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Abstract
Multistage stochastic optimization is used to solvemany real-life problemswhere deci-
sions are taken at multiple times. Such problems need the representation of stochastic
processes, which are usually approximated by scenario trees. In this article, we imple-
ment seven scenario reduction algorithms: three based on random extraction, named
Random, and four based on specific distance measures, namedDistance-based. Three
of the latter are well known in literature while the fourth is a new approach, namely
nodal clustering. We compare all the algorithms in terms of computational cost and
information cost. The computational cost is measured by the time needed for the
reduction, while the information cost is measured by the nested distance between the
original and the reduced tree. Moreover, we also formulate and solve a multistage
stochastic portfolio selection problem to measure the distance between the optimal
solutions and between the optimal objective values of the original and the reduced
tree.
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1 Introduction

In many real-life problems the parameters characterizing the structure of the future
may be uncertain, e.g. the values of price or the level of demand. To solve this type
of problem, the literature suggests exploiting the instruments provided by stochastic
optimization, see Birge and Louveaux (1997) and Powell (2014). More precisely,
we distinguish between single-stage stochastic optimization when only one decision
is taken, and multistage stochastic optimization, when the solution is a sequence of
decisions over a given span of times, see Shapiro et al. (2009) and Dupačová et al.
(2002). To deal with these types of problems, we typically assume that the uncertain
parameters are random variables with known probability distribution. This distribution
is usually approximated by a discrete distribution represented by a scenario tree.

In order to better approximate the initial distribution, the scenario tree may become
rather large making the problem computationally intractable. Therefore, several sce-
nario tree reduction algorithms have been proposed in the literature to suit the available
computational capabilities, e.g. Dupačová et al. (2003) and Pflug and Pichler (2014).
In this article, we focus on comparing representative reducing algorithms with each
other. In particular, we apply three reduction approaches based on random extraction
and four more advanced reduction algorithms based on distance measures. With more
sophisticated scenario reduction techniques the quality of the reduction is expected to
be better than with random algorithms. We assume that the quality of the reduction
is given by the closeness of the two scenario trees: the original and the reduced ones.
To measure the distance between two scenario trees we use the Nested Distance (ND)
proposed in Pflug and Pichler (2012, 2014). The aim of this work is then to observe
how good the reduction algorithms are in relation to the computational effort, i.e. the
computing time that each algorithm requires.

Moreover, it is well known that multistage stochastic optimization is particularly
helpful for addressing portfolio management problems, see Dupačová et al. (2002) for
an overview of the topic and the recent applications of Vitali et al. (2017), Kopa and
Petrová (2017), Consigli et al. (2018a), Kopa et al. (2018), Moriggia et al. (2019) and
references therein. For this reason, we also formulate and solve a multistage portfolio
selection problem. The aim is to measure not only the distance between the initial
tree and the reduced tree and the time needed to generate the reduced tree, but also
the distances between the optimal objective values and between the here-and-now
solutions.

This paper is structured as follows: the notation and definition of ND adopted
throughout the paper is presented in Sect. 2. In Sect. 3, we present the reduction
algorithms analysed in the subsequent sections. In particular, in Sect. 3.1 we present
the most naive and non deterministic algorithms and in Sect. 3.2 we introduce three
other algorithms which are more advanced and deterministic. Section 5 is devoted
to the numerical analysis. In particular, Sect. 5.2 analyses the results of the nested
distance, while Sect. 5.3 presents a multistage portfolio model used to analyse the
objective value distance and the solution distance in Sects. 5.3.1 and 5.3.2, respectively.
Section 6 concludes the paper.
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Fig. 1 Example of a four-stage
stochastic tree and a 3-2-3
branching

2 Notation and nested distance

We represent a scenario tree as follows: let’s suppose that the tree consists of N nodes
n = 1, . . . , N . The root node is the node n = 1. For each node n, we define its stage
t(n), we denote the set of its direct successors (children) by n+, and, for each node,
except for the root, we denote its direct predecessor (parent) by n−, the sequence of
its ancestors n−, n − −, . . . , 1 by A (n) and the union of the set of ancestors with
the node itself by A (n) = A (n) ∪ {n}. A subtree is a set of nodes consisting of a
node and its children. A particular case of subtree is a degenerate subtree which is a
set composed of a single node. The leaves of the tree are degenerate subtrees. A tree
is called regular if all the nodes in the same stage have the same number of children.
In the case of regular trees, the number of children of each node in subsequent stages
is called branching structure (or bushiness) . All nodes are divided into disjoint node
setsKt , t = 0, . . . , T , collecting the nodes of each stage. In this notation,K0 = {1}
contains the root, KT contains the leaves, and Kt , t = 1, . . . , T − 1, contain the
nodes of the inner stages. By pn we denote the absolute probability of the node n;
the conditional probability of the node n (given n−) is denoted by qn . Each node also
carries an A-dimensional vector of values ξn which are the realizations of the random
vector in that node.
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244 M. Horejšová et al.

In Fig. 1 we report an example of a regular tree spanning 4 stages, t = 0, . . . , 3
and having branching structure 3-2-3. The number of nodes is N = 28. For instance,
node n = 7 is on the second stage, t(7) = 2, so it belongs to K2, it has children
7+ = {17, 18, 19}, parent 7− = {3}, ancestors A (7) = {3, 1} and A (7) = {7, 3, 1},
the corresponding vector of values of the random variable is ξ7, and, assuming that in
the whole tree the conditional probabilities are equally distributed among the children
of the same node, it has conditional probability q7 = 1

2 and absolute probability
p7 = q3 · q7 = 1

6 . The set of the leaves isK3 = {11, . . . , 28}.
To measure the distance between two scenario trees, we adopt the concept of the

ND proposed in Pflug and Pichler (2012, 2014), and then further analysed in Pflug
and Pichler (2015, 2016), Timonina (2015), Kovacevic and Pichler (2015) and Vitali
(2018). In these papers, the ND is computed by backward iteration and can be inter-
preted as the optimal transportation cost for moving one scenario tree onto the other
scenario tree considering the conditional probabilities of the nodes and, of course, the
realization of the random variable in each node.

Given two scenario trees, we start computing the distance between the scenarios
of the first tree and the scenarios of the second tree. We denote by single quote (′) all
the elements of the second tree. For each pair of leaf nodes i ∈ KT and j ∈ K ′

T we
compute the distance

dT (i, j) := d
(
(ξki ), (ξ

′
k j )

)
, ki ∈ A (i), k j ∈ A ( j) (1)

where d is the classic �1 distance.
Then we move backward for t = T − 1 down to t = 0 and, for all combinations of

k ∈ Kt and l ∈ K ′
t , we solve the following linear problem

dt (k, l) := min
π

∑
m∈k+,n∈l+

π(m, n|k, l) · dt+1(m, n)

s.t.
∑
n∈l+

π(m, n|k, l) = qm ∀m ∈ k+,

∑
m∈k+

π(m, n|k, l) = q ′
n ∀n ∈ l+,

π(m, n|k, l) ≥ 0.

The ND between the trees is the distance between the subtrees at level 0, i.e. at their
roots,

d(P,P′) = d0(1, 1). (2)

3 Scenario reduction algorithms

As mentioned above, in many situations we have a stochastic process represented
by a huge scenario tree, and we would like to reduce (approximate) the tree to a
smaller one, in order to be able to solve a stochastic optimization problem based
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Table 1 Scenario reduction
algorithms

Random Distance-based

Nodal extraction Single scenario reduction

Improved nodal extraction Nodal clustering

Scenario extraction Subtrees merging

Single node reduction

on the scenario tree itself. Many scenario reduction algorithms are proposed in the
literature. We have selected a set of representative algorithms to highlight their quality
in terms of computational costs and information cost, i.e. computation time and loss
in the information carried by the tree. In particular, we divide the scenario reduction
algorithms into two groups and we name them Random and Distance-based, see
Table 1. The random algorithms are based on a random extraction of some nodes from
ahuge tree to generate a smaller one. These algorithms are easy to implement and fast to
run. However, the consequent reduced tree is uncertain because it is based on a random
sample and, therefore, also the quality of the reduction could vary. The distance-based
algorithms are representatives of different classes of reduction approaches according
to the distance definition used tomerge the closest elements or to eliminate the furthest:
distance between scenarios, distance between nodes and distance between subtrees.

3.1 Random algorithms

Random algorithms create a reduced tree by randomly extracting the elements (nodes
and/or scenarios) of the original tree. Indeed, these algorithms neither compute any
distance measure nor solve any nested optimization. They are easy to implement and
typically very fast as will be shown in the numerical section. All these algorithms,
being based on a random extraction, do not produce a unique reduced tree, but they
identify a different reduced tree every time they are run.

Nodal extraction

The first algorithm we propose takes as input an original tree and the desired structure
of the reduced tree. This means that the number of nodes for each stage and the
branching structure is given. Then, at each stage, we randomly select from the nodes
of that stage of the original tree a set of nodes that will become the nodes of the same
stage on the reduced tree. Using this approach,we can completely alter the parent-child
relationship of the original tree. Therefore, it can be used only for those scenario trees
that originally have an intra-stage independence. Considering the example depicted
in Fig. 1 and assuming we want a reduced tree with branching 2-1-2, we could obtain
the reduced tree proposed in Fig. 2, for instance. In this case, for the second stage we
extracted the nodes {2, 4}, for the third the nodes {9, 7} and for the last stage the nodes
{13, 27, 21, 19}. Clearly the parent-children relationships of the original tree are not
conserved.
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Fig. 2 Example of reduced tree
obtained with nodal extraction
algorithm

Fig. 3 Example of reduced tree
obtained with improved nodal
extraction algorithm

Improved nodal extraction

To address the issue of the previous approach, i.e. the loss of the parent-children
relationships, nodes can be randomly sampled only from the children of the nodes
already selected from the previous stage. Then, in each stage and for the children
of a particular node, we observe the children of that node in the original tree and
we sample from them the children of the node in the reduced tree. Therefore, this
approach proceeds forward and preserves the original parent-children relationships.
Considering the example shown in Fig. 1 and assuming we want a reduced tree with
branching 2-1-2, we could, for example, obtain the reduced tree proposed in Fig. 3.
In this case, we extract for the second stage the nodes {2, 4}, for the third stage as
children of {2} we extract {5} and as children of {4} we extract {10}, for the fourth
stage as children of {5}we extract {11, 13} and as children of {10}we extract {27, 28}.
In this way, we keep the parent-children relationships of the original tree.

Scenario extraction

The scenario extraction approach requires as input an original tree and the number of
scenarios of the reduced tree. Then, the algorithm consists of two steps. In the first

123



Evaluation of scenario reduction algorithms with nested… 247

(a) (b)

Fig. 4 Example of reduced tree obtained with scenario extraction algorithm

step, the algorithm randomly samples the given number of scenarios from the original
tree and generates the reduced tree as a fan of such scenarios. In the second step, the
algorithm merges the overlapping nodes and sets the probabilities of the leaves so that
the former ratios are preserved. For example, if we select three leaf nodes with original
probabilities 0.2, 0.1 and 0.3, in the reduced tree the probabilities will be 1/3, 1/6 and
1/2. The probabilities of nodes in previous stages are computed recursively as the sum
of the probabilities of their children.

Using this approach, it can happen that many nodes may have only one child.
Therefore, the reduced tree could have a total number of nodes that is larger than the
trees generated with the other two random algorithms.

Considering the example depicted in Fig. 1 and assuming we want a reduced tree
with 4 scenarios as in the previous examples, we could, for instance, in the first
step extract from the original scenario tree the scenarios having as leaves the nodes
{12, 13, 19, 22} and compose the fan of scenarios in Fig. 4a and then, in the second
step, we obtain the final reduced scenario tree displayed in Fig. 4b. In this way, we
keep the parent-children relationships of the original tree. However, we also notice that
the size of the scenario tree increases compared to the other two random algorithms
since the total number of nodes is 10 while with the other two approaches it was 9.

3.2 Distance-based algorithms

Since random algorithms do not use the information about the values of the nodes, it is
natural to suspect that the reduced trees obtained by these methods might not be very
close to the original tree. For this reason, we would like to think of a way to be able to
take into account both the information of the values of the nodes and the information
about the tree structure. In this section, we introduce four different approaches that
tackle this issue.

Single scenario reduction

The single scenario reduction is proposed and described in detail in Dupačová et al.
(2003). As the name suggests, it reduces the original tree scenario by scenario, taking
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as input an original scenario tree and the number of scenarios desired for the reduced
scenario. At each iteration, this method eliminates one scenario which has a small
distance from another scenario and also carries a small probability. To achieve this
purpose, the algorithm performs the following three steps. First, the algorithm mea-
sures the distances between all the scenarios and constructs the matrix composed of
the elements

di, j = d((ξi0 , . . . , ξiT ), (ξ j0 , . . . , ξ jT )), i �= j,

where (i0, . . . , iT ) and ( j0, . . . , jT ) are the paths of the scenario i and j, respectively.
We use distance �1, although as an alternative one could use any well-defined distance
on R(T+1)×A. Second, for each scenario i the algorithm defines

D(i) = pi · min
j �=i

di, j , (3)

where pi are the scenario probabilities, and the algorithm eliminates the scenario for
which D(i) is the smallest. If argminD(i) contains more than one element, we can
either randomly choose the scenario that must be eliminated (which would lead to a
non-deterministic solution) or we could simply eliminate the first one (which would
lead to a deterministic solution).

Finally, in the third step, the algorithm identifies the scenario which is the closest
to the eliminated one and increases its probability by the probability of the eliminated
scenario, e.g. if the eliminated scenario is the scenario i∗, we find

j∗ = argmin
j �=i∗

di∗, j

and set p j∗ = p j∗ + pi∗ . We repeat this procedure until we have the desired number
of scenarios.

The disadvantage of this algorithm is that we cannot specify a particular parent-
children structure for the reduced tree but only a given number of scenarios. Moreover,
it uses only absolute probabilities. Finally, this method is computationally much more
demanding than the previous random algorithms, because all random algorithms have
linear complexity while this method has quadratic complexity with respect to the
number of scenarios (or nodes).

Nodal clustering

In this part, we introduce a new algorithm based on clustering. Clustering is a way
of grouping n points into s < n groups, which are named clusters. There are many
possible ways of clustering described in the literature, see Kaufman and Rousseeuw
(2009) for a review. In this work we consider the following procedure: we start with
each point being a cluster itself. Then we repeatedly join the two nearest clusters into
one until we get the target number of clusters. The distance between clusters is defined
as the maximum distance between the points of one cluster and the points of the other,
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i.e. if we have two clusters, say A and B, A consisting of points {a1, . . . , ak}, B of
{b1, . . . , bl}, where k and l are positive integers, then the distance between A and B is

d(A, B) = max{d(ai , b j ) : i ∈ {1, . . . , k}, j ∈ {1, . . . , l}}, (4)

where d(ai , b j ) is some distance between points ai and b j , e.g. the distance �1 or the
distance �2.

Alternatively,we could represent each cluster by its centroid and compute the cluster
distances as the distances between their centroids. Instead of centroids, we could use
the points which have the smallest average distance to the other points of the cluster,
or the smallest maximum distance to the other points of the cluster, etc.

Given as input the desired reduced tree structure, we proceed as described below.

Algorithm.We choose the final (regular) structure of the reduced tree and setK ∗
0 :=

K0. Then, for t = 0 to t = T − 1 and for each node n ∈ K ∗
t , we cluster its children

into the predetermined number of groups. As the representative of each group we
take the group’s median, i.e. a new artificial node that corresponds to a vector whose
components are the medians of the components of the vectors of the nodes belonging
to that group.We store the label of the new node inK ∗

t+1. Its probability is equal to the
sum of the probabilities of all the members of the group and, since it is a new node, its
children are all children of all the members of the group. The scheme of the process
is given in Algorithm 1 (in Electronic Supplementary Material).

The reduced tree is represented by the nodes in K ∗
t , t = 0, . . . , T . It has the

required structure, but its scenarios do not need to be equiprobable. This is due to the
fact that the clusters usually do not have the same number of points and the probability
is taken as the sum of the probabilities of the points in the cluster.

The idea of apply clustering techniques to reduce the size of a scenario tree is
not new in the literature. Many works propose clustering the scenarios directly, e.g.
Growe-Kuska et al. (2003), Heitsch and Römisch (2003), Mandelli et al. (2013),
Heitsch and Römisch (2009), Crainic et al. (2014), Beraldi and Bruni (2014), while
others suggest merging the nodes by applying a nested optimization at each iteration,
see Pflug and Pichler (2014) that proposes the subtree merging explained in the next
paragraph and Chen and Yan (2018) that adopts the same methodology. However,
the approach described in Algorithm 1 differs from all these reduction algorithms
because it clusters nodes and not scenarios and because it does not need any nested
optimization. Therefore, we name this reduction algorithm nodal clustering.

Subtree merging

As already mentioned, see Pflug and Pichler (2014) and Chen and Yan (2018), it is
also possible to merge nodes considering their corresponding subtrees. These methods
require a nested optimization to compute the distance between subtrees. As a represen-
tative algorithm for this class of techniques, we adopt the algorithm presented in Pflug
and Pichler (2014) that uses the ND itself to measure the distance between subtrees.

The procedure starts computing the NDs between all feasible pairs of subtrees, i.e.
having roots (say i0 and j0) at the same stage, t(i0) = t( j0), and with the same parent,
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i0− = j0−. We merge the pair with the lowest ND using the algorithm described in
the following paragraph. Note that the closest pair could have roots at any stage and
so the algorithm proceeds neither forwards nor backwards.

Suppose we want to merge two subtrees with distributions P1 and P2 and roots i0
and j0. If the nodes i0 and j0 are leaves, we take their mean value as the new node. If
they are not leaves, we use the optimal transport plan between P1 and P2 which we
already have from the computation of the ND. We start by setting the value of the new
root as the mean value of the two old roots. For the successors, we sort the optimal
transport plan into descending order, i.e., we get

πc1 ≥ πc2 ≥ · · · ,

where c1, c2, . . . represent all possible couples of successors. For instance, if i0 and
j0 have three children each, i1, i2, i3 ∈ i0+ and j1, j2, j3 ∈ j0+, we get nine couples
(i1, j1), (i1, j2), . . . , (i3, j3), which we reorder so that the inequalities above hold
and we denote them by c1, c2, . . . for simplicity, i.e. if πi2, j1 is the biggest then
c1 = (i2, j1). Then, we take the smallest m such that

m∑
k=1

πck ≥ p,

where p is a chosen reducing parameter, p ∈ (0, 1]. The smaller the p, the greater the
reduction. We obtain m pairs of subtrees with roots c1, . . . , cm . We set their probabil-
ities as

pk = πck∑m
l=1 πcl

, k = 1, . . . ,m,

so that
∑m

k=1 pk = 1 holds. Now we proceed recursively by merging the pairs
c1, . . . , cm . The algorithm stops when the resulting number of scenarios reaches the
required amount. Otherwise, we recalculate the NDs and merge the closest pair.

The computational effort of this algorithm is particularly intense, see numerical
experiments in Sect. 5.1, since it does not control the number of nodes in each stage
which could also increase compared with the original scenario tree. For this reason, we
introduce two new versions of the subtreemerging algorithm that change the algorithm
and make it computationally more tractable.

Then, the three versions of the subtree merging algorithm considered are:

– SubtreeM: the original algorithm proposed in Pflug and Pichler (2014), takes as
input the original scenario tree and the number of scenarios of the reduced tree,
but it does not control the number of nodes in each stage;

– nonDeg-SubtreeM: the first new version of the algorithm that we propose. It takes
as input the original scenario tree and the number of scenarios of the reduced tree,
but it does not consider degenerate subtrees (subtrees consisting of one node only)
when looking for the couple of subtrees to merge; in other words, at each iteration,
the roots i0 and j0 of the subtrees to be merged could be at any stage excluding
the last, t(i0) = t( j0) �= T ;
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– Adj-SubtreeM: the second new version of the algorithm that we propose. The
Adjusted version of the algorithm takes as input the original scenario tree and a
specific branching structure for the reduced scenario tree (not only the number of
scenarios). This algorithm differs from the original version because it proceeds
forward, i.e. it starts by considering as possible subtrees to be merged only those
with roots i0 and j0 at thefirst stage, t(i0) = t( j0) = 1 ,while the original algorithm
considered t(i0) = t( j0), t(i0) ∈ {1, . . . , T }. Then, the algorithm merges the
closest pair of these subtrees at each iteration until the number of nodes required for
the first stage is reached. After the first stage, the algorithm proceeds to the second
stage by considering the subtrees having roots i0 and j0 at the second stage and
common parent, i.e. i0− = j0− and t(i0) = t( j0) = 2. The procedure continues
forward in the samewayuntil the desired branching is fulfilled. The algorithm stops
at the last stage merging the leaves. When the algorithm identifies two subtrees to
be merged, it follows the general procedure of the original algorithm.

A detailed analysis of the performance of the three versions of the subtree merging
algorithm is reported in Sect. 5.1 where we also discuss the choice of the parameter
p which is crucial for the performance of this algorithm.

Single node reduction

One of the most commonly used reduction algorithms is the algorithm proposed in
Heitsch and Römisch (2009). The idea is to measure distances between nodes with
the same parent, find the pairs which are close enough, reduce them, and repeat until
the reduction stopping criterion is fulfilled. We modified the algorithm slightly so that
it is as follows:

1. for each pair (i, j) of nodes with the same parent compute

εi, j = pi · ‖ξi − ξ j‖ + 2pi p j

pi + p j
,

where pi is the absolute probability of the node i and ξi the nodal value (note that
the nodes (i, j) could be at any stage),

2. choose the pair (i, j) with the smallest εi, j ,
3. set the node i as the parent of the children of the node j , set pi = pi + p j and

remove the node j,
4. repeat until the desired number of scenarios is reached.

4 Portfolio selection problem, objective and solution distances

After measuring the ND between the original tree and the reduced tree, we want
to understand if the reduction algorithms induce not only close scenario trees, but
also close multistage stochastic problems. Therefore, for a given multistage stochastic
model, we want to observe if more or less close scenario trees also induce more or
less close solutions. To evaluate the distance between two stochastic problems using
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different scenarios trees Vitali (2018) already analyses not only the ND, but also the
optimal solutions both in terms of optimal objective function values and in terms of
first-stage solutions. Therefore, we also formulate and solve a multistage stochastic
problem to compare the objective function values and the first-stage solution that we
obtain by using the original scenario tree and the reduced scenario trees. Given the
nature of our scenario trees in the numerical section - weekly returns of a set of assets
- and considering that one of the main fields of application of multistage stochastic
optimization is portfolio selection and management, see e.g. Dupačová et al. (2002),
Kilianová and Pflug (2009), Vitali et al. (2017), Kopa and Petrová (2017), Consigli
et al. (2018a, b), Kopa et al. (2018), Moriggia et al. (2019), Rusý and Kopa (2018), we
formulate a multistage portfolio selection problem.

Given a set i = 1, . . . , A of available assets and the set of nodes n = 1, . . . , N
each with probability pn , we define the following variables:

xn,i is the amount of money invested in the asset i at the node n,
Wt is a random variable representing the wealth distribution at stage t ,
Wn are the realizations of the random variable Wt with n ∈ Kt .

Then, considering the weekly returns ρi,n realized between node n and its ancestor
n− and considering a diversification coefficient θ and a turnover coefficient λ, the
problem is formulated as follows:

max f (WT ) (5)
A∑

i=1

xn,i = W0, (6)

A∑
i=1

(1 + ρi,n)xn−,i −
A∑

i=1

xn,i = 0 ∀n ∈ Kt , t = 1, . . . , T − 1, (7)

A∑
i=1

(1 + ρi,n)xn−,i = Wn ∀n ∈ KT , (8)

θ · W0 − xn,i ≥ 0, ∀i, ∀n ∈ K0, (9)

θ ·
A∑

i=1

(1 + ρi,n)xn−,i − xn,i ≥ 0, ∀i,∀n ∈ Kt , t = 1, . . . , T − 1, (10)

|xn,i − xn−,i | ≤ λxn−,i ∀i, ∀n ∈ Kt , t = 1, . . . , T , (11)

Wn ≥ 0, ∀n ∈ KT , (12)

xn,i ≥ 0, ∀i, ∀n ∈ Kt , t = 0, . . . , T . (13)

As objective function f (WT ) in (5) we implement both the mean value of the final
wealth and the Average Value-at-Risk of the final wealth. Then, in the first case we
have f (WT ) = E[WT ] and the objective function (5) takes the following form:

max
∑
n

pn · Wn, n ∈ KT , (14)

123



Evaluation of scenario reduction algorithms with nested… 253

while in the second case we have f (WT ) = AV@R[WT ] and, adopting the formu-
lation proposed in Rockafellar and Uryasev (2000, 2002), we substitute the objective
function (5) with the following:

max a − 1

α

∑
n

(zn · pn) (15)

− a + Wn + zn ≥ 0, n ∈ KT (16)

zn ≥ 0, n ∈ KT (17)

where a is an auxiliary variable, zn is a slack variable and α is a given confidence
level. Thus, we propose two different models and we observe the empirical evidence
obtained by maximizing the final expected wealth and by optimizing a coherent risk
measure of the final wealth. Equation (6) represents the first-stage budget constraint.
Equation (7) expresses the financial growth of the portfolio due to the asset returns.
Equation (8) calculates thewealth achieved in eachnode.Constraints (9) and (10) avoid
an investment higher than θ for a single asset. Constraint (11) imposes a maximum
turnover, i.e. it is not possible to change each position by more than λ · 100%. Clearly
constraint (11) is then implemented with two inequality constraints to keep the model
fully linear.

Once we have solved the above model for two scenario trees, the distance between
the optimal objective values, namely objective distance, ismeasured using the �1 norm,
i.e. for two optimal objective values obj∗1 and obj∗2 the distance is

d(obj∗1, obj∗2) = ∣∣obj∗1 − obj∗2
∣∣ (18)

while the distance between the optimal solutions, namely solution distance, is intended
as the �1 distance between the first stage decisions. That is, if x11 and x

2
1 are two here-

and-now optimal solutions, the distance between them is then

d(x11, x
2
1) =

∑A
i=1

∣∣∣x11,i − x21,i

∣∣∣
2

, (19)

where A is the dimension of the vectors x11 and x
2
1, i.e. the number of assets, and then

x11,i and x21,i , respectively, are the optimal amount of the initial wealth W0 that should
be invested in the asset i at time t = 0. By dividing by 2, we ensure that the solution
distance is in the interval [0,W0].

5 Numerical study

We apply the algorithms described in the previous section to different original trees.
All the original trees span over 4 stages and are regular trees. However, in many
problems, in particular in Finance, for a given number of scenarios the scenario tree is
built with more branching in the first stages and a lower number of children in the last
stages to better describe the information in the short period. Therefore, we consider
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original trees with two different branching structures: 20-5-5-2, i.e. 1000 scenarios,
or 25-10-10-4, i.e. 10,000 scenarios. Our aim is to obtain a reduced scenario tree
having 100 scenarios and, when the algorithm allows, to use the following branching
structure: 5-5-2-2. Moreover, for each size of the original scenario tree, in each node
we consider different dimensions of the random variable. Indeed, we represent either
1-, 5-, 10- or 20-dimension random variable, i.e. we construct the evolution of either
1, 5, 10 or 20 assets.

To generate the scenario trees, we observe the weekly returns of a set of 20 assets
over the period from the beginning of 2015 till the end of 2018. The list of the assets
and the historical mean and standard deviation of the weekly returns are reported in
Table S1. Then, in the 1-dimension case we consider the asset #1, UBI.PA, in the
5-dimension case we consider the assets #1-#5, in the 10-dimension case we consider
the assets #1-#10, and in the 20-dimension case we consider all the assets.

To generate the original scenario tree, we consider two scenario generation
approaches. The first approach is the Monte Carlo (MC) sampling method: observing
also the historical correlation between the assets and considering the required structure,
we sample the vector of the weekly returns of each node of the tree from a multivari-
ate normal distribution having the parameters described in Table S1. Therefore, by
construction, all the generated scenarios are equiprobable and there is no dependency
between subsequent stages. The second approach is theHistorical Extraction (HE) pro-
posed inKopa et al. (2018) that generates the scenario tree sampling from the historical
series of the assets. In particular, given a time step and a given branching structure,
it samples historical observations trying to reproduce possible financial cycles that
consider both good and bad paths. Therefore, this approach not only maintains the
dependency between the assets because the sampled observations carry the correla-
tion between the assets naturally without any further estimation, but it also induces
an intra-stage dependency due to the financial cycle that the algorithm reproduces,
and generates equiprobable scenarios because the sampled historical observations are
equiprobable.

Combining the two different sizes of the original tree (10,000 and 1000) with the
dimensions of the vector in each node (1-, 5-, 10-, 20-dimension) and with the type of
scenario generation approach (MC and HE), we obtain 16 original trees to which we
apply the reduction methods described in the previous section.

Since the reduced tree cannot be determined uniquely, for the random algorithms
we generate for each case 100 reduced scenario trees.

The numerical analysis starts with Sect. 5.1 where we compare the three versions
of the subtree merging algorithm and the choice of the parameter p is discussed.

Then, the results of the ND between the original scenario trees and the reduced
scenario trees, and the computing time needed to apply each reduction algorithm are
presented and discussed in Sect. 5.2.

Finally, in Sect. 5.3 we implement and solve the multistage portfolio selection
problem to compare the ND with the distances between the optimal objective values
and the distances between the first-stage solutions.
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Table 2 Comparison of the performance of the three versions of the subtree merging algorithm for different
values of p considering the original tree generated with the HE method. We report the ND between the
original tree and the reduced tree and the time needed to perform the reduction. We highlight in bold the
smallest ND obtained for a given version of the algorithm

Value of p Adj-SubtreeM nonDeg-SubtreeM SubtreeM

Time ND Time ND Time ND

0.1 384 2.081 3732 1.473 10794 1.274

0.2 384 2.081 3742 1.473 10783 1.274

0.3 407 1.883 3741 1.475 10785 1.273

0.4 406 1.883 3745 1.475 10828 1.273

0.5 439 1.950 3812 1.448 10848 1.265

0.6 479 1.782 4015 1.456 11431 1.289

0.7 529 2.051 4116 1.520 11545 1.323

0.8 612 2.010 4120 1.486 11552 1.303

0.9 680 2.002 4307 1.497 11769 1.316

1.0 680 2.002 4313 1.497 11758 1.316

Throughout the study, we use the ND of order one and the �1 norm to measure
distances between points and scenarios, i.e.

d((ξ0, . . . , ξT ), (ξ ′
0, . . . , ξ

′
T )) =

T∑
t=0

A∑
i=1

∣∣ξt,i − ξ ′
t,i

∣∣ ,

where T = 4 is the number of stages and A is the dimension of the nodes, i.e. the
number of assets considered.

All computation is performed in MATLAB on a computer with Intel(R) Core(TM)
i5-7200U CPU @ 2.50GHz processor and 8GB memory. The multistage portfolio
selection problem is implemented and solved in GAMS 23.2.1 using Cplex 12.1.0.
The time is measured in seconds.

5.1 Analysis of the subtreemerging algorithm

Theaimof this section is to compare the three versions of the subtreemerging algorithm
and the choice of the parameter p to find which version and which value of p is
more suitable for adoption in the subsequent analysis. As representative cases, we
consider the original trees with 10-dimension nodes and 1000 scenarios created both
with the MC method and with the HE method. We apply the three versions of the
subtreemerging algorithm to obtain a reduced tree with 100 scenarios and, for the Adj-
SubtreeM, specifying the branching 5-5-2-2. We propose results fixing the parameter
p to values 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 and considering the original tree
generated with the HE method in Table 2 and with the MC method in Table 3.

The results in Tables 2 and 3 confirm various observations:
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Table 3 Comparison of the performance of the three versions of the subtree merging algorithm for different
values of p considering the original tree generated with the MC method. We report the ND between the
original tree and the reduced tree and the time needed to perform the reduction. We highlight in bold the
smaller ND obtained for a given version of the algorithm

Value of p Adj-SubtreeM nonDeg-SubtreeM SubtreeM

Time ND Time ND Time ND

0.1 309 3.261 4010 2.073 12847 1.852

0.2 310 3.261 4187 2.073 12850 1.852

0.3 322 2.779 4189 2.073 12850 1.852

0.4 322 2.779 4193 2.073 12855 1.852

0.5 340 2.672 4211 2.069 12841 1.853

0.6 372 2.580 4488 2.499 13318 1.865

0.7 501 2.574 4530 2.329 13356 1.837

0.8 629 2.514 4540 2.528 13365 1.850

0.9 679 2.439 4663 2.217 13492 1.850

1.0 682 2.439 4668 2.217 13454 1.850

– the Adj-SubtreeM version is on average 10 times faster than the nonDeg-SubtreeM
which is on average 3 times faster than the SubtreeM.

– the ND obtained with the SubtreeM version is smaller than the one obtained
with the nonDeg-SubtreeM which is smaller than the one obtained with the Adj-
SubtreeM. Therefore, there is a clear trade-off between the ND and the computing
time of the three versions of the subtree merging algorithm.

– for an increased value of the parameter p all versions show an increased computing
time but not a decreased ND. Indeed, for almost all the cases, the minimum ND
is touched for a value of p in the range [0.5, 0.7]. Therefore, focusing jointly
on minimizing the ND and the computation time, we consider p = 0.5 in the
subsequent analysis.

The comparison just shown could not be performed having the original scenario
tree with 10,000 scenarios because both the nonDeg-SubtreeM and SubtreeM versions
reached the limit time of 1 day for all values of p. Therefore, in the subsequent analysis,
to be able to compare results for both 1000 and 10,000 cases, we adopt only the version
Adj-SubtreeM.

5.2 Comparison of the ND and computing times

We compare the time required to run each of the seven reduction algorithms described
in Sect. 3 and the NDs between the reduced trees generated by the algorithms and the
original scenario trees.

First, we analyse the results of the cases that consider the original scenario trees
generated with the MC approach, cf. Fig. 5 and Table 4. For the reduction of the tree
with 1000 scenarios, we notice that the single node reduction algorithm is the best in
terms of the ND for the 1- and 10-dimension cases, while for the 5- and 20-dimension
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Fig. 5 The ND and the computation time for all the reduction algorithms considering the original trees
generated with the MC approach. On the left, the result starting from the original tree with 1000 scenarios,
on the right, the result starting from the original tree with 10,000 scenarios. Each row corresponds to a
different dimension for the node of the trees

cases the single scenario reduction produces a reduced scenario tree closer to the
original scenario tree (with the ND equal to 0.556 and 2.815, respectively). In terms
of computing time, the single node reduction approach proves to be very efficient
with an elapsed time of around 1.7 seconds. The nodal clustering algorithm is the
fastest of the distance-based algorithms but the final ND is always greater than the
one obtained with the single node reduction approach. The Adj-SubtreeM algorithm
is computationally the most expansive, although it performs badly in terms of the ND.

Considering the reduction of the tree with 10,000 scenarios, the nodal clustering
appears to be the most efficient for all the dimensions. In the 5-dimension case, the
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single scenario extraction gives the same result as the nodal clustering (the ND equal
to 0.706) but it requires much more time to run (47,600 vs 26 seconds). Moreover,
we notice that for the single node reduction algorithm and, even more for the nodal
clustering, the computing times remain relatively low (between 12 and 87 seconds),
while for the single scenario reduction and for the Adj-SubtreeM the computing times
increase significantly (between 13,000 and 53,000 seconds). However, unlike the 1000
case, the single node reduction algorithmnowperformsworse than the nodal clustering
for all dimensions.

The random algorithms generate a reduced tree in less than 1 second and, especially
in the case of the 10,000 scenarios, they have a performance in terms of the ND similar
to some of the distance-based algorithms. As expected, of the random algorithms, the
scenario extraction performs better than the others showing, on average, a smaller ND,
being more stable with a smaller standard deviation (cf. SD in Table 4), and requiring
a computing time of the same magnitude as the other random algorithms.

In Figure S1 and in Table S2, we show the results obtained by reducing the original
tree generated with the HE approach.

In general, we observe similar results to the MC case. When we reduce the original
scenario tree with 1000 scenarios, the best performing algorithm is the single node
reduction and the single scenario reduction is the second best in the 5-, 10- and 20-
dimension cases. The nodal clustering has an even worse result than the scenario
extraction algorithm apart from the 1-dimension case. The Adj-SubtreeM algorithm
produces the highest ND of the distance-based algorithms.

In the case of the 10,000 scenario tree, the nodal clustering is the best only in the 1-
dimension case, while in all the other dimension cases the best performing algorithm
is the single scenario reduction. However, the single scenario reduction, the nodal
clustering and the single node reduction appear to be relatively close to each other in
terms of theND,while in terms of required computing time the single node reduction is
the fastest. Considering the random algorithms, again the scenario extraction performs
better than the others both in terms of the ND on average, and in terms of stability
of the results (cf. the SD in Table S2). Moreover, the ND obtained with the scenario
extraction is comparable to the one obtained with the distance-based algorithms.

5.3 Comparison of NDs, objective distances and solution distances

To evaluate the nearness between the whole stochastic optimization problems consid-
ering the original stochastic tree and the reduced stochastic tree, we implement and
solve the model proposed in Sect. 4 and we compute the objective and the here-and-
now solution distances therein explained. In particular, the objective distances and
the solution distances are computed between the result of the optimization when the
original scenario tree is considered and the result of the optimization when the reduced
scenario tree is considered.We adopt the original trees and the reduced trees discussed
in the previous section, where each tree has four stages, T = 4. The initial wealth of
the portfolio selection model isW0 = 100, the diversification parameter θ = 0.65, the
turnover coefficient λ = 0.30 and, when we optimize the Average Value-at-Risk, the
confidence α = 0.05. Clearly, the dimension of the random variable of the scenario
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trees corresponds to the number of assets available for the portfolio selection, then we
consider the cases with A = 5, 10, 20.

5.3.1 Objective distances

We start analysing the objective distance and considering the original tree generated
with the MC approach and the formulation of the portfolio selection model that opti-
mizes the expected value of the final wealth. The results are in Fig. 6, where we
represent the objective distances and the NDs, and in Table 5.
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Fig. 6 The ND and the distance between the optimal objective values for all the reduction algorithms
considering the original scenario tree generated with the MC approach and the formulation of the portfolio
selection model that optimizes the expected value of the final wealth. On the left, the result starting from
the original tree with 1000 scenarios, on the right, the result starting from the original tree with 10,000
scenarios. Each row corresponds to a different dimension for the node of the trees
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In the case of the 1000 scenario tree, on average, the objective distances observed
for cases where the reduced tree comes from a distance-based reduction approach
are smaller than the ones coming from the random reduction approaches. Of the
distance-based approaches, the nodal clustering has the smallest objective distance in
the 5- and 20-dimension cases and the second smallest in the 10-dimension case. The
Adj-SubtreeM algorithm is the best in the 10-dimension case and equal to the single
scenario reduction algorithm in the other cases. The single node reduction is the worst
in the 5- and 10-dimension cases but its performance improves in the 20-dimension
case.

In the case of the 10,000 scenario tree, the nodal clustering performs very well both
in terms of the ND and in terms of objective distance. As in the 1000 case, we observe a
stable behaviour of the nodal clustering algorithm meaning that the objective distance
is constantly relatively low, while for the other distance-based algorithms we observe
more volatile objective distances among the different cases.

The randomalgorithms have a very sparse behaviour in terms of objective distances.
In particular, the scenario extraction algorithm proves to have a lower SD than the other
random algorithms but, on average, a higher objective distance.

Considering the case of the original tree generatedwith theHE approach, see Figure
S2 and Table S3, we observe similar results. In particular, the nodal clustering always
gives a very low objective distance, the single scenario reduction is almost always the
best, while the single node reduction is relatively volatile in terms of objective distance
in all the cases. The significant difference is the worsening of the performance of the
Adj-SubtreeM algorithm for which the objective distance proves to be relatively high.
Of the random reduction algorithms, the single reduction algorithm is again the less
volatile one but, in this case, the random reduction approach also produces on average
the smallest objective distance.

Let’s consider the case when the original tree is generated with the MC approach
and the formulation of the portfolio selection model is the optimization of the Average
Value-at-Risk. The results are summarized in Fig. 7 and in Table 6. We notice that
in all the cases the single node reduction generates the smallest objective distance in
the distance-based reduction algorithms. The other algorithms show a more volatile
behaviour. Only the single scenario reduction algorithm is second best in almost all
the cases. Of the random reduction algorithms, the scenario extraction always has the
smallest SD and the lowest objective distance on average. Moreover, we observe that
in most of cases the average objective distance of the random algorithms is even better
than the objective distance of the distance-based algorithms except for the single node
reduction.

Now let’s consider the casewhen the original tree is generatedwith theHE approach
and the formulation of the portfolio selection model is the optimization of the Average
Value-at-Risk. The results are presented in Figure S3 and in Table S4. The results
are very similar to the ones obtained in the MC case shown above. The most notable
difference is that the best performing algorithm is not the single node reduction but
the single scenario reduction. The Adj-SubtreeM still has the worst objective distance
in most of the cases but the behaviour is better than in the MC case.
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5.3.2 Solution distances

In this section we analyse the here-and-now solution distances in relation to the ND,
and we start by analysing the cases in which the original tree is generated with the MC
approach and the formulation of the portfolio selection model optimizes the expected
value of the final wealth. The results are shown in Fig. 8 and in Table 7.

For those cases having the original scenario tree with 1000 scenarios, we observe
that the single scenario reduction algorithm is always the one that produces the mini-
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Fig. 7 The ND and the distance between the optimal objective values for all the reduction algorithms
considering the original scenario tree generated with the MC approach and the formulation of the portfolio
selection model that optimizes the Average Value-at-Risk of the final wealth. On the left, the result starting
from the original tree with 1000 scenarios, on the right, the result starting from the original tree with 10,000
scenarios. Each row corresponds to a different dimension for the node of the trees
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Fig. 8 TheND and the distance between the optimal here-and-now solutions for all the reduction algorithms
considering the original scenario tree generated with the MC approach and the formulation of the portfolio
selection model that optimizes the expected value of the final wealth. On the left, the result starting from
the original tree with 1000 scenarios, on the right, the result starting from the original tree with 10,000
scenarios. Each row corresponds to a different dimension for the node of the trees

mum solution distance, while the other three distance-based algorithms have a volatile
behaviour. Similarly, in the case of 10,000 scenarios, the general behaviour is still
volatile. However, we can notice that the solution distance has values of around 10
and 30 for all the distance-based reduction algorithms, apart from the Adj-SubtreeM
whose solution distance increases substantially. Considering the random algorithms,
on average the scenario extraction gives the minimum solution distance and shows the
lowest SD.

Let’s consider the case when the formulation of the portfolio selection model is
again the optimization of the expected value of the final wealth, but the original tree
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Fig. 9 TheND and the distance between the optimal here-and-now solutions for all the reduction algorithms
considering the original scenario tree generated with the MC approach and the formulation of the portfolio
selection model that optimizes the Average Value-at-Risk of the final wealth. On the left, the result starting
from the original tree with 1000 scenarios, on the right, the result starting from the original tree with 10,000
scenarios. Each row corresponds to a different dimension for the node of the trees

is now generated with the HE approach. The results are shown in Figure S4 and in
Table S5. We notice that the Adj-SubtreeM algorithm is the worst performing of the
distance-based algorithms in terms of solution distance. Considering the other three
distance-based algorithms, the solution distance is quite volatile andwe do not observe
any algorithm that is generally better than the others.

In Fig. 9 and in Table 8, we consider the case where the original tree is generated
with the MC approach and the formulation of the portfolio selection model is the
optimization of the Average Value-at-Risk. Again, the four distance-based algorithms
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have a volatile behaviour which means that it is not possible to identify one that
performs better than the others. On the contrary, of the random algorithms, the scenario
extraction still produces, on average, the lowest solution distance with the lowest SD.

In Figure S5 and in Table S6, we show the case where the original tree is generated
with the HE approach and the formulation of the portfolio selection model is the
optimization of the Average Value-at-Risk. As before, the distance-based algorithms
perform in a similar way. In the 10,000 scenario case, we notice that the single scenario
reduction always performs best. The scenario extraction algorithm is again the best of
the random algorithms.

6 Conclusion

In this paper, we analyse the quality of several algorithms that can be used to reduce
a multistage scenario tree. We consider four original multistage scenario trees by
combining:

– an established number of scenarios, 1000 or 10,000;
– a scenario generating method, either Monte Carlo or Historical Extraction (Kopa
et al. 2018).

To reduce these four scenario trees, we implemented seven scenario tree reduction
algorithms, three randomand four distance-basedones.Among the four distance-based
algorithms, we proposed a new one based on a clustering technique, thus, we name
it nodal clustering. Moreover, since one of the other distance-based algorithms, the
SubtreeMerging, appeared computationally intractable (for large number of scenarios)
we introduced and analysed two more tractable versions of this algorithm and the
role of the main parameter p. We found the Adj-SubtreeM algorithm with parameter
p = 0.5 as the best choice. Finally, we compared the computational time and the
Nested Distance between the original tree and the reduced trees applying the seven
reduction algorithms.

In case of the distance-based algorithms, the results show that the nodal clustering
and the single node reduction algorithms are typically the fastest, while the single
scenario reduction and the Adj-SubtreeM are quite computationally demanding. The
results can be summarized as follows:

– considering the original tree with 1000 scenarios, the single node reduction and
the single scenario reduction produce the lowest Nested Distance in most of the
cases;

– considering the original tree with 10,000 scenarios, the two best algorithms are
the single scenario reduction and the nodal clustering;

– thus, in general, we could say that the single node reduction, the single scenario
reduction and the nodal clustering are almost equivalent in terms of Nested Dis-
tance performance, but the single scenario reduction is the slowest

To perform a deeper comparison between the seven reduction algorithms, we also
formulated a multistage portfolio selection problem and we solved it both with the
original trees andwith the reduced trees, andwe compared the optimal objective values
and the first stage solutions. We can report the following observations:
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– considering the random algorithms, the scenario extraction algorithm appears to
be the best in terms of the Nested Distance, objective value distance and solution
distance; moreover, it is very fast, even if slightly slower than the other random
algorithms;

– considering the distance-based algorithms, they perform similarly in terms of
objective value distance and solution distance; only the Adj-SubtreeM suffers
a relatively high objective value distance and solution distance in almost all the
cases.We are aware that the authors of this algorithm, see Pflug and Pichler (2014),
proposed a further improvement. However, since it is even more computationally
demanding, it was not considered in this paper.

To conclude, we believe that the Nested Distance can be efficiently used to analyse
the quality of scenario reduction algorithms. Furthermore, to fully compare scenario
reduction algorithms, the distance between stochastic models should bemeasured also
in terms of objective value distance and here-and-now solution distance.
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