 
a long-term node can be treated as a block. Therefore, MHSP has a block separable 
property that can be exploited for efficient decomposition algorithms.

On the contrary, in traditional multi-stage stochastic programming, the scenario 
tree is branched based on both long-term and short-term uncertainty. This leads to 
a larger scenario tree. Also, nested Benders decomposition is needed to decompose 
traditional multi-stage stochastic programming under short-term and long-term 
uncertainty (Birge 1985). A comparison between the MHSP and traditional multi-
stage stochastic programming is presented in Fig. 1. Note that here, the short-term 
uncertainty embedded in the long-term node is revealed only once. However, the 
short-term problem can be a multi-stage stochastic programming itself. In this 
paper, we consider the case where the short-term uncertainty reveals only once in its 
embedded long-term node.
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3 � Benders decomposition

In this section, we first describe a general node formulation of MHSP, and show 
that it can be decomposed using Benders decomposition. An illustration of the node 
formulation of MHSP is presented in Fig.  1b, the blue circles represent strategic 
nodes and red squares represent operational nodes. We then explain that due to the 
special structure of MHSP, Benders can be directly applied for solving multi-stage 
stochastic programming. Traditionally, multi-stage stochastic programming is usu-
ally solved using nested Benders decomposition (Birge 1985).

When formulating MHSP using a node formulation, the non-anticipativity con-
straints are not expressed explicitly. Instead, indices are used to denote the ancestor 
node of a node in the scenario tree. We denote the strategic decision nodes by i ∈ I  , 
and the set of strategic decision nodes k that are ancestors to a decision node i by Ii . 
The Si denotes the set of operational scenarios that are embedded in strategic node 
i. The set of operational stages is represented by Ti . The superscripts indicate the 
type of nodes that vectors and matrices belong to. The subscripts are the indices. 
The xi are the strategic decision variables, and yits are the operational variables. The 
deterministic equivalent of the linear programming MHSP is defined as a full master 
problem given by Eqs. (1). 

(1a)min
xi,yits

∑
i∈I

𝜋i

(
c⊤
i
xi +

∑
s∈Si

𝜔is

∑
t∈Ti

q⊤
its
Qitsyits

)

(1b)s.t. TI
k
xk +WI

i
xi ≤ hI

i
, i ∈ I ⧵ {1}, k ∈ Ii,

(1c)T0xi ≤ h0, i = 1,

Fig. 1   Comparison between a multi-stage stochastic programming and b MHSP. (blue circles: strategic 
nodes, red squares: operational periods)
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 where x and y include all variables xi and yits , and where �i is the probability of 
strategic node i, sum of �i in each strategic stage is equal to 1, ci ∈ ℝ

ni , hI
i
∈ ℝ

mi , 
WI

i
∈ ℝ

mi×ni , are vectors and matrices at strategic node i ∈ I  , and TI
k
∈ ℝ

mi×nk is the 
matrix for its ancestor nodes k ∈ Ii . We assume that if i = 1 , then TI

k
= T0 , WI

i
= 0 , 

and hI
i
= h0 . The probability of operational scenario s that is embedded in strate-

gic node i is denoted by �is , and 
∑

s∈Si
�is = 1 . Operational vectors and matrices 

at operational node i, in operational scenario s, operational stage t are given by 
TO
its
∈ ℝ

mit×nit , WO
its
∈ ℝ

mit×nit , qits ∈ ℝ
nit , hO

its
∈ ℝ

nit . For operational stage t = 1 , we 
have TO

i1s
∈ ℝ

mi1×ni . Equations (1) provide a general mathematical formulation for 
MHSP.

By fixing the complicating variable xi , we can decompose the full size problem 
using Benders decomposition. The Benders reduced master problem is as follows, 

 where Constraint (2d) are the projected cuts added to the Benders reduced master 
problem until iteration j − 1 , �i is a variable for the approximated cost of the opera-
tional problem that is embedded in strategic node i. The set of cutting planes associ-
ated with subproblem i built up to iteration j − 1 is denoted by Fi(j−1) . The � collects 
the optimal objective value of each subproblem i until iteration j − 1 . The subgradi-
ent w.r.t. xij until iteration j − 1 is collected by � . The sampled points until iteration 
j − 1 are denoted by x.

For a given node i, the Benders subproblem is formulated as 

(1d)TO
its
xi +WO

its
yits ≤ hO

its
, i ∈ I, t = 1, s ∈ Si,

(1e)TO
its
yi(t−1)s +WO

its
yits ≤ hO

its
, i ∈ I, t ∈ Ti ⧵ {1}, s ∈ Si,

(1f)x ≥ 0, y ≥ 0,

(2a)min
xi

∑
i∈I

𝜋i
(
c⊤
i
xi + 𝛽i

)

(2b)s.t. TI
k
xk +WI

i
xi ≤ hI

i
, i ∈ I ⧵ {1}, k ∈ Ii,

(2c)T0xi ≤ h0, i = 1,

(2d)𝛽i ≥ 𝜃 + 𝜆⊤(xi − x), (x, 𝜃, 𝜆) ∈ Fi(j−1), i ∈ I,

(2e)x ≥ 0,

(3a)min
yits

𝜋i

∑
s∈Si

𝜔isq
⊤

its
Qitsyits
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 and the Benders subproblems can be solved in parallel.
Traditionally, a stochastic linear program with multiple stages is formulated as a multi-

stage stochastic program (Birge and Louveaux 2011), and then such a problem can be 
decomposed and solved using nested Benders decomposition. Here we show that by 
exploiting the special structure of MHSP, we can decompose the problem using classic 
Benders decomposition (Benders 1962) to solve multi-stage stochastic programs. In the 
Benders reduced master problem, we solve for all strategic nodes, and the operational 
problems are the Benders subproblems. In addition, if WO

ist
 is the same in all nodes, and 

the operational problem has certain properties, one can improve Benders decomposition 
by avoiding solving all operational problems at each iteration, such as the adaptive Bend-
ers decomposition (Mazzi et al. 2021; Zhang et al. 2022). These approaches also utilise 
the property of MHSP that Benders subproblems are independent.

The Benders decomposition is presented in Algorithm 1. 

Remark 1  The block separable structure of MHSP enables the application of two-
stage Benders to solve a multi-stage stochastic programming problem.
Proof  MHSP is block separable due to the fact that the blocks of short-term nodes 
(red squares in Fig. 1b) are independent from each other.

Following the proposition in Louveaux (1986), MHSP with short-term and long-
term uncertainty is equivalent to a two-stage stochastic program where the first stage 
is the long-term problem involves only the long-term decisions and the value func-
tion of the second stage is the probability weighted sum of the short-term recourse 
function.

(3b)s.t. TO
its
xi +WO

its
yits ≤ hO

its
, i ∈ I, t = 1, s ∈ Si,

(3c)TO
its
yi(t−1)s +WO

its
yits ≤ hO

its
, i ∈ I, t ∈ Ti ⧵ {1}, s ∈ Si,

(3d)y ≥ 0,
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Therefore, a two-stage Benders decomposition can be applied to solve MHSP, 
where the master problem includes all the long-term nodes, and the blocks of short-
term nodes are independent subproblems. 	�  ◻

4 � Lagrangean decomposition

MHSP can also be formulated in a scenario based formulation. It can then be 
decomposed by Lagrangean decomposition. When the problem is large, Benders 
decomposition may have a larger and more ill-conditioned master problem and be 
hard to converge. In such a case, Lagrangean decomposition may be preferred.

4.1 � Scenario formulation for MHSP

Here, we present a scenario formulation for MHSP. We denote the 
set of strategic stages by h ∈ H , and the set of strategic scenar-
ios by v ∈ SI . The set of operational scenarios is denoted by s ∈ SO

hv
 , 

and the set of operational stages is denoted by t ∈ TO
hv

 . We define set 
 : = {(h, v, v′):h ∈ , v, v′ ∈  I , v and v′ are indistinguishable in strategic stage h} for formulating 
the Non-Anticipativity Constraint (NAC). Variables xhv and yhvts are the invest-
ment and operational variables respectively. The mathematical formulation of the 
full size problem is given as follows, 

where x and y include all variables xhv and yhvts , and where �v is the probability 
of strategic scenario v, sum of �v is equal to 1, chv ∈ ℝ

nhv , hI
hv
∈ ℝ

mhv , WI
v
∈ ℝ

mhv×nhv , 
are vectors and matrices for strategic stage h ∈ H , scenario v ∈ SI , and 

(4a)min
xhv,yhvts

�
v∈SI

𝜋v

⎛⎜⎜⎝
�
h∈H

⎛⎜⎜⎝
c⊤
hv
xhv +

�
s∈SO

hv

𝜔hvs

�
t∈TO

hv

q⊤
hvts

Qhvtsyhvts

⎞⎟⎟⎠

⎞⎟⎟⎠

(4b)s.t. TI
(h−1)v

x(h−1)v +WI
hv
xhv ≤ hI

hv
, h ∈ H ⧵ {1}, v ∈ SI

,

(4c)T0xhv ≤ h0, h = 1, v ∈ SI
,

(4d)
TO
hvts

xhv +WO
hvts

yhvts ≤ hO
hvts

, h ∈ H, v ∈ SI
, t = 1, s ∈ SO

hv
,

(4e)TO
hvts

yhv(t−1)s +WO
hvts

yhvts ≤ hO
hvts

,h ∈ H, v ∈ SI
, t ∈ TO

hv
⧵ {1}, s ∈ SO

hv
,

(4f)xhv = xhv� , (h, v, v�) ∈ J,

(4g)x ≥ 0, y ≥ 0,
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TI
(h−1)v

∈ ℝ
mhv×nhv is the matrix for its previous stage. We assume that if h = 1 , 

TI
hv
= T0 , WI

hv
= 0 , and hI

hv
= h0 . The probability of operational scenario s is 

denoted by �hvs , and 
∑

s∈SO
hv
�hvs = 1 . Operational vectors and matrices in strategic 

stage h, strategic scenario v, operational stage t, operational scenario s, are given 
by TO

hvts
∈ ℝ

mvt×nvt , WO
hvts

∈ ℝ
mhvts×nvt , qhvts ∈ ℝ

nvt , hO
hvts

∈ ℝ
nvt . For operational stage 

t = 1 , we have TO
hv1s

∈ ℝ
mv1×nv . Equations (4) correspond to a general scenario 

based mathematical formulation for MHSP. Equation (4f) is the NAC. Note that 
due to the properties of the MHSP, operational decisions are independent of future 
strategic scenarios, and the operational decision variables are embedded in the 
strategic node. Therefore, NAC is not needed for operational decisions. We denote 
the full size scenario based formulation, Eqs. (4), by Lagrangean master problem. 
The NACs, Eq. (4f), are the complicating constraints that link the scenarios. An 
illustration of the scenario formulation for MHSP is presented in Fig. 2.

By relaxing Eq. (4f), one can obtain the Lagrangean dual. The problem, given by the 
Eqs. (4), is then decomposed by scenarios. The Lagrangean dual is as follows, 

(5a)
min
xhv,yhvts

�
v∈SI

𝜋v

⎛
⎜⎜⎝
�
h∈H

⎛
⎜⎜⎝
c⊤
hv
xhv +

�
s∈SO

hv

𝜔hvs

�
t∈TO

hv

q⊤
hvts

Qhvtsyhvts)

⎞
⎟⎟⎠

⎞
⎟⎟⎠
−

�
(h,v,v�)∈J

𝜆⊤
hvv�

(xhv − xhv� )

Fig. 2   Illustration of scenario formulation for MHSP (blue circles: strategic nodes, red squares: opera-
tional periods). The blue dashed lines represent the NAC



1 3

Decomposition methods for multi‑horizon stochastic… Page 9 of 24  32

 where �hvv′ is the Lagrangean multiplier. The Lagrangean dual can be solved per 
scenario v ∈ SI in parallel. We use the subgradient method to update the Lagrangean 
multiplier. The Lagrangean decomposition algorithm is presented in Algorithm 2. 
A bottleneck strategy is used to construct a feasible solution from the relaxed solu-
tions. When restoring the NAC constraint for a group of scenarios, the decision vari-
able xhv in all scenarios are forced to take the relaxed solution from the scenario 
with the largest uncertain cost coefficients and the smallest absolute uncertain right 
hand side parameters element wise. This is because this scenario can be regarded as 
potentially most sensitive to the dual Lagrangean function. If the solution is feasible 
for this scenario, it is feasible for the other scenarios. For simplifying the notation, 
we denote the objective value of each Lagrangean subproblem v at iteration j as �vj . 

(5b)s.t. TI
(h−1)v

x(h−1)v +WI
hv
xhv ≤ hI

hv
, h ∈ H ⧵ {1}, v ∈ SI

,

(5c)T0xhv ≤ h0, h = 1, v ∈ SI
,

(5d)TO
hvts

xhv +WO
hvts

yhvts ≤ hO
hvts

, h ∈ H, v ∈ SI
, t = 1, s ∈ SO

hv
,

(5e)
TO
hvst

yhv(t−1)s +WO
hvts

yhvts ≤ hO
hvts

, h ∈ H, v ∈ SI
, t ∈ TO

hv
⧵ {1}, s ∈ SO

hv
,

(5f)x ≥ 0, y ≥ 0,



	 H. Zhang et al.

1 3

32  Page 10 of 24

5 � PLPR

This section proposes PLPR. In PLPR, the subproblems are solved in parallel, and a 
primal reduction is proposed to potentially speed up the algorithm.

The primal reduction step is to reduce the size of Eqs. (4) and parallelise the solu-
tion process. In Lagrangean decomposition, to obtain an upper bound, one needs to 
construct a feasible solution from the relaxed solution and solve the original prob-
lem, meaning solving Eqs. (4) with a fixed investment solution xhv . When the origi-
nal problem is large, the full size problem may still be hard to solve after fixing 
some variables.

Assuming a feasible strategic solution xhvj is given as parameters, the investment-
related costs can be directly calculated. Also, the primal problem becomes a group 
of independent operational problems and parallelisable. In addition, not all opera-
tional problems need to be solved because once the NAC is restored, some oper-
ational problems become exactly equivalent to each other. In fact, the number of 
operational problems that need to be solved is theoretically reduced to |I| , where I  is 
the set of long-term nodes in the node formulation. This is achieved by solving only 
one of the short-term problems for the scenarios that are governed by the same NAC 
constraint. This is because for the scenarios governed by the same NAC constraints, 
the short-term problems are simply copy of each other and are exactly equivalent to 
each other. Each operational problem is indexed by strategic stage h ∈ H and strate-
gic scenario v ∈ SRI , where SRI is the reduced set of scenarios. For a given problem 
h ∈ H, v ∈ SRI , we define the corresponding subproblem as a node subproblem. The 
formulation of the node subproblem is given as follows, 

A Lagrangean upper bound can be obtained after solving all the node subprob-
lems. Here, c⊤

hv
xhv becomes a constant in the objective function. This reduction can 

produce an exact upper bound because the structure of MHSP makes the operational 
problem only depend on its investment decisions. The computational time can be 
significantly reduced by reducing the size of the primal problem and parallelising 
the solving process. The PLPR is presented in Algorithm 3. To simplify the nota-
tion, we denote the probability weighted operational cost, 
𝜋v

∑
s∈SO

hv
𝜔hvs

∑
t∈TO

hv
q⊤
hvts

Qhvtsyhvts , as �NSP
hv

 . 

(6a)min
yhvts∈Y

𝜋v

⎛⎜⎜⎝
c⊤
hv
xhv +

�
s∈SO

hv

𝜔hvs

�
t∈TO

hv

q⊤
hvts

Qhvtsyhvts

⎞⎟⎟⎠

(6b)s.t. TO
hvts

xhv +WO
hvts

yhvts ≤ hO
hvts

, h ∈ H, v ∈ SI
, t = 1, s ∈ SO

hv
,

(6c)
TO
hvts

yhv(t−1)s +WO
hvts

yhvts ≤ hO
hvts

, h ∈ H, v ∈ SI
, t ∈ TO

hv
⧵ {1}, s ∈ SO

hv
,

(6d)y ≥ 0.
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Remark 2  There is no dedicated NAC constraint for operational decision variables 
in MHSP because the operational decision variables are embedded in the investment 
node. This leads to fewer Lagrangean multipliers and a simpler search for a feasible 
solution.

6 � Mathematical model

This section presents an MHSP model for a power system investment and opera-
tional planning problem adapted from Zhang et al. (2022, 2023). The model is to 
choose the cost optimal investment strategy and operational scheduling for a power 
system to achieve emission targets.

The problem under consideration aims to make optimal investment and opera-
tional decisions for a power system that satisfies the emission reduction goals under: 
(a) short-term uncertainty, including renewable energy availability and power 
demand; and (b) long-term uncertainty, including CO2 budget, CO2 tax, and long-
term power demand.

We consider teachnologies including: (a) thermal generators (Coal-fired plant, 
OCGT, CCGT, Diesel, and nuclear plants); (b) generators with Carbon Capture 
and Storage (CCS) (Coal- fired plant with CCS); (c) renewable generators (offshore 
wind, onshore wind and solar PV); and (d) electric storage (PHES and lithium). 
The capital expenditures and fixed operational costs are assumed to be known. The 
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problem is to determine: (a) the capacities of technologies and (b) operational strate-
gies that include scheduling of generators, storage to meet the power demand with 
minimum overall investment, operational and environmental costs.

Here, we focus on how the proposed algorithms fit the mathematical model. We 
use the conventions that calligraphic capitalised Roman letters denote sets, upper 
case Roman and lower case Greek letters denote parameters, and lower case Roman 
letters denote variables. The indices are subscripts, and name extensions are super-
scripts. The names of variables, parameters, sets and indices are single symbols.

6.1 � Nomenclature

Investment planning model sets

H	� Set of investment stages, h
Hh	� Set of all earlier investment stages of stage h ( h ∈ H ), h
I 	� Set of operational nodes, i
I0	� Set of investment nodes, i0
Ii	� Set of investment nodes i0 (i0 ∈ I0) ancestor to operational node i (i ∈ I)

P	� Set of technologies, p, ( P = G ∪R ∪ S)

SI	� Set of investment scenarios, v

Investment planning model variables

cINV	� Total expected investment cost (€)
cOPE
i

	� Estimated operational cost in operational node i ( i ∈ I  ) (€)
xAcc
pi∕phv

	 �Accumulated capacity of device p in operational node i/ in stage h scenario 
v ( p ∈ P, i ∈ I, h ∈ H, v ∈ SI ) [MW]

xInst
pi∕phv

	� Newly invested capacity of device p in investment node i0 / in stage h sce-
nario v ( p ∈ P, i ∈ I0, h ∈ H, v ∈ SI ) [MW]

Operational model parameters

CG
g
∕CSE

s
	� Total operational cost of a generator g/ a storage facility s ( g ∈ G / s ∈ S ) 

[€/MW]
EG
g

	� Emission factor of gas turbine g (g ∈ G) [tonne/MWh]
Ht	� Number of hour(s) in one operational period t ( t ∈ T )
Wt	� Probability multiplied weight of operation period t ( t ∈ T )
�G
g

	� Maximum ramp rate of gas turbines ( g ∈ G ) [MW/MW]
�SE
s

	 �Efficiency of electricity storage s ( s ∈ S)

Operational model sets

G	� Set of thermal generators, g
N 	� Set of time slices, n
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R	� Set of renewable generations, r
S	� Set of electricity storage, s
T 	� Set of hours in all time slices, t
Tn	� Set of hours in time slice, n

Operational model variables

pG
git∕ghvt

	� Power generation of gas turbine g in operational node i in period t/ in stage 
h scenario v period t ( g ∈ G, i ∈ I, h ∈ H, v ∈ SI

, t ∈ T  ) [MW]
pGShedP
it∕hvt

	� Generation shed in operational node i/ in stage h scenario v period t 
( i ∈ I, h ∈ H, v ∈ SI

, t ∈ T  ) [MW]
pShedP
it∕hvt

	� Load shed in operational node i/ in stage h scenario v in period t 
( i ∈ I, h ∈ H, v ∈ SI

, t ∈ T  ) [MW]
pSE+
sit∕shvt

	� Charge power of electricity storage s in operational node i/ in stage h sce-
nario v period t ( s ∈ S, i ∈ I, h ∈ H, v ∈ SI

, t ∈ T  ) [MW]
pSE−
sit∕shvt

	� Discharge power of electricity storage s in operational node i/ stage h sce-
nario v in period t(s ∈ S, i ∈ I, h ∈ H, v ∈ SI

, t ∈ T  ) [MW]
qSE
sit∕shvt

	� Energy level of electricity storage s in operational node i/ in stage h sce-
nario v at the start of period t ( s ∈ S, i ∈ I, h ∈ H, v ∈ SI

, t ∈ T  ) [MWh]

Uncertain parameters

�E
i∕hv

	� Carbon emission budget in operational node i/ in stage h scenario v 
( i ∈ I, h ∈ H, v ∈ SI ) [tonne]

�DP
i∕hv

	� Long-term demand scaling in operational node i/ in stage h scenario v 
( i ∈ I, h ∈ H, v ∈ SI)

C
CO2

i∕hv
	� CO2 cost in operational node i/ in stage h scenario v ( i ∈ I, h ∈ H, v ∈ SI ) 

[€/tonne]
PDP
t

	� Power demand in period t (t ∈ T) [MW]
RR
rt
	 �Capacity factor of renewable unit r in period t ( r ∈ R, t ∈ T )

6.2 � Investment planning model (Benders master problem)

In this section, we present the investment planning problem Eqs. (7) that follows 
the general formulation of the Benders reduced master problem given by Eqs. (2). 

(7a)min cINV + �
∑
i∈I

�I
i
cOPE
i

(7b)s.t. cINV =
∑
i∈I0

�
I0
i
�
I0
i

∑
p∈P

CInv
pi
xInst
pi

+ �
∑
i∈I

�I
i
�I
i

∑
p∈P

CFix
pi
xAcc
pi
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The total cost for investment planning, Eq. (7a), consists of actual discounted 
investment costs and discounted fixed operating and maintenance costs cINV , as 
well as the expected operational cost of the system over the time horizon 
�
∑

i∈I �
I
i
cOPE . Here, � is a scaling factor that depends on the time step between 

two successive investment nodes. Constraint (7c) states that the accumulated 
capacity of a technology xAcc

pi
 in an operational node equals the sum of the histori-

cal capacity XHist
p

 and newly invested capacities xInst
pi

 in its ancestor investment 
nodes Ii . The parameter XMax

p
 denotes the maximum accumulated capacity of 

technologies. We define xi =
(
{xAcc

pi
, p ∈ P},�DP

i
,�E

i

)
, i ∈ I  that collects all right 

hand side coefficients, and will be fixed in the Benders subproblem Eqs. (8) 
through vector xi . Also, ci =

(
C
CO2

i

)
, i ∈ I  collects all the cost coefficients into 

vector ci.

6.3 � Operational model (Benders subproblem)

We now compute the operational cost cOPE(xi, ci) at one operational node i ∈ I  by 
solving Benders subproblem Eqs. (8) given the decisions xi and ci determined in the 
master problem Eqs. (7). 

(7c)
xAcc
pi

= XHist
pi

+
∑

i0∈Ii|�
(
IL
i
−IL

i0

)
≤HP

p

xInst
pi

, p ∈ P, i ∈ I,

(7d)xAcc
pi

≤ XMax
p

, p ∈ P, i ∈ I,

(7e)cOPE
i

≥ 𝜃 + 𝜆⊤(xi − x)(x, 𝜃, 𝜆) ∈ Fi(j−1), i ∈ I,

(7f)xInst
pi

, xAcc
pi

∈ ℝ
+

0
.

(8a)min
∑
t∈T

WtHt

(∑
g∈G

CG
g
pG
git

+
∑
s∈S

CSE
s
pSE+
sit

+ CShedPpShedP
it

)

(8b)s.t. pG
git

≤ xAcc
gi

, g ∈ G, t ∈ T,

(8c)pSE+
sit

≤ xAcc
si

, s ∈ S, t ∈ T,

(8d)pSE−
sit

≤ xAcc
si

, s ∈ S, t ∈ T,

(8e)qSE
sit

≤ �SE
s
xAcc
si

, s ∈ S, t ∈ T,
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The operational subproblem corresponds to Benders subproblem Eqs. (3). The oper-
ational cost includes total operating costs of all generators and storage facilities 
CG
g
pG
gt
+ CS

s
pSE+
sit

 and load shedding costs CShedPpShedP
it

 . The parameters CG
g

 and CSE
s

 
include the variable operational cost of generators and storage. For thermal generators, 
CG
g

 also includes the fuel cost and the CO2 tax charged for the emissions of generators. 
Constraint (8f) captures how fast thermal generators can ramp up or down their power 
output, respectively. The parameter �G

g
 is the maximum ramp rate of thermal genera-

tors. The power balance, Constraint (8g), ensures that in one operational period t, the 
sum of total power generation of thermal generators pG

git
 , power discharged from all the 

electricity storage pSE−
sit

 , renewable generation RR
t
xAcc
ri

 , and load shed pShedP
it

 equals the 
sum of power demand �DP

i
PDP
t

 , and power generation shed pGShedP
it

 . The parameter RR
rt
 

is the capacity factor of a renewable unit that is a fraction of the nameplate capacity 
xAcc
ri

 . Constraint (8h) states that the state of charge qSE
sit

 in period t + 1 depends on the 
previous state of charge qSE

sit
 , the charged power pSE+

sit
 and discharged power pSE−

sit
 . The 

parameter �SE
s

 represent the charging efficiency. Constraint (8i) limits the total emis-
sion. The parameter Ht is the length of the period t. The symbol EG

g
 is the emission fac-

tor per unit of power generated. The capacities xAcc
pi

 , scaling factor of demand �DP
i

 and 
CO2 budget �E

i
 are passed from the master problem Eqs. (7) via vector xi and CO2 tax 

that is included in cost coefficient CG
g

 is passed from master problem Eqs. (7) via vector 
ci.

6.4 � Lagrangean subproblem

In Lagrangean decomposition, the subproblem corresponds to each scenario without 
the NAC constraint. Unlike Benders decomposition, which projects the operational 
decision onto the investment space, the Lagrangean subproblem keeps a copy of a 
part of the original problem. The Lagrangean subproblem for scenario v ∈ SI is as 
follows: 

(8f)
− �G

g
xAcc
gi

≤ pG
git

− pG
gi(t−1)

≤ �G
g
xAcc
gi

, g ∈ G, n ∈ N, t ∈ Tn,

(8g)

∑
g∈G

pG
git

+
∑
s∈S

pSE−
sit

+
∑
r∈R

RR
rt
xAcc
ri

+ pShedP
it

= �DP
i

PDP
t

+
∑
s∈S

pSE+
sit

+ pGShedP
it

, t ∈ T,

(8h)
qSE
si(t+1)

= qSE
sit

+ Ht

(
�SE
s
pSE+
sit

− pSE−
sit

)
, s ∈ S, n ∈ N, t ∈ Tn,

(8i)
∑
t∈T

∑
g∈G

WtHtE
G
g
pG
git

≤ �E
i
,

(8j)pG
git
, pShedP

it
, pSE+

sit
, pSE−

sit
, qSE

sit
, pGShedP

it
∈ ℝ

+

0
.
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Equations (9) correspond to the Lagrangean dual Eqs. (5). The objective function 
of the Lagrangean subproblem consists of the total investment and operational costs 
in all stages in scenario v, and the penalty term 

∑
p∈P

∑
h∈H �phvx

Inst
phv

 for the deviation 
from the NAC constraint, where �phv are the Lagrangean multipliers. The 

(9a)

min
∑

h∈
�Hh �

SI
v

(

∑

p∈

(

CInv
phvx

Inst
pv + �CFix

phvx
Acc
phv

)

+�
∑

t∈
WtHt

(

∑

g∈
CG
g p

G
ghvt +

∑

s∈
CSE
s pSE+shvt + CShedPpShedPhvt

))

+
∑

p∈

∑

h∈
�phvxInstphv

(9b)s.t. xAcc
phv

= XHist
phv

+
∑

h0∈Hh|�(h−h0)≤HP
p

xInst
phv

, p ∈ P, h ∈ H,

(9c)xAcc
phv

≤ XMax
p

, p ∈ P, h ∈ H,

(9d)pG
ghvt

≤ xAcc
ghv

, g ∈ G, h ∈ H, t ∈ T,

(9e)pSE+
shvt

≤ xAcc
shv

, s ∈ S, h ∈ H, t ∈ T,

(9f)pSE−
shvt

≤ xAcc
shv

, s ∈ S, h ∈ H, t ∈ T,

(9g)qSE
shvt

≤ �SE
s
xAcc
shv

, s ∈ S, h ∈ H, t ∈ T,

(9h)
−�G

g
pAccG
ghv

≤ pG
ghvt

− pG
ghv(t−1)

≤ �G
g
pAccG
ghv

, g ∈ G, h ∈ H, n ∈ N, t ∈ Tn,

(9i)

∑
g∈G

pG
ghvt

+
∑
s∈S

pSE−
shvt

+
∑
r∈R

RR
rt
xAcc
rhv

+ pShedP
hvt

=

�DP
hv

PDP
t

+
∑
s∈S

pSE+
shvt

+ pGShedP
hvt

, h ∈ H, t ∈ T,

(9j)
qSE
shv(t+1)

= qSE
shvt

+ Ht

(
�SE
s
pSE+
shvt

− pSE−
shvt

)
, s ∈ S, h ∈ H, n ∈ N, t ∈ Tn,

(9k)
∑
t∈T

∑
g∈G

WtHtE
G
g
pG
ghvt

≤ �E
hv
, h ∈ H,

(9l)xInst
phtv

, xAcc
phv

, pG
ghvt

, pShedP
hvt

, pSE+
shvt

, pSE−
shvt

, qSE
shvt

, pGShedP
hvt

∈ ℝ
+

0
.
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investment-related constraints Eqs. (9b) and (9c) are similar to Eqs. (7c) and (7d) in 
the Benders reduced master problem. Also, the operational constraints Eqs. 
(9d)–(9k) are similar to Eqs. (8b)–(8i) in the Benders subproblem. Therefore, we 
omit to explain all the constraints here.

The Lagrangean master problem in Lagrangean decomposition is simply the orig-
inal full size problem Eqs. (4) with fixed investment decisions xhv.

6.5 � Lagrangean node subproblem

In this section, we present the Lagrangean node subproblem for stage h ∈ H , sce-
nario v ∈ SRI given by Eqs. (10). 

The Lagrangean node subproblem corresponds to the node subproblem Eqs. (6) 
in the general formulation of the PLPR. The Lagrangean node subproblem is simi-
lar to the Benders subproblem. Once a feasible investment solution is obtained, the 

(10a)min �
∑
t∈T

WtHt

(∑
g∈G

CG
g
pG
ghvt

+
∑
s∈S

CSE
s
pSE+
shvt

+ CShedPpShedP
hvt

)

(10b)s.t. pG
ghvt

≤ xAcc
ghv

, g ∈ G, t ∈ T,

(10c)pSE+
shvt

≤ xAcc
shv

, s ∈ S, t ∈ T,

(10d)pSE−
shvt

≤ xAcc
shv

, s ∈ S, t ∈ T,

(10e)qSE
shvt

≤ �SE
s
xAcc
shv

, s ∈ S, t ∈ T,

(10f)−�G
g
xAcc
ghv

≤ pG
ghvt

− pG
ghv(t−1)

≤ �G
g
xAcc
ghv

, g ∈ G, ∈ N, t ∈ Tn,

(10g)

∑
g∈G

pG
ghvt

+
∑
s∈S

pSE−
shvt

+
∑
r∈R

RR
rt
xAcc
rhv

+ pShedP
hvt

=

�DP
hv

PDP
t

+
∑
s∈S

pSE+
shvt

+ pGShedP
hvt

, t ∈ T,

(10h)qSE
shv(t+1)

= qSE
shvt

+ Ht

(
�SE
s
pSE+
shvt

− pSE−
shvt

)
, s ∈ S, n ∈ N, t ∈ Tn,

(10i)
∑
t∈T

∑
g∈G

WtHtE
G
g
pG
ghvt

≤ �E
hv
,

(10j)xAcc
phv

, pG
ghvt

, pShedP
hvt

, pSE+
shvt

, pSE−
shvt

, qSE
shvt

, pGShedP
hvt

∈ ℝ
+

0
.
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investment-related costs can be directly calculated. Then the subproblems need to be 
solved to obtain the operational costs. Here, we use the primal reduction by solving 
only one operational problem for the scenarios that are governed by the same NAC 
constraint at each stage. These Lagrangean node subproblems are solved in parallel. 
Eventually, an upper bound can be calculated.

7 � Results

In this section, we provide the case study and the computational results. We use the 
REORIENT model (Zhang et al. 2023) to solve a single region investment planning 
problem, and apply Benders, Lagrangean and PLPR to solve the problem instances. 
The performance of the methods is compared.

7.1 � Case study

In the case study, we use the model to solve a UK power system expansion problem. 
The data can be found in Zhang et al. (2022, 2023). We implemented the algorithms 
and model in Julia 1.8.2 using JuMP (Dunning et al. 2017), and solved with the bar-
rier solver in Gurobi 10.0 (Gurobi Optimization, LLC 2022). We ran the code on 
a computer cluster (25 computer nodes) with a 2x 3.6GHz 8 core Intel Xeon Gold 
6244 CPU and 384 GB of RAM, running on CentOS Linux 7.9.2009. The clus-
ter was shared by other users and had no resource allocation and queuing systems. 
Therefore, solution times may have been affected by interfering traffic during pro-
gram executions.

7.1.1 � Computational results

An overview of the case study tested in this paper is presented in Table 1. The 
different cases vary in the number of investment stages, long-term uncertainty, 
operational scenarios, and representative hours in the operational problem. For 
the test instances, we use a 1% convergence tolerance and 3600  s as stopping 
criteria.

Parameter tuning is important for the Lagrangean decomposition and PLPR 
decomposition. In the computational study, �0 = 0.01, � = 0.8, �0 = 0.99, � = 1.4 . 
Please note that for a different problem, the parameters can vary significantly based 
on the numerical scales of the problem. Therefore, the parameters used in this study 
may not guarantee a good performance for different problems.

The computational results of Benders decomposition and Lagrangean decompo-
sition are reported in Table 2. Benders decomposition performs well and in some 
cases outperforms the full space problem with Gurobi. We can see that Lagrangean 
decomposition is much worse than Benders decomposition. This is because, in 
Lagrangean decomposition, both the Lagrangean subproblems and the Lagrangean 
master problem are solved in series. In addition, the original full size problem after 
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fixing investment decisions is still large to solve. A full size problem is solved at 
each iteration, which leads to poor performance. This suggests that for MHSP, 
Lagrangean decomposition without parallel computing is not a suitable approach. 
Also, a drawback of Lagrangean decomposition is that their convergence is highly 
dependent on the adjustment of step sizes. Extensive tests have been conducted to 
find suitable parameters for the adjustment. In contrast, Benders decomposition 
requires no effort in choosing parameters, which makes it more robust.

The gaps in Benders iterations are presented in Fig. 3. We can see that the initial 
gaps in Benders decomposition are large. This is because Benders decomposition 
requires a sufficiently large number of cutting planes to approximate accurately the 
objective function.

The computational results of PLPR are reported in Table  3. The proposed 
PLPR yields very good performance across all test instances. This is because the 
Lagrangean subproblem is solved in parallel, so the computational time almost does 
not increase with the number of scenarios given enough computer nodes. The value 
of PLPR is more significant for larger instances.

We note that PLPR can obtain small initial gaps in the first iterations, as 
illustrated in Fig.  4. This is because like other Lagrangean type decomposi-
tion, PLPR only needs to find the optimal multipliers. This would suggest that 
Lagrangean type decomposition methods may be preferred if the underlying 
problem does not have to be solved to a very tight tolerance. This may be the 
case when dealing with huge investment planning problems where a very tight 
convergence tolerance is not meaningful.

An analysis of computational times is presented in Table 4. We can see that as 
the number of scenarios increases, the time spent on solving scenario subproblems 

Table 2   Comparative results 
for Benders and Lagrangean 
decomposition

The algorithm cannot solve the test instance after 3600 s

Benders Lagrangean Undecomposed

Iters Time (s) Iters Time (s) Time (s)

Case 1 8 10 9 81 14
Case 2 9 91 18 1408 86
Case 3 9 268 – – 217
Case 4 9 496 – – 347
Case 5 8 25 – – 42
Case 6 9 144 – – 192
Case 7 9 728 – – 831
Case 8 9 1484 – – 1390

Table 3   Computational results for PLPR

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

Iters 8 8 3 2 6 5 6 5
Time (s) 6 75 80 54 11 107 149 281
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increases significantly in Lagrangean decomposition compared with PLPR. In addi-
tion, due to the primal reduction in PLPR and parallel computing, the time spent on 
solving the primal problem is much less in PLPR than in Lagrangean decomposition.

7.1.2 � Power system investment decisions

This section presents the optimal investment decisions in the first stage for Cases 
1–8. We can see from Table  5 that by including operational uncertainty, the 

Fig. 3   Bounds in Cases 4, 5, and 8 using Benders decomposition. (UB: upper bound, LB: lower bound)

Fig. 4   Bounds in Cases 4, 5, and 8 using PLPR (UB: upper bound, LB: lower bound)

Table 4   Comparative analysis of the computational time (in seconds) of Lagrangean and PLPR

Dual problem Primal problem Multiplier update

Lagrangean PLPR Lagrangean PLPR Lagrangean PLPR

Case 1 59.1 4.2 21.8 4.5 0.1 0.2
Case 2 933.3 51.2 475.5 23.4 0.2 0.4
Case 3 – 47.7 – 31.8 – 0.4
Case 4 – 33.7 – 19.9 – 0.4
Case 5 – 5.3 – 5.4 – 0.3
Case 6 – 82.9 – 23.5 – 0.6
Case 7 – 88.1 – 60.5 – 0.5
Case 8 – 191.6 – 98.9 – 0.5
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investment decisions are considerably different. The differences in long-term and 
short-term uncertainty in Cases 1–8 are presented in Table 1. Cases 1–4 only dif-
fer in operational uncertainty, we can see from Table  5 that the investments in 
CoalCCS and OnWind are significantly different. It is the same case for Cases 5–8. 
Cases 1 and 5 differ only in long-term uncertainty, we can see that the investment in 
OnWind in Case 1 is 79.83 GW compared with 76.63 GW in Case 5. The difference 
can also be observed by comparing Cases 2 and 6, Cases 3 and 7, and Cases 4 and 
8. From this, we can see that both long-term and short-term uncertainty can affect 
investment decisions significantly. This shows the value of including short-term and 
long-term uncertainty in a long-term stochastic investment planning problem.

8 � Discussion

In this paper, we have proposed the PLPR (Parallel Lagrangean decomposition 
with Primal Reduction) algorithm, and formalised Benders decomposition and 
Lagrangean decomposition for MHSP. We tested the proposed methods on a UK 
power system expansion problem using the REORIENT model.

Through computational tests, we found that PLPR is a very efficient decomposi-
tion method for MHSP that utilises the scenario structure of the MHSP. The compu-
tational time does not scale much as the problem instance grows due to the use of 
parallel computing. Despite parallel computing and primal reduction, PLPR inherits 
the advantages and the disadvantages of Lagrangean decomposition.

We found that Lagrangean type decomposition can obtain a good convergence gap 
in the initial iterations. However, one limitation of Lagrangean type decomposition is 
that it is sensitive to parameter tuning. Although MHSP reduces the number of mul-
tipliers, finding good ones can still be hard. In addition, we notice that Lagrangean 
decomposition requires substantially more memory than Benders decomposition. 

Table 5   Investment decisions in the first stage in the cases

New installed capacity (GW)

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

Coal 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CoalCCS 11.70 10.17 8.77 9.48 11.68 8.33 8.76 9.29
OCGT​ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CCGT​ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Diesel 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Nuclear 7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.50
PHES 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Lithium 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
OnWind 79.83 69.50 77.97 93.97 76.63 72.68 77.02 92.37
OffWind 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
PvSolar 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Lagrangean decomposition duplicates the variables, which leads to a larger model 
size. However, Lagrangean decomposition can solve more classes of problems such 
as the ones with integer operational variables, which were not addressed in this paper. 
Benders decomposition can only solve linear programming or mixed-integer linear 
programming with integer variables in the reduced master problem.

Benders decomposition is more robust than Lagrangean decomposition because its 
convergence does not depend on parameter tuning. However, the drawback of Benders 
decomposition is that once the scenario tree is large, the master problem may become 
harder to solve. This is because a two-stage Benders solves a multi-stage stochastic 
program. Therefore, the reduced master problem includes all investment nodes. Once 
there are a number of investment nodes, or there are integer variables in the reduced 
master problem, the speed of Benders decomposition may be affected significantly.

For very large problems, combining Lagrangean decomposition with Benders 
decomposition may be beneficial. For example, use Benders decomposition to solve 
the Lagrangean subproblem. It is also possible to utilise adaptive oracles (Mazzi 
et al. 2021) in Lagrangean decomposition.

9 � Conclusions and future work

In this paper, we first proposed, formalised and compared decomposition algorithms 
for linear programming MHSP. We formalised the node and scenario based formula-
tions of MHSP. Decomposition methods including Benders, Lagrangean and PLPR 
were proposed based on the special structure of MHSP. Some properties based on 
the structure of MHSP were presented. From the computational study, we found 
that: (1) PLPR is a very efficient decomposition algorithm that utilises the structure 
of MHSP; (2) Lagrangean is not an efficient method for MHSP; (3) Benders decom-
position is more robust in terms of parameter tuning. The choice of algorithms for 
MHSP was discussed based on the computational tests.

This is the first paper that has systematically studied decomposition methods 
for MHSP. Future work may include (1) developing algorithms that further exploit 
the special structure of MHSP, such as Benders decomposition with cut sharing or 
combined Lagrangean decomposition and Benders decomposition algorithm, (2) 
extending the algorithm to solve mixed integer linear programming MHSP, and (3) 
benchmarking the performance of PLPR with enhanced Benders decomposition and 
scenario based decomposition methods.
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