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Abstract
We consider a network equilibrium model (i.e. a combined model), which was pro-
posed as an alternative to the classic four-step approach for travel forecasting in 
transportation networks. This model can be formulated as a convex minimization 
program. We extend the combined model to the case of the stable dynamics model 
in the traffic assignment stage, which imposes strict capacity constraints in the net-
work. We propose a way to solve corresponding dual optimization problems with 
accelerated gradient methods and give theoretical guarantees of their convergence. 
We conducted numerical experiments with considered optimization methods on 
Moscow and Berlin networks.

Keywords  Forecasting · Combined model · Trip distribution · Traffic assignment · 
Capacity constraints · Gradient method

1  Introduction

One of the most popular approaches to travel forecasting in transportation networks 
is the four-step procedure (Dios Ortúzar and Willumsen 2011): sequential run of trip 
generation, trip distribution, modal split, and traffic assignment stages. However, 
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this approach has a number of limitations, e.g. there is no convergence guarantee 
(Oppenheim 1995; Boyce et al. 1994; Boyce 2002).

To overcome this issue, there were proposed network equilibrium models (NE / 
combined models) which can be formulated as an optimization or, more generally, 
a variational inequality problem (Beckmann et al. 1956; De Cea et al. 2005). In par-
ticular, Evans (1976) reduced the problem of searching equilibrium in the case of 
one transport mode to a convex optimization problem, combining trip distribution 
and route assignment models. Authors of Florian and Nguyen (1978) made an exten-
sion to the multi-modal case, where destination and mode are chosen simultaneously 
with the same value of a calibration parameter. The first mathematical formulation 
of a network equilibrium model with hierarchical destination and mode choices was 
proposed in Fernández et  al. (1994) — the approach was presented for modelling 
nested choice structure of trips using several modes (e.g. park’n ride trips). Abra-
hamsson and Lundqvist (1999) formulated a nested combined model where mode 
choice is conditioned by destination choice and demonstrated its application for the 
Stockholm region. The recent works (Chu 2018), Liu et al. (2018), and Gao et al. 
(2022) proposed the extensions of the combined models for the cases of modeling 
trip frequency, remote park-and-ride, and tourism demand, respectively.

Finding a solution in trip distribution and traffic assignment problems — whether 
they are considered separately in the four-step approach or combined into one net-
work equilibrium problem — relies on numerical methods for convex optimization. 
E.g., a classic choice for the traffic assignment problem (which is the most computa-
tionally expensive part) is the Frank–Wolfe algorithm (Frank and Wolfe 1956), and 
for the trip distribution problem it is the Sinkhorn algorithm (Sinkhorn 1974). A 
class of path-based algortihms can be an alternative to the link-based Frank–Wolfe 
algorithm for solving traffic assignment problem: Chen et  al. (2020), Xie et  al. 
(2017), Babazadeh et al. (2020). A popular choice for solving an optimization prob-
lem in the above-mentioned combined models is a partial linearization algorithm 
of Evans (1976) and its modifications for multi-modal and multi-user cases (Abra-
hamsson and Lundqvist 1999; Boyce et al. 1983). Recently, in Yang et al. (2013); 
Fan et  al. (2022); Zarrinmehr et  al. (2019); Cabannes et  al. (2019); Wang et  al. 
(2022), improvements of these algorithms were presented. Also, in subsequent years 
there have been developed a lot of new optimization methods, in particular, acceler-
ated gradient methods (Nesterov 2004, 2009, 2015), which can be applied to the 
described problems.

Another direction of research on travel modelling in recent years is related to 
capacitated transportation networks, which allow to overcome some limitations of 
the standard Beckmann traffic assignment model (Nesterov and De Palma 2003; 
Zokaei Aashtiani et  al. 2021; De Cea et  al. 2005; Wang et  al. 2019; Smith et  al. 
2019; Anikin et al. 2020; Zhu et al. 2020).

For the best of our knowledge, there is no works considering the application of 
accelerated gradient methods to combined models.

In this paper, we consider:

•	 An entropy-based trip distribution model with hierarchical choice structure (Wil-
son 1969; Fernández et al. 1994; Abrahamsson and Lundqvist 1999);
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•	 The Beckmann traffic assignment model with inelastic demand (Beckmann et al. 
1956);

•	 The stable dynamics traffic assignment model, where resulting flow distribution 
satisfy the network’s capacity constraints (Nesterov and De Palma 2003);

•	 An NE model combining all the models mentioned above.

In the last case, we consider the nested combined model proposed in Abrahamsson 
and Lundqvist (1999), where transit and road networks are independent, and the 
transit network has constant travel costs. We extend it to the case of the stable 
dynamics model for traffic assignment.

We employ accelerated primal-dual gradient methods to solve corresponding 
optimization problems and compare their performances to the classic Sinkhorn, 
Frank–Wolfe, and generalised Evans algorithms. Also, we provide theoretical guar-
antees for their convergence rate.

The main contributions of the paper are the following:

•	 We propose a way to solve the dual problem of the nested combined model 
of Abrahamsson and Lundqvist (1999) with a universal accelerated gradient 
method USTM (Gasnikov and Nesterov 2018);

•	 We extend the nested combined model of Abrahamsson and Lundqvist (1999) 
to the case of capacitated networks: namely, we propose a way to solve the dual 
problem for searching equilibrium in combined trip distribution model with the 
nested choice structure and the stable dynamics traffic assignment model;

•	 We provide theoretical upper bounds on the complexity of searching network 
equilibrium by the USTM algorithm.

•	 We conducted numerical experiments comparing different algorithms on Mos-
cow and Berlin transportation networks.

The paper is organized as follows. In Sect.  2, we give a general problem state-
ment for a combined trip distribution, modal split, and traffic assignment model. In 
Sect. 3, we describe the primal-dual accelerated method to solve the NE problem 
and provide its convergence analysis. In Sects.  4 and 5, we describe optimization 
algorithms that we consider for separate traffic assignment and trip distribution 
models. Section 6 presents numerical experiments conducted on Moscow and Berlin 
transportation networks.

2 � Problem statement

We start with the description of the Beckmann and the stable dynamics models for 
searching the road network user equilibrium. Similarly to Abrahamsson and Lundqvist 
(1999), we assume the road and the transit networks are independent, and there is no 
congestion effects in the transit network (its travel costs are constant and defined as the 
costs of the shortest routes). Then, in Sect. 2.2, we describe the trip distribution model 
with a hierarchical choice structure of destination and travel mode (by car, public 
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transport, or on foot). And finally, in 2.3, we consider the combined trip distribution-
modal split-assignment problem and formulate its dual problem.

2.1 � Route assignment models

Let the urban road network be represented by a directed graph G = (V, E) , where verti-
ces V correspond to intersections or centroids (Sheffi 1985) and edges E correspond to 
roads, respectively. Suppose we are given the travel demands: namely, let dij(veh/h) be a 
trip rate from origin i to destination j. We denote by Pij the set of all simple paths from i 
to j. Respectively, P =

⋃
(i,j)∈OD Pij is the set of all possible routes for all origin–desti-

nation pairs OD. Agents traveling from node i to node j are distributed among paths 
from Pij , i.e. for any p ∈ Pij there is a flow xp ∈ ℝ+ along the path p, and ∑

p∈Pij
xp = dw . Flows from origin nodes to destination nodes create the traffic in the 

entire network G , which can be represented by an element of

Note that the dimension of X can be extremely large: e.g. for n × n Manhattan net-
work log |P| = Ω(n) . To describe a state of the network we do not need to know an 
entire vector x, but only flows on arcs:

where �ep = 1{e ∈ p} . Let us introduce a matrix Θ such that Θe,p = �ep for e ∈ E , 
p ∈ P , so in vector notation we have f = Θx . To describe an equilibrium we use 
both path- and link-based notations (x, t) or (f, t).

Beckmann model (Beckmann et al. 1956; Patriksson 2015). One of the key ideas 
behind the Beckmann model is that the cost (e.g. travel time, gas expenses, etc.) of 
passing a link e is the same for all agents and depends solely on the flow fe along it. In 
what follows, we denote this cost for a given flow fe by te = �e(fe) . In practice the BPR 
functions are usually employed (US Bureau of Public Roads 1964):

where t̄e are free flow times, and f̄e are road capacities of a given network’s link e. 
We take these functions with parameters � = 0.15 and � = 0.25.

Another essential point is a behavioral assumption on agents called the first 
Wardrop’s principle: we suppose that each of them knows the state of the whole net-
work and chooses a path p minimizing the total cost

(1)X = X(d) =
{
x ∈ ℝ

|P|
+ ∶

∑
p∈Pij

xp = dij, (i, j) ∈ OD
}
.

fe(x) =
∑
p∈P

�epxp for e ∈ E,

(2)𝜏e(fe) = t̄e

(
1 + 𝜌

(
fe

f̄e

) 1

𝜇

)
,

Tp(t) =
∑
e∈p

te.
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The cost functions are supposed to be continuous, non-decreasing, and non-negative. 
Then (x∗, t∗) , where t∗ = (t∗

e
)e∈E , is an equilibrium state, i.e. it satisfies conditions

if and only if x∗ is a minimum of the potential function:

and t∗
e
= �e(f

∗
e
) (Beckmann et al. 1956).

Another way to find an equilibrium numerically is by solving a dual problem. 
We can construct it according to Theorem 4 from Nesterov and De Palma (2003), 
the solution of which is t∗:

where

is the conjugate function of �e(fe) , e ∈ E.
When we search for the solution to this problem numerically, on every step 

of an applied method we can reconstruct primal variable f from the current dual 
variable t: f ∈ �

∑
(i,j)∈OD dijTij(t) . Then we can use the duality gap  — which is 

always nonnegative — for the estimation of the method’s accuracy:

It vanishes only at the equilibrium (f ∗, t∗).
Stable dynamics model. Nesterov and De Palma (2003) proposed an alterna-

tive model called the stable dynamics model, which takes an intermediate place 
between static and dynamic network assignment models. Namely, its equilibrium 
can be interpreted as the stationary regime of some dynamic process. Its key 
assumption is that we no longer introduce a complex dependence of the travel 
cost on the flow (as in the standard static models), but only pose capacity con-
straints, i.e. the flow value on each link imposes the feasible set of travel times

t∗
e
= 𝜏e(f

∗
e
), where f ∗ = Θx∗,

x∗
pw

> 0 ⟹ Tpij (t
∗) = Tij(t

∗) = min
p∈Pij

Tp(t
∗),

(B)

Ψ(x) =
∑
e∈E

∫
fe

0

�e(z)dz

⏟⏞⏞⏞⏟⏞⏞⏞⏟
�e(fe)

⟶ min
f=Θx, x∈X

⟺ Ψ(f ) =
∑
e∈E

�e(fe) ⟶ min
f=Θx∶ x∈X

,

(DualB)
Q(t) =

∑
ij∈OD

dijTij(t) −
∑
e∈E

𝜎∗
e
(te)

�����
h(t)

⟶ max
t≥t̄ ,

𝜎∗
e
(te) = sup

fe≥0
{tefe − 𝜎e(fe)} = f̄e

(
te − t̄e

t̄e𝜌

)𝜇
(
te − t̄e

)
1 + 𝜇

Δ(f , t) = Ψ(f ) − Q(t).
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Unlike in the Beckmann model, there is no one-to-one correspondence between 
equilibrium travel times and flows on the links of the network. There are examples 
in Nesterov and De Palma (2003) illustrating the difference. Also, one can find in 
Chudak et al. (2007) a detailed comparison of equilibria in these two models con-
ducted for large and small networks.

Hence, an equilibrium state (x∗, t∗) of the stable dynamics model satisfies the next 
conditions:

The above formula can be reformulated in terms of an optimization problem. The 
pair (f ∗, t∗) is an equilibrium if and only if it is a solution of the saddle-point problem

where its primal problem is

and its dual problem is

In contrast with the Beckmann model, the equilibrium state in the stable dynamics 
model is defined by pair (f ∗, t∗) (in particular, it differs from the system optimum 
(f ∗, t̄) in the model only by the time value).

In both cases the dual problem has form

The optimization problem is convex, non-smooth and composite.

2.2 � Trip distribution with modal split (D‑MS)

Let us further assume that there are several trip purposes (demand layers), travel 
modes (transportation modes), and agents types. We use the logit model with 

(3)𝜏e(fe) =

⎧
⎪⎨⎪⎩

t̄e, 0 ≤ fe < f̄e,�
t̄e,∞

�
, fe = f̄e,

+∞, fe > f̄e.

t∗
e
∈ 𝜏e(f

∗
e
),

x∗
pij
> 0 ⟹ Tpij (t

∗) = Tij(t
∗).

(SaddleSD)

∑
e∈E

[tefe − (te − t̄e)f̄e] ⟶ min
f = Θx ∶

x ∈ X

max
te≥t̄e

,

(SD)
Ψ(f ) =

∑
e∈E

fet̄e ⟶ min
f = Θx ∶

x ∈ X, fe ≤ f̄e

,

(DualSD)
Q(t) =

�
(i,j)∈OD

dijTij(t) − ⟨t − t̄, f̄ ⟩
�����

h(t)

⟶ max
te≥t̄e

.

Q(t) =
∑

(i,j)∈OD

dijTij(t) − h(t) ⟶ max
t≥t̄ .
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calibration parameters �am , �am corresponding to choices of travel mode m by agents 
of the type a. Further, we consider the case when �am values are the same for all 
travel modes of agent type a:

Necessity of this condition will be explained below.
For example, if we want to make travelling by car (travel mode m1 ) unavailable 

for non-car-owners a1 , we can set �a1m1
∶= inf to get zero trips da1m1 = 0 . Thus, for 

every agent type a we can implicitly set its group (nest) of available travel modes.
To define destination choice model, we use the entropy-based trip distribution 

model of Wilson (1969). For every trip purpose r (e.g., home-work, home-other) we 
define calibration parameter �r . This parameter defines the sensitivity of agents with 
the trip purpose r to trip length.

According to Abrahamsson and Lundqvist (1999), Fernández et  al. (1994), we 
consider the following problem:

where

dram
ij

 is a number of trips from zone i to j by travel mode m of agents type a with trip 
purpose r and dra

ij
=
∑

m dram
ij

 ; lra
i

 is a number of production from zone i of agents 
type a with trip purpose r; wr

j
 is a number of attractions to zone j of the trip purpose 

r.
This is the combined trip distribution-modal split (D-MS) problem, where the 

choice structure is nested: travel mode choice is conditioned by destination choice 
(Abrahamsson and Lundqvist 1999). If �r and �a are equal, then (P1) reduces to the 
problem that also corresponds to D-MS model with simultaneous choices of desti-
nation and travel mode with the same calibration parameters (Florian and Nguyen 
1978; Abrahamsson and Lundqvist 1999).

For fixed values dra
ij

 , it is straightforward to check that the optimal dram
ij

 satisfy the 
following relation:

�am∶=�a.

(P1)

∑
i,j,r,a,m

dram
ij

Tm
ij
+

∑
i,j,r,a

1

�r
dra
ij
ln dra

ij
+

∑
i,j,r,a,m

1

�a
dram
ij

(
ln

(
dram
ij

dra
ij

)
+ �am

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
H(d)

→ min
d∈Π�(l,w)

,

Π�(l,w) =

{
dram
ij

≥ 0 ∶
∑
j,m

dram
ij

= lra
i
,
∑
i,a,m

dram
ij

= wr
j

}
,

(4)prob ram
ij

=
dram
ij

dra
ij

=
exp

�
−�aT

m
ij
− �am

�

∑
m� exp

�
−�aT

m�

ij
− �am�

� ,
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where Tam
ij

= Tm
ij
+

�am
�a

 , i.e., the modal split corresponds to the logit model. 
Moreover,

where Ta
ij
 is a composite travel cost for agents of type a.

Substituting dram
ij

= prob ram
ij

dra
ij

 we reduce the problem (P1) to

where

and Ta
ij
= −

1

�a
ln
∑

m exp
�
−�aT

m
ij
− �am

�
.

Let us derive its dual problem. In our problem statement, the system of constraints 
Π�(l,w) is consistent 

∑
i,a l

r,a

i
=
∑

j w
r
j
 . Therefore Gasnikov et al. (2015), we can intro-

duce a tautological constraint

We will utilize tautological constraint (5) to obtain dual function with bounded sub-
gradient norm.

min
dram
ij

( ∑
i,j,r,a,m

dram
ij

Tam
ij

+
1

�a

∑
i,j,r,a,m

dram
ij

ln
dram
ij

dra
ij

)
= dra

ij

(
−

1

�a
ln
∑
m

exp
(
−�aT

am
ij

))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Ta
ij

,

(E)E(d, T) =
∑
i,j,r,a

dra
ij
Ta
ij
+

∑
i,j,r,a

1

�r
dra
ij
ln dra

ij
→ min

d∈Π(l,w)
,

Π(l,w) =

{
d ≥ 0 ∶

∑
j

dra
ij
= lra

i
,
∑
i,a

dra
ij
= wr

j

}
,

(5)
∑
i,j,a

dra
ij
=
∑
i,a

l
r,a

i
=
∑
j

wr
j
= Nr.

(6)

min
d∈Π(l,w)

∑

i,j,r,a
draij T

a
ij +

∑

i,j,r,a

1
�r
draij ln d

ra
ij

= min
draij ≥ 0

∑

i,j,a d
ra
ij = Nr

max
�≥0

∑

r

1
� r

∑

i,j,a
draij ln d

ra
ij +

∑

i,j,a
draij T

a
ij +

∑

i,a
�lrai

(

∑

j
draij − lrai

)

+
∑

j
�wrj

(

∑

i,a
draij − wr

j

)

= max
�≥0

∑

r
min

draij ≥ 0
∑

i,j,a d
ra
ij = Nr

1
� r

∑

i,j,a
draij ln d

ra
ij +

∑

i,j,a
draij T

a
ij +

∑

i,a
�lrai

(

∑

j
draij − lrai

)

+
∑

j
�wrj

(

∑

i,a
draij − wr

j

)

= −min
�≥0

�(�l, �w, T),
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where by �(�l, �w, T) we denoted the negative of the dual function.
Let y be the dual variable for the tautological constraint 

∑
i,j,a d

ra
ij
= Nr . Then taking 

the gradient by d we get one of the optimality conditions for the inner minimization 
problem:

therefore

By choosing y such that dra
ij

 satisfies 
∑

i,j,a d
ra
ij
= Nr we obtain

Substituting this into (6) yields

2.3 � Combined distribution‑modal split‑assignment problem (D‑MS‑A)

Now, we combine the road, the transit, and the pedestrian networks into one multi-
modal network, which we denote again by G = (V, E) . Slightly abusing notations, in 
the same way as in Sect. 2.1 we can define the set of path flows X(d) corresponding 
to an interzonal trip matrix d ∈ Π�(l,w) , and link flows f ram

e
 , f m

e
=
∑

r,a f
ram
e

 , and 
fe =

∑
m f m

e
.

According to Abrahamsson and Lundqvist (1999), the combined distribution-
modal split-assignment problem can be formulated as follows:

where

Similarly to Sect. 2.1 we obtain from (P3) the saddle-point problem

1
�r

(

ln draij + 1
)

+ Ta
ij + �lrai + �wrj + y = 0,

dra
ij
= exp

(
−1 − �r

(
Ta
ij
+ �l

rai
+ �w

rj
+ y

))
.

(7)dra
ij
(�l

r
, �w

r
, T) =

Nr exp
�
−�r

�
Ta
ij
+ �l

rai
+ �w

rj

��

∑
i,j,a exp

�
−�r

�
Ta
ij
+ �l

rai
+ �w

rj

�� .

(8)

�(�l, �w, T) =
∑
r

Nr

�r
ln

1

Nr

∑
i,j,a

exp
(
−�r

(
Ta
ij
+ �l

rai
+ �w

rj

))
+
∑
i,a

�l
rai
lra
i
+
∑
j

�w
rj
wr
j
.

(P3)
P3(f , d) = Ψ(f ) + H(d) → min

f = Θx, x ∈ X(d)

d ∈ Π�(l,w)

,

Ψ(f ) =
∑
e∈E

(
�e(fe) +

∑
m∈V

cm
e
f m
e

)
.
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where Tm
ij (t) is the minimal cost of the path from i ∈ O to j ∈ D with the links cost 

te + cm
e
 . According to Sect. 2.2, the above problem reduces to

where Ta
ij
(t) = −

1

�a
ln
�∑

m exp
�
−�aT

m
ij
(t) − �am

��
.

Respectively, the dual problem is

Thus, there are several ways to formulate an optimization problem. In this paper, 
we consider the following particular formulation of the problem and further provide 
convergence analysis of the accelerated gradient method application to it:

where

3 � Dual approach for solving the combined model

In Sect. 3.1, we describe the universal gradient method of similar triangles (USTM) 
for solving the dual problem (D3’) of the described combined model. And we pro-
vide its convergence analysis in Sect. (3.2).

3.1 � Dual method for NE problem

Algorithm 1   Universal Method of Similar Triangles

(S3’)S�
3
(d, t) =

∑
i,j,r,a,m

dram
ij

Tm
ij
(t) − h(t) + H(d) → min

d∈Π�(l,w)
max
t≥t̄ ,

(S3)
S3(d, t) =

∑
i,j,r,a

dra
ij
Ta
ij
(t) +

∑
i,j,r,a

1

𝛾r
dra
ij
ln dra

ij

�������������������������������������������
E(d,T(t))

−h(t) → min
d∈Π(l,w)

max
t≥t̄ ,

(D3)D3(𝜆, t) = −𝜑(𝜆l, 𝜆w, T(t)) − h(t) ⟶ max
t≥t̄, 𝜆l,𝜆w .

(D3’)D�
3
(t) = −𝜑3(t) − h(t) ⟶ max

t≥t̄ ,

�3(t) = min
�

�(�,T(t)) = − min
d∈Π(l,w)

E(d, T(t)).
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A popular approach for searching equilibrium in combined models is the par-
tial linearization algorithm of Evans (1976) and its modifications for multi-modal 
and multi-user cases (Abrahamsson and Lundqvist 1999; Boyce et  al. 1983). The 
approach is further developed in Yang et  al. (2013) by incorporating better line-
search procedures. Note that the algorithm can be viewed as partly dual, because it 
is formulated in terms external to the primal problem: it includes cost matrices Tij , 
which are the dual variables of the saddle-point problem (S3) (or (S3’)) or the dual 
problem (D3). But still, the algorithm is essentially primal, since it optimizes (P3) 
by flow and trip distribution pair.

Here we propose an alternative approach based on solving the dual problem (D3’) 
with the universal method of similar triangles (USTM), and afterwards we prove the 
convergence rates for it.

Algorithm 1 provides the pseudocode of USTM with an inexact oracle and the 
euclidean prox-structure. Here we used the following notations:

Note that we did not specify the stopping criterion as it can be different for different 
models (Fan et al. 2022).

To find a network equilibrium in D-MS-A model, we apply USTM to minimize 
the composite objective −D�

3
(t) = �3(t) + h(t) in (D3’), thus we set Φ(t)∶=�3(t) in 

Algorithm 1. Recall that

�0(t) =
1
2
‖t − t0‖22,�k+1(t) = �k(t) + �k+1

[

Φ̃(yk+1) +
⟨

∇̃Φ(yk+1), t − yk+1
⟩

+ h(t)
]

.
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Note that at each iteration we need to compute �3 and ∇�3 with travel costs yk+1 , 
tk+1 . Since this itself is done by an iterative procedure, we cannot expect to find the 
exact solution of the subproblem. Instead, we use the following inexact oracle for �3:

where � ≥ 0 and d̃(t) = d𝛿(t) ∈ Π(l,w) (see Sect.  5.4) is a �-solution of 
mind E(d, T(t)) , i.e.

Recall that E(d, T(t)) is concave w.r.t. t, and its superdifferential �tE(d, T(t)) is given 
by

Further, dra
ij
�Ta

ij
(t) =

∑
m dram

ij
�Tm

ij
(t) , and

where am
p
∈ {0, 1}|E| is a binary vector encoding a path p for the travel mode m. Note 

that several shortest paths may exist. Finally, we get that

and any supergradient ∇tE(d,T(t)) is a vector of link flows by shortest paths, corre-
sponding to the trip distribution d.

Since we solve the dual problem (D3’), we need a way to recover an approximate 
solution (d, f) of the primal problem (P3). For any t ≥ 0 , given d̃ra

ij
(t) and Tm

ij
(t) , define 

d�(t) ∈ Π�(l,w) by formula (4). Then we reconstruct a full correspondence matrix after 
K iterations of Algorithm 1 as

Corresponding link flows can be recovered as (see Kubentayeva and Gasnikov 2021, 
f. (18))

where f k are link flows by shortest paths for times yk and correspondence matrix 
d�(yk) , such that

�3(t) = − min
d∈Π(l,w)

E(d, T(t)).

𝜑̃3(t) = 𝜑3,𝛿(t) = −E(d̃(t), T(t)), ∇̃𝜑3(t) = ∇𝛿𝜑3(t) = −∇tE(d̃(t), T(t)),

E(d�(t), T(t)) ≤ min
d∈Π(l,w)

E(d, T(t)) + �.

�tE(d, T(t)) =
∑
i,j,r,a

dra
ij
�Ta

ij
(t).

�Tm
ij
(t) = � min

am
p
∈Pm

ij

⟨t, apm⟩ = Conv
�
am
p
∈ Pm

ij
∶ ⟨t, apm⟩ = Tm

ij
(t)
�
,

(9)�tE(d, T(t)) =
�

i,j,r,a,m

dram
ij

Conv
�
am
p
∈ Pm

ij
∶ ⟨t, apm⟩ = Tm

ij
(t)
�
,

(10)d̂K =
1

AK

K∑
k=1

𝛼kd
�(yk) ∈ Π�(l,w).

(11)[f̂ K]m
e
=

1

AK

K∑
k=1

𝛼k[f
k]m

e
.
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3.2 � Convergence analysis

Below we derive some properties of the problem and then use them to apply the 
USTM convergence theorem, what gives us the convergence rate of our dual algo-
rithm for searching equlibria in combined model.

The next lemma is a trivial counterpart of f.  (5) in Kubentayeva and Gasnikov 
(2021), following from (9).

Lemma 1  For any d, d� ∈ Π(l,w) , t, t′ ≥ 0 , and supergradients ∇tE(d, T(t)) , 
∇tE(d

�, T(t�)) it holds that ‖∇tE(d, T(t)) − ∇tE(d
�, T(t�))‖2 ≤ M =

√
2HN , where 

H ≤ |V| − 1 is the maximum simple path length in the network, and N =
∑

r Nr is the 
total number of active agents.

Typically (e.g. for a Manhattan network) H = O(
√�V�).

Recall the following standard result concerning inexact oracles.

Lemma 2  For any t, t′ ≥ 0

Proof  Since E(d, T(t)) is concave w.r.t. t,

Thus,

The claim follows. 	�  ◻

The following bound is the main tool to prove the convergence rate. It is an ana-
logue of Lemma 2 in Gasnikov and Nesterov (2016) adapted to the case of an inex-
act oracle.

Lemma 3  Assume at the k-th iteration of Algorithm  1 we call an inexact oracle 
(Φ̃, ∇̃Φ) satisfying

with �k =
�k+1�

4Ak+1

 . Then for any k > 0

∑
m

[f k]m
e
= −

[
∇̃𝜑3(y

k)
]
e
, e ∈ E.

𝜑̃3(t
�) + 𝛿 ≥ 𝜑3(t

�) ≥ 𝜑̃3(t) + ⟨∇̃𝜑3(t), t
� − t⟩.

E(d̃(t), T(t�)) ≤ E(d̃(t), T(t)) + ⟨∇tE(d̃(t), T(t)), t
� − t⟩ = −𝜑̃3(t) − ⟨∇̃𝜑3(t), t

� − t⟩.

𝜑3(t
�) ≥ −E(d̃(t), T(t�)) ≥ 𝜑̃3(t) + ⟨∇̃𝜑3(t), t

� − t⟩.

Φ̃(t�) + 𝛿k ≥ Φ(t�) ≥ Φ̃(t) + ⟨∇̃Φ(t), t� − t⟩ ∀t, t� ∈ dom h,
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Moreover,

where t∗ = argminΦ(t) + h(t).

Proof  We are going to prove by induction that

Note that since �k is 1-strongly convex,

The inner stopping criterion yields that

By the assumptions of the lemma,

thus

Now, using the convexity of h and the definition of �k we obtain that

Φ(tk) + h(tk) ≤ 1

Ak

�k(u
k) +

3�

4
≤ 1

Ak

�k(t) −
1

2Ak

‖t − uk‖2
2
+

3�

4
∀t ∈ dom h.

Φ(tk) + h(tk) +
1

2Ak

‖t∗ − uk‖2
2
≤ Φ(t∗) + h(t∗) +

1

2Ak

‖t∗ − t0‖2
2
,

Ak(Φ(tk) + h(tk)) ≤ �k(u
k) + Ak

3�

4
.

�k(u
k) ≤ �k(t) −

1

2
‖t − uk‖2

2
∀t ∈ dom h.

Φ̃(tk+1) ≤ Φ̃(yk+1) + ⟨∇̃Φ(yk+1), tk+1 − yk+1⟩ + Lk+1

2
‖tk+1 − yk+1‖2

2
+

𝛼k+1
2Ak+1

𝜀

= Φ̃(yk+1) +
𝛼k+1
Ak+1

�
⟨∇̃Φ(yk+1), uk+1 − uk⟩ + 𝜀

2

�
+

1

2Ak+1

‖uk+1 − uk‖2
2
.

Φ̃(yk+1) ≤ Φ(tk) − ⟨∇̃Φ(yk+1), tk − yk+1⟩ = Φ(tk) +
𝛼k+1
Ak+1

⟨∇̃Φ(yk+1), uk − tk⟩,

Ak+1Φ̃(tk+1) ≤ Ak+1Φ̃(yk+1) + �k+1
[

⟨∇̃Φ(yk+1), uk+1 − uk⟩ + �
2

]

+ 1
2
‖uk+1 − uk‖22

≤ AkΦ(tk) + �k+1

[

Φ̃(yk+1) + ⟨∇̃Φ(yk+1), uk+1 − uk +
Ak

Ak+1
(uk − tk)⟩ + �

2

]

+ 1
2
‖uk+1 − uk‖22

= AkΦ(tk) + �k+1
[

Φ̃(yk+1) + ⟨∇̃Φ(yk+1), uk+1 − yk+1⟩ + �
2

]

+ 1
2
‖uk+1 − uk‖22.
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The last claim of the lemma follows from the inequality

what implies

	�  ◻

Now we are ready to prove the main result of this section: a primal-dual conver-
gence rate for USTM in the combined model. The complexity analysis in the next 
theorem is similar to Theorems 3 and 4 in Kubentayeva and Gasnikov (2021), where 
USTM was applied to the route assignment problem.

Theorem 1  Assume t0 = t̄ , L0 ≤ M2

�
 , and at the k-th iteration problem (E) is solved 

with accuracy �k =
�k+1�

4Ak+1

 . Define

Then in the case of Beckmann’s model, after at most

iterations it holds that

In the case of Stable Dynamics model, after at most

Ak+1

�
Φ(tk+1) + h(tk+1)

�

≤ Ak+1

�
Φ̃(tk+1) + 𝛿k

�
+ Akh(t

k) + 𝛼k+1h(u
k+1)

≤ Ak

�
Φ(tk) + h(tk)

�
+ 𝛼k+1

�
Φ̃(yk+1) + ⟨∇̃Φ(yk+1), uk+1 − yk+1⟩ + h(uk+1) +

3𝜀

4

�

+
1

2
‖uk+1 − uk‖2

2

≤ 𝜙k(u
k+1) + 𝛼k+1

�
Φ̃(yk+1) + ⟨∇̃Φ(yk+1), uk+1 − yk+1⟩ + h(uk+1)

�
+ Ak+1

3𝜀

4

= 𝜙k+1(u
k+1) + Ak+1

3𝜀

4
.

Φ(t∗) ≥ Φ̃(t) + ⟨∇̃Φ(t), t∗ − t⟩,

1

Ak

�k(t
∗) ≤ Φ(t∗) + h(t∗) +

1

2Ak

‖t∗ − t0‖2
2
.

R = ‖t∗ − t̄‖, R̃2 = 𝜌2N2∕𝜇
�
e∈E

t̄2
e

f̄
2∕𝜇
e

.

K = 4

(
MR̃

𝜀

)2

0 ≤ P3(d̂
K , f̂ K) − D�

3
(tK) ≤ 𝜀.

K = 4
(
MR

�

)2
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iterations it holds that

Proof  By Lemma 1,

Then f.  (A3) from the proof of Theorem  3 in Kubentayeva and Gasnikov (2021) 
ensures that for all k

Recall that f = f k are link flows by shortest paths for times y = yk and interzonal 
trips d� = d�(yk) . Then, according to Sect. 2.3,

and for any t

Therefore, due to the convexity of the entropy,

Then by Lemma 3,

The rest of the proof repeats the proofs of Lemmata 1 and 2 in Kubentayeva and 
Gasnikov (2021), mutatis mutandis. In the case of the Beckmann model, we substi-
tute te = 𝜏e

(
[f̂ K]e

)
 , what gives us the bound

0 ≤ P3(d̂K , f̂ K) − D′
3(t

K) + ⟨(f̂ K − f̄ )+, t∗ − t̄⟩ ≤ �,

‖(f̂ K − f̄ )+‖2 ≤
2�
R
.

Φ̃(tk+1) ≤ Φ̃(yk+1) + ⟨∇̃Φ(yk+1), tk+1 − yk+1⟩ +M‖tk+1 − yk+1‖2.

Ak ≥ �k

2M2
.

E(d̃(y),T(y)) =
∑

i,j,r,a,m

dram
ij

Tm
ij
(y) + H(d�) =

∑
e,m

f m
e
(ye + cm

e
) + H(d�),

𝜑̃3(y) +
�
∇̃𝜑3(y), t − y

�
= −E(d̃(y),T(y)) − ⟨∇tE(d̃(y),T(y)), t − y⟩
= −

�
e,m

f m
e
(ye + cm

e
) − H(d�) +

�
e,m

f m
e
(ye − te)

= −
�
e,m

f m
e
(te + cm

e
) − H(d�).

𝜙K(t) =

K�
k=1

𝛼k
�
𝜑̃3(y

k) +
�
∇̃𝜑3(y

K), t − yk
�
+ h(t)

�
+

1

2
‖t − t0‖2

2

= −AK

�
e,m

[f̂ K]m
e
(te + cm

e
) −

K�
k=1

𝛼kH(d�(yk)) + AKh(t) +
1

2
‖t − t̄‖2

2

≤ AK

�
e

�
𝜎∗
e
(te) − [f̂ K]ete −

�
m

[f̂ K]m
e
cm
e

�
− AKH(d̂K) +

1

2
‖t − t̄‖2

2
.

−D�
3
(tK) ≤ �

e

�
𝜎∗
e
(te) − [f̂ K]ete −

�
m

[f̂ K]m
e
cm
e

�
− H(d̂K) +

1

2AK

‖t − t̄‖2
2
+

3𝜀

4
.
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In the case of the Stable Dynamics model,

Since optimal t∗ − t̄ ≥ 0 are Lagrange multipliers for the problem (P3),

and thus

Therefore,

and, finally,

what yields the result. 	�  ◻

4 � Frank–Wolfe variations and USTM in traffic assignment

Here, we consider several numerical methods for solving a separate problem of 
searching user equilibrium with inelastic demands. The Frank–Wolfe method and its 
variations with different line search strategies effectively solve the Beckmann traffic 
assignment problem, but due to its primal nature it cannot be applied to the stable 

−D�
3
(tK) ≤ −

∑
e

(
𝜎e
(
[f̂ K]e

)
+
∑
m

[f̂ K]m
e
cm
e

)
− H(d̂K) +

R̃2

2AK

+
3𝜀

4

= −Ψ(f̂ K) − H(d̂K) +
R̃2

2AK

+
3𝜀

4
≤ −P3(d̂

K , f̂ K) +
(MR̃)2

K𝜀
+

3𝜀

4
.

−D�
3
(tK) ≤ min

t≥t̄

��
e

�
f̄e(te − t̄e) − [f̂ K]ete −

�
m

[f̂ K]m
e
cm
e

�
+

1

2AK

‖t − t̄‖2
2

�

− H(d̂K) +
3𝜀

4

= −Ψ(f̂ K) − H(d̂K) +min
t≥t̄

�
⟨f̄ − f̂ K , t − t̄⟩ + 1

2AK

‖t − t̄‖2
2

�
+

3𝜀

4

= −P3(d̂
K , f̂ K) −

AK

2
‖(f̂ K − f̄ )+‖22 + 3𝜀

4

≤ −P3(d̂
K , f̂ K) −

K𝜀

4M2
‖(f̂ K − f̄ )+‖22 + 3𝜀

4
.

P3(d̂
K , f̂ K) ≥ P3(d

∗, f ∗) − ⟨(f̂ K − f̄ )+, t
∗ − t̄⟩ = D�

3
(t∗) − ⟨(f̂ K − f̄ )+, t

∗ − t̄⟩,

−⟨(f̂ K − f̄ )+, t
∗ − t̄⟩ ≤ P3(d̂

K , f̂ K) − D�
3
(tK) ≤ −

K𝜀

4M2
‖(f̂ K − f̄ )+‖22 + 3𝜀

4
.

K𝜀

4M2
‖(f̂ K − f̄ )+‖22 ≤ R‖(f̂ K − f̄ )+‖2 + 3𝜀

4

‖(f̂ K − f̄ )+‖2 ≤ 4M2R

K𝜀
+M

�
3

K
,
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dynamics model. Meanwhile, the primal-dual USTM method can be applied to both 
problems. Further, we conduct the experiments for these methods.

4.1 � Frank–Wolfe variations

In the Beckmann model, searching equilibria reduces to minimization of the poten-
tial function (B). One of the most popular and effective approaches to solve this 
problem numerically is the famous Frank–Wolfe method (Frank and Wolfe 1956; 
Jaggi 2013) as well as its numerous modifications (Fukushima 1984; LeBlanc et al. 
1985; Arezki and Van Vliet 1990; Chen et al. 2002). Also, one can apply the pri-
mal-dual subgradient methods to optimize the dual problem and then reconstruct 
a solution to the primal one. However, our research (Kubentayeva and Gasnikov 
2021) showed that this approach demands more parameter adjustments to reach the 
Frank–Wolfe algorithm’s performance with standard step size strategy.

In this paper, we test various step size strategies of Frank–Wolfe method. Namely, 
we consider some simple decaying step size schedules like standard choice of step 
size �k =

2

k+1
 and �k =

1

k
 leading to the averaging of f k , and a number of approaches 

based on a choice of the optimal step size by solving auxiliary one-dimensional 
problem

The variety of these approaches corresponds to the different one-dimensional opti-
mization methods. We consider the Brent method on a segment �k ∈ [0, 1] (Brent 
1971) and exponential decreasing of �k until Armijo rule is satisfied (Armijo 1966). 
The last modification considered is the backtracking line-search method developed 
for specific use in Frank–Wolfe algorithms proposed in Pedregosa et al. (2020).

The Frank–Wolfe method’s theoretical convergence rate for convex objective 
(with Lipschitz-continuous gradient) is O(1∕�) (Pedregosa et al. 2020; Jaggi 2013)

Algorithm 2   Frank–Wolfe algorithm

�k∶= argmin
�∈[�min,�max]

Ψ((1 − �)f k + �sk).
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4.2 � Primal‑dual universal similar triangles method

Let us remind that (DualB) and (DualSD) dual problems of Beckmann and stable 
dynamics traffic assignment models have the same structure:

The optimization problems are convex, non-smooth and composite. We apply the 
USTM method described to minimize the composite objective Q(t). Here, in the 
Algorithm 1, we set Φ(t)∶=

∑
i,j dijTij(t) . As in Sect. 3.1, for both models, flows (pri-

mal variables) are reconstructed in the following way:

where �k is a coefficient of the USTM method on iteration k, and AK =
∑K

k=1
�k . 

Note that any element from the set ∂Φ(t) has form ∇Φ(t) = −f  , where f = Θx is 
a flow distribution on links induced by x ∈ X concentrated on the shortest paths 
for given times t (and vice versa: any such f corresponds to a subgradient of Φ(t) ). 
Hence, weighted f̂ K are also induced by flows on the paths.

For the Beckmann model, we can also use the duality gap to estimate the meth-
od’s accuracy:

For the stable dynamics model, flows reconstruction according to (12) keeps fea-
sibility of f̂ K (i.e. they are induced by flows on the paths), but can violate the net-
works capacity constraints — so the duality gap ΔK can be negative. To solve the 
SD traffic assignment problem with inelastic demand, Kubentayeva and Gasnikov 
(2021) proposed a novel way to reconstruct admissible flows  — which also meet 
capacity constraints – together with a novel computable duality gap, which can be 
used in a stopping criterion.

The USTM method requires O(1∕�2) iterations to obtain an �-solution of pri-
mal and dual problems of Beckmann and SD models (Nesterov 2015; Kuben-
tayeva and Gasnikov 2021).

5 � Sinkhorn’s variations for trip distribution

Optimization problem of entropy-based trip distribution model of Wilson (1969) 
coincides with optimal transport (OT) problem with entropy regularizer (Cuturi 
2013). To solve the problem, celebrated Sinkhorn’s algorithm is used (Sect. 5.1). 
In Sects. 5.2 and 5.3, we consider accelerated gradient methods adapted for solv-
ing OT problems. These methods achieve better theoretical convergence rates 

Q(t) =
∑
i,j

dijTij(t) − h(t) ⟶ max
t≥t̄ .

(12)f̂ K = −
1

AK

K∑
k=1

𝛼k∇Φ(yk),

ΔK = Q(tK) + Ψ(f̂ K).



	 M. Kubentayeva et al.

1 3

15  Page 20 of 33

compared to Sinkhorn-like methods in some regimes. Later, in Sect. 6.3, we con-
duct experiments to compare performances of the mentioned methods.

5.1 � Sinkhorn’s algorithm

In this section, for the sake of formulas simplicity, we assume a single agent type 
and travel mode. Since the problem (8) is separable, without loss of generality, 
we consider only one trip purpose and suppose 

∑
i,j dij = 1 . Thus, eq. (8) takes 

form

Following Guminov et  al. (2021), we perform a change of variables �l = −��l , 
�w = −��w in (13) and obtain an equivalent formulation

where

with the primal-dual coupling

Similarly to the well-known Sinkhorn algorithm, the objective in (14) can be alter-
natively minimized (see Algorithm 3).

Algorithm 3   Sinkhorn’s Algorithm (dual objective with the tautological constraint)

(13)�(�l, �w) =
1

�
ln
∑
i,j

exp
(
−�

(
Tij + �l

i
+ �w

j

))
+
∑
i

�l
i
li +

∑
j

�w
j
wj.

(14)�(�l,�w) =
1

�

�
ln
�
1
Td

�
�l,�w

�
1
�
− ⟨�l, l⟩ − ⟨�w,w⟩� → min

�l,�w
,

(15)
[
d(�l,�w)

]
i,j
= exp

(
�l
i
+ �w

j
− �Tij(t)

)
,

(16)d = d(�l,�w)∕1Td(�l,�w)1.
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Note that, according to Lemma  9 in Guminov et  al. (2021) for the prob-
lem  (14), partial explicit minimization is possible via the same formulas as for 
classical entropy-regularized OT problem (Cuturi 2013) without tautological 
constraint:

but the primal-dual coupling formulas are different:  (16) for the problem (14) and 
(15) for the problem (17).

The argminima of (14) should be implemented using numerically stable com-
putation of the logarithm of the sum of exponents (logsumexp trick), but analyti-
cally the argminima are given by

where logarithm is taken element-wisely.
The authors of Gasnikov et  al. (2015) pointed out that the objective  (14), its 

gradient

and eq. (15) are invariant under transformations

with t�l , t�w ∈ ℝ . That leads to better numerical stability. In our experiments, we 
present a variant of Algorithm 3 (labeled as SINKHORN-TAUT-SHIFT) with such 
invariant transformations, that provide maximum of the dual variables equals 1, and 
with numerically stable computations of the logarithm of the sum of exponents.

5.2 � Accelerated Sinkhorn’s algorithm

Besides the Sinkhorn’s algorithm, accelerated gradient methods are adapted for solv-
ing OT problems. These methods achieve better theoretical convergence rates com-
pared to Sinkhorn-like methods in some regimes. To the best available knowledge, 

(17)�(�l,�w) = 1
Td

�
�l,�w

�
1 − ⟨�l, l⟩ − ⟨�w,w⟩ → min

�l,�w
,

(18)ln�l
k+1

∶= ln�l
k
+ ln l − ln

(
d
(
�l
k
,�w

k

)
1
)
,

(19)ln�w
k+1

∶= ln�w
k
+ lnw − ln

(
1
Td

(
�l
k
,�w

k

))
,

(20)∇�l�(�) = ��(�l,�w)∕��l =
1

�

(
d
(
�l,�w

)
1

1
Td

(
�l,�w

)
1

− l

)
,

(21)∇�w�(�) = ��(�l,�w)∕��w =
1

�

(
d
(
�l,�w

)T
1

1
Td

(
�l,�w

)
1

− w

)
,

(22)�l
→ �l + t�l1

(23)�w
→ �w + t�w1,
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the first such method was proposed in Gasnikov et  al. (2016), where the authors 
proposed non-adaptive Accelerated Gradient Descent (AGD) method for a more 
general class of entropy-linear programming problems. The algorithmic idea is to 
run AGD for solving (14) and equip it with some primal updates to guarantee the 
convergence rate also for the primal problem.

In this subsection, Algorithm 1 and Algorithm 2 (its adaptation for trip distribu-
tion problem listed as Algorithm 4) from Guminov et al. (2021) are described. The 
authors proposed to replace in the classical AGD methods the gradient step with 
a step of explicit minimization w.r.t. one of the blocks of variables. To formalize 
the latter, suppose that the vector of dual variables can be divided into m block s.t. 
� =

(
�T
1
,… ,�T

m

)T . So that, notations �(�) and �(�1,… ,�m) are equivalent. And 
suppose that it is possible to minimize the dual objective (14) over i-th block hold-
ing the others variables fixed:

Introduce also a notation for block gradient

The resulting algorithms m times theoretically slower than its gradient counterpart, 
where m is the number of blocks of variables used in alternating minimization. But 
in practice the algorithms work faster (Guminov et al. 2021).

Algorithm 4   AGM-NONPD

(24)argmin
i

�(�)∶= argmin
�

�(�1,… ,�i−1, �,�i+1,⋯ ,�m).

(25)∇i�(�) =
��(�1,… ,�i−1, �,�i+1,⋯ ,�m)

��
.
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In practice variable transformations (22, 23) (with t� = −‖�‖∞ , � ∈ {�l,�w} ) per-
formed after steps 5 and 7 of Algorithm 4 and can lead to a better numerical stability 
when � is big.

For Algorithm  2 from Guminov et  al. (2021) constraints residual 
‖((d1 − l)T , (1Td − w)T )T‖2 = Õ

�
1

k2

�
 , but in our experiment it was observed that con-

straints residual decrease faster for d = d(�k) (16) than for the theoretically obtained pri-
mal variable d using primal-dual property of the algorithm. We present experiments only 
on the best performing modifications with d = d(�k) primal variable reconstruction, 
labeled as NONPD (since it does not utilizes primal-dual property of the algorithms con-
sidered in this subsection).

According to (Guminov et al. 2021, Theorem 3) the objective of the form (14) can 
be minimized with the following rate

5.3 � MIXED AGM

One more natural modification of Algorithm 4 can be obtained by performing sev-
eral steps of explicit minimization instead of one. The natural number of steps seems 
to be equal to the number of blocks m. But the proof of Algorithm 4 utilizes the fol-
lowing property of a step explicit minimization

in order to obtain

The latter is true since ik = argmax
i∈{1,…,m}

‖∇ik�(�
k)‖2

2
.

But the inequality  (26) can be satisfied if one replaces lines 6 and 7 in Algo-
rithm 4 with the following Algorithm 5.

Algorithm 5   k-th step

�(�k) − �∗ = Õ

�
�1∕2‖T‖∞

k2

�
.

�(�k+1) ≤ �(�k) −
1

2L
‖∇ik�(�

k)‖2
2

(26)�(�k+1) ≤ �(�k) −
1

2nL
‖∇�(�k)‖2

2
.
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Despite the practical performance, this modification has no theoretical guarantees 
because ‖∇ik�(�

k)‖2
2
 can be greater than ∑J

j ‖∇�(�
j)‖22 for any J > m.

Moreover, Algorithm  4 is non-increasing. But non-increasing property of the 
algorithm can be violated (with either the exact minimization given by lines 6 and 
7 of Algorithm 4 replaced with Algorithm 5 or not) due to numerical instabilities. 
Once it happened, Algorithm 4 is stopped. The computations can be proceeded from 
the last obtained �k with Sinkhorn’s iterations. In fact, these numerical instabilities 
break monotonicity of Sinkhorn’s iterations too, but in practice the proceeding of 
computations with Sinkhorn’s iterations allows to find better minima.

The modification, named MIXED-AGM-NONPD, combines Sinkhorn’s 
iterations after reaching the stability limit and the exact minimization given by 
Algorithm 5.

5.4 � Reconstruction of correspondence matrix

Finally, let us discuss a reconstruction of a solution to the primal problem (E). 
Assume we reconstruct a solution dk of the primal problem (E) by formula (16) 
with �l = �l

k
 , �w = �w

k
 . However, since the dual problem is only approximately 

solved, dk in general does not satisfy the marginal constraints. So obtain a feasi-
ble solution, one can use projection Algorithm 2 from Altschuler et al. (2017). 
According to (Altschuler et al. 2017, Theorem 4), it has complexity O(|O| ⋅ |D|) 
and returns a correspondence matrix d̂k ∈ Π(l,w) such that

The error can be estimated following Theorem 8 in Stonyakin et al. (2019):

Consider �l
k
 , �w

k
 obtained with Sinkhorn’s algorithm. Using (20) and the convexity 

of � we get

where (�l
∗
,�w

∗
) is the solution of  (15). Then Lemma 3 and Theorem 7 from Ston-

yakin et al. (2019) ensure that

Combining the above bounds, we obtain the following bound on the duality gap:

‖dk − d̂k‖1 ≤ 𝛿k = ‖dk1 − l‖1 + ‖dT
k
1 − w‖1.

(27)E(d̂k, T) ≤ min
d∈Π(l,w)

E(d, T) + 2𝛿k‖T‖∞ +
4𝛿k
𝛾

log

��O� ⋅ �D�
𝛿k

�
.

�(�l
k
,�w

k
) − �∗ ≤ ⟨�l

k
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∗
,∇�l�(�l

k
,�w

k
)⟩ + ⟨�w

k
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∗
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k
,�w

k
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=
1

�
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∗
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k
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∗
, dT

k
1 − w⟩�,

�(�l
k
,�w

k
) − �(�l

∗
,�w

∗
) ≤ 1

2
‖T‖∞

�‖dk1 − l‖1 + ‖dT
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1 − w‖1

�
.

(28)E(d̂k, T) + 𝜙(𝜇l
k
,𝜇w

k
) ≤ 5

2
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𝛾
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��O� ⋅ �D�
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6 � Numerical experiments

In our experiments, we consider the morning peak-hour in Moscow transporta-
tion network. The city’s data are provided by Russian University of Transport.

The city and its suburbs are split into 1420 zones. Moscow road network con-
sists of 12970 nodes and 36905 links, a part of it is visualized on Fig.  1. We 
model the crossings by inserting auxiliary links for each allowed turn between 
road links. Resulting graph contains 63073 nodes and 94546 links.

In our four-stage model of Moscow we consider

•	 Two demand layers: home-to-work, and home-to-others;
•	 Two agent types: car owners and non-car-owners;
•	 And three travel modes: public transport, pedestrian and car.

6.1 � Parallel computing

Calculation of flows f is the most expensive part, since we have to find the short-
est paths for all pairs w ∈ OD . We use Dijkstra’s algorithm (Dijkstra 1959) to 
find the shortest paths, which runs in O(|E| + |V| log |V|) time; Given the short-
est paths tree, flows aggregation have linear performance O(|V|) . Hence, the total 
complexity of flows calculation is O

(|O|(|E| + |V| log |V|)) . Moreover, flows 

Fig. 1   Moscow network link loads, obtained for the combined Beckmann model

Table 1   Effect of CPU 
parallelism

# cores 1 4 8 16 24 32

Total time (sec) 2794 810 470 335 293 274
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reconstruction for every source o ∈ O can be computed in parallel. Table 1 shows 
the result of running 100 iterations of the Frank–Wolfe method on Moscow road 
network with the various number of cores involved (processor’s speed is 3092,72 
MHz).

6.2 � Frank–Wolfe algorithm’s variations

Each of the considered modifications of the Frank–Wolfe algorithm was run up to 
2000 iterations for the traffic assignment task of the classic four-stage model for 
the Moscow road network. The results are shown in Fig. 2.

6.3 � Sinkhorn algorithm’s variations

Experiments were run for the Trip distribution stage with dual function adjustment 
for gradient methods described in Sect. 5 for the Moscow road network. The results 
are shown in Fig. 3.

Different formulations of minimized targets for Sinkhorn’s method were consid-
ered (for example, formulation (14) or (17)), but conceptual differences were not 
identified, therefore only (14) formulation is shown as SINKHORN-TAUT-SHIFT. 
Label AAM-NONPD corresponds (Guminov et al. 2021, Algorithm 3), that can be 
easily adapted similarly as Algorithm  4 was adapted from (Guminov et  al. 2021, 
Algorithm 1). One should note that utilized Sinkhorn’s variation has comparable to 
gradient methods convergence rate, hence common approach is suitable for solving 
Trip Distribution problem.

Fig. 2   Convergence rate for the 
different Frank–Wolfe modifica-
tions for Moscow network
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Fig. 3   Sinkhorn’s algorithm modifications for the trip distribution stage

Fig. 4   Duality gap convergence

0 50 100 150 200 250

103

105

107

109

1011

Computational time, minutes

D
ua

lit
y
ga
p

USTM
Evans algorithm
Four-step procedure



	 M. Kubentayeva et al.

1 3

15  Page 28 of 33

6.4 � Combined model, Beckmann

Here we compare three algorithms for finding a fixed-point of the four-stage Beck-
mann traffic model, namely Four-stage procedure, Evans algorithm and our dual 
approach via USTM. The difference with the two-stage model is the addition of 
mode split and mode cost averaging steps. Mode split step usually cause wobbling 
between public transport and car modes when using straightforward Four-stage pro-
cedure: if the road network is free at the first iteration agents start alternating 
between these two modes at each iteration. So we applied exponential averaging of 
modes cost matrices to handle this problem: Tm

ij
[k + 1] =

1

2

(
Tm
ij
[new] + Tm

ij
[k]

)
.

Figure 4 shows the convergence of the duality gap for all three algorithms consid-
ered. It can be seen that the Four-stage procedure does not tend to converge to zero 
duality gap: after 5-6 iterations (about 70 min) it reaches its lower value of the dual-
ity gap, then it starts to fluctuate around this value. In order to increase the accuracy 
of the approximate solution found by Four-stage procedure, one has to increase the 
number of inner iterations, which will make each outer iteration slower.

In contrast, Evans method steadily converge to zero duality gap.
Some intuition about the behavior of the methods can be given by the Fig.  5, 

where two-dimensional projections of dm
ij

 trajectories are depicted. The projections 
were made by multidimensional scaling method, which tries to preserve pairwise 
distances while matching points from high-dimensional space (in our case — corre-
spondence matrices) to points on the plane. As one can see, the trajectories start 
from the same point, since the calculation of the correspondence matrices and the 
modal splitting in both methods is the same. After a few iterations the trajectories of 

Fig. 5   2-dimensional projections of dm
ij

 trajectories for the Evans algorithm and the four-stage procedure, 
obtained by multidimensional scaling. The trajectory of the Evans method is sparsified to 50 points. The 
last point is marked with a large cross
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the methods are in the same region again, but the Evans method proceeds with small 
steps, while the Four-stage procedure makes long jumps around the point to which 
Evans method converges. The trajectory of USTM is similar to the trajectory of the 
Evans algorithm and is omitted for the sake of readability.

6.5 � Combined model, stable dynamics

Here we compare the results obtained for the Beckman and the Stable Dynamics 
models on the Moscow city transportation model. We use the USTM algorithm to 
search for the equilibria because other algorithms are not applicable since the link 
travel times are not functions of the link flows in the Stable Dynamics model.

We used the same Moscow network as in previous experiment, but, since Stable 
Dynamics model is usually infeasible for peak-hours correspondences, we divided 
the peak-hour departures lra

i
 and arrivals wr

j
 by two.

Convergence trajectories for Stable Dynamics model are shown in Fig.  6. We 
discuss convergence of Beckmann model in more representative case of peak-hour 
departures and arrivals in Sect. 6.4, therefore convergence trajectories for Beckmann 
model are omitted in this subsection.

We asses the convergence by monitoring two values: constraints violation and 
function suboptimality. Since the dual approach allows the flows to exceed the link 
capacities, the primal variables stay outside of the feasible region, thus the duality 
gap could be negative, as shown in Fig. 6b. Then duality gap is negative, the objec-
tive function value at that approximate solution (of the minimization problem) is 
less than the optimal function value, but the approximate solution is infeasible.

The comparison of the approximate solutions is given in Fig. 7. It is evident that 
Beckmann’s model is more likely to exceed the link capacity. Figure 7b shows that 

(a) (b)

Fig. 6   Convergence of USTM on the Stable Dynamics model: a total flow above the link capacity limits, 
b absolute value of the duality gap, the sign is marked by color
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the travel time on some links in Stable Dynamics model exceeds the free-flow time 
by several hundred times. This implies that some zones are connected to the rest of 
the network only by low-capacity links, leading to huge traffic congestion at equi-
librium. This result is likely due to inaccuracies in the input data, but if not, these 
bottleneck links should be prioritized in the transportation network improvement 
process.

(a) (b)

Fig. 7   Histograms of the network load: a histogram of the ratio of the amount of flow on the link to its 
capacity, b histogram of the ratio of the travel time on the link to the travel time on the same link when it 
is free

(a) (b)

Fig. 8   Convergence of Frank–Wolfe and USTM with different � for Beckmann model for Berlin-Center 
network: a primal function, b duality gap
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6.6 � Traffic assignment model: Frank–Wolfe vs USTM for Beckmann model

Experiments were conducted for single trip purpose, agent type and travel mode (by 
car) for the Berlin-Center network split into 865 zones with 12981 nodes and 28376 
links (for more details see Transportation Networks for Research Core Team 2023). 
As it was shown in the article (Kubentayeva and Gasnikov 2021), performance 
of the USTM method is better than UGD (Nesterov 2015) and other variations of 
accelerated gradient descent, thus only USTM and conventional Frank–Wolfe meth-
ods are considered. Convergence by primal function and duality gap is presented in 
Fig. 8. It is necessary to emphasize that the bigger � , the faster USTM converges to � 
accuracy and oscillates. Thereby, it makes sense to use restarting technique for faster 
convergence — run method with �′ and then with final desired accuracy 𝜀 < 𝜀′.
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