
Vol.:(0123456789)

Computational Management Science (2023) 20:7
https://doi.org/10.1007/s10287-023-00441-7

1 3

ORIGINAL PAPER

Adaptive evolutionary algorithms for portfolio selection 
problems

Gianni Filograsso1   · Giacomo di Tollo2

Received: 13 June 2022 / Accepted: 2 November 2022 / Published online: 15 February 2023 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
In this contribution we propose to solve complex portfolio selection problems via 
Evolutionary Algorithms (EAs) that resort to adaptive parameter control to man-
age the Exploration versus Exploitation balance and to find (near)-optimal solutions. 
This strategy modifies the algorithm’s parameters during execution, and relies on 
continuous feedbacks provided to the EA with respect to some user-defined criteria. 
In particular, our study aims to understand whether a standard EA can benefit from 
a robust method that iteratively selects the crossover operator out of a predefined set, 
in the context of optimised portfolio choices. We apply this approach to large-scale 
optimization problems, by tackling a number of NP-hard mixed-integer program-
ming problems. Our results show that generic EAs equipped with single crossover 
operator do not perform homogeneously across problem instances, whereas the 
adaptive policy leads to robust (and improved) solutions, by alternating exploration 
and exploitation on the basis of the features of the current search space.

Keywords  Portfolio optimization · Evolutionary algorithms · Adaptive parameter 
control · Parameter setting · Mixed-integer programming

1  Introduction

Evolutionary Algorithms (EAs) are high-level strategies that aim to solve optimi-
zation problems by mimicking the Darwin theory of natural evolution and selec-
tion. From a conceptual point of view, EAs manage (i.e., maintain and manipulate) 
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a population of individuals, and modify them via the application of variation opera-
tors: this is done to identify a (near)-optimal solution that optimizes a given fitness 
function, used to assess the individuals’ quality.

Since their introduction (Holland 1992; Goldberg 1989), Evolutionary Algo-
rithms have been applied to many fields including logistics (Prins 2004; Archetti 
et  al. 2012), meta-optimization (Birattari et  al. 2002; Smit and Eiben 2009), eco-
nomics (Tapia et al. 2007; Arifovic 1994) and finance (Dempster and Jones 2001; 
Hoogs et al. 2007): with respect to the last field, we mention in particular credit risk 
management (Wang et  al. 2022; Brabazon and Keenan 2004), algorithmic trading 
(Brabazon and O’Neill 2004; Jeong et al. 2021) and the Portfolio Selection Problem 
(PSP) (Markowitz 1952, 1959), which represents one of the most studied subjects in 
finance.

The basic idea of portfolio selection developed by Markowitz (1952) involves the 
selection of promising assets in terms of their return and risk, and the allocation of 
capital to each of them: PSP was formulated as a bi-criteria optimization problem 
in a mean-variance framework, under the hypothesis that the distributions of asset 
returns are fully described by their means, variances and covariances: a growing 
body of literature outlines that the approximation of the exact maximum expected 
utility achieved by optimal mean-variance outperforms the one obtained by asym-
metric risk measures for a variety of utility functions (see e.g. Carleo et al. 2017 for 
a comprehensive empirical study). However, normal returns or quadratic utility are 
sufficient but not necessary conditions for the optimality of mean-variance portfo-
lios (Markowitz 2014), and since neither of the two assumptions hold in practice and 
given that mean-variance solutions are severely unstable (Corazza et al. 2013; Pro-
cacci and Aste 2022), new approaches have been investigated, and will be discussed 
in what follows.

First, evidence shows that asset returns are asymmetric and display excess kur-
tosis, so that the mean-variance approach cannot fully describe the investor prefer-
ences: new risk measures (Chen and Wang 2008; Maillard et al. 2010) have been 
proposed to satisfy some formal properties (Artzner et al. 1999), to take into account 
non-normal empirical distributions (Gilli et al. 2006) and/or to deal with unstable 
and poorly diversified solutions arising from noisy estimates of expected returns 
(Kizys et al. 2022). Second, it has to be taken into account that realistic formulations 
of the optimization problem have to consider extra-features as integer constraints, 
leading to mixed-integer constrained problems that have been proven to be NP-hard 
(Moral-Escudero et al. 2006), and that cannot be solved by traditional methods: in 
this case, EA-based approaches are particularly attractive, on the basis of different 
features that will be detailed in what follows.

The first application of EAs to PSP dates back to the nineties’ (Arnone et al. 
1993; Loraschi et al. 1995; Loraschi and Tettamanzi 1995; Liu and Stefek 1995), 
and take into account different problem formulations and constraints (di Tollo 
and Roli 2008). More recent contributions improve the search component by 
embedding a hybrid mechanism that either add a local search component to refine 
found solutions, or introduce advanced constructive procedures to identify good 
individuals: the resulting strategies are referred to as memetic algorithms (Neri 
et al. 2012), and have been applied to Portfolio Selection by Maringer and Winker 
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(2003) and Maringer (2005), that enhance Evolutionary Algorithms by adding 
Simulated Annealing (Crama and Schyns 2003) and Tabu Search (Schaerf 2002) 
modules in the framework of different risk measures. Moreover, several studies 
propose to hybridize evolutionary algorithms with machine learning techniques 
(Chen et  al. 2020; Yaman and Dalkılıç 2021), whereas Salehpoor and Molla-
Alizadeh-Zavardehi (2019) discuss a strategy which combines genetic algorithms 
with electromagnetism-like algorithms, Particle Swarm optimization, genetic 
network programming and Simulated Annealing. Finally, Kalayci et  al. (2020) 
employ a hybrid approach based on continuous ant colony optimization, genetic 
algorithms and artificial bee colony for solving a cardinality constrained PSP. One 
of the main advantages of Evolutionary Computation lies in its strength to tackle 
multi-objective formulations, as shown by the applications of Multi Objective 
Evolutionary Algorithms (MOEAs), see, e.g. Streichert et al. (2004a), Streichert 
et  al. (2004b), Streichert et  al. (2004c) and Lin et  al. (2001), Diosan (2005) in 
the context of multi-objective portfolio selection problems; also single-objective 
formulations have been devised (Chang et al. 2000; Xia et al. 2000; di Tollo and 
Roli 2008; Wang et al. 2006), even though it has been reported that single-objec-
tive formulations are less apt to embed users’ preferences (Subbu et al. 2005).

All the above mentioned contributions take into account a single variation 
operator to perform the recombination of individuals. Although it has been the 
current practice for years, this could lead to underperformance in terms of the 
optimization results: this is due to the Exploration vs Exploitation (EvE) balance. 
In a nutshell, one may describe the behaviour of an Evolutionary Algorithm by 
using the concepts of exploration and exploitation: the former, also referred to as 
diversification, ensures that the algorithm is able to explore regions of the search 
space that are far from each other; the latter, which is more broadly referred to as 
intensification, identifies the ability of the algorithm to find good solutions for the 
problem at hand. The balance between exploration and exploitation represents an 
open research topic (Maturana et  al. 2009, 2010; Črepinšek et  al. 2013; Huang 
et al. 2020) and a key issue of the overall EAs’ performances: this balance may be 
monitored and efficiently managed during the algorithm execution via the control 
of specified parameters, and in our case these are represented by the application 
rates of the different crossover operators available for the problem at hand.

Based on these considerations, in our contribution we want: 

1.	 To give an overview of all crossover operators reported into the literature about 
Evolutionary approaches for Portfolio Selection;

2.	 To introduce a control procedure that uses all the mentioned operators during the 
algorithm run;

3.	 To perform an experimental analysis over different Portfolio Selection formula-
tions.

As for the control procedure, we are exploiting the adaptive controller proposed 
by (di Tollo et al. 2015), that identifies the operator to be applied at each itera-
tion on the basis of the past performances w.r.t. the criteria used to assess the 
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population’s quality (average fitness) and diversity (entropy). In this way it is 
possible to devise adaptive strategies that select the operator needed in order 
to maintain the desired EvE balance, on the basis of an external parameter. Our 
goal is to show that the application of this control procedure leads to better (and/
or more robust) solutions than the ones found by single-operator Evolutionary 
Algorithms.

The remainder of the paper is organized as follows. In Sect. 2 we present a litera-
ture review of evolutionary methods for portfolio management. In Sect. 3 we review 
the literature on crossover operators, with special focus on portfolio selection appli-
cations. In Sect. 4 we introduce a parameter control procedure and in Sect. 5 we per-
form a computational analysis over different formulations of the portfolio selection 
problem. Section 6 concludes.

2 � Evolutionary algorithms for portfolio selection problems

Evolutionary algorithms are bio-inspired and population-based metaheuristics, 
which manage an evolving population of candidate solutions1: a population is gener-
ated according to a user-defined random distribution, and modified by performing 
iteratively the following three steps: 

1.	 Evaluate each individual according to a fitness function;
2.	 Identify the fittest individuals in order to converge to a (near)-optimal solution;
3.	 Modify the population through replacement of some individuals (selected w.r.t. a 

user-defined criterion) with new ones generated by applying crossover operators.

In the context of Portfolio Selection Problems, EAs have been applied to several 
extensions of the basic Markowitz model (Kolm et  al. 2014; Gunjan and Bhat-
tacharyya 2022) to obtain realistic results and/or to take into account real-world 
constraints. In what follows, we review the main literature about the applications 
of evolutionary algorithms to portfolio selection, before outlining some of the main 
components of the algorithm in the next sections.

The papers of Arnone et  al. (1993) and Loraschi et  al. (1995) are pioneering 
contributions in the field of evolutionary algorithms for Portfolio Selection Prob-
lems: they introduce basic approaches in order to determine the (approximated) 
constrained frontier of efficient portfolios, from a mean-semivariance point of view: 
they propose to exploit a genetic approach with a problem-specific crossover opera-
tor to tackle down-side risk measures, showing promising results.

Chang et  al. (2000) propose to extend the standard mean-variance portfo-
lio optimization model to take into account cardinality constraints and to impose 

1  Metaheuristics may be partitioned in trajectory-based and population-based ones: in the former case, 
the search can be represented as a trajectory in the search space; in the latter, the search can be seen as an 
evolution of a discrete set of points (solutions). Also hybrid approaches that combine the two paradigms 
exist: please refer to Blum and Roli (2003) for more details.
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a constraint on the proportion of each asset held in the portfolio. They address a 
NP-hard multi-objective mixed-integer quadratic programming (MIQP) problem 
(Moral-Escudero et  al. 2006), by using a single-objective formulation in which 
the minimum return constraint and the risk aversion coefficient � are incorporated 
into the objective function. A similar approach is devised by Xia et  al. (2000), in 
which the authors propose to model the PSP with an order of the expected returns 
of securities and with transaction costs. Also Chang et al. (2009) examine a genetic 
algorithm for single-objective problems with standard evolutionary features: they 
compare all the Pareto frontiers generated from portfolios with different number 
of assets, showing that low cardinality portfolios tend to outperform more complex 
portfolios with a larger number of assets.

The contribution of Lin and Liu (2008) is arguably the first one that proposes to 
solve the classic mean-variance quadratic program with minimum transaction lots 
constraint through evolutionary algorithms. The key point of this contribution is to 
consider a mixed-integer linear program in which the amount invested in each asset 
must be a multiple of the minimum amount that can be purchased of that security 
(roundlot).

Huang (2007, 2008) propose to overcome the limitations of mean-variance mod-
els by taking both the asymmetry and the uncertainty of stock returns into account, 
by using fuzzy logic (Zadeh 1965) to model the portfolio’s returns, allowing the user 
to refine the Markowitz model, by relaxing the usual hypothesis of normally distrib-
uted returns through the assumption that returns are only partially known, i.e. the 
mean � and the standard deviation � of the distribution are fuzzy. These contribu-
tions introduce hybrid algorithms combining genetic algorithms and random fuzzy 
simulation to provide a general solution method. More recently, several studies (Kar 
et  al. 2019; Yu et  al. 2020) contribute to the literature by introducing new fuzzy 
hybrid methodologies, which combine genetic algorithms with machine learning 
techniques, in order to deal with multi-objective and multi-period portfolio prob-
lems, which take also into account higher-order moments.

Soleimani et  al. (2009) extend the mean-variance model with the integer con-
straints proposed by Chang et al. (2000), and include a market capitalization con-
straint: the possible market sectors2 are sorted in decreasing order with respect to 
their market capitalization, and the total weight of assets in the portfolio belonging 
to a given sector must be consistent with its market cap ranking. This constraint is 
formulated as follows:

where xi is the weight of security i in the portfolio and �i is a binary variable, which 
is equal to 1 if the asset is included in sector j and 0 otherwise.

(1)
∑
i∈|j|

xi + (1 − �j) ≥
∑

i∈|j+1|
xi j = 1, 2,… , s − 1

2  A stock market sector is a group of public companies that share similar business activities, outputs or 
characteristics. The U.S. stock market is partitioned into eleven sectors, according to the Global Industry 
Classification Standard (GICS).
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Krink and Paterlini (2011) introduce a methodology based on Differential Evo-
lution (Storn and Price 1997), which they call Differential Evolution for Multiob-
jective Portfolio Optimization (DEMPO): they propose some restrictions on turno-
ver, by imposing a set of constraints involving the changes to the asset allocation 
(say, at time t) deriving from portfolio re-balance. For instance, they impose that 
the variation of the proportion of each asset must be greater than a threshold Δi , and 
they constrain the total turnover ratio by imposing a maximum turnover ratio TR, as 
follows: 

Anagnostopoulos and Mamanis (2011) tackle quantile-based risk measures, 
namely Value-at-Risk (VaR) and Expected Shortfall (ES): they include floor and 
ceiling constraints, cardinality and class constraints, which are used to limit the the 
proportion of invested capital in assets with similar features. The constraints are 
handled with a problem-specific solution representation based on real-encoding, 
and infeasible solutions are managed with a novel repair mechanism, which presents 
some similarities with the approach outlined in Chang et al. (2000).

Hochreiter (2015) suggests to exploit Evolutionary Algorithms in order to tackle 
portfolio selection problems based on risk parity (Roncalli 2013): the main idea 
behind this approach is to determine a portfolio whose assets are included in such 
a way that the risk contributions of all the securities are made equal; denoting the 
portfolio standard deviation with �(x) , the marginal risk contribution of each asset xi 
is given by:

The general formulation of the risk parity problem (Maillard et  al. 2010) can be 
managed via sequential quadratic programming (SQP), in which the authors propose 
to remove the long-only constraint and to include the floor and ceiling constraint; 
another approach, presented by Kaucic (2019), imposes a risk parity constraint into 
cardinality constrained portfolios.

Lwin et  al. (2017) propose a hybrid multiobjective evolutionary algorithm for 
solving mean-VaR problems with real-world constraints, including cardinality, floor, 
ceiling, pre-assignment, roundlots and class constraints: a learning-guided solu-
tion generation strategy is incorporated into the optimization process in order to 
guide the search process towards promising regions. A slightly different perspec-
tive is discussed by Ranković et  al. (2016): the authors propose to model a novel 
mean-VaR portfolio optimization problem, where VaR is estimated with a univari-
ate Generalized Auto-Regressive Conditional Heteroscedasticity (GARCH) volatility 
model. They opt for a parametric VaR, under the hypothesis that returns follow a 

(2a)|xt+1
i

− xt
i
| ≥ Δi or |xt+1

i
− xt

i
| = 0

(2b)
N∑
i=1

|xt+1
i

− xt
i
| ≤ TR

(3)��(x)

�xi
=

xi�
2
i
+
∑

i≠j xj�ij

�(x)
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standardized Student’s t distribution, with d degrees of freedom, whereas the con-
ditional portfolio volatility is estimated via univariate GARCH(1, 1). The resulting 
multiobjective mean-VaR portfolio optimization problem with fixed asset holdings 
is solved by employing a Nondominated Sorting Genetic Algorithm (NSGA II).

In a nutshell: a strand of the literature on portfolio optimization proposes to use 
evolutionary algorithms to solve problems with complex constraints and/or objec-
tive functions. All the considered contributions rely on a broad range of crossover 
operators, whose role in finding a good solution is discussed in Sect. 3, together with 
a literature review.

3 � Crossover operators for portfolio selection problems

As we have discussed in the previous sections, Evolutionary Algorithms oper-
ate via the evolution of a population of individuals, which is implemented by the 
application of variation (crossover and mutation) operators. As pointed out by Her-
rera et al. (2005), the crossover operator is the main search operator which leads the 
search process towards different areas of the solution space, and a key point of suc-
cess for EAs lies in generating offspring solutions in a neighborhood of the parents, 
given that the degree of proximity is typically relevant to guide the search process 
properly.3

Since the introduction of Genetic Algorithms, a broad range of such operators has 
been introduced, both general purpose operators such as one-point crossover (Hol-
land 1992), uniform crossover (Syswerda 1993), arithmetic crossover (Michalewicz 
1992), heuristic crossover (Wright 1991) and tailored to specific domains, such as 
fuzzy crossover (Voigt et al. 1995), unimodal crossover (Ono and Kobayashi 1999), 
parent centric crossover (Ballester and Carter 2004) and simulated binary crosso-
ver (Deb et al. 1995). In this section we want to review these operators, in order to 
detail those that will be used in our operators pool, that will be outlined in Sect. 4. 
Though the elements of the search space have been often represented by means of 
binary encoding (Goldberg 1989), we stick to the tradition of GA-based portfolio 
selection literature, by focusing on a real-valued representation. In what follows, we 
will describe the different crossover operators proposed in the literature, highlight-
ing their behaviour and their relations with the portfolio selection literature.

•	 Single point crossover [OPX]
	   The single point crossover is the simplest crossover operator, which has been 

first proposed in the seminal works of Holland (1992) and Goldberg (1989). It 
generates an offspring by mating two parents by means of a cutting point, i.e. 
a randomly chosen position in the portfolio, by which the genetic material of 
each parent is split into two parts. It has been widely used in portfolio selec-

3  For practical purposes, from now on we focus our attention on genetic algorithms, hence in this section 
we review crossover methods specifically for GAs: nonetheless, note that our adaptive approach is flex-
ible enough to manage a broad range of evolutionary algorithms.
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tion literature, in particular by Chang et al. (2000) and Suksonghong and Boon-
long (2021), who propose to solve mean-variance optimization with integer con-
straints through GAs, and by Lin and Liu (2008), that discuss a similar approach 
with minimum lots constraints. This operator works as follows. Given a popula-
tion of N individuals {x1, x2,… , xN} , each individual is characterized by n genes; 
let xi denote a parent and let yi be an offspring, then we have: 

 Consider now two parents xa and xb and a cutting point k ∈ ℕ randomly chosen 
in the interval [1, n − 1] . Then, the two parents are mated to generate two off-
springs, which in turn inherit the genes from their parents in a random fashion, 
as follows: 

•	 Multiple point crossover [MPX]
	   The multiple point crossover (Goldberg 1989) is an extension of the single 

point crossover, in which the procedure includes more than one cutting point. In 
the context of portfolio selection problems, Skolpadungket et  al. (2007) apply 
a three-point crossover to multiobjective portfolio optimization problems, while 
Hochreiter (2008) introduces an evolutionary approach based on stochastic pro-
gramming, with the aim of solving multi-period portfolio selection problems by 
using a wide range of GAs, including a version with N-point crossover.

	   This method works as follows. Consider, for instance, a three point crossover; 
three numbers are randomly drawn, therefore three different cutting point are 
chosen (say k1 , k2 , k3 ). The cutting points are drawn one after another, so that that 
the inequality k1 < k2 < k3 is verified and the cutting points are defined over the 
[1, n − 1] interval. Hence, an offspring inherits the first portion of genes (assets 
for PSP) [1, k1] from parent xa , the second portion [k1, k2] from parent xb , the 
third one [k2, k3] from parent xa and finally the last portion [k3,N − 1] from parent 
xb , as follows: 

 The remaining values in the solution vectors, i.e. the first and the third portion 
of genes of parent xa , the second and the last portion of genes of parent xb may 
be allocated to a second offspring.

•	 Linear crossover [LNX]
	   The linear crossover has been devised by Wright (1991) to overcome some 

drawbacks of the n-point crossover: to our knowledge, there are no studies 
applying the linear crossover to GAs for portfolio optimization problems. The 

(4)xi = [xi(1), xi(2),… , xi(N)]

(5)yi = [yi(1), yi(2),… , yi(N)]

(6)y1(n) = [xa(1), xa(2),… , xa(k), xb(k + 1),… , xb(N)]

(7)y2(n) = [xb(1), xb(2),… , xb(k), xa(k + 1),… , xa(N)]

(8)
yi = [xa(1),… , xa(k1), xb(k1 + 1),… , xb(k2), xa(k2 + 1),

… , xa(k3), xb(k3 + 1),… , xb(N)]
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authors propose to generate three offsprings: each kth gene in the offspring is 
computed as a linear combination of the kth gene in parent 1 and in parent 2. 

•	 Uniform crossover [UX]
	   The uniform crossover, devised by Syswerda (1993), generates an offspring 

by mating two parents: each kth gene is passed either from parent xa with 
probability p = 0.5 or from parent xb with probability 1 − p = 0.5 , for each 
k ∈ [1, n] position, that is: 

 In order to solve the optimal portfolio choice problem, the uniform crossover 
has been often applied in the literature: for instance, Chang et  al. (2009) and 
Drenovak et  al. (2022) apply this crossover operator to a set of non-convex 
PSPs. Moreover, Arnone et al. (1993), Loraschi et al. (1995) and Loraschi and 
Tettamanzi (1995) examine a GA with a modified version of uniform crosso-
ver. Denoting with with TOTxa and TOTxb the total sums of the genes making up, 
respectively, parents xa and xb , and supposing that a gene kth from parent xa has 
been chosen, the value of the kth gene in the ith offspring is: 

•	 Global uniform crossover [GUX]
	   The global uniform, proposed by Simon (2013), is a generalization of the 

two-parent uniform crossover, and, up to the authors’ knowledge, it has not 
yet found application for the portfolio selection problem. Hence, in what fol-
lows we propose to introduce this operator in the context of portfolio selection 
problems. The rationale of this operator is to extend the parent pool to the 
whole population, so that the kth gene is selected with probability p = 1∕N 
from the ith parent. This algorithm, though, chooses genes in a completely 
random fashion; as a consequence, one may redefine the probability of select-
ing the kth gene in accordance with a fitness-based criterion.

•	 Queen-bee crossover [QBX]
	   This method, discussed in Sung (2007), mimics the reproduction process of 

bees in nature; the author tests this recombination tool with a combinatorial 
problem and two continuous function optimization problems. We propose to 
introduce this crossover strategy for portfolio selection problems, as we have 
not found any application of this approach to GA-based portfolio optimiza-
tion.

⎧
⎪⎨⎪⎩

yi(k) = 0.5 ⋅ x1(k) + 0.5 ⋅ x2(k)

yi+1(k) = 1.5 ⋅ x2(k) − 0.5 ⋅ x2(k)

yi+2(k) = −0.5 ⋅ x1(k) + 1.5 ⋅ x2(k)

yi(k) =

{
xa(k) with probability p = 0.5

xb(k) with probability (1 − p) = 0.5

(9)yi(k) = min

{
max{xa(1),… , xa(k),… , xa(n)}, xa(k)

TOTxa + TOTxb

2TOTxa

}
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	   We point out that a major limitation of this operator is its fast convergence 
to (potentially) local solutions. The idea is the following. The queen-bee rep-
resents the fittest parent, which is mated, at each step, with a randomly chosen 
parent, which in turn is dropped at the following step and she is replaced with 
another parent and so on. In order to have the parents mated, a wide array of 
choices is available (e.g. simple crossover techniques, like uniform or multiple 
point crossover strategies).

•	 Arithmetic and average crossover [AX]
	   The arithmetic crossover, devised by Michalewicz (1992), produces two 

offspring by mating two parents at each iteration. In the context of portfo-
lio selection problems, this crossover strategy has been applied by Xia et al. 
(2000) and Mazraeh et al. (2022) to solve the classic mean-variance problem. 
The offsprings are generated, gene by gene, as a weighted mean of their par-
ents genes, displaced in the same position of the resulting offspring gene, as 
follows: 

 The average crossover, mentioned in Michalewicz (1992) and also discussed in 
Simon (2013), simply derives the kth gene in the offspring as an average of his 
parents genes, drawn exactly from the same position in the vector representing 
an individual, as follows: 

 Note that the average crossover is a special case of the arithmetic operator, i.e. 
we simply impose � = 0.5.

•	 Simplex crossover [SPX]
	   The design of the simplex crossover has been proposed by Renders and Ber-

sini (1994) and it can be viewed as a generalization of the arithmetic crossover 
(Michalewicz and Schoenauer 1996). Up to the authors’ knowledge, no applica-
tion of simplex crossover to portfolio optimization models exists in literature, 
hence we propose to test its behaviour for PSPs. The operator identifies a groups 
G of possible parents, and selects k > 2 parents; then it determines the best and 
the worst individual (in terms of fitness) within G, and computes its centroid c, 
by removing the worst individual xw

i
 from it, as follows: 

 Then the ‘reflected point’ is computed: 

 If xr is better (in terms of fitness) than the best selected individual xbest , an 
expanded point xe is determined: 

(10)yi(k) = �xa(k) + (1 − �)xb(k)

(11)yi(k) = (xa(k) + xb(k))∕2

(12)c =
∑

xi∈G−x
w
i

xi∕(k − 1)

(13)xr = c + (c − xw
i
)

(14)xe = xr + (xr − c)
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 If xe is better than xr , the offspring is xe , else the offspring is xr ; otherwise if xr is 
not better than xbest but it is better than xw , then the offspring is xr.

•	 Geometrical crossover [GX]
	   With this operator, an offspring can be generated in this way: 

 The geometrical crossover has been first proposed by Michalewicz et al. (1996), 
in which an offspring can be generated in this way: 

 where yi denotes an offspring, xa and xb denote a given pair of parents. The 
mating process is repeated until a new population of N individuals is generated. 
Some simple tests are carried out to compare its performance to standard crosso-
ver operators, and though the authors have shown its effectiveness in the con-
text of constrained problems, we have not found any application of this crossover 
strategy in the context of portfolio optimization, hence we propose to test its per-
formance on a variety of portfolio selection problems.

•	 Direction-based crossover [DBX]
	   The direction-based crossover, devised by Arumugam et al. (2005), is a var-

iant of the linear crossover in the sense that the population is biased towards 
fitter individuals, i.e. problem-specific information is introduced in the search 
process.

	   The direction-based crossover uses the fitness function information to deter-
mine the direction of the search in the following way. First, we denote with f (⋅) 
a generic fitness function and with r a random number such that r ∈ U[0, 1] . For 
two given parents xa and xb , assuming that f (xb) < f (xa) , the operator generates 
an offspring yi according to the following rule: 

•	 Heuristic crossover [HX]
	   The heuristic crossover, devised by Wright (1991), is a more sophisticated 

variant of the direction-based crossover: to our knowledge, Yusuf et al. (2019) 
is the only application of this version of the heuristic crossover in the context 
of Portfolio Selection Problems. It works as follows: the parents are chosen in 
the mating pool and their fitness, before running the usual procedure of gene 
transmission, is compared. Afterwards, a random number r is generated from a 
uniform distribution U[0, 1] and the genes are chosen according to the rule given 
in Eq. 17. Note that the resulting population is expected to display less diversity 
and a better mean vector after the crossover stage. For maximization problems 
we have: 

•	 Flat crossover [FX]

(15)yi(k) =
√
xa(k) ⋅ xb(k) for each k-th gene

(16)yi(k) =
√
xa(k) ⋅ xb(k) for each k-th gene

{
y1 = r(xb − xa) + xb if f (xb) < f (xa)

y1 = r(xa − xb) + xa otherwise

(17)yi(k) = xb(k) + r(xa(k) − xb(k)) if f (xb) > f (xa)
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	   The flat crossover, proposed by Radcliffe (1991), generates the offsprings 
from a uniform distribution, tweaking the classical crossover techniques in order 
to improve the search process in terms of exploration, since it extends the search 
process to every possible value contained in a uniform distribution bounded as 
follows, for a given kth gene of a generic offspring yi : 

 Still, note that the offspring is generated from a uniform distribution bounded by 
the parents genes, which actually is not that beneficial for exploration purposes, 
according to the framework sketched in Herrera et al. (2005). Some applications 
of a variant of flat crossover to portfolio selection problems are discussed in the 
following item.

•	 Blend crossover [BLX]
	   The blend crossover, proposed by Eshelman and Schaffer (1993), deals with 

the limited search capabilities of the flat crossover by adding a parameter � 
whose aim is to widen or to shrink the search domain. Hochreiter (2008) uses 
a GA with blend crossover to solve multi-period portfolio selection problems, 
with a wide range of structurally different risk measures applied for empirical 
simulations. Furthermore, Streichert et al. (2004b) investigate the impact of dif-
ferent crossover operators for a real-valued GA on a mean-variance cardinality 
constrained portfolio optimization problem, showing that blend crossover tends 
to display better performance compared to standard 1-point and N-point crosso-
ver approaches. More recently, Mazraeh et al. (2022) devise a combined model 
based on Grey Wolf optimizer and machine learning preselection methods, in 
which the blend crossover is used.

	   Given two parents xa and xb , then the kth gene of an offspring is drawn from a 
random uniform distribution, as follows: 

 Then we have: 

 with Δx = xmax − xmin . As highlighted by Herrera et al. (2005), a negative alpha 
encourages exploitation, whereas a positive alpha steers the crossover operator 
towards exploration; note that the blend crossover is a simple generalization of 
the flat one: indeed, for � = 0 , they are equivalent.

•	 Simulated binary crossover and fuzzy recombination [SBX] and [FR]
	   The simulated binary crossover, proposed by Deb et  al. (1995), generates 

two vectors of offsprings from a probability distribution, which is dependent 
on the location of their parents: in other terms, this crossover is self-adaptive 
in the sense that the spread of the possible offspring solutions depends on the 
distance between the parents, which decreases as the population converge. Fuzzy 
recombination is based on a similar hypothesis and it can be derived from the 
simulated binary crossover, so we discuss their properties jointly: the difference 
between the two operators stays in that [FR] is based on a triangular probability 

(18)yi(k) ∼ U[min(xa(k), xb(k)), max(xa(k), xb(k))]

(19)xmin(k) = min(xa(k), xb(k)), xmax(k) = max(xa(k), xb(k))

(20)yi(k) ∼ U[xmin(k) − �Δx, xmax(k) + �Δx]
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density, whilst the [SBX] design is based on a specific shape of the distribution, 
as we discuss below. Mehlawat et al. (2021) propose to use the simulated binary 
crossover to solve a mean-absolute semideviation problem, where the resultant 
multiobjective credibility model is solved with a real-coded genetic algorithm.

	   The simulated binary crossover is defined as: 

xa and xb are independent samples from the population of parents and � is a sam-
ple from a random number generator with density: 

 This distribution can be obtained by sampling from a random uniform U[0, 1] 
and then by the following transformation: 

 The fuzzy recombination, proposed by Voigt et al. (1995), is very similar to the 
simulated binary crossover. The density of � has its maximum at � = 1 . while the 
only difference between them is the shape of the probability density p(�) , which 
is triangular for the fuzzy crossover: 

 The � value in Eqs. 21 and 22 is then obtained as follows: 

 As Beyer and Deb (2001) suggest, d is a ‘strategy parameter’, which determines 
how far the offspring should be located from parents. The random number � with 
triangular distribution can be obtained as the sum of two independent numbers 
U[0, 1]: 

•	 Laplace crossover [LX]
	   The Laplace crossover, proposed by Deep and Thakur (2007), belongs to 

the family of parent-centric crossover operators, sharing many characteristics 
with the simulated binary crossover. Mittal and Srivastava (2021) introduce 
a refined version of the Laplace operator, which they call bounded exponen-
tial crossover [BEX], since it is based on a double exponential distribution. 
The authors show its superior performance in a set of numerical experiments, 

(21)y1 = 0.5[(1 − �)xa + (1 + �)xb]

(22)y2 = 0.5[(1 + �)xa + (1 − �)xb]

p(𝛽) =

{
0.5(n + 1)𝛽n 𝛽 ≤ 1

0.5(n + 1)
1

𝛽n+2
𝛽 > 1

� =

{
(2u)

1

n+1 if U(0, 1) ≤ 0.5

[2(1 − u)]
−1

(n+1) otherwise

pΔ(𝜁) =

{
𝜁 + 1 if − 1 ≤ 𝜁 < 1

1 − 𝜁 if − 0 ≤ 𝜁 ≤ 1

(23)� = 1 + 2�d

(24)� = u1 + u2 − 1
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within the context of mean-variance-skewness portfolio optimization under 
uncertain environment (Liu 2010).

	   Let us now comment briefly this approach. The density function of the 
Laplace distribution is given by: 

 where a ∈ ℝ is the location parameter and b > 0 is the scale parameter. For 
b = 0.5 the probability of creating offsprings near the parents is higher and for 
b=1 distant points are likely to be selected as offsprings. Moreover, the authors 
proceed by drawing a random number u ∈ ℝ from U[0, 1]; then a random num-
ber � is generated from the Laplace distribution. This can be obtained by invert-
ing it: 

 Then, the offsprings are generated as follows: 

•	 Parent-centric normal crossover [PNX]
	   The parent-centric crossover, devised by Ballester and Carter (2004), seeks 

to improve the simulated binary crossover by generating offsprings in regions 
of the search space neglected by SBX; in particular, it is a parent-centric and 
self-adaptive operator, i.e. the spread of offspring solutions depends on the 
distance between parents, which decreases as the population tends to converge 
to a solution. To our knowledge, this approach has never been discussed in the 
context of portfolio selection problems, hence we propose to introduce it and 
to evaluate its performance. 

 where N(�, �2) is a normal random number, � is a tunable parameter. With j we 
denote as usual the jth component of parent a or b.

•	 Unimodal normal distribution crossover [UNDX]
	   The unimodal normal distribution crossover, devised by Ono and Kobayashi 

(1999), belongs to the family of mean-centric operators and it uses an ellipsoi-
dal probability distribution to generate offsprings. We propose to introduce 

(25)f (x) =
1

2b
exp

(
−
|x − a|

b

)
−∞ < x < ∞

𝛽 =

⎧
⎪⎨⎪⎩

a − b log(u) u ≤
1

2

2mma + b log(u) u > 1

2

(26)y1 = xa + �|xa − xb|

(27)y2 = xb + �|xa − xb|

(28)y1(j) ∼ N(xa(j), |xb(j) − xa(j)|∕�)

(29)y2(j) ∼ N(xb(j), |xb(j) − xa(j)|∕�)
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this crossover strategy for portfolio selection problems, as we have not found 
any application of this approach to GA-based portfolio optimization.

	   Fundamentally, (� − 1) parents are randomly chosen (say, � = 3 ) and their 
midpoint xp is computed; thereafter, the difference vector (primary search 
direction) as d = x2 − x1 . Furthermore a third parent x3 is picked up randomly, 
and let D denote the distance between x3 and the line connecting x1 and x2 : 

 An offspring is generated by the equation: 

 where � is a random number following a random distribution N(0, �2
�
) , �i are 

n − 1 random numbers sampled from a normal distribution N(0, �2
�
) and ei an 

orthogonal basis vector. Ono and Kobayashi (1999) suggest to use �2
�
= 0.25 and 

�2
�
= (0.35)2∕n and � = 3 to 7.

4 � A controller for evolutionary algorithms

In this section we will outline the structure of the adaptive controller that is to be 
connected to a basic Evolutionary Algorithm in order to perform Adaptive Opera-
tor Selection (AOS), i.e., to choose at each iteration what operator to be used, out 
of the ones detailed in Sect. 3, depending on the criteria to be defined by the user 
(or by the adaptive strategy).

As we have seen into the Introduction, the EvE (exploration versus exploi-
tation) balance is a key point in the Evolutionary Algorithm design, and in our 
contribution we aim to address this trade-off in a dynamic way: given the set of 
operators detailed in Sect.  3, the adaptive controller chooses what operator to 
be applied on the basis of the past operators’ performances with regard to some 
user-defined criteria: it is well known that some operators are designed to foster 
exploitation, and other to foster exploitation (Eiben and Smith 2015), but for most 
operators, their effect on these two criteria depends on the current state of the 
search. Our controller assigns a reward to each operator after each iteration, and 
may adopt a deterministic (pre-defined) or an adaptive strategy in order to man-
age the EvE trade-off over the time.

Our controller is based on Reinforcement Learning, and its main components 
are iterated in a state-action-reward sequence; it defines an input/output interface 
with the EA (solver) in which the EA itself sends the last applied operator identifier 
and its performance metrics w.r.t. the desired criteria, and selects the operator to be 
applied next on the basis of the following modules: Aggregated Criteria Computa-
tion, Reward Computation, Credit Assignment, Operator Selection (Maturana et al. 

(30)D = |x3 − x1|×
(
1−

( (x3 − x1)T (x2 − x1)

|x2 − x1||x2 − x1|
)2

)1∕2

(31)y1 = xp + �d +

n−1∑
i=1

�ieiD
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2010; di Tollo et al. 2015). These modules are executed sequentially and are detailed 
in what follows:

•	 Aggregated Criteria Computation this module stores the impact of successive 
applications of a crossover operator on the desired criteria: in our contribution, 
these criteria are the variation of population quality and diversity, and are com-
puted as the variation of the value of population’s entropy ( ΔD ) and mean fit-
ness ( ΔQ ). These values are stored in a sliding window Wij of size T, where i is 
the operator and j the criterion taken into account. A function F(⋅) computes the 
final impact, which could be instantiated to max (to detect outliers) or avg if one 
wants to register a smooth behaviour (di Tollo et  al. 2015). The inputs of this 
module are the identifier of the last applied operator and the observed variation 
of each criteria. The output, which is sent to to the Reward Computation module, 
is a vector containing a scalar value for each criterion; for our experiments, F(⋅) 
will be instantiated with avg(⋅) ; preliminary experiments showed that the behav-
iour of the AOS is rather robust with regards to the instantiation of F(⋅) . This 
module is described in Algorithm 1.

•	 Reward Computation the reward strategy computes a reward for the operator 
identified by the previous module, and can be implemented by using several 
functions (Fialho 2010). In our case we have chosen the Compass, method, 
proposed by Maturana and Saubion (2008), that employs the input from the 
previous module (a vector) and computes the reward on the basis of an hyper-
parameter � ∈ [0,�∕2] , that identifies a search angle in the ΔD∕ΔQ plane. The 
value of � can be set a priori or computed through a dynamic strategy. Via this 
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module, each operator’s performances are represented in the ΔD∕ΔQ plane, 
according to the aggregated impact vector previously computed and associated 
to an additional vector, that will be used to store the rewards. The main idea is 
to attribute a reward to each operator by computing the distance between the 
performance point and the plane defined by � , as shown in Fig. 1: in this way, 
� = 0 indicates a scenario that fosters diversity and neglects quality, whilst 
� = �∕2 indicates a scenario in which quality is fostered. Intermediate values 
indicate a weighted compromise between these two criteria. Algorithm 2 out-
lines this behaviour.

•	 Credit Assignment the credit amount summarizes the reward obtained by an 
operator during recent applications: it takes as input the reward of each opera-
tor opi at time t, which is then is stored into a sliding window of size T ′ . Then, 
the module computes an aggregate reward by specifying an aggregation function 

Fig. 1   Reward computation 
based on a compass method, 
adapted from Maturana et al. 
(2010) and di Tollo et al. (2015)
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F(⋅) (which could be instantiated to max(⋅) or avg(⋅) over the period T ′ ). These 
aggregated values represent the credit, i.e., the output of the module sent to 
Operator Selection.

•	 Operator Selection this module receives as input the credits of all operators and 
determines the next crossover operator to be applied by the solver, according to 
a predefined selection scheme. The input of the operator selection module is the 
credit estimate Ui , while the output is the identifier opnext , which is sent to the 
EA. In our experiments we have performed operator selection by using Probabil-
ity Matching (PM), as outlined by Algorithm 4; for a summary of other selection 
methods, we forward the reader to Maturana et al. (2009), Lardeux et al. (2006), 
and Maturana et al. (2010).
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In order to determine the value of � , we have implemented the framework 
devised by di Tollo et al. (2015), that uses four high-level dynamic strategies: 

1.	 Increasing this strategy splits the number of iterations into n epochs and increases 
� value in equally spaced steps in [0,�∕2];

2.	 Decreasing this strategy splits the number of iterations into n epochs and 
decreases � value in equally spaced steps in [0,�∕2];

3.	 Always moving this strategy splits the number of iterations into n epochs and 
alternates � ∈ {0,�∕2} in equally spaced steps;

4.	 Reactive moving this strategy sets � = 0 if ΔD(P,t)

D(P,t−1)
< 1e − 01 , else if 

ΔQ(P,t)

Q(P,t−1)
< 1e − 01 , set � = �∕2 , where Q(P, t) and D(P, t) denote respectively the 

mean fitness and the entropy of population P at time t. Otherwise, if neither con-
ditions are satisfied, � = 0.

Note that strategies 1), 2), and 3) define a deterministic schedule, whereas reac-
tive moving is adaptive: the schedule induces an increase in population entropy 
when the search procedure is stagnating in a local minimum, by selecting explo-
ration operators for the next operations. These strategies will be used in our com-
putational experiments in Sect. 5.
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5 � Computational experiments

In this section we describe the computational experiments aimed to optimize the 
portfolios with regards to specific risk measures, and to evaluate the performance of 
the crossover operators detailed in Sect. 2. After detailing our experimental setting 
in Sect. 5.1, we will evaluate the behaviour of each crossover operator in Sect. 5.2, 
in order to understand the specific features of each crossover operator (if any) and 
to assess whether each operator is more inclined towards exploration or exploita-
tion; then we perform experiments by pooling all crossover operators together in 
Sect.  5.3, in order to assess the benefits of Adaptive Operator Selection (AOS), 
which is supposed to direct the search towards the desired direction, by selecting 
the optimal operator for the next iteration. Finally, in Sect. 5.4 we perform an out-
of-sample test, in order to evaluate future performances of portfolios obtained in 
Sect.  5.3, and to assess eventual benefits over plain GAs equipped with a single 
crossover operator.

5.1 � Our data and experimental settings

We have defined our formulations imposing budget, short-selling, cardinality, floor 
and ceiling constraints. We have tackled five sets of data, relative to daily closing 
prices of assets from different stock exchanges indices, over a period of 5 years from 
01/01/2009 to 01/01/2014. The summary of our sets of data is reported on Table 1.

We recall that the solution of the portfolio selection problem (PSP) is given by 
a vector of n variables x1,… , xn , where each xi represents a fraction of the amount 
invested in asset i. In what follows, we deal with the above mentioned constraints 
with the following general formulation of a mixed-integer portfolio selection prob-
lem, which has been proven to be NP-Hard (Moral-Escudero et al. 2006), for which 
evolutionary approaches seem particularly suitable:

where �(x) is a generic objective function, �i ∈ {0, 1} represent n integrality con-
straints, namely �i is a binary variable to include or exclude asset i in the portfolio; 
moreover, with �ili ≤ xi ≤ �iui we impose n floor and ceiling constraints (respec-
tively, li and ui ) and with 

∑n

i=1
�i = K we denote the cardinality constraint, i.e. we 

(32)

min
x

�(�)

s.t.

n∑
i=1

xi = 1

xi ≥ 0 i = 1,… , n

n∑
i=1

�i = K

�ili ≤ xi ≤ �iui i = 1,… , n

�i ∈ {0, 1} i = 1,… , n
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impose that exactly k active position are chosen from the market index. Finally with 
xi ≥ 0 we denote the no-short selling constraint and with 

∑n

i=1
xi = 1 we ensure that 

the whole capital is invested in the portfolio.
In what follows, we adopt the penalty approach of Fletcher (2013) and Corazza 

et al. (2013, 2021), by defining a �1 penalty function C(x, �, �):

With � denoting a penalty parameter. Finally, our �1 penalty problem is:

We have defined six different sets of experiments based on optimizing six differ-
ent risk measures, that are outlined in Table 2, along with the corresponding cost 
functions4.

We have set � = 0.5 for the Mean-Variance risk measure. Moreover, for the Two-
sided risk measure of Chen and Wang (2008) we use a = 0.5 and p = 2 , while for 
VaR we consider a monthly probability of losses exceeding the VaR(1−�) threshold 
� = 0.05.

Two performance criteria have been defined to evaluate the GAs’ performances: 
the first is the average fitness of the population, defined as 

fitness(P) =

∑
ind∈P eval(ind)

�P�  , where eval(ind) denotes the individual fitness; the 

second is the population entropy, defined as entropy(P) =
−
∑n

i=1

∑k

j=0

nij

�P� log
nij

�P�
nlog2

 , 

(33)

C(x, �, �) =�(x) +
1

�

[|||
N∑
i=1

xi − 1
||| +max

{
0,

N∑
i=1

�i − K
}
+

N∑
i=1

max{0, �ili − xi}

+

N∑
i=1

max{0, xi − �iui} +

N∑
i=1

|||�i(1 − �i)
|||
]

(34)min
x∈ℝN ,�∈ℝN

C(x, �, �)

Table 1   The sets of data used in our experimental phase

# indicates the cardinality (i.e., the number of assets) that compose the different indices

ID Instance name Country of origin # Number of observations 
(days)

01 Nikkei 225 Japan 210 1302
02 FTSE 100 United Kingdom 89 1306
03 Hang Seng Hong Kong 42 1306
04 CAC 40 France 36 1306
05 FTSE MIB Italy 32 1306

4  Please notice that, in the literature about Meta-Heuristics, the term ‘objective function’ and ‘cost func-
tion’ have different meanings: the former corresponds to the target function to be optimized, whereas the 
latter represents the function guiding the search algorithm in the search space (di Tollo and Roli 2008).
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where n is the number of individuals in the population and k is the number of genes 
for each individual. For these experiments, we set P = 50 , while the number of gen-
erations g is set to 1000. Finally, we consider the set of twenty crossover operators 
defined in Sect. 3.

All algorithms have been implemented in Python and run on a Intel Core i7 2.4 
GHz processor, with 8 GB RAM. In what follows we evaluate the crossover perfor-
mances, first by using each crossover as a stand-alone operator in Sect. 5.2; then, we 
evaluate our Adaptive Operator Selection in Sect. 5.3.

5.2 � Single operators’ results

In the following experiments, the main idea is to isolate the influence of the optimi-
zation process in the assessment of the performance of each recombination operator. 
In the first group of tests, the crossover operator has the goal of retaining a signifi-
cant amount of diversity, reaching simultaneously a near-optimal level of fitness. In 
the second group of tests, instead, the behaviour of each operator is assessed when 
neither selection nor mutation is allowed: the population generated with recombina-
tion is sent to the following generation as it is, so that the behaviour of each crosso-
ver strategy is singled out.

As a general rule, the crossover operator should strike a balance between qual-
ity and entropy, i.e. it is supposed to offset the impact of the selection operator by 
retaining a reasonable amount of variance while the optimization process is ongo-
ing. Furthermore, as noted by di Tollo et al. (2015) and Maturana et al. (2010), the 
correlation of the absolute value of fitness and entropy should be generally low; ide-
ally, an operator should be able to increase entropy when the search is stuck in local 
optima, displaying a self-adaptive behaviour. It is well known that these two factors 
are strongly related (Arabas et al. 1994): a too strong selective pressure may lead to 

Table 2   Cost functions used in our experimental phase

Risk measure Cost function

Omega ratio (Keating and Shadwick 2002)
Ω =

∫
rd
−∞

(rd − r)F(r)dr

∫
∞

rd
(r − rd)F(r)dr

Mean-variance (Markowitz 1952) MV� = �rp − (1 − �)�2

p

Two-sided (Chen and Wang 2008) �a,p(r) = a||(rp − E(rp))
+||1+

(1 − a)||(rp − E(rp))
−||p − E(rp)

Equal risk contribution (Maillard et al. 2010)
fERC(x) =

∑n

i=1

�����
xi(Cx)i

xTCx
−

1

K

�����
VaR(1−�) (Artzner et al. 1999) VaR(1−�) = F−1(1 − �)

CVaR(1−�) (Rockafellar and Uryasev 2000)
CVaR = VaR +

1

�
∫

∞

VaR
(1 − F(r))dr
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early convergence towards a suboptimal solution, while a weak selective pressure 
makes the search ineffective. As noted by Maturana et  al. (2010), it is difficult to 
reach such a balance over all phases of the search, and this is precisely the reason 
that led us to implement an AOS controller, in order to select the right operator w.r.t. 
the wished compromise between quality and diversification at each search step. This 
will be discussed in Sect. 5.3.

In what follows, we analyse the behaviour of different operators during the opti-
mization phase. Further comments on the in-sample performance and a comparison 
between standard GAs and the adaptive GA are available in Sect. 5.3.

Figure 2 shows the convergence of the average fitness of the population and its 
entropy for different configurations of the genetic algorithm. Let us mention a few 
intriguing facts with respect to the results of the simulation. Note that operators 
belonging to the family of self-adaptive crossovers display some very promis-
ing features. For example, note that the [SBX] crossover (and to a certain extent, 
also the [LX] crossover) manage to reduce quickly the entropy, with a consider-
able and fast improvement observed in the average fitness. Furthermore, when 
improvements become harder, the operator turns to exploration. Both [SBX] and 
[LX] crossover are able to increase the diversity of the population and to improve 
its fitness at the same time, especially in the latter stages of the search.

All the operators that by construction are designed to use fitness information 
([QBX], [LNX], [DBX], [SPX]) tend to give up some diversification in order to 
generate fitter individuals, converging steadily to an approximated solution, due 
to the fact that, by design, the search region is restricted to a very limited area. 
An efficient crossover should instead ensure a good trade-off between quality and 
entropy (Lardeux et  al. 2006), preventing the population from getting stuck in 
local optima.

In Fig.  3 we report the behaviour of a subset of operators with respect to 
quality and diversity. Some standard recombination operators do not yield any 
substantial variation ([OPX], [QBX], [AX], [GX], [HX], [AVX], [BLX], [FX], 
[GUX]) both in fitness and entropy, others induce just slight variation ([UX], 
[TPX]), whereas some self-adaptive operators ([LX], [SBX], [PNX]), as shown in 
Fig. 3 lean towards an explorative behaviour. Finally, the [SPX] operator tends to 
generate fitter individuals, as by construction it exploits fitness information in the 
mating process.

To recap, in this section we have proposed to test a broad range of crossover strat-
egies for portfolio selection problems: among them, we have chosen both crossovers 
already in use for evolutionary-based portfolio selection and crossovers for which 
we have not found any financial application in the literature. Among the latter opera-
tors, let us remark again that the performance of crossovers with self-adaptive fea-
tures ([LX], [SBX], [PNX], [UNDX]) stands out in our investigation: by introducing 
effective and flexible crossovers, which cope better with different fitness landscapes 
in the context of portfolio selection, we address the problem of finding high-quality 
solutions rapidly and in a robust way. We have not found also any financial appli-
cation for other non-self-adaptive operators, i.e. [HX], [GX], [QBX] and [DBX], 
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which behave similarly to crossovers already in use in the literature, whereas the 
simplex crossover [SPX] is particularly efficient at finding good solutions.

5.3 � Adaptive operator selection results

In this section we report the performance of the GA that resorts to AOS for operator 
selection, and we compare it with GAs with standard crossover operator. We also 
propose to evaluate the operator selection frequency for different search policies, in 
order to test whether the controller is able to affect indirectly fitness and entropy lev-
els, by picking appropriate operators, which in turn should impact the exploitation 
or exploitation capabilities of the solver. Furthermore, we assess whether the search 
direction is consistent with the predefined high-level search policies described in 
Sect. 4. Eventually, we check the quality of the final solutions and the ability of the 
controller of managing efficiently an optimal quality/diversity tradeoff.

Figures 4, 5, 6 and 7 present four panels, including:

Fig. 2   Single operator performances with respect to quality and diversity. In each panel the average fit-
ness and the entropy over the iterations is reported. The red line indicates the entropy level and the blue 
line indicates the fitness level. In this set of plots we report results w.r.t. a VaR-optimal portfolio, fitted on 
a Nikkei 225 dataset (colour figure online)

Fig. 3   Single operator performances with respect to quality and diversity. In each panel the average fit-
ness and the entropy over the iterations is reported. The red line indicates the entropy level and the blue 
line indicates the fitness level. The optimization process is carried out by a GA without the selection 
operator. In this set of plots we report results w.r.t. a CVaR-optimal portfolio, fitted on a Nikkei 225 data-
set (colour figure online)
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•	 The operators’ frequency of application (top panel), needed to check whether the 
controller is able to discriminate operators according to different EvE tradeoffs;

•	 The level of population entropy over time;
•	 The value of the hyperparameter � ∈ [0,

�

2
] , that defines the dynamic policy 

guiding the search, according to the predefined (or adaptive schedule) described 
in Sect. 4.

•	 The levels of individual fitness over time (bottom panel).

As a first remark, we note that mild improvements of diversity during the search 
are generally triggered by a variation of the search angle in the range [0,�∕2] ; 
this also generates an immediate variation of cost for some individuals for a few 
generations. We also note that operators based on exploration are usually selected 
when small or no improvements are possible; a changing value of the angle 
generally leads to a non negligible impact on selection probabilities and conse-
quently on performance. In particular, note that [LX], [SBX] and [PNX] opera-
tors provide a good trade-off of exploration and exploitation; therefore, especially 
at advanced stages of search, they seem to be more effective when small or no 
improvements are possible. Some preliminary experiments show that the prob-
ability of selection of these exploration operators turns out to be very high when-
ever the solver is stagnating, so that the controller turns to exploration, by reward-
ing them. The selection probability of all mildly relevant operators instead tends 
to fall to smaller values towards later stages of the process, close to the lower 
bound pmin = 0.01 established before running the process, with most of the selec-
tion frequency concentrated at initial or intermediate stages of search.

As a general remark, we can say that none of the introduced search poli-
cies outperforms the others: Always Moving and Reactive policy, that led 
to the best results in di Tollo et  al. (2015), perform similarly on our problem 

Fig. 4   Experiments with the AOS: portfolios are fitted to the Nikkei dataset. From top to bottom: histo-
gram of the operator frequency of application (1), the entropy convergence curve (2), the always moving 
driving the search process (3), the individual cost scatter plot (4)
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instances. Anyhow, we also stress the robustness of the Reactive policy (Fig. 7), 
whose behaviour is less predictable than standard search strategies, but whose 
action typically succeeds in increasing the population diversity when entropy is 
stagnating.

In Table 3 we report the best in-sample value of the objective function obtained 
with a GA solver equipped with a standard operator crossover or with the control-
ler (in bold). The solutions are reported for just one problem instance, across dif-
ferent objective functions.

The solver is allowed to visit infeasible solution during the search process, 
which comes at the price of higher penalties attributed to the cost function due 

Fig. 5   Experiments with the AOS: portfolios are fitted to the CAC 40 dataset. From top to bottom: histo-
gram of the operator frequency of application (1), the entropy convergence curve (2), the reactive policy 
driving the search process (3), the individual cost scatter plot (4)

Fig. 6   Experiments with the AOS: portfolios are fitted to the Hang Seng dataset. From top to bottom: 
histogram of the operator frequency of application (1), the entropy convergence curve (2), the always 
moving policy driving the search process (3), the individual cost scatter plot (4)
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to constraint violation. We remark that the Adaptive Operator Selection strategy 
has proven to be an effective approach when dealing with a variety of optimi-
zation problems. The GA equipped with AOS shows results that outperform the 
majority of the single-crossover based runs. Some operators still perform better 
than our AOS, but this is due to the computational time required to learn, which 
has to be taken into account when devising an adaptive procedure: our goal is to 
devise a tool that shows good performances without a-priori knowledge of the 
used crossovers and of the instance at hand, and to this extent, our approach is 
satisfactory.

Indeed, as we show in Table 3, the adaptive strategy is regularly among the top 
performers, whereas the results from single crossover-based genetic algorithms 
are less homogeneous across different risk measures, with some performing very 
poorly in a few cases (see in particular the ‘ERC’ column); note also that the 
genetic algorithm equipped with the controller is the best performing strategy for 
CVaR portfolio construction. Let us also mention some exceptions: the [SPX]-
based genetic algorithm provide solutions that are far from optimal, whereas the 
quality of solutions generated by genetic algorithms equipped with [BLX], [HX] 
and [GUX] crossovers are generally above average. Altogether, we find that no 
operator can systematically outperform the others: when taking into account sin-
gle-crossover genetic algorithms, the distinction between exploration and exploi-
tation crossovers in terms of performance is less apparent.

5.4 � Out‑of‑sample performance of rebalanced portfolios

In this section we evaluate the out-of-sample performance of the adaptive policy by 
computing four performance criteria, namely the annualized portfolio returns, the 

Fig. 7   Experiments with the AOS: portfolios are fitted to the Hang Seng dataset. From top to bottom: 
histogram of the operator frequency of application (1), the entropy convergence curve (2), the reactive 
moving policy driving the search process (3), the individual cost scatter plot (4)
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annualized standard deviation, the out-of-sample Sharpe Ratio and the turnover (see 
the set of Eq. 35). These four metrics are accessible to a wide audience, which makes 
them popular among practitioners, despite some well-known shortcomings (Biglova 
et al. 2004). These four criteria are also extensively used in the literature (DeMiguel 
et al. 2009), with the purpose of getting a first impression of the out-of-sample portfolio 
performance.

The performances of the adaptive strategy are compared with a set of genetic algo-
rithms, each equipped with one of the twenty crossover operators presented in Sect. 3.

The main objective of this set of experiments is to extend our investigation on the 
benefits of the adaptive approach to practical portfolio management issues, by evalu-
ating its performance across different out-of-sample performance metrics, objective 
functions and over different sets of data: an assessment of the out-of-sample perfor-
mance is therefore crucial to validate the model from an asset management point of 
view, but also to deal with potential concerns about overfitting, which might be caused 
by the model being too strictly tailored to the features of the training data and general-
izing poorly to new data.

Table 3   Best in-sample solutions

The optimal value of the objective function is referred to a portfolio constructed with assets from the 
Nikkei 225 index. The controller is equipped with an always moving strategy, K = 10 and lower/upper 
bound constraints

Ω CVaR95% VaR95% MV0.5 �0.25,2 ERC

OPX 0.735327 0.085345 0.068228 0.004377 2.178992 0.118195
UX 0.730871 0.084446 0.066588 0.004345 2.155495 0.068394
HX 0.731128 0.085835 0.067280 0.004389 2.176885 0.092807
LX 0.748324 0.088898 0.071191 0.004534 2.282313 0.054738
QBX 0.748456 0.085283 0.067912 0.004414 2.217761 0.091158
TPX 0.732843 0.084522 0.066731 0.004413 2.160025 0.117542
AX 0.733744 0.086807 0.068348 0.004492 2.198914 0.034641
GX 0.733477 0.085961 0.067455 0.004483 2.200084 0.078996
SBX 0.736055 0.084651 0.067663 0.004428 2.193037 0.050154
AVX 0.734751 0.086744 0.067783 0.004448 2.235605 0.059664
BLX 0.730661 0.084759 0.066531 0.004332 2.156919 0.404041
FX 0.734483 0.084967 0.067769 0.004394 2.179699 0.035128
GUX 0.730787 0.083840 0.066511 0.004333 2.146576 0.048182
TPX 0.735203 0.084819 0.068793 0.004420 2.187789 0.115952
LNX 0.732824 0.086128 0.067625 0.004417 2.209383 0.064444
DBX 0.763914 0.085960 0.069733 0.004455 2.203031 0.150119
UNDX 0.732809 0.084418 0.069509 0.004468 2.207336 0.049317
FR 0.742219 0.085692 0.067988 0.004391 2.207414 0.192051
SPX 0.763846 0.097303 0.081018 0.004766 2.600863 0.556919
PNX 0.735883 0.086159 0.069102 0.004343 2.140973 0.058629
Adaptive 0.733654 0.083998 0.068996 0.004330 2.144562 0.039140
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In order to do this, we implement a rolling-window backtest for each strategy, which 
is applied to the adaptive model and to the set of twenty genetic algorithms as well. 
We describe below the structure of our backtests, which largely follows the moving-
window backtest proposed in Gilli et al. (2011) for portfolio selection. The model is fit-
ted on training data at time t1 from t1 − � ; for this set of tests, we set the window � equal 
to 2 years (about 500 data points). The portfolio is held for F = 125 days, i.e. until 
t2 = t1 + F . Therefore, the portfolio is trained on new data starting from t2 − � until 
t2 − 1 and held for 125 more days, i.e. t3 = t2 + F . With T we denote the total number 
of returns in the dataset, while with I  we denote the number of holding periods of each 
rebalanced portfolio.

The out-of sample tests are performed for various combinations of objective func-
tions and problem instances. The out-of-sample performance statistics for portfolios 
constructed with assets from Nikkei 225 are reported in Table  4; the results are 
shown for Omega Ratio-optimal portfolios for two different cardinality constraints. 
In order to test the hypothesis that the Sharpe Ratios and the variances of the com-
peting strategies are equal (DeMiguel et  al. 2009) (that is H0 ∶

�i

�i
−

�i

�n

= 0 and 
H0 ∶ �i − �n = 0 respectively, where i is one of the twenty portfolios construct a 
standard methodology and n always denotes the adaptive strategy) we use bootstrap-
ping methods, which are suitable when portfolio returns are not independently and 
identically distributed. In particular, since we deal with time series data, we follow 
the approach of Ledoit and Wolf (2008, 2011) to generate bootstrap data and we use 
the circular block bootstrap (Politis and Romano 1991) and the stationary bootstrap 
(Politis and Romano 1994) to carry out pairwise tests of equality of the portfolio 
Sharpe ratios and variances, respectively. Please notice that standard tools such as 
the Jobson and Korkie (1981) test for the equality of Sharpe Ratios or the F-test for 
the equality of variances assume that the data come from a bivariate normal distri-
bution and are dependent over time. However, these tests are not valid if the returns 
are correlated, have heavy tails or are dependent over time: since financial data gen-
erally violate at least one of these conditions, a different approach should be pur-
sued, hence we compute a two-sided p value using the time series bootstrap confi-
dence interval for the difference of the Sharpe ratios and variances, to declare the 
two are different if zero is not contained in the obtained interval, following the 

(35)
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procedure described in Ledoit and Wolf (2008) and Ledoit and Wolf (2011), with 
B = 5000 bootstrap resamples and a block size equal to b = 5.

Table 4 suggests that the best annualized Sharpe Ratio is obtained for K = 10 ; on 
average we observe larger values of the Sharpe Ratio for portfolios with a smaller 
number of assets, suggesting that some ‘rough’ regularization approaches, involving 
the number of holdings or the inclusion of weight constraints (Jagannathan and Ma 
2003) are particularly useful for managing overfitting issues, because they reduce 
the degree of freedom of the optimization process. Note that risk and return are 
inevitably measured with estimation error: as pointed out by Roncalli (2013), in a 
dynamic framework (e.g. for semiannually-rebalanced portfolios) estimation errors 

Table 4   The table reports the average returns ( ̂�i ), the standard deviation ( ̂�i ), the Sharpe ratio ( ŜRi ), and 
the turnover T̂  computed on the out-of-sample returns

The annualised performance metrics of each portfolio are computed by optimizing the Omega ratio, 
with cardinality and upper/lower bound constraints and � = 1e − 001 . The results are obtained using the 
Nikkei 225 dataset. The numbers in the parentheses below �̂i and ŜRi are the p values computed using, 
respectively, the Ledoit and Wolf (2011) and Ledoit and Wolf (2008) tests, by contrasting the Adaptive 
strategy with each of the other competing portfolios

�̂i �̂i ŜRi T̂

K = 10 K = 20 K = 10 K = 20 K = 10 K = 20 K = 10 K = 20

OPX 0.1901 0.1574 0.2040
(0.0146)

0.1927
(0.0004)

0.9322
(0.0310)

0.8165
(0.1198)

0.0809 0.1541
UX 0.1915 0.1599 0.2053

(0.2879)
0.1911
(0.0258)

0.9329
(0.0400)

0.8368
(0.2701)

0.0936 0.1663

HX 0.2074 0.1653 0.2043
(0.0402)

0.1928
(0.1608)

1.0154
(0.1800)

0.8574
(0.3459)

0.0740 0.1541

LX 0.1874 0.1591 0.2061
(0.4769)

0.1932
(0.0210)

0.9093
(0.0698)

0.8235
(0.1532)

0.0746 0.1765

QBX 0.1931 0.1785 0.2032
(0.0018)

0.1878
(0.7742)

0.9502
(0.0452)

0.9505
(0.9584)

0.1010 0.1906

TPX 0.1896 0.1644 0.2055
(0.5279)

0.1890
(0.2997)

0.9228
(0.0508)

0.8700
(0.3959)

0.0831 0.1777

AX 0.1890 0.1747 0.2096
(0.3771)

0.1899
(0.4479)

0.9017
(0.0188)

0.9202
(0.7946)

0.0815 0.1839

GX 0.1938 0.1644 0.2020
(0.0002)

0.1917
(0.0466)

0.9594
(0.0492)

0.8575
(0.3287)

0.0739 0.1627

SBX 0.1778 0.1535 0.2086
(0.7974)

0.1918
(0.1392)

0.8521
(0.0034)

0.8003
(0.0784)

0.1038 0.1613

AVX 0.1807 0.1580 0.2075
(0.7770)

0.1924
(0.1038)

0.8712
(0.0032)

0.8212
(0.1152)

0.0629 0.1971

BLX 0.2174 0.1533 0.1987
(0.0002)

0.1944
(0.0276)

1.0938
(0.7618)

0.7884
(0.0464)

0.0928 0.1575

FX 0.1953 0.1507 0.2021
(0.0010)

0.1925
(0.0468)

0.9663
(0.0642)

0.7829
(0.0798)

0.0876 0.1688

GUX 0.2309 0.1643 0.2025
(0.0126)

0.1895
(0.3423)

1.1401
(0.9006)

0.8671
(0.3017)

0.0844 0.1640

TPX 0.2017 0.1540 0.2082
(0.9038)

0.1928
(0.1038)

0.9689
(0.0968)

0.7989
(0.0906)

0.0693 0.1672

LNX 0.1903 0.1484 0.2130
(0.0802)

0.1971
(0.0004)

0.8934
(0.0762)

0.7531
(0.0334)

0.0755 0.1464

DBX 0.1790 0.1673 0.2180
(0.0084)

0.1897
(0.5229)

0.8212
(0.0658)

0.8817
(0.5193)

0.0726 0.1532

UNDX 0.1927 0.1467 0.2076
(0.8100)

0.1902
(0.3387)

0.9286
(0.1160)

0.7711
(0.0398)

0.1081 0.1613

FR 0.2032 0.1557 0.2077
(0.8156)

0.1942
(0.0660)

0.9782
(0.1228)

0.8014
(0.0906)

0.0956 0.2163

SPX 0.1771 0.1602 0.2166
(0.1014)

0.1908
(0.1384)

0.8175
(0.1094)

0.8393
(0.2885)

0.1192 0.1873

PNX 0.1614 0.1621 0.2132
(0.0712)

0.1909
(0.1398)

0.7570
(0.0064)

0.8495
(0.1998)

0.0706 0.2308

Adaptive 0.2136 0.1505 0.2005 0.1889 1.0653 0.7966 0.1327 0.1550
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have a dramatic impact on turnover, with a significant impact on the stability of 
solutions. Furthermore, we empirically observe that the portfolios constructed with 
stricter cardinality constraints are slightly more volatile. Finally, we check whether 
the variance and the Sharpe Ratio for a specific strategy are statistically different 
from that for the adaptive portfolio, and for this purpose we have implemented the 
tests introduced by Ledoit and Wolf (2008, 2011). The p values are reported in 
parentheses in Table 4 (recall that we want to test the null of equality of the Sharpe 
ratios and variances of the two portfolios being compared, hence the null hypothesis 
is rejected when the p values are at least lower than the 10% level): it is possible to 
see that the variances and the Sharpe Ratios of the adaptive model with the con-
straint K = 10 record a high number of rejections. In particular, the differences are 
statistically significant at the 5% level for, respectively, nine and eight portfolios out 
of twenty, whereas a smaller, yet non-negligible number of significant differences is 
observed when considering a less strict cardinality constraint.

As far as the crossover performance is involved, the genetic algorithm resort-
ing to the adaptive approach behaves well on average, with some single crossover-
based genetic algorithms performing occasionally better, though. Our adaptive strat-
egy is however more robust across different risk measures and problem instances, 
as we also show in Fig. 8. Among standard genetic algorithms, let us highlight the 
fact that neither those equipped with exploration crossovers nor those employing 
exploitation crossovers outperform the others: note indeed that for K = 10 the best 
Sharpe Ratio is achieved by [GUX] and [BLX] (respectively, ŜR

GUX
= 1.1401 and 

ŜR
BLX

= 1.0938 ); however, these two operators do not share any specific features 
(the former is more oriented towards exploitation, the latter towards exploration, see 
Sect. 3). Moreover, for K = 20 [QBX] and [AX] outperform the rest of the opera-
tors, though not by a wide margin.

Altogether, an inspection of the results point to the fact that operators are gener-
ally unable to stand out consistently from the rest, which might suggest that combin-
ing operators at different stages of the search process could be actually beneficial for 
the solver. Furthermore, the AOS-based genetic algorithm is stably among top five 
performers across different risk measures and problem instances, signalling that this 
approach is rather effective at producing consistent and robust results across various 
formulations of the optimization problem. Further unreported results show that the 
best annualized Sharpe Ratio is achieved with a two-sided risk measure across dif-
ferent problem instances. Mean-variance portfolios perform poorly, with some port-
folios constructed from a subset of the FTSE MIB displaying even a negative Sharpe 
Ratio.

For what concerns transaction costs, as shown in Table 4, there are no outper-
forming strategies in terms of turnover: the impact of regular portfolio rebalanc-
ing is overall homogeneous across different genetic algorithms, as we do not find 
any strategy regularly generating less costs. For instance, note that the turnover of 
[AVX] and [PNX] is definitely low compared to other single crossover-based GAs; 
however, when turning to portfolio with K = 20 assets, both are among the worst 
strategies in terms of trading costs.
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Now consider a final example w.r.t. Nikkei 225 index. In Fig. 8 we present six 
different panels, in which both standard and adaptive strategies are backtested across 
different risk measures; rather than resorting to capitalization-weighted indices, 
we use as benchmarks the cumulative out-of-sample returns series optimized with 
standard genetic algorithms, which we construct with the crossover operators dis-
cussed in Sect.  3. In this set of backtests, the adaptive policy definitely performs 
better compared to alternative optimizers; also in terms of risk/reward tradeoff 
(Table 4), a small but consistent outperformance of the adaptive strategy stands out.

6 � Conclusions

In this contribution we have applied an Adaptive Operator Selection (AOS) to Evo-
lutionary Algorithms (EA) to solve Portfolio Selection Problems. First, we have 
identified all the crossover operators devised by the related literature regarding opti-
mal portfolio choices; then, we have used AOS to decide which operator to use at 
each step of the search process, depending on several strategies.

We have seen that the introduction of AOS makes the genetic algorithm outper-
form the majority of the single crossover-based ones. This is due to the fact that the 
AOS decides, for each step of the search process, the right operator to be used with 
respect to the desired Exploration vs Exploitation balance: in our approach this bal-
ance can be either set by a deterministic strategy, or by an adaptive procedure that 
reacts to changes of the population’s quality and diversity.

The genetic algorithm resorting to AOS show good performances over all 
instances taken into account. We have remarked that the genetic algorithm that relies 
on some specific single operators perform better than our AOS in some specific 
instances. This is due to the fact that AOS requires computational time to learn the 

Fig. 8   Rolling-window backtest of the adaptive strategy on Nikkei 225 index, with K = 10 , li = 0.05 and 
ui = 0.15
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features of the crossover operator, hence subtracting computational time to the opti-
mization phase itself. Single crossover-based GAs instead, do not suffer from this 
shortcoming. Of course, we would obtain better results by our AOS if we would 
run the algorithm for longer search epochs, but this is out of the scope of the cur-
rent contribution: our goal is to devise a tool that show good performances without 
a-priori knowledge of the used crossovers and of the instance at hand, and to this 
extent, our approach shows good performances.

We can conclude by saying that the use of AOS improves the performances with 
regards to EAs that use single operators, which are the most used approaches in port-
folio selection, no matter the objective function used, and over different sets of data 
coming from different countries and from different financial scenarios. Up to the 
authors’ knowledge, this is the first contribution attempting to devise an approach 
based on all previous GA approaches for Portfolio Selection.

Moreover, we also contribute to the literature by investigating the benefits of intro-
ducing a broad range of operators for which we have not found any application to EA-
based portfolio optimization: indeed, we shed light on the performance of crossovers 
as stand-alone operators and we find that the self-adaptive ones are able to achieve 
the best exploration–exploitation tradeoff, as pointed out by experiments showing 
both a promising behaviour and also a significantly high selection frequency.

Further work will be devoted to devise strategies that take into account exter-
nal constraints and data-features. To this regard, we want to create specific variation 
operators that define, over the search, the investor preferences, in order to identify 
search spaces that corresponds to portfolios meeting the investor’s preferences. Fur-
thermore, we want to devise operators that test some of the features of the bench-
mark, in order to verify the investor’s preferences, and to produce customized invest-
ment signals, i.e., to stay away from the market, or to enter into the market. Finally, a 
natural extension of our model should include further real-world constraints, e.g. by 
incorporating a restriction on tracking-error volatility or by defining a minimum lot 
size, so as to further challenge its capabilities in tackling an even more complex and 
realistic search space.
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