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Abstract
Current electricity and natural gas markets operate with deterministic description of
uncertain supply, and in a temporally and sectorally decoupled way. This practice in
energy systems is being challenged by the increasing integration of stochastic renew-
able energy sources. There is a growing need for exchanging operational flexibility
among energy sectors, which requires to improve the sectoral coordination between
electricity andnatural gasmarkets. In addition, the dispatch of flexible units in both sec-
tors needs to be made in a more uncertainty-aware manner, requiring to strengthen the
temporal coordination between day-ahead and real-time energy markets. We explore
the use of existing financial instruments in the form of virtual bidding (VB) as a
market-based solution to enhance both sectoral and temporal coordination in energy
markets. It is established in the literature that VB by purely financial players is able
to enhance the temporal coordination between deterministic day-ahead and real-time
markets. By developing various stochastic equilibrium and optimization models, we
show that VB by physical players, i.e., gas-fired power plants, at the interface of power
and natural gas systems is of great potential to improve not only the temporal coor-
dination between deterministic day-ahead and real-time markets, but also the sectoral
coordination between deterministic electricity and natural gas markets. We exploit a
fully stochastic co-optimization model as an ideal benchmark, and numerically illus-
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trate the benefits of VB for increasing the overall market efficiency in terms of reduced
expected operational cost of the entire energy system.We eventually show that flexible
resources in both electricity and natural gas markets are dispatched more efficiently
in the day-ahead stage when VB exists.

Keywords Electricity market · Generalized Nash equilibrium · Natural gas market ·
Sectoral and temporal coordination · Stochastic programming · Virtual bidding

1 Introduction

The growing share of power production from stochastic renewable energy sources,
e.g., wind and solar power units, increases the need for operational flexibility1 to deal
with their variability and uncertainty (NERC 2010). Natural gas-fired power plants
are one of the main sources of flexibility in power systems, and are able to compensate
for the production variability and uncertainty caused by stochastic renewable sources
(Meibom et al. 2013; Gil et al. 2014). These gas-fired power plants operate at the
interface of electricity and natural gas systems, yielding both physical and economic
interactions (Fleten andNasakkala 2010). Thenatural gas system is crucial for ensuring
fuel availability and technical feasibility, while it is also able to provide power systems
with flexibility through stored gas in the pipelines (Correa-Posada and Sánchez-Martín
2015; Yang et al. 2018; Ordoudis et al. 2019). The volatile and uncertainty-driven
dispatch of gas-fired power plants to offset wind and solar intermittency introduces
demand fluctuations into the natural gas market and propagates uncertainty from the
power system to the gas sector (Heinen et al. 2017; Dall’Anese et al. 2017; Nicholson
and Quinn 2019; Ratha et al. 2020).

1.1 On the need for sectoral coordination between electricity and natural gas
markets

Despite increasing interdependencies between energy sectors, in practice electricity
and natural gas markets are still cleared sequentially and separately. In various coun-
tries and regions, the electricity market participants including gas-fired power plants
estimate the gas price and submit their offer to the electricity market accordingly.
Given the gas demand determined from the clearing outcomes of the electricity mar-
ket, the natural gas market operator clears the market and disseminates the actual gas
prices, which are not necessarily identical to estimated gas prices in the electricity
market (Byeon and Van Hentenryck 2020; Ordoudis et al. 2019). In several countries
these two energy markets are usually asynchronous, implying that the timing of the
gas nomination cycles is not necessarily well aligned with the needs of the electricity
sector (Tabors et al. 2012). In addition, power and natural gas markets generally use
different trading mechanisms. For example, European gas markets decouple the trad-
ing and transport of natural gas by using an entry-exit system (Hallack and Vazquez

1 By operational flexibility, we refer to the capability of a power system to modify its output or state in
response to a change in renewable power production (Zhao et al. 2016).
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2013; Schewe et al. 2020), which is not fully harmonizedwith the current zonal market
design of European electricity markets. Despite all these differences, sectoral coor-
dination between electricity and natural gas markets is crucial for renewable-based
energy systems. This need has been recognized by several market regulators, including
Federal Energy Regulatory Commission (FERC) in the U.S. that issued Order 809 in
April 2015. This order makes changes to the gas nomination cycles to improve day-
ahead and intra-day coordination of power and natural gas systems. The details and
implications of this order are described in Carter et al. (2016), Orvis and Aggarwal
(2018) and Craig et al. (2020). The sectoral coordination of power and natural gas
systems in their short-term operations has been extensively addressed in the recent
literature. While several papers suggest an extreme regulatory solution by merging the
operational problems of power and natural gas systems (Correa-Posada and Sánchez-
Martín 2015; Zlotnik et al. 2016; Chen et al. 2019; Manshadi and Khodayar 2019;
Ordoudis et al. 2019; Schwele et al. 2019; Roald et al. 2020; Ratha et al. 2020),
some other works develop more practical solutions where the clearing sequence of
power and natural gas markets is preserved. For example, Zhao et al. (2019) propose
a coordination mechanism that does not require the exchange of proprietary infor-
mation between power and natural gas system operators—the only information to be
exchanged between the two markets are fuel price, supply and demand. An opera-
tional equilibriummodel for sequential but interrelated power and natural gas systems
is developed in Chen et al. (2020). As a practical solution, Byeon and Van Henten-
ryck (2020) propose a hierarchical tri-level optimization methodology that makes the
unit commitment problem aware of gas networks, while recognizes and eliminates the
invalid bids of gas-fired power plants. Finally, Ordoudis et al. (2020) propose various
methods built upon bi-level programming, where coordination between power and
natural gas systems is obtained by optimally adjusting the gas volume availability as
well as the estimated gas price in the day-ahead electricity market.

1.2 On the need for temporal coordination between trading floors

In addition to the lack of proper coordination between various energy sectors, another
challenge for renewable-based energy markets is the potentially loose temporal coor-
dination between electricity markets that are cleared sequentially in different points
of time2 (Morales et al. 2014). The majority of current electricity markets throughout
the world clear several sequential markets in short run, including day-ahead (DA),
intra-day and real-time (RT) markets (Daraeepour et al. 2019). The DA market is
cleared based on a deterministic description of uncertain supply. Given updated but
still single-point deterministic forecasts of uncertain supply, intra-day and RTmarkets
adjust the power system imbalances. Similar balancing stages, which are not neces-
sarily market-oriented, exist in the natural gas sector. For example, there is a single
balancing stage in the Danish gas system, where the day-ahead gas nominations can
be modified (Energinet 2021). This practice is likely different in various countries. For

2 Note that this definition of loose temporal coordination should not be confused with the issue that the
timing of gas nomination cycles is not necessarily harmonized with the needs of the power industry. We do
not address such a harmonization issue in this paper.
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the sake of a stylized model, we consider a single balancing stage, the so-called RT
market, in the power sector as the representative of all balancing stages to be cleared
after the DA electricity market. Similarly, we consider a single RT market for the
natural gas sector to be cleared after the DA gas market. The key point is that despite
all advances in forecasting tools, the deterministic forecast of stochastic renewable
energy sources used at the DA stage can still be erroneous, which may cause wrong
unit commitment and dispatch decisions. This eventually results inmarket inefficiency,
i.e., a comparatively high operational cost for the whole system (Jonsson et al. 2010).
To resolve such an inefficiency, temporal coordination between DA and RT electricity
markets and also between DA and RT natural gas markets is required (Morales and
Pineda 2017). Through temporal coordination, the DA electricity and the DA gas mar-
kets become uncertainty-aware. In contrast, via sectoral coordination, the electricity
market becomes aware of the gas sector. Both temporal and sectoral coordination are
desired for future energy systems with high penetration of renewables.

1.3 Financial instruments as coordinationmechanisms

The market-based mechanisms for improving both sectoral and temporal coordina-
tion of power and natural gas systems range from an extremely disruptive choice of
designing a fully stochastic integrated energy market to less-disruptive solutions that
preserve the current regulatory framework with separate, sequential and deterministic
clearing of the markets. The latter, i.e., less disruptive (or “soft”) market mechanisms,
is the focus of this paper, while the former, i.e., the fully stochastic integrated energy
market, is used as an ideal benchmark to assess the performance of the proposed
mechanisms. By soft market mechanisms, we refer to any mechanism or process that
increases the overall system efficiency while respecting the current operational and
economic regulations. These non-disruptive coordinationmechanisms can be of finan-
cial, operational or communicative nature. These mechanisms aim at enhancing the
information flow, either directly or indirectly, between the systems and creating incen-
tives for each sector to dispatch resources in a way that benefits the overall system.
Among others, the soft market-based mechanisms for coordination of energy sectors
can be achieved by direct or indirect information exchange among the markets (Zhao
et al. 2019; Byeon and Van Hentenryck 2020), defining new market products (War-
rington et al. 2013; Wang and Hobbs 2016; Chen et al. 2017; O’Malley et al. 2019),
prescribing new bidding formats (Liu et al. 2015; O’Connell et al. 2016; Savelli et al.
2018; Bobo et al. 2021), and introducing newmarket players which act as coordinators
at the interface of different sectors.

In this paper, we focus on the use of financial instruments to enhance the coordi-
nation of power and natural gas markets. Specifically, we explore the effect of virtual
bidding (Hogan 2016), also known as “convergence bidding” (Li et al. 2015), as a
soft market-based mechanism for improving both temporal and sectoral coordination
of power and natural gas systems under uncertainty. Virtual bidding (VB) refers to
financial arbitrage between two trading floors in an energy market, e.g., between DA
and RT electricity markets. A virtual bidder may earn profit due to price difference
in DA and RT markets by performing arbitrage. This virtual bidder can be a purely
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financial player who has no physical asset, the so-called explicit virtual bidder, or she
can be one of the existing physical market players, the so-called implicit virtual bidder
(Isemonger 2006; Mather et al. 2017). An example of an implicit virtual bidder is a
generator, who performs arbitrage between DA and RT markets by selling electricity
in DA more than her installed capacity. Further details about VB and in particular
explicit and implicit VB will be provided later in Sect. 2.2.

Virtual bidding exists today in various electricity markets throughout the world.
Most of U.S. electricity markets allow both forms of virtual bidding, i.e., explicit
and implicit, such as California Independent System Operator, CAISO (Li et al.
2015), Midcontinent Independent System Operator, MISO (Birge et al. 2018) and
Pennsylvania-New Jersey-Maryland Interconnection, PJM (Hogan 2016). Although
explicit VB is not allowed in European energymarkets, implicit VBmay occur to some
extent (Papavasiliou et al. 2021). The reason for this is that every power producer in
European energy markets is allowed to submit an offer in the DA market based on her
entire production portfolio. This leaves room for producers to do arbitrage to some
extent between DA and RT markets.

Note that by taking VB into account in this paper as a coordination tool, we do not
intend to focus on a market in a specific country. In contrast, we consider a stylized
market model, where both electricity and gas markets allow VB, and they are cleared
sequentially in both DA and RT stages. This stylized model offers a general market
framework, but it may not respect all regulatory and operational details of markets in
the U.S., or in Europe, or anywhere else.

1.4 State of the art, contributions, and paper organization

The implications of VB on converging DA and RT prices and on strengthening the
temporal coordination among various trading floors, e.g., between deterministic DA
and RT electricity markets, have been extensively studied in the literature, see for
example Parsons et al. (2015), Ito and Reguant (2016), Morales and Pineda (2017),
Birge et al. (2018), Kazempour and Hobbs (2018) and Kohansal et al. (2020). The
reason for such an improvement is that VB increases market liquidity and brings addi-
tional uncertainty-related information to the deterministic DA market through virtual
bids. The underlying assumption is that virtual bidders possess more adequate infor-
mation about uncertainty compared to the market operator who clears the DA market
in a deterministic manner. Therefore, it is implicitly assumed that virtual bidders have
used a proper stochastic model to make uncertainty-aware bidding decisions. These
bids indirectly make the deterministic DAmarket uncertainty-aware. In order to quan-
tify themaximum potential of VB to improve the coordination, we assume each virtual
bidder has perfect foresight of DA and probability distribution of RT prices. The affil-
iated assumption is that this virtual bidder is risk-neutral, and is not going to use such
information in a strategic manner. All these assumptions together imply that we con-
sider “perfect” virtual bidding3. Compared to the stochastic market-clearing model

3 To relax this assumption, we will use later an out-of-sample analysis in our numerical study, where the
realized RT prices are different than those within the stochastic program of the virtual bidders. This analysis
shows that imperfect virtual bidding can still improve the coordination but to a limited extent.
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as an ideal benchmark, it is worth noting that the efficiency of the deterministic DA
market may not be “fully” improved by VB under some circumstances (Parsons et al.
2015), or VBmight not be able to do so alone (Morales and Pineda 2017), or may have
some limits (Ito and Reguant 2016; Birge et al. 2018). An example of such conditions
is markets where virtual bidders behave strategically (Lo Prete et al. 2019a, b).

In the context of the existing literature, the main contribution of this paper is to
show that VB is able to improve not only the temporal coordination among deter-
ministic DA and RT markets, but also the sectoral coordination among deterministic
electricity and natural gas markets. To the best of our knowledge, the effect of VB
on sectoral coordination improvement among energy sectors has not been addressed
in the literature. We illustrate that virtual bidders (here, gas-fired power plants) are
of great potential to behave as coordinators at the interface of power and natural gas
systems, and enhance the overall efficiency by indirect information exchange among
the two sectors through making informed unit commitment and dispatch decisions. In
particular, we aim at quantifying the maximum potential of VB for improving both
sectoral and temporal coordination of electricity and natural gas markets under supply
uncertainty. To this purpose, we first integrate explicit VB to electricity and natural
gas markets, which achieves temporal coordination between deterministic DA and RT
markets in each energy sector. Then, we investigate the possibility of natural gas-fired
power plants, who are at the interface of power and natural gas markets, to behave as
implicit virtual bidders. We illustrate that such implicit virtual bidders have the capa-
bility to achieve both temporal and sectoral coordination in deterministic electricity
and natural gas markets.

From a methodological perspective, we model renewable generation uncertainty
via a finite set of scenarios, and develop several stochastic generalized Nash equilib-
rium (GNE) problems (Facchinei and Kanzow 2007), whose solution existence can be
mathematically ensured under some assumptions. These stochastic equilibrium mod-
els serve as simulation tools for deriving policy implications to explore how much VB
can improve the sectoral and temporal coordination in renewable-based electricity
and natural gas markets. We also provide analytical insights by comparing the GNE
problems and the ideal benchmark, i.e., the two-stage stochastic co-optimization prob-
lem (Pritchard et al. 2010; Zavala et al. 2017; Zakeri et al. 2019). It is important to
emphasize that all stochastic equilibrium models in this paper are developed based
on a stylized market framework. While this framework may not accurately reflect the
way actual energy markets are cleared in specific countries, we develop our models in
a general and compact manner to gain overall insights into the coordination of power
and natural gas markets. These stylized models should be seen as policy tools, since
they are not intended to be used for market clearing in practice. The manuscript is
organized as follows. In Sect. 2 we provide more details about temporal and sectoral
market coordination, the concept of VB and our modeling assumptions. Sects 3 and 4
contain the mathematical formulations of GNE models with explicit and implicit VB,
respectively. The formulation of the ideal benchmark model is included in Sect. 5. In
Sect. 6, we show the numerical results for a case study, and finally Sect. 7 concludes
the paper. For clarity purposes, we maintain the general representation of optimization
problems throughout the paper, and include their detailed representations in the online
appendix (Schwele et al. 2021).
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Day-ahead Real-time

I Electricity day-ahead
market clearing

Electricity
x

Natural gas

III Electricity real-time
market clearing
under scenario ω

II Natural gas day-ahead
market clearing

IV Natural gas real-time
market clearing
under scenario ω

��
�

Natural gas demand

��� Day-ahead schedule

Fig. 1 Sequential setup of electricity and natural gas markets, including four market-clearing sequences I
to IV

2 Preliminaries

This sectionfirst highlights the temporal and sectoral coordination of power and natural
gas markets under uncertainty. Then, it further describes both types of VB (explicit
and implicit). Finally, it summarizes the modeling assumptions made in this paper.

2.1 Two-dimensional coordination: temporal and sectoral

The independent market operators clear each trading stage (DA and RT) separately
and sequentially for electricity and natural gas markets. The current market-clearing
framework for electricity and natural gas systems is illustrated in Fig. 1, including
four market-clearing sequences. First, the electricity market is cleared in a DA auc-
tion 12–36 h before actual energy delivery using a deterministic forecast of uncertain
parameters, e.g., renewable power generation and natural gas prices. Note that future
natural gas prices directly impact the marginal production cost of natural gas-fired
power plants and consequently the merit order4 in the electricity market. Second, the
natural gasDAmarket is cleared for given natural gas demand of gas-fired power plants
determined by their dispatch in the electricity market. Third, once the uncertainty is
realized (e.g., scenario ω occurs), the RT electricity market is cleared to adjust imbal-
ances under fixed DA unit commitment and dispatch decisions. Fourth, the natural gas

4 The merit order refers to placing the power plants with an ascending order of marginal production costs.
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market is cleared in RT, while the dispatch of gas suppliers in DA and the demand of
natural gas-fired power plants in RT are given.

The sequential setup in Fig. 1 is totally uncoordinated in both temporal and sectoral
dimensions. This setup is temporally uncoordinated since both electricity and gas
markets in DA are cleared based on the available deterministic forecast in that stage,
without foresight into the potential deviations thatmay realize inRT. It is also sectorally
uncoordinated because the electricity market is cleared based on an estimation of
natural gas price, and the gas market is cleared afterwards. As it is common in practice,
the integration of operating reserve as an extra market product is able to potentially
enhance the temporal coordination between DA and RT markets. However it may
bring extra inefficiencies if the value assigned for the minimum reserve requirement
in the DA market is not properly selected (Doherty and O’Malley 2005; Zugno and
Conejo 2015). This can be an evenmore challenging issue in Europeanmarkets, where
energy and reserve markets are cleared sequentially (Dominguez et al. 2019). Aligned
with such a sequential energy and reserve market-clearing framework, Dvorkin et al.
(2019) propose a stochastic bi-level program that determines the optimal value for the
minimum reserve requirement. Note that we exclude the reserve market as it is not the
focus of this study.

While the share of stochastic renewable energy sources is growing, the lack of
temporal and sectoral coordination in electricity and natural gas markets may cause
market inefficiency. In other words, the overall operational cost of electricity and
natural gas systems in DA and RT might be comparatively higher than that cost in the
ideal co-optimization benchmark.The reason for such an inefficiency is suboptimalDA
dispatch decisionsmade due to uncoordinatedDAmarket clearing. If flexible resources
are dispatched in the DA stage inefficiently, they will not be available in RT to cope
with imbalances. As a consequence, more expensive actions, e.g., load curtailment,
might be required. Therefore, it is desirable to dispatch the flexible sources in DA in an
efficient manner while preserving the current sequential market-clearing framework.
This requires soft market-based mechanisms for enhancing the temporal and sectoral
coordination of power and natural gas markets, which is the focus of this paper.

2.2 Virtual bidding

Virtual bidding is a purely financial instrument for market players including suppliers,
consumers, and financial traders to do arbitrage based on price differences between
trading floors (Hogan 2016; Li et al. 2015; Birge et al. 2018). We explain below both
forms of VB, i.e., explicit and implicit VB (Isemonger 2006; Mather et al. 2017).

2.2.1 Explicit virtual bidding

An explicit virtual bidder is a purely financial player who does not own any physical
assets. Therefore, her positions in DA and RT need to even out to zero. For example,
an explicit virtual bidder may buy 10 MWh in the DA electricity market in a specific
hour at the DA market price in that hour, and then sells the same 10 MWh back in the
RT electricity market at the same hour but at the price of the RT market. Therefore,
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Fig. 2 An example for the hourly trading profile of an explicit virtual bidder in the DA market (left), in the
RT market (middle), and her final position, i.e., the sum of her trades in DA and RT (right). The amount of
trade in DA and RT could be negative (as an energy buyer) or positive (as an energy seller), but the final
position is always zero

Day-ahead Real-time

Day-ahead
market clearing

Real-time
market clearing
under scenario ω

Explicit
virtual bidder

max. expected profit
��� Day-ahead schedule

−→ Virtual trade

Fig. 3 Explicit virtual bidding by arbitraging electricity between the DA and RT electricity markets (or
by arbitraging gas between DA and RT natural gas markets). This type of virtual bidding has potential to
enhance temporal coordination between DA and RT markets

her payoff is equal to the difference between the DA and RT prices times the amount
of virtually traded power. Fig. 2 illustrates another example for the hourly trading
profile of an explicit virtual bidder. Assuming that the explicit virtual bidder is a
price-taker with perfect foresight into the distribution of DA and RT prices, she is
supposed to enhance informational and productive efficiency of the two-settlement
market by bringing more competitiveness, liquidity and transparency to wholesale
energy markets.

Figure 3 illustrates how such an explicit VB is integrated into the two-settlement
market-clearing setup. While DA and RT energy markets are cleared deterministically
and sequentially, the explicit virtual bidder solves a stochastic program maximizing
her own expected profit. The outcomes of the stochastic program of virtual bidders,
i.e., virtual trades, are exogenous in DA and RT markets. In other words, these vir-
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Fig. 4 An example for the hourly trading profile of an implicit virtual bidder, e.g., a gas-fired power plant,
in the DA market (left), in the RT market (middle), and her final position, i.e., the sum of her trades in
DA and RT (right). The amount of trades in DA and RT could be negative (as an energy buyer) or positive
exceeding the installed capacity (as energy seller), but the final position should lie within zero and the
installed capacity

tual bidders act as self-scheduling market players. This means that they make their
DA dispatch decisions internally, rather than submitting price-quantity bids to the DA
market. However, these self-scheduling market players can equivalently be viewed as
financial players who submit price-quantity bids to the DA market at sufficiently low
(high) selling (purchasing) prices to ensure such bids would be cleared. In our pro-
posed model, the amount of virtual trade is exogenous in DA and RT market-clearing
problems, while each virtual bidder is still paid or pays based on the corresponding
market-clearing prices. Therefore, the DA and RT market-clearing prices are exoge-
nous in the stochastic program of the virtual bidder. It is obvious from Fig. 3 that a
set of interrelated optimization problems (one for DA market clearing, one for RT
market clearing per scenario, and one for explicit virtual bidder) is required to explore
the performance of explicit VB. This clarifies the need for developing a stochastic
equilibrium model. It is demonstrated in Kazempour and Hobbs (2018) that this setup
can bring temporal coordination between deterministic DA and RT electricity mar-
kets. This is an interesting insight for market operators since they can keep the market
clearing deterministic, while leaving the correction of market inefficiency to virtual
bidders. However, VB may not always work in such a desirable way, as discussed in
Parsons et al. (2015), Morales and Pineda (2017) and Birge et al. (2018).

2.2.2 Implicit virtual bidding

Unlike the explicit VB, the implicit virtual bidder is a physical market player who
blends virtual bids with physical bids. Figure 4 shows an example for the hourly
trading profile of an implicit virtual bidder, who is able to do arbitrage between DA
and RT markets as long as her final position, i.e., the sum of her trade in the DA and
RT markets, lies within her actual operational limits.

An example of such a player is a natural gas-fired power plant who is at the inter-
face of power and natural gas systems, as illustrated in Fig. 5. This power plant has
potential to enhance both temporal and sectoral coordination in electricity and natural
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Day-ahead Real-time

Electricity day-ahead
market clearing

Electricity
x

Natural gas

Electricity real-time
market clearing
under scenario ω

Natural gas day-ahead
market clearing

Natural gas real-time
market clearing
under scenario ω

Self-scheduling
gas-fired unit

max. expected profit

��
�

Natural gas demand

��� Day-ahead schedule

−→ Dispatch decision

Fig. 5 Implicit virtual bidding by a natural gas-fired power plant, who is on the interface of electricity and
natural gas systems. This power plant self-schedules her power productions and gas consumptions in DA
and RT electricity and natural gas markets. This type of virtual bidding has potential to enhance temporal
and sectoral coordination between DA and RT electricity and natural gas markets

gas markets. Although the presence of explicit VB may eliminate the motivation for
physical players to perform arbitrage, physical players may still find self-scheduling
profitable to forgo the market and dispatch their production/consumption themselves
outside the market. For example, assume a natural gas-fired power plant that has per-
fect foresight into future DA and RT power and gas prices, and realizes that her profit
is not maximized when she participates in deterministic electricity and natural gas
markets. In other words, she has the opportunity to gain a higher profit in expectation
by self-scheduling outside the market (Guo et al. 2016; Sioshansi et al. 2010). Note
that the power production and gas consumption of this power plant are exogenous in
themarket-clearing problems, while she still pays/is paid based on themarket-clearing
prices (Jha and Wolak 2015; Papavasiliou et al. 2015). An implicit virtual bidder may
benefit from self-scheduling by solving her own stochastic program with better repre-
sentation of uncertainty and technical constraints for a longer time horizon. However,
these self-schedulers take on the full risk of RT price uncertainty. The influence of
risk aversion and price volatility on the decision of generators to do self-scheduling is
discussed in Papavasiliou et al. (2015) and Conejo et al. (2004).

2.3 Modeling framework and assumptions

In general, stochastic equilibrium models are computationally challenging, and there-
fore simplifying assumptions might be required. In addition, these assumptions enable
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us to quantify the maximum potential of VB in enhancing temporal and sectoral coor-
dination in the proposed simulation tool. In the following we explain our assumptions.

As pointed out in Sect. 1,we consider two trading floors (DAandRT) only, and other
potential floors, e.g., intra-day adjustment markets, are excluded. We also consider
simple price-quantity bids only, discarding any other types of bids, e.g., bid curves
and block bids, which are prevalent in European electricity markets. Wind power
production is assumed as the only source of uncertainty. Note that the wind power
forecast in DA is a single point (deterministic), while different scenarios may occur
in RT, i.e., we are not sure about the actual outcome of the uncertain parameter.
Wind power uncertainty is represented using a finite set of scenarios. The wind power
production cost is zero, and can be spilled at zero cost.

Both electricity and natural gas demands are assumed to be inelastic to price. This
implies that demand-side flexible resources are discarded. All demand and supply
in both energy sectors are assumed to be located at a single node, neglecting the
transmission systems. By discarding the natural gas network, we exclude the potential
flexibility that can be provided by the stored gas in the pipelines, which is known as
linepack.

A multi-period unit commitment scheduling model is used in the power sector. We
relax the binary nature of commitment status of conventional generators to lie within
zero and one, but in a tight manner (Hua and Baldick 2017). This relaxation ensures
convexity, which is required to solve the stochastic equilibrium model as a mixed
complementarity problem, while providing more accurate cost estimates than pure
dispatch models. The production cost of generators is assumed to be a linear function.
We assume all market players including virtual bidders (either explicit or implicit) to
act competitively, non-strategically, and in a risk-neutral manner when participating
in the markets, so they offer at prices identical to their marginal costs. We assume
virtual bidders can always zero out their position in RT.

Notation We denote byR andR+ free and non-negative real numbers, respectively.
We use upper case letters for matrices and lower case letters for vectors. Bold lower
case letters denote vectors of variables. Note that e is the vector of ones and (.)� is
the transpose operator. We use functions h(.) and g(.) to show equality and inequality
constraints in every optimization problem, but note that these constraints for different
optimization problems are not necessarily identical.

3 Temporal coordination

In this section,we explore the temporal coordination between deterministicDAandRT
markets via explicit VB. The sectoral coordination between deterministic electricity
and natural gas markets via implicit VB will be discussed later in Sect. 4.
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3.1 Temporal coordination between DA and RTmarkets

Wepresent below optimization problems in the power sector, and then in the gas sector.
These optimization problems are interrelated and construct a stochastic equilibrium
problem.

3.1.1 Explicit electricity virtual bidder

The expected profit-maximization problem of each explicit electricity virtual bidder
r ∈ R over the time horizon T writes as

{
max
vEr ,�vEr

λDA,E�
vEr +

(∑
ω

πω λRT,E
ω

)�
�vEr (1a)

subject to vEr + �vEr = 0

}
∀r . (1b)

Note that (1) is a two-stage stochastic linear program. The virtual bidder determines
her DA position vEr ∈ R

T , r ∈ R given the DA electricity prices λDA,E ∈ R
T

as well as the distribution of RT electricity prices λRT,E
ω ∈ R

T , ω ∈ � weighted
by probability πω over the set of scenarios ω ∈ �. This virtual bidder is a purely
financial player without physical assets, and therefore is obliged to offset her DA
position by her RT position �vEr ∈ R

T , r ∈ R in each scenario5. Objective function
(1a) maximizes the expected profit of explicit virtual bidder who arbitrages between
the DA and RT electricity markets. Constraint (1b) ensures that the virtual bidder sells
(buys) the same amount back in theRTmarket that was bought (sold) in theDAmarket.
One important observation about this explicit virtual bidder is that she enforces the
convergence of DA and expected RT electricity prices (Kazempour and Hobbs 2018).
Derived fromKarush–Kuhn–Tucker (KKT) optimality conditions associated with (1),
the virtual bidder enforces the DA and the expected RT electricity prices to be equal,
i.e., λDA,E = ∑

ω πωλRT,E
ω . See online appendix (Schwele et al. 2021) for further

details. Note that market operators treat the dispatch decision of virtual bidders as
fixed input into the market-clearing problem presented in the following section.

3.1.2 DA electricity market

Consider G number of gas-fired generators and C number of non gas-fired generators,
such that G ∪ C = I. Besides, consider J number of wind power units. For given
production cost of non gas-fired generators CE ∈ R

C+, estimation of natural gas prices

λ̃
G ∈ R

T to compute the production costC(λ̃
G
) ∈ R

G×T for gas-fired generators, and

5 Although �vEr is a recourse variable, it is not indexed by ω. The reason for this is that throughout all
scenarios, the RT position of the explicit virtual bidder should be identical. Mathematically speaking, this
variable can take a scenario index to become�vEr ,ω . However, constraint (1b) would enforce again all those
recourse variables over scenarios to take an identical value.
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fixed dispatch of virtual bidders vEr obtained from (1), the electricity market operator
clears the market in DA to minimize the total operational cost of the power system as

min
p,u,s,w

e�pC CE + e�pG C(λ̃
G
) e + e�s e (2a)

subject to h(p,w, vEr ) = 0 : λDA,E, (2b)

g(p,w,u, s) ≤ 0. (2c)

Note that (2) is a deterministic linear program. Variables p,u, s ∈ R
T ×I+ are the

dispatch, commitment status, and start-up cost of conventional generators in DA,
respectively. In particular, pC ∈ R

T ×C+ and pG ∈ R
T ×G
+ are the DA dispatch of non

gas- and gas-fired generators, respectively. The commitment status u is relaxed to lie
within zero and one. Besides, w ∈ R

T ×J
+ refers to the DA dispatch of wind power

units, limited by their deterministic forecast in DA.
Objective function (2a) minimizes the total system cost in DA, including the opera-

tional and start-up costs of conventional generators. Equality constraint (2b) enforces
the balance between power production and consumption in DAwith inelastic demand.
The virtual DA positions vEr are treated as given inputs. The dual variable associated
with power balance (2b), i.e., λDA,E ∈ R

T , provides the DA electricity price. Recall
that this vector of dual variables was treated as exogenous values in the problem of
virtual bidders (1). Inequality constraints (2c) enforce lower and upper bounds on the
DA dispatch of wind and conventional generation, impose ramping limits of conven-
tional generators, represent the tight relaxation of unit commitment, and compute the
start-up cost of each conventional generator. The detailed representation of all equality
and inequality constraints is given in the online appendix (Schwele et al. 2021).

3.1.3 RT electricity market

The actual wind power production is realized in RT, which might not be necessarily
identical to the deterministic wind power forecast in DA. Therefore, the electricity
market operator clears the RT market to make the necessary adjustments in order to
keep the system balanced. The balancing actions are the power adjustment of genera-
tors and the two extreme actions, i.e., wind spillage and load shedding. The (relaxed)
commitment status of fast-starting conventional generators F ⊂ I and therefore their
start-up cost can be updated in RT, while that is not the case for the slow-starting gen-
erators S ⊂ I. Note thatF ∪ S = I. For given production costs of non gas-fired and
gas-fired generators CE ∈ R

C+ and C(λ̃
G
) ∈ R

G×T , load shedding cost Csh,E ∈ R
T+ ,

fixed dispatch of explicit virtual bidders �vEr achieved from (1) and fixed DA elec-
tricity market-clearing outcomes p and u obtained from (2), the RT electricity market
clearing under scenario ω ∈ � writes as
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{
min

�pω,�uω,�sω,

�wω,�dEω

e��pCω CE + e��pGω C(λ̃
G
) e + e��sω e + Csh,E�

�dEω (3a)

subject to h(�pω,�wω,�dEω,�vEr ) = 0 : λRT,E
ω , (3b)

g(�pω,�wω,�dEω,�uω,�sω,p,u) ≤ 0,

}
∀ω. (3c)

Note that (3), one per scenario, is a deterministic linear program. We denote by
�pω ∈ R

T ×I the power adjustment of conventional generators. In addition, �uω ∈
R
T ×F and �sω ∈ R

T ×F refer to the adjusted relaxed commitment decision and
the adjusted start-up cost of fast-starting units, respectively. Wind spillage and load
shedding actions are denoted by �wω ∈ R

T ×J+ and �dEω ∈ R
T+ , respectively.

Objective function (3a) minimizes the total balancing cost for underlying scenario
ω. Equality constraint (3b) balances the wind power deviations in RT from the DA
schedule with the position of virtual bidders�vEr as fixed input. The dual variable vec-
tor λRT,E

ω ∈ R
T represents the RT electricity prices under scenario ω. Recall that this

vector was exogenous in the problem of virtual bidders (1). Inequality constraints (3c)
enforce lower and upper bounds on the load shedding and power adjustment of wind
power units, conventional slow- and fast-starting generators, restrict the ramp-rate lim-
its of conventional generators, enforce the adjusted unit commitment, and calculate
the start-up cost for fast-starting units. The detailed representation of constraints is
provided in the online appendix (Schwele et al. 2021).

3.1.4 Explicit natural gas virtual bidder

Similarly to the electricity VB, the profit-maximization problem of each explicit nat-
ural gas virtual bidder q ∈ Q participating in the natural gas DA and RT markets is
given by the following two-stage stochastic linear program:

{
max

vGq ,�vGq
λDA,G�

vGq +
(∑

ω

πω λRT,G
ω

)�
�vGq (4a)

subject to vGq + �vGq = 0

}
∀q. (4b)

For given DA and RT natural gas market prices λDA,G ∈ R
T and λRT,G

ω ∈ R
T , ω ∈

�, the virtual bidder solves (4) to maximize her expected profit stemming from the
price differences in DA and RT natural gas markets. Her decision variables are DA
positions, i.e., vGq ∈ R

T and RT positions, i.e.,�vGq ∈ R
T . Recall that we assume that

the virtual bidder has a perfect foresight into future DA and distribution of RT prices
over scenarios. Equality constraint (4b) zeros out the DA and RT trades of the explicit
virtual bidder. As an important observation, this explicit virtual bidder enforces the
DA and the expected RT natural gas prices to be equal, i.e., λDA,G = ∑

ω λRT,G
ω . This

observation can be derived by the KKT optimality conditions associated with (4).
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3.1.5 DA natural gas market

For given scheduled natural gas consumption of gas-fired generators as a function of
pG obtained from the DA electricity market (2) and the DA trade of virtual bidders
vGq determined in (4), the natural gas market operator clears the DA market with K
number of gas suppliers as

min
g

e�CGg e (5a)

subject to h(g,pG, vGq ) = 0 : λDA,G (5b)

g(g) ≤ 0, (5c)

where (5) is a deterministic linear program. Parameters in the vector CG ∈ R
K+ rep-

resent the supply cost of gas suppliers, and variables in the matrix g ∈ R
T ×K+ are the

DA schedule of those suppliers. Objective function (5a) minimizes the total gas sup-
ply cost. Equality constraint (5b) represents the DA natural gas supply balance with
inelastic demand including given gas demand for power production and virtual trade
vGq . The “actual” natural gas prices are derived through dual variables λDA,G ∈ R

T ,

which are not necessarily identical to the estimated prices λ̃
G
used in the electricity

market-clearing problems (2) and (3). Constraint (5c) enforces the lower and upper
bounds on the gas supply. The detailed representation of constraints is provided in the
online appendix (Schwele et al. 2021).

3.1.6 RT natural gas market

The natural gas operator clears the RT natural gas market to offset the change in fuel
consumption of gas-fired generators �pGω occurred under scenario ω. This determin-
istic linear problem writes as

{
min

�gω,�dGω
e�CG�gω e + Csh,G�

�dGω (6a)

subject to h(�gω,�pGω,�dGω,�vGq ) = 0 : λRT,G
ω (6b)

g(�gω,�dGω, g) ≤ 0

}
∀ω, (6c)

where objective function (6a) minimizes the total balancing cost. The first balancing
action is gas supply adjustment �gω ∈ R

T ×K whose cost is CG ∈ R
K×T+ . The

second but extreme balancing action is the natural gas load shedding �dGω ∈ R
T+ at

the comparatively high cost of Csh,G ∈ R
T+ . Equality constraint (6b) balances the

gas supply adjustments in RT. The actual natural gas RT prices under scenario ω

are the vector of dual variables λRT,G
ω ∈ R

T . Constraints (6c) enforce the lower and
upper bounds on gas supply, gas adjustments and gas load shedding. The detailed
representation of constraints is given in the online appendix (Schwele et al. 2021).
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3.2 Analysis of stochastic equilibrium problems

In order to achieve temporal coordination, the profit-maximization problem of explicit
virtual bidders as well as the DA and RT market-clearing optimization problems need
to be solved simultaneously. Note that the explicit virtual bidders do not link the
electricity and natural gas markets, but they will be linked later in Sect. 4 with implicit
VB. For now, we can identify two stochastic equilibrium problems, one per energy
sector. The first stochastic equilibriumproblem related to the electricity sector includes
optimization problems (1) ∀r , (2) and (3) ∀ω. The second stochastic equilibrium
problem corresponding to the natural gas sector consists of (4) ∀q, (5) and (6) ∀ω.
Note that these two stochastic equilibrium problems should be solved sequentially,
i.e., one should first solve (1–3), and then for given natural gas demands, (4–6) can be
solved.

Remark 1 Each linear optimization problem (2), (3), (5) and (6) related to DA and RT
market-clearing problems can be equivalently reformulated as a pureNash equilibrium
problem, wherein price-taking agents maximize their profit in a perfectly competitive
market.

The KKT optimality conditions of each optimization problem (2), (3), (5) and (6)
and its corresponding pure Nash equilibrium problem are identical. As explained in
Remark 1, each optimization problem (2), (3), (5) and (6) can be replaced by a set of
optimization problems that constitute the corresponding Nash equilibrium problem.
However, solving these problems simultaneously as the equilibrium problems (1–3)
and (4–6) leads to coupled strategy sets and jeopardizes integrability of the equilibrium
problem (Facchinei and Pang 2007).

Remark 2 Both stochastic equilibrium problems (1–3) and (4–6) are GNE problems.

In both stochastic equilibrium problems, the feasible set of some players depends
on the decision of other players. We focus on equilibrium problem (1–3). The same
discussion is also valid for the equilibrium problem (4–6). The trading decisions of
electricity virtual bidders in (1), i.e., vEr and �vEr , appear within the power balance
constraints in (2) and (3). Replacing (2) and (3) with their equivalent Nash equilibrium
problems (as mentioned in Remark 1) will not change the GNE nature of the overall
problem, as the DA power schedule of generators affects the feasible set of those
generators in their RT problem. Note that (1–3) is a special GNE problem, since
variables of (1) affect the feasible set of optimization problems (2) and (3), but not
the other way around. In other words, the feasible set of optimization problem (1)
is independent of DA and RT market outcomes. Similarly, the DA market outcomes
in (2) impact the RT constraints in (3), but again not the other way around. One can
interpret this linkage among (1), (2) and (3) in this way that there is no feedback among
the feasible set of players. However, this specific linkage of optimization problems in
(1)-(3) does not change the fact that it is a GNE problem.

The resulting challenge is that a GNE problem in general is formulated as a quasi-
variational inequality (Pang and Fukushima 2005), which is generally hard to solve
and admits multiple or even infinite solutions (Facchinei and Kanzow 2007). Note
that Facchinei and Kanzow (2007), Harker and Pang (1990), Harker (1991), Schiro
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et al. (2013), Krawczyk (2007), Fukushima (2011) and Kulkarni and Shanbhag (2012)
explore a specific class of GNE problems with shared constraints. However, the cou-
pling constraints in our proposed stochastic equilibrium problems, i.e., (1–3), and
(4–6), are not shared constraints.

Remark 3 Existence of a solution to the proposed stochastic GNE problems can be
mathematically proven under some circumstances.

The basis of this proof relies upon Harker (1991, Theorem 1) and Harker (1991,
Theorem 2), provided that the feasible set of every agent in the GNE problems is
non-empty, convex and compact. In our case, this condition will be fulfilled only if we
assume bounds on market prices, i.e., by imposing price floors and caps, and bounds
on virtual trades, e.g., by imposing a budget constraint for each virtual bidder. The
investigation of solution uniqueness for these GNE problems is not straightforward
(Harker 1991; Fukushima 2011).

4 Sectoral and temporal coordination

In order to enhance the sectoral coordination between electricity and natural gas mar-
kets, this section extends the model in Sect. 3 and allows natural gas-fired generators
to act as implicit virtual bidders. In other words, they are allowed to self-schedule
outside the markets to optimally allocate their operational flexibility in the electricity
market and their fuel consumption in the natural gas market. Each self-scheduler, i.e.,
implicit virtual bidder6, maximizes her own expected profit. Similar to the explicit
virtual bidders, we assume that each self-scheduler has a perfect foresight into DA
and distribution of RT prices over scenarios in both electricity and natural gas markets.
Note that including these self-schedulers in the model links the power and natural gas
markets, so that a single stochastic equilibrium problem is achieved.

We consider both slow- and fast-starting types of gas-fired generators as potential
self-schedulers. The difference between these two types of generators is that the slow-
starting gas-fired units fix their unit commitment status in DA and cannot change it
in the RT, while the fast-start units can. The expected profit maximization problem of
each self-scheduling slow-starting gas-fired unit G∩S participating in both electricity
and natural gas markets is

6 In the rest of the manuscript we use the terms implicit virtual bidder and self-scheduler interchangeably.
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max
p,u,s,�pω

(
λDA,E − C(λDA,G)

)�
p − e�s

+
∑
ω

πω

[ (
λRT,E

ω − C(λRT,G
ω )

) ]�
�pω (7a)

subject to g(p,u, s) ≤ 0 : μ, (7b)

g(�pω,p,u) ≤ 0 : νω, ∀ω, (7c)

where (7) is a two-stage stochastic linear program, whose objective function (7a)
maximizes the expected profit of the underlying self-scheduling gas-fired generator.
Note that this objective function includes the actual DA and RT gas prices λDA,G and

λRT,G
ω from models (5) and (6), and not the estimated gas price λ̃

G
. This problem is

subject to the DA (7b) and RT operational constraints (7c), so that the final production
of gas-fired units in RT have to lie within their feasible operational limits.

Similarly, each fast-start self-scheduling gas-fired unit G ∩ F solves a two-stage
stochastic linear program to maximize her expected profit as

max
p,u,s,�pω,
�uω,�sω

(
λDA,E − C(λDA,G)

)�
p − e�s

+
∑
ω

πω

[ (
λRT,E

ω − C(λRT,G
ω )

)�
�pω + e��sω

]
(8a)

subject to g(p,u, s) ≤ 0 : μ, (8b)

g(�pω,�uω,�sω,p,u) ≤ 0 : νω, ∀ω. (8c)

The resulting stochastic GNE problem includes optimization problems (2), (3) ∀ω,
(5), (6) ∀ω, (7) and (8). Note that in this stochastic equilibrium problem, the decisions
of self-schedulers p, and �pω in (7) and (8) are exogenous values within the market-
clearing problems (2), (3), (5) and (6).

Remark 4 Let us consider a case with both implicit and explicit VB. If the dispatch
of self-schedulers in DA is restricted by either (7b) or (8b), the stochastic equilibrium
problem will be feasible if and only if such DA constraints are inactive. Any non-zero
dual variable corresponding to the DA constraints of self-schedulers will make the
stochastic equilibrium problem infeasible.

Including explicit and implicit VB requires solving (1–8) as a GNE problem by
neglecting the operational bounds of self-schedulers in DA, i.e., (7b) and (8b). Self-
schedulers can submit physical and virtual bids as long as their positions in RT adhere
to their feasible operational limits, thus acting as implicit virtual bidders.

5 Ideal benchmark

We compare the proposed “soft” market-based mechanism for power and natural
gas coordination to the ideal benchmark of a fully stochastic integrated energy market
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clearing. This ideal benchmark is indeed a disruptive solution to achieve a full temporal
and sectoral coordination, which ignores the current market sequences. Assuming that
the given set of scenarios is a good representation of the probability distribution of
uncertainty, the stochasticmarket clearing efficientlymakes informedDAdecisions by
anticipating the potential recourse actions in RT (Pritchard et al. 2010; Morales et al.
2012; Zakeri et al. 2019; Zavala et al. 2017). In this benchmark, the fully integrated
power and natural gas system is co-optimized under complete exchange of operational
information. The resulting two-stage stochastic linear program aims at minimizing the
total expected operational cost of both sectors in DA and RT, and writes as

min
p,u,s,w,g,�pω,
�uω,�sω,�wω,

�dEω,�gω,�dGω

e�pCCE + e�s e + e�CGg e +
∑
ω

πω

(
e��pωC

E + e��sω e

+ Csh,E�
�dEω + e�CG�gω e + Csh,G�

�dGω
)]

(9a)

subject to (2b), (2c), (5b), (5c), (9b)

(3b), (3c), (6b), (6c), ∀ω. (9c)

Objective function (9a) minimizes the total DA system cost for power production
and gas supply as well as the expected RT balancing costs in both sectors, while
respecting the operational constraints in DA (9b) and in RT (9c) for each scenario.
The stochastic optimization problem (9) can be equivalently reformulated as a pure
Nash equilibrium problem, wherein eachmarket player is a stochastic decision-maker,
who maximizes her expected profit with respect to DA and RT operational constraints
with perfect information regarding uncertainty and prices in both sectors.

Remark 5 The GNE problem (1–8) defined in Sect. 4 including explicit and implicit
VB is not necessarily equal to the ideal benchmark (9), since their KKTs are different.

Recall that the GNE problem enforces convergence of DA and expected RT prices
in both power and natural gas sectors through the optimality conditions of explicit
virtual bidders. On the contrary, in the stochastic market clearing problem (9), the DA
and RT prices converge in expectation only if all DA operational inequalities are non-
binding, i.e., every market player acts as an unrestrained arbitrager between DA and
RT markets. This can be easily explored by checking the KKT optimality conditions
associated with (9). Note that this observation is valid under this circumstance that
an operational constraint with the corresponding dual variable of equal to zero at the
optimal point is necessarily non-binding. The co-optimization of power and natural
gas system correctly accounts for the impact of natural gas prices on the merit order
of the electricity supply curve. Allowing all gas-fired units to self-schedule in the
sequential setup with perfect knowledge over both natural gas and electricity prices
approximates system integration. This is further explored in the following proposition.

Proposition 1 If DA operational bounds on p,u,w, g in the stochastic optimization
problem (9) are non-binding, the DA and the RT prices converge in expectation (i.e.,

123



Coordination of power and natural gas markets... 525

λE,DA = ∑
ω πωλE,RT

ω and λG,DA = ∑
ω πωλG,RT

ω ) and the outcomes of (9) are equal
to the GNE problem (1–8) when all gas-fired units are implicit virtual bidders.

Proof This is proven by demonstrating that the KKT optimality conditions of the two
problems above under the conditions mentioned are identical—See online appendix
(Schwele et al. 2021) for more details. 	


Table 1 summarizes all models introduced. While sequential and ideal benchmark
can be solved as linear programs (LP), all other models are recast as mixed comple-
mentarity problems (MCP) by concatenating all KKT conditions from the respective
optimization models.

6 Numerical results

This section provides a case study to analyze and compare the proposed market setups
presented in Sects. 3, 4 and 5, which are summarized in Table 1. We solve all models
using an Intel CoreTM i7-7820HQ with four processors clocking at 2.70 GHz and
16 GB of RAM in GAMS using PATH and CPLEX solver for MCP and LP models,
respectively. The CPU time for LP models is below 1 second, while that time for
different MCPs varies between 1 and 800 seconds. See online appendix (Schwele
et al. 2021) for further details.

6.1 Input data

This case study contains a power system with 6 non gas-fired generators (namely,
C1 to C6) and 4 gas-fired generators (namely, G1 to G4). These gas-fired generators
connect the power system to a natural gas system with four gas suppliers, namely K1
to K4. We consider a 24-hour time horizon. All technical details of generators and
natural gas suppliers as well as the total hourly demand in both power and natural
gas sectors are provided in the online appendix (Schwele et al. 2021). Note that the
demand in both sectors is certain, and the only source of uncertainty is assumed to be
the wind power. Wind forecast and scenarios are also given in the online appendix.
The natural gas supply curve is shown in Fig. 6, which is the same throughout all 24
h. Figure 7 illustrates the shifting of the electricity merit order curve due to a potential
change in the natural gas price. The reason for this shift is that the gas price affects
the marginal production cost of the gas-fired generators. Since in both DA and RT
stages, the electricity market is cleared before the natural gas market, the electricity
market operator needs an estimation of the gas price. In the following, we assume that
the electricity market operator uses the average gas supply cost, i.e., $2.5/kcf, as a
deterministic and static estimation of the natural gas prices in both DA and RT. The
value of lost load in the electricity and natural gas sectors are set to $600/MWh and
$300/kcf, respectively. The wind power penetration, i.e., total wind power capacity
installed divided by the total electricity demand, is 34%. The next subsections provide
the market outcomes obtained from different setups.
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Fig. 6 Natural gas supply function
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Fig. 7 Electricity merit order depending on natural gas price. The plots on the left-hand, middle, and
right-hand sides show the merit order corresponding to the low, average and high prices for natural gas (as
illustrated in Fig. 6), respectively

6.2 Main results: total expected system cost

The total expected cost of electricity and natural gas systems achieved under different
market setups is shown in Fig. 8. As expected, the highest system cost corresponds
to the sequential setup Seq (first bar in Fig. 8), which is a fully uncoordinated model.
On the other hand, the fully coordinated ideal model (i.e., last bar in Fig. 8) yields the
lowest cost. In this case study, the full temporal and sectoral coordination results in
a 7.06% cost reduction. The three proposed setups Seq+eVB, Seq+iVB and Seq+VB
provide partial coordination, and therefore, the system cost achieved in those setups is
between the upper and lower bounds. Among these three market setups, Seq+VB with
both implicit and explicit VB yields the highest cost saving, which is 6.94% (fourth bar
in Fig. 8). Out-of-sample simulation relaxes our assumptions of perfect knowledge of
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Fig. 8 Total expected cost of the electricity and natural gas systems calculated by (9a) under different
market setups. The percentages show the reduction in the total expected system cost compared to that cost
in the fully uncoordinated sequential setup (first bar)
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Fig. 9 Hourly DA schedule of slow-start gas-fired generator G4 as well as DA and expected RT market-
clearing prices obtained from fully uncoordinated sequential market setup Seq. The left- and right-hand
side plots correspond to the electricity and natural gas market outcomes, respectively

virtual bidders. An analysis of out-of-sample performance can be found in the online
appendix (Schwele et al. 2021). In the following three subsections, we discuss in
details how each market setup impacts the DA schedules. For clarity, we focus on DA
dispatch of one of the slow-start gas-fired generators, i.e., G4, and analyze how each
market setup affects her dispatch, and therefore her individual expected profit.

6.3 Upper bound: Sequential market setup (Seq)

The corresponding market-clearing outcomes of the fully uncoordinated sequential
market setup Seq are given in Fig. 9. The DA schedules in this setup have no foresight
into uncertainty in the RT operation and sectoral interactions between the two systems.
Thus, the DA and expected RT prices can significantly differ. An example of such case
is the electricity market price during hours 14 to 22 in the left-hand side plot and the
natural gas market price during hours 9 to 13 and 18 to 20 in the right-hand side plot of
Fig. 9. The slow-start gas-fired generator G4 is dispatched in the DA electricity market
myopically, without considering the volatility of the actual hourly natural gas price and
the need for flexibility provided by G4 in RT. This generator is scheduled in hours 10
to 13 relying on the comparatively low estimated gas price, while her real production
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Table 2 Expected profit of each generator under different market setups

Seq Seq+eVB Seq+iVB
(self-scheduling by G4)

Seq+VB
(implicit VB by G4)

Ideal

C1 14,078 13,693 13,499 13,411 12,410

C2 18,713 18,180 22,330 17,623 16,362

C3 26,029 8673 36,920 11,099 8673

C4 711 254 693 494 0

C5 134,062 126,703 127,079 123,956 115,180

C6 90,417 85,375 81,230 84,315 76,314

G1 − 198, 988 6,608 10,661 8,003 8,960

G2 1267 0 − 809 0 0

G3 11,127 6,332 5564 5535 4177

G4 − 529, 059 4878 11,415 8319 8833

cost is higher due to comparatively high natural gasmarket prices.When power system
flexibility is required, which is evident from the high expected RT electricity prices
in hours 14 and 20, generator G4 is unable to provide upward adjustment since she
is already dispatched at full capacity in DA. Apart from the high expected system
cost, this inefficient DA dispatch results in a negative expected profit (-$529,059) for
G4, as given in Table 2. The faulty estimation of natural gas prices when clearing the
electricity market leads to underestimating power generation costs and overestimating
the profits of G4 in RT, such that G4 actually operates at negative profits in RT, see
Fig. 10. This illustrates the need for market coordination, and specifically the potential
of scheduling power generators in DA more efficiently.

6.4 Lower bound: ideal benchmark (Ideal)

In this ideal stochastic co-optimization model, the DA decisions are made while per-
fectly foreseeing uncertainty in RT as well as the sectoral interdependencies. As given
in Fig. 11, the DA and expected RT prices converge in both power and natural gas
sectors. The fully efficient DA dispatch in this ideal market setup ends up to a non-
negative expected profit for all generators (see Table 2), including G4 whose expected
profit is $8833.

6.5 Temporal coordination: Seq+eVB

Recall that the market setup Seq+eVB provides the DA-RT temporal (but not sec-
toral) coordination by allowing explicit VB in both electricity and natural gas markets.
Note that it is sufficient to consider a single explicit virtual bidder only in each sector
since the transmission network is not considered. The hourly amount of DA virtual
bids in both sectors is shown in Fig. 12. The virtual bidders act as either buyers or
sellers over the 24 hours in the DA market. For example, the virtual bidder in DA
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Fig. 10 Hourly profit in DA and in expectation in RT of slow-start gas-fired generator G4 obtained from
fully uncoordinated sequential market setup Seq. The left-hand plot shows the estimated profits using natural
gas price estimations while the actual profits for realized natural gas prices are depicted on the right-hand
side
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Fig. 11 Hourly DA schedule of slow-start gas-fired generator G4 as well as DA and expected RT market-
clearing prices obtained from fully coordinated market setup Ideal. The left- and right-hand side plots
correspond to the electricity and natural gas market outcomes, respectively
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Fig. 12 Hourly DA schedule of explicit virtual bidder (i.e., the purely financial player) and slow-start
gas-fired generator G4 as well as DA and expected RT market-clearing prices obtained from market setup
Seq+eVB. The left- and right-hand side plots correspond to the electricity and natural gas market outcomes,
respectively

electricity market acts as a seller in hours 3–6, 10, 11, 20, and 24, while as a buyer in
the rest of hours as illustrated in the left-hand plot of Fig. 12. The DA positions of this
player are going to be zeroed out by her RT actions. Practically, this means that every
MWh the virtual bidder sells in DA in hours 3–6, 10, 11, 20, and 24will be bought back
in the same hours in RT. The right-hand plot of Fig. 12 shows that in the DA natural gas
market, the virtual bidder acts as a supplier in most hours. She behaves as a natural gas
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Fig. 13 Hourly DA schedule of slow-start gas-fired generator G4 as well as DA and expected RT market-
clearing prices obtained from market setup Seq+iVB. Generator G4 does self-scheduling. The left- and
right-hand side plots correspond to the electricity and natural gas market outcomes, respectively

consumer only in hours 5, 10, 11 and 24. Note that allowing explicit VB achieves full
convergence of DA and expected RT prices in both power and gas markets. Explicit
VB also impacts the DA dispatch of generators. For example, the slow-start gas-fired
generator G4 is no longer dispatched between hours 2 and 11, while she is fully dis-
patched in hours 13 to 22. Explicit VB alone decreases the total expected system cost,
but to the disadvantage of several individual generators. For example, the expected
profit most generators decreases compared to the fully coordinated sequential model
and only gas-fired generators G1 and G4 are better off.

6.6 Temporal and sectoral coordination: Seq+iVB and Seq+VB

The efficient dispatch of market players operating on the interface of electricity and
natural gas sectors can enhance the sectoral coordination. A foresighted schedule of
gas-fired generators in the DA electricity market may improve not only the temporal
coordination with the RT electricity market, but also the sectoral coordination with
the DA natural gas market. We analyze below the two market setups Seq+iVB and
Seq+VB separately.

6.6.1 Self-scheduling gas-fired generators: Seq+iVB

As realized in the previous subsections, the DA dispatch of gas-fired generator G4 in
setup Seq is inefficient, such that she ends up to a negative expected profit. This shows
the significant potential for this generator to do self-schedule, rather than participating
in the markets relied upon a deterministic sequential clearing procedure. Figure 13
shows the DA dispatch and market outcomes when generator G4 acts as an implicit
virtual bidder. Note that in this setup, the implicit virtual bidder has to still respect
her operational constraints in both DA and RT stages. This restriction will be relaxed
later in setup Seq+VB. According to Fig. 13, generator G4 increases her production
during hours 1 to 13 when the actual natural gas price is comparatively low, whereas
she reduces her power production and consequently natural gas consumption when
the gas price is comparatively high in hours 14 to 24. As presented in Fig. 14, allowing
this gas-fired generator to self-schedule alone increases her expected profit to $11,415.
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Fig. 14 Hourly profit in DA and
in expectation in RT of
slow-start gas-fired generator G4

self-scheduling in the sequential
market setup Seq+iVB
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Moreover, the total social welfare is improved in terms of reducing the non-negative
expected profits for other generators and reducing the total expected system cost by
6.37% (third bar in Fig. 8). Another important observation is that the self-scheduling
by G4 causes shrinking the price spread between DA and expected RT prices in both
power and gas sectors.

6.6.2 Explicit and implicit virtual bidding: Seq+VB

This setup allows explicit VB by purely financial players and implicit VB by gas-fired
generator G4. Figure 15 shows that the explicit and implicit VBs together achieve
full price convergence in expectation in both power and natural gas markets. When
generatorG4 is allowed to submit virtual bids in the electricity and natural gasmarkets,
the amount of explicit virtual trade decreases significantly in the electricity market
and almost disappears in the natural gas market compared to Fig. 12. Note that G4

extends her bidding behaviour in the DA electricity and natural gas markets beyond
her operational constraints acting as an implicit virtual bidder. For example, virtual
bids are submitted to act as an electricity consumer and natural gas producer in the
DA markets, e.g., in hours 3, 4 and 9. More specifically, she bids in DA below her
operational capacity in hours 3, 4 and 9 and above her capacity in hours 12, 13,
and 19-21. The convergence of DA and expected RT prices indicates full temporal
coordination. Moreover, the additional system cost reduction compared to the case
with explicit VB only (see second and fourth bars in Fig. 8) suggests improved sectoral
coordination. All generators can expect a non-negative expected profit in this market
setup with both implicit and explicit VB. The implicit virtual bidder G4 expects to earn
$8,319. Although this generator can extend her bidding activity beyond her operational
constraints in DA, her expected profit is lower than that in a case when G4 is the only
self-scheduler in the market setup without explicit VB (Seq+iVB). However, when
explicit VB is allowed (Seq+iVB and Seq+VB), generatorG4 is better off by submitting
virtual bids, see Table 2.

6.7 Main observations

Based on the above results, allowing market players to arbitrage seems to enhance the
coordination of sectors and trading floors. The inclusion of explicit VB results in gener-
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Fig. 15 Hourly DA schedule of explicit (i.e., purely financial player) and implicit virtual bidder (i.e.,
generator G4) as well as DA and expected RT market-clearing prices obtained from market setup Seq+VB.
The left- and right-hand side plots correspond to the electricity and natural gasmarket outcomes, respectively

ating better price signals that reflect the uncertainties inherent in the RT stages. These
price signals improve DA schedules so that the existing flexibility is allocated and
utilized more efficiently. The VB improves the temporal coordination of the sequen-
tial DA and RT markets in the electricity and natural gas sectors. The self-scheduling
gas-fired generator strengthens the temporal coordination of DA and RT markets by
decreasing the price spread and improves the sectoral coordination by making use of
her superior information of natural gas prices. In the same manner, the implicit VB by
gas-fired generators helps sectoral coordination between the electricity and natural gas
markets and improves the temporal coordination between DA and RT markets. Such a
gas-fired generator is able to arbitrage both between the trading floors and between the
sectors by submitting virtual bids in the electricity and natural gas markets. That way
the coordination between the sectors flourishes via better information exchange. More
specifically, better price signals and improved DA schedules help allocate and uti-
lize the existing flexibility more efficiently. The DA schedules are improved through
bidding activities that better reflect the uncertainties and that take into account the
interactions of power and gas sectors.

7 Conclusion

This work explores the capability of financial instruments via VB either by purely
financial players (explicit VB) or by physical players like gas-fired generators (implicit
VB) in improving the temporal and sectoral coordination in two-stage (DA and RT)
electricity and natural gas markets under uncertainty. We use two models as bench-
marks: a fully uncoordinated sequential model which achieves an upper bound for the
total expected system cost, and a stochastic ideal co-optimization which provides full
temporal and sectoral coordination and yields a lower bound for the total expected
system cost. The resulting models with VB are equilibrium problems, including the
deterministic market-clearing problems in DA and RT in both power and gas sectors,
and the two-stage stochastic optimization problems of virtual bidders, who maximize
their expected profit.
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Our results reveal that competitive virtual bidders who have prefect insight into the
probability distribution of RT prices in power and natural gas markets increase the
efficiency of deterministic sequential markets, such that the resulting total expected
system cost is between the lower and upper bounds. In our case study, it is illustrated
that the inclusion of virtual bidding can result in an expected system cost that is very
close to the lower bound. In particular, the explicitVBprovides a temporal coordination
of the DA and RT stages in power and natural gas markets. Moreover, implicit VB
by gas-fired generators brings both temporal and sectoral coordination. This implies
that the sequential market with VB may approximate the stochastic ideal integrated
energy system, and help reveal and exploit the existing flexibility in the systems more
efficiently.

The main policy implication is that a disruptive market re-design to a stochastic
and integrated energy market might not be necessarily crucial for unlocking the exist-
ing flexibility. Instead, this can be done to some extent via financial instruments by
allowing VB, while preserving the current sequential market-clearing setup.

As potential future works, it is of interest to consider virtual bidders with heteroge-
neous information and risk attitudes. It is also of interest to relax the assumption that
explicit and implicit virtual bidders have perfect knowledge of the probability distribu-
tion of real-time prices. This requires modeling the potential information asymmetry
in the equilibrium model (Lo Prete et al. 2019b; Dvorkin et al. 2019). In addition,
it is important to analyze the cases where virtual bidders behave as strategic players
(Kohansal et al. 2020). In particular, financial implications of risk attitudes and how
strategic behaviour affects market outcomes should be studied. Additional market par-
ticipants, e.g., demand-side flexibility providers, should be considered in future works,
who have the potential to perform arbitrage by adapting their consumption levels. As
another potential extension, the reserve market should be included to investigate how
the procurement of operating reserve products (Cleland et al. 2015) affects the market
outcome for virtual bidders and flexibility providers, and thus the temporal and sec-
toral coordination. One can also explore how the existence of diverse bidding formats,
e.g., in the form of block bids, can impact the performance of virtual bidders. Addi-
tional sources of uncertainty and their potential correlation can also be considered.
Another potential extension is to include network constraints, especially in the natural
gas sector as it allows modeling linepack (stored gas in the pipelines). However, it
will need either approximation (Correa-Posada and Sánchez-Martín 2015; Ordoudis
et al. 2019) or relaxation (Borraz-Sánchez et al. 2016; Schwele et al. 2019) methods
to convexify the linepack model. In particular, it is of interest to explore whether the
existence of financial instruments impacts the way the renewable supply uncertainty
is being propagated from the power sector to the natural gas network. In this line, a
systemic risk analysis for integrated energy systems will be very relevant.

The proposed stochastic equilibrium model may become computationally hard to
solve if more players and scenarios are considered, and thus more efficient solution
techniques might be required. One potential solution can be distributed optimization
by solving the problem as an iterative Walrasian auction, e.g., similar to the methods
used in Höschle et al. (2018) and Mays et al. (2019). However, the potential challenge
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is that the underlying GNE problem may have multiple solutions, and this may affect
the convergence of such an iterative approach.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10287-021-00403-x.
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