
Computational Management Science (2020) 17:277–307
https://doi.org/10.1007/s10287-020-00369-2

ORIG INAL PAPER

Scenario tree construction driven by heuristic solutions of
the optimization problem

Vit Prochazka1,2 · Stein W. Wallace1

Received: 4 November 2019 / Accepted: 10 April 2020 / Published online: 20 June 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
We present a new scenario generation process approach driven purely by the out-of-
sample performance of a pool of solutions, obtained by some heuristic procedure.
We formulate a loss function that measures the discrepancy between out-of-sample
and in-sample (in-tree) performance of the solutions. By minimizing such a (usually
non-linear, non-convex) loss function for a given number of scenarios, we receive an
approximation of the underlying probability distribution with respect to the optimiza-
tion problem. This approach is especially convenient in cases where the optimization
problem is solvable only for a very limited number of scenarios, but an out-of-sample
evaluation of the solution is reasonably fast. Another possible usage is the case of
binary distributions, where classical scenario generation methods based on fitting the
scenario tree and the underlying distribution do not work.

Keywords Stochastic optimization · Scenario tree · Scenario generation

1 Introduction

Most methods for solving stochastic programs require discrete scenarios as input.
Exceptions would be simple (often inventory) models that have closed-form solu-
tions and methods such as stochastic decomposition (Higle and Sen 1991), where
the discretization takes place inside the method. The simplest way to find scenarios
that can be used as input is normally to sample (Cario and Nelson 1997; Lurie and
Goldberg 1998). If sampling leads to numerically solvable problems with high enough

B Vit Prochazka
vit.prochazka@snf.no

Stein W. Wallace
stein.wallace@nhh.no

1 Department of Business and Management Science, NHH Norwegian School of Economics,
Helleveien 30, Bergen, Norway

2 SNF – Centre for Applied Research at NHH, Helleveien 30, Bergen, Norway

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10287-020-00369-2&domain=pdf

278 V. Prochazka, S. W. Wallace

accuracy in short enough time [see for example the discussion in Kaut et al. (2007)],
there is no good reason to do anything more complicated. But, if for some reason,
sampling is not acceptable, there is a need for something more advanced—and most
likely more computationally challenging. Very often, the alternatives require some
rather expensive offline computations, but lead to a much more efficient online per-
formance. For an overview, see for example King et al. (2012). The methods fall into
two major classes; those that try to approximate the probability distribution itself, and
those that focus on the quality of the solutions that emerge from using the scenarios.
We can call these methods distribution-oriented and problem-oriented. Both use a
metric to measure distance, the first uses measures from probability theory (such as
the Kantorovich–Rubinstein or Wasserstein metric Pflug 2001), the second uses the
optimization problem itself as metric. This paper falls into the second category, and
is hence connected to the principal thinking in Høyland and Wallace (2001), and the
methodology set out by Fairbrother et al. (2017). But contrary to the latter work, we
do not need to analyze the optimization problem itself, rather we need to be able to
produce a set of feasible solutions and to perform, rather efficiently, out-of-sample
objective function evaluations.

Hence, in this paper, we introduce a framework that enables generating scenarios in
a problem-oriented fashion, but without analyzing the problem explicitly. Our general
approach is based on a pool of solutions and a measure of discrepancy between in-
sample (in-tree) and out-of-sample performance of the solutions, which we aim to
minimize. By solutionwe mean some vector of decision variables that can be used for
the evaluation of the problem’s objective function. Thus, the solution does not have
to be optimal (and most likely it is not), nor feasible in scenario-related constraints
(discussed in Sect. 2.5). A solution is generated by some heuristic with a reasonable
trade-off between speed and accuracy. Every solution from the pool can be evaluated
out-of-sample, that is, we can determine its “true” value by using the underlying
distribution, and in-sample (in-tree) by using the corresponding scenario tree. We
define a loss function that measures the discrepancy between out-of-sample and in-
sample performance of the pool of solutions. We search for a tree that minimizes the
loss function.

Since we offer a general framework that requires several problem-specific subrou-
tines, a direct comparisonwith othermethods for generating scenarios is not easy. Such
comparisons can always be distorted in (or out of) favor, by applying, for example, a
different heuristic. Our framework alsomay require a significant time for development.
Both the subroutines—the heuristic for obtaining solutions and the loss function min-
imization procedure—must be tailored-made for a specific problem. That is the main
disadvantage compared to some other methods for scenario generation, for instance
copula-based heuristics (Kaut 2014), which can be applied immediately by using a
publicly released code, and which requires either historical data or specifications of
the probability distribution.

Thus, rather than directly competing with these methods on solvable problems,
we try to identify their limits, for example how they handle binary random variables,
such as a random appearance of customers in vehicle routing problems. We offer an
approach that can overcome some of the limits, and which can be applied on a larger
spectrum of applications. We also hope to offer an original perspective on the rela-

123

Scenario tree construction driven by heuristic solutions… 279

tionship between uncertainty and its representation by scenarios within optimization
problems.

2 Framework

Since this paper is primarily conceptual, and not technical, we will not introduce
exact mathematical definitions of all elements of our procedure in order to keep the
work easy to follow. In general, we assume there is a true1 random vector ξ that
enters a process to be optimized. The distribution is either parametrically described
or empirically given, for example by historical data. For simplicity, we focus on two-
stage problems to avoid the complications that multi-stage problem formulations and
conditional distributions between stages bring. See Birge and Louveaux (1997), Kall
and Wallace (1994) for proper definitions, if needed.

Without loss of generality we assume a maximization problem throughout the text

max
x∈X

f (x, ξ) (1)

where X is the feasible region for decisions x and f encapsulates some reward func-
tions and their ranking criteria (expected value, value-at-risk, etc.).

A difficulty that often arises is that (1) cannot be solved when using ξ directly due to
its size (in the case of an empirical distribution) or its computational intractability (in
the case of a parametrically defined distribution). Thus, we search for a representation
of the original distribution by a so-called scenario tree T consisting of particular
scenarios, which are vectors of realizations of random variables for example volumes
of the items in the stochastic knapsack problem), and weights2 p associated with each
scenario. Then, we solve an optimization problem

max
x∈X

f (x, T) (2)

and hope that the solution of this program is also a good solution to the original
problem (1). The quality of the solution and its relation to the original program can be
tested, see Kaut and Wallace (2007).

Although it is almost always impossible to solve problem (1), it is often possible to
evaluate the quality of a fixed solution x̂ by using the whole distribution. That means
to determine the value f (x̂, ξ). If it is not possible to do this exactly, then, most of
the time, it can be done approximately, with very high accuracy, by using a very large
sample from the true distribution. We call this procedure out-of-sample evaluation of
the solution. Similarly, we can get an in-sample value f (x̂, T) for the solution x̂ by
inserting the scenario tree into the model.
Our framework to construct a scenario tree consists of two steps:

1 In a large majority of applications, this still means highly subjective descriptions of the random phenom-
ena.
2 In other methods, p denote probabilities of particular scenarios. However in our approach, we do not
demand their sum to be 1. Thus, we avoid calling them probabilities.

123

280 V. Prochazka, S. W. Wallace

1. Heuristically generate a pool of solutions for the optimization problem; evaluate
the solutions out-of-sample.

2. Construct a scenario tree in such a way that the discrepancy between in-sample
and out-of-sample performance of the solutions is minimized.

The first step of our approach is to generate a pool of solutions A by a problem-
specific heuristic and evaluate the solutions out-of-sample. This is not always possible,
since for someproblems evenfinding a feasible solution or its out-of-sample evaluation
can be too difficult.3 But our approach applies to a large class of problems, for which
reasonable heuristics exist. To make the right choice of heuristic, one needs to take
into consideration a trade-off between the number of solutions in the pool, accuracy
of the heuristic and the time spent in this phase.

The heuristically obtained solutions are evaluated out-of-sample, either as a part
of the heuristic procedure itself or afterwards, for example in the case the heuristic is
using just a small sample of the original distribution.

Even though the out-of-sample evaluation might be computationally intensive pro-
cedure in some cases, as it might require solving a difficult optimization task for each
of the out-of-sample scenarios, in many applications the out-of-sample evaluation is
computationally much less demanding than solving the original problem itself. Very
often the optimization problem to solve in the second stage is computationally easier
than the problem from the first stage. For example, in network design, the first stage
problem is an integer (nonlinear, non-convex) program, whereas in the second stage
a decision maker faces a network flow problem (linear program). Moreover, all the
programs that need to be solved in the second stage might be very similar to each other
as they differ only in the vector of scenarios, which can be further exploited to speed
up the computation as it is shown in Haugland and Wallace (1988).

One of the fields where we see a potential applicability of our framework are
problems with binary distributions (we dedicate Sect. 2.4 to this class of problems).
Then it generally takes 2n scenarios, where n is the number of random variables,
to get the exact out-of-sample value. In Prochazka and Wallace (2018), it is shown
that many problems from this field have a special structure, which can be exploited
to substantially (in some cases) reduce the number of scenarios needed to consider,
hence speed up the out-of-sample evaluation.

To summarize this, our approach aims to problems that are difficult in some aspects
(discussed in Sect. 4) butwhere the out-of-sample evaluation is not the crucial obstacle.
We assume that the out-of-sample evaluation can be performed within a reasonable
time for the entire pool of solutions.

To measure discrepancy between in-sample and out-of-sample performance of the
solutions from the pool, we define a loss function. The function is derived from our
requirements on a good scenario tree, which are discussed in the following section.
For a given pool of solutions, the loss function is a function of the scenario tree. Thus
we search for a scenario tree that minimizes the loss function. In Sect. 2.3, we discuss
different settings of theminimization procedure, but in the case both scenarios and their
weights p are considered as free variables, we deal with non-linear and non-convex

3 For example the problem of minimum Hamiltonian cycle, where even finding a Hamiltonian cycle in a
given graph is NP-complete (Garey and Johnson 1979).

123

Scenario tree construction driven by heuristic solutions… 281

functions to be minimized. This is not a trivial task, and even though there are some
solvers for non-linear optimization available, they often require some problem-specific
adjustments.

Our framework is essentially a heuristic, because it assumes that a good fit between
in-sample and out-of-sample performance of the pool of solutions implies a good fit
on the entire search space X . This does not have to be valid generally, especially if
the size of the pool is small or the heuristic for generating solutions is “biased” (only
solutions with certain properties4) in some sense. Thus, the validity of the assumption
needs to be further tested.

2.1 Properties of a good scenario tree

In this section, we discuss our views on what makes a scenario tree good. We list a
set of requirements on the scenario tree and its relation to the original optimization
problem (1). These requirements are used to formulate the loss function. Let us first
focus on relatively complete recourse; handling potential infeasibilities in the second-
stage problem is discussed in Sect. 2.5.

In theory, to call a scenario tree T (almost) perfect, we would simply need that
problem (1)—had it been solvable—and (2) return the same value for the objective
function of the optimal solution. There are, however, two problems. First, there are
cases for which even the optimization program (2) is computationally intractable and
we need to settle with some non-optimal solution, which can be reasonably good for
T , but arbitrarily bad for ξ . Hence, we put “(almost)” in the first sentence of the
paragraph. Second, and more importantly, to assure that this requirement will hold is
not achievable. It would require the knowledge of the optimal solution of the program
for ξ . If wewere able to solve the problem for ξ and get the optimal solution, generation
of the scenario tree is, obviously, of more marginal interest (though it depends on the
requirements on CPU time).

Let us, then, discuss what we expect from a good tree, not a perfect one. Here
we summarize our requirements on a good scenario tree T in relation to the true
distribution ξ when we perform out-of-sample and in-sample evaluation of a pool of
solutions.

1. The ranking is approximately preserved.5 That is, if one solution x1 is better than x2
when evaluated out-of-sample, it is going to be “very likely” better when evaluated
in-sample.

2. We do not observe overconfident outliers. We argued in Requirement 1 that it
is impossible to have a guarantee of the perfect ranking, so we expect it may
happen that f (x1, ξ) > f (x2, ξ), but f (x1, T) < f (x2, T) for some x1 and

4 For example, a “nearest neighbor” heuristic for a traveling salesman problem with stochastic travel
times may generate only routes with relatively short distances between customers. Thus, travel times on
intermediate and long distance edges might be assigned randomly (since none of those edges is included
in the pool), and thus, arbitrarily distort the final results.
5 We would naturally prefer the perfect ranking. Then, for any subset of solutions, solving maxx f (x,T)

and maxx f (x, ξ) would be equivalent tasks with respect to our objective. But having a requirement on
reaching the perfect ranking of solutions is meaningless, since it implies the ability to solve the problem
maxx f (x, ξ). Usage of the scenario tree is, then, redundant.

123

282 V. Prochazka, S. W. Wallace

x2. Such a case is acceptable when the values f (x1, ξ) and f (x2, ξ) are close
to each other. But we want to avoid the case where a particularly bad solution
(out-of-sample) performs well in-sample, that is, its in-sample value is a (massive)
overestimation of the true value. The opposite case—a truly good (out-of-sample)
solution performs really badly in-sample—is not so critical, if it does not hold for
many solutions. We call these outliers acceptable.

3. There is a greater emphasis on Requirements 1 and 2 to be satisfied for better
solutions than for worse solutions. In other words, the scenario tree approximates
better the underlying distribution in the space of higher-quality solutions, where
an optimization algorithm, either an exact or a heuristics one, will search for the
best solution to the program (2).

4. In-sample values approximate well out-of-sample values, that is f (xa, ξ) ≈
f (xa, T). In theory, this requirement is not needed at all. A scenario tree that
can produce in-sample values of solutions that are totally off, but ranks the solu-
tions approximately correctly, is still a very useful tree, because it enables us to
find a very good solution. Then, the real value of the solution can be found by an
out-of-sample evaluation.
However, we still have this requirement on our list, not just because it is a nice
(but not necessary) property of the scenario tree, but because it implies, to some
extent, other requirements. If the in-sample values approximated out-of-sample
values perfectly, it would also preserve the perfect ranking. Thus, we use this
requirement as a starting point for the loss function formulation in 2.2.

Demonstration of the requirements of a good scenario tree

We illustrate the relationship between in-sample and out-of-sample values over the
artificially created pool of solutions in Fig. 1. We show four examples of different
scenario trees, onwhichwe comment some of our views formulated above.We assume
the pool consists of six solutions, sorted in ascending order according to their out-
of-sample values (y-axis). We assume a maximization problem, thus the higher the
out-of-sample value, the better the solution is.

Let us assume we have a scenario tree that returns out-of-sample and in-sample
values as in 1a. If these six solutionswere the only feasible solutions of the optimization
problem, solving the program (2) would return the true optimal solution, which is
fine. However, we see the tree is not reliable for other solutions and their ranking,
for example solution no 1 (worst out-of-sample) is ranked as the second best one in-
sample. Sometimes, problem (2) can be solved only heuristically, so even if we had
guaranteed the basic property that the optimal solution in-tree is optimal out-of-sample,
the heuristic could miss it and return an arbitrarily bad solution (out-of-sample).

In 1b, we demonstrate the concept of overconfident (solution no 3) and accept-
able (solution no 6) outliers. If we solve maxx f (x, T) over this set of solutions, we
determine solution no 3 as the optimal one, but it performs quite poorly in reality
(out-of-sample). Had it not been for solution no 3, we would end up with solution
no 5 as the optimal one. That means we would miss the true optimal solution no 6
and some related value, but the error is not as significant as for overconfident outliers,
whose in-sample value is overestimated.

123

Scenario tree construction driven by heuristic solutions… 283

Fig. 1 Demonstration of different scenario trees and their properties with respect to in-sample and out-of-
sample performance

In 1c,we showagood ranking of solutions, butwith thewrong approximated values.
Such a tree would be good for the optimization process, which would correctly find
the optimal solution. Its out-of-sample value can be determined afterwards.

In 1d, the in-sample values approximate the out-of-sample value reasonably well.
That implies that the ranking is approximately correct. We see that solutions nos 3 and
2 are ranked incorrectly, but since their out-of-sample values are similar, that would
not cause a big error even if we solved the maximization problem over the solutions
{1, 2, 3}.

Note

In this paper, we introduce a whole framework for scenario generation. But even if
some other method (mentioned in the introduction) is used, visualization of the tree
performance as in Fig. 1 can offer a fast and intuitive way to assess how good a
scenario tree is. In other words, we use just the first step of the proposed framework:
we apply some heuristic to generate a pool of solutions for problem (1) and visualize
their out-of-sample and in-sample performance for a given tree.

2.2 Loss function

We introduce a loss function to measure the discrepancy between the out-of-sample
and in-sample performance of a pool of solutions. The formulation of the loss function

123

284 V. Prochazka, S. W. Wallace

is derived from our requirements on a good scenario tree. The smaller the value of the
function, the better the tree (in our view) for the subsequent optimization procedure.
We define the loss function in the following way:

L(T ,A) =
∑

xa∈A

(
za1

(
1 + z21[f (xa ,T)> f (xa ,ξ)]

)(
f (xa, T) − f (xa, ξ)

)2) (3)

where 1[condition] takes the value 1 if the condition is met, 0 otherwise. The loss
function is fundamentally the weighted sum of squares between in-sample and out-
of-sample values that captures a basic fit between them (Requirement 4). A good fit
between the in-sample and out-of-sample values implies that the ranking is more or
less correct (Requirement 1).

Each square is further weighted with the term (1 + z21[f (xa ,T)> f (xa ,ξ)]), which
penalizes approximations from above. Together with a potential high difference
between in-sample and out-of-sample value, it penalizes the overconfident outliers
(Requirement 2). If we dealt with a minimization problem, we would penalize the
approximation from below as it leads to overconfident outliers.

Each term is also weighted with za1 which takes a higher value, the better (out-of-
sample) a solution is. Thus, contrary to the previous weighting term, it does not depend
on the scenario tree. The weights za1 put more emphasis on higher-quality solutions,
for which it is more crucial that the scenario tree approximates better the underlying
distribution.

Loss function (3) is formulated generally by using weights za1 and z2. The weights
are considered as parameters of the overall procedure, and they allow us to adjust
the loss function based on problem specifications such as the heuristic for solution
generation and the loss function minimization procedure (see the following section).
For instance, if the heuristic procedure at times produces some bad solutions, za1 should
be more progressive (adding more weights) towards better solutions compared to the
case where all solutions from the heuristic phase are relatively good.

2.3 Minimization of the loss function

Our aim is to construct the scenario tree. Since we defined our measurement of dis-
crepancy between the tree and the underlying distribution, we will naturally look for
a tree, for which the discrepancy is as small as possible for a given pool of solutions.

When solving the optimization program (2), the set of scenarios (realizations of
a random vector) and associated weights p enter the program as input data and we
look for correct decisions. But for this task—minimization of the loss function—
the roles are swapped. Scenarios and their weights p are free variables to be set,
whereas decision variables of the optimization problem (heuristic solutions) are fixed
and treated as input data.

Specifications of the minimization procedure depend on requirements of the sce-
nario tree and the optimization problem we solve. For instance, it is possible that an
application requires equiprobable scenarios. In such a case, weights p are no longer
free variables but parameters in the in-sample evaluation function. This phenomenon

123

Scenario tree construction driven by heuristic solutions… 285

appears and is discussed also in Høyland and Wallace (2001). In addition, equiproba-
ble scenarios should allow faster minimization of the loss function as it removes some
non-convexities. On the other hand, we than need more scenarios to reach an equally
good fit. Thus, the subsequent optimization will take more time. Hence, it is an open
question whether it pays off (overall) or not. When using both scenarios and their
weights p as free variables, we deal (most likely) with a non-convex problem, but
we should be able to reach a better fit (the lower value of the loss function) between
in-sample and out-of-sample performance—which is our main goal—despite the fact
that the scenario tree does not form a properly defind probability distribution. This
property is observed in the example in 2.3.1 or in Sect. 3 (Numerical analysis).

In Sect. 2.4, we discuss what happens if we have an integrality requirement on the
scenarios. This makes the problem constrained. Similarly, we would get a constrained
(non-linear and non-convex) problem if we let p be free variables, but require their
sum to be 1 to form a probability distribution. We expect the minimization of the loss
function to be too difficult for such constraints to pay off in most of the cases. Thus,
there should be a really good reason for such a requirement.

A setting of the minimization procedure also depends on the structure of the
optimization problem. There are problems with simple recourse that are inherently
one-stage decision-making processes under uncertainty. An example could be a clas-
sical portfolio selection problem, or tasks with penalization for not satisfying some
requirement—in 2.3.1 we discuss the stochastic knapsack problem. A more realistic
example is a vehicle routing problem where a penalty for a late arrival to a customer is
paid. We propose a heuristic for such problems, which is used in the example in 2.3.1.
The heuristic utilizes the fact that there is no second stage decision, thus it is straight-
forward to derive the impact of a marginal change in scenarios and their weights p on
the value of the loss function (expressed by the sub-gradient of the loss function with
respect to scenarios and weights p).

In the case there is a decision to be made in the second stage that depends on the
realization of randomness, one needs to consider the possible change of the solution.
The results from parametric programming (sensitive analysis) may guide an analysis
of the impact of the randomness on the objective value, and hence, on the loss function.

In other cases, for example integer (binary) scenarios (Sect. 2.4), a small change
in scenarios does not have to cause any change in the loss function. Thus, a heuristic
based on gradients ismeaningless. But quite likely a different iterative (meta-)heuristic
paradigm (for example genetic search) can be applied as the main (necessary)
condition—fast evaluation of the function to be minimized—is satisfied. The eval-
uation of the loss function (3) is usually fairly fast because: the list of out-of-sample
values is fixed (it needs to be evaluated only in the beginning of the procedure); the
number of in-sample scenarios is (usually) small, so calculating the in-sample values
should not take much time (unless we deal with a problem with a very difficult second
stage); the remainder of the loss function consists of basic operations.

Deriving a list of all possible properties of the loss function minimization pro-
cedure (convexity, differentiability, types of constraints, etc.) for different classes of
optimization problems goes beyond the scope of this paper. But we point out several
phenomena associated with this phase.

123

286 V. Prochazka, S. W. Wallace

The computational time spent on this phase should also be considered. As outlined,
there is no guarantee that a better fit reached on the pool of solutions ensures also a bet-
ter fit on the entire search spaceX . Thus, it might be unproductive to spend excessively
much time on searching for the very best solution of the loss function minimization.
Dedicating more computational time to the choice of solutions (generating larger and
higher-quality pool) and satisfying with a “good enough” fit in the second step might
produce a higher-quality tree.

Note

In most applications, there will be a given number of scenarios based on how many of
them can be computationally handled by the subsequent optimization procedure, for
instance within a certain time limit. Then, the presented approach returns scenarios
with the most similar performance to the original distribution with respect to the
optimization task. However, it is possible to use the same framework to find scenarios
that ensure somepredefined loss function value (in our definition). The problem is to set
such a threshold given several parameters (weights za1 and z2) and solve a constrained
optimization (non-linear, non-convex) program.

2.3.1 Illustration on the Stochastic knapsack problem

We demonstrate the usage of our framework on the classical stochastic knapsack
problem where the items have uncertain volumes.

This belongs to the problems with simple recourse. We choose this simple example
in order to show how the impact of scenarios on the loss function can be utilized in
searching for scenarios. But mainly, we demonstrate how the scenarios are shaped
based on the “needs” of the optimization problem.

The aim is to find K scenarios to represent a true distribution, which is given
by discrete observations (historical data). That means the uncertainty is in both cases
represented by the set of scenarios S, each scenario has its ps . For the true distribution,
ps is the probability of each scenario, with ps = 1

|S| .
Let I be the set of items, item i having a value ci and size wsi in scenario s, with

the knapsack having a capacityW . All items we want to choose must be picked in the
first stage and if their total size exceeds the capacity of the knapsack, we pay a unit
penalty of d in the second stage. The objective is to maximize the expected profit. We
formulate the optimization problem for decision variables x ∈ {0, 1}n , where xi = 1
if item i is picked, 0 otherwise;

max
x∈{0,1}n

∑

i∈I
ci xi − d

∑

s∈S
pses (4)

s.t es ≥
∑

i∈I
wsi xi − W ∀s ∈ S (5)

es ≥ 0 ∀s ∈ S (6)

123

Scenario tree construction driven by heuristic solutions… 287

where es denotes exceeded capacity of the knapsack in scenario s. The in-sample and
out-of-sample evaluation (depending on scenarios we use) of a given solution x̂ is
straightforward and fast:

f (x̂, p, w) =
∑

i∈I
ci x̂i − d

∑

s∈S
ps

(
∑

i∈I
wsi x̂i − W

)+
(7)

where X+ takes value X if X ≥ 0, 0 otherwise.
The optimizationmodel (4)–(6) and the evaluation function (7) hold for the scenario

tree as well as for the true distribution (historical data also form a scenario tree). To
distinguish between the two in the following text, we denote the true distribution
∼ = { p̂, ŵ} and the desired scenario tree, consisting of K scenarios, as T = {p, w}.

Our main focus is on the minimization of the loss function, so we choose a very
simple heuristic to generate a pool of solutions A. In every solution from the pool, an
item i is randomly picked with probability q.

Since the pool of solutions is not changing during the subsequent mi999nimization
of the loss function, the out-of-sample evaluation is performed only once. Then the
list of out-of-sample values, denoted V (Va for each solution a ∈ A), enters the
loss function minimization procedure as input data. We deal with an unconstrained
problem

min
p,w

L(p, w,A) (8)

where the loss function is

L(p, w,A) =
∑

xa∈A

(
za1

(
1 + z21[f (xa ,p,w)>Va]

)(
f (xa, p, w) − Va

)2) (9)

The loss function is non-linear and non-convex in decision variables p and w. That
makes the problem difficult to solve due to the existence of many local minima. Thus,
we propose a heuristic that explores the search space in an efficient way to find a
high-quality solution.

The core of the heuristic is the sub-gradientmethod thatworks in an iterativemanner.
It is designed for solving non-linear convex problems, so we add some additional
features to prevent being trapped in the first local optimum along the way, and continue
in searching for a better-quality solution. A detailed description of the procedure is
provided in “Appendix A”.

2.3.2 Computational test

We create two pools of solutions. One pool, called a training pool, is used to minimize
the loss function (9) (by the procedure described in “Appendix A”) to obtain a scenario
tree T = {p, w}. The second pool, called a testing pool, is used for evaluation of the
obtained tree. The testing pool serves as a proxy for the entire search space X , and
thus, is used for the demonstration of the performance of the scenario tree.

123

288 V. Prochazka, S. W. Wallace

In the literature, usually only the relation (quality gap) between in-sample and out-
of-sample optimal solutions is presented. But we see two reasons to use a larger pool
of (non-optimal) solutions for evaluation of the scenario tree: (i) Our framework aims
mainly to difficult problems (for example integer ones). Very often these problems
cannot be solved exactly, but a heuristic must be applied. Thus, we want to achieve a
good ranking of (good) solutions, not just correctly classify the optimal one.6 (ii) We
can visually asses the quality of the scenario tree by observing how well the in-sample
and out-of-sample values fit together and how they preserve the correct ranking.

In real usage, the heuristic from the first phase generates substantially weaker
solutions (unless it gets very lucky) than what is assumed to be achievable with the
subsequent optimization (otherwise there is no need of searching for a tree and solving
the optimization problem). To mimic this property, we exclude the best 10% of the
solutions from the training pool.

In our computational experiment, we generate 1000 scenarios for 19 items to repre-
sent the true distribution ŵ = {wsi }s∈S,i∈I . Our aim is to find a scenario tree consisting
of only 3 scenarios. We use 200 solutions in the training pool and 400 in the testing
pool.

To demonstrate the advantage of problem consideration in the scenario generation
process, we apply our method on two cases. In the first case (case 1), we choose a
capacity of the knapsack such that approximately half of all scenarios satisfy

∑
i

ŵsi > W . (10)

In other words, only half of the scenarios may lead to a penalty. The rest of the
scenarios do not have to be taken into account, since they do not lead to a penalty even
for the decision x = (1, 1, . . . , 1) (all items are picked).

In the second case (case 2), we transform the original scenarios ŵB
si = q − ŵsi ,

where q > maxsi ŵsi . That is, small items become large and large items become
small. We also set a new capacity of the knapsack WB such that those scenarios, for
which the condition (10) is not met, satisfy

∑
i ŵ

B
si > WB . In other words, all the

scenarios that may lead to a penalty in case 1 can be ignored in case 2. And vice versa,
scenarios that may lead to a penalty in case 2, can be ignored in case 1.

We present numerical results for these two cases in Fig. 2. In 2a, we show the sum∑
i ŵsi for all scenarios. We highlight the capacity of the knapsack W , which divides

the scenarios into two sets—those that may lead to a penalty and those that never
do (those can be ignored) in case 1, and oppositely in case 2. We shall see that this
property was “discovered” and exploited by our framework and all scenarios were set
such that they may lead to a penalty for some solution. We did not have to incorporate
such a rule explicitly. It comes from the simple fact that more scenarios enable a better
fit (lower value of the loss function). Thus, the minimization procedure, if designed
properly, should use a maximal number of scenarios and not place any of them into the
region that never leads to a penalty. This is a numerical counter-part of the analytical
results in Fairbrother et al. (2017).

6 Moreover, a correct in-tree classification of the optimal solution can be reached by luck for a random
scenario tree. Thus, our computational test would have to be performed multiple times.

123

Scenario tree construction driven by heuristic solutions… 289

Fig. 2 Numerical results for a stochastic knapsack problem—comparison of three scenarios obtained by
our framework and scenarios sampled from the original distribution

In 2b (case 1) and 2c (case 2), we show the discrepancy between in-sample and out-
of-sample performance of the training and testing pool when the three final scenarios
are used for in-sample evaluation. We zoom in on the best solutions from the testing
pool where our main focus is. For comparison, we show Fig. 2d– 2f results for 15, 30
and 50 scenarios if they are randomly drawn from the original distribution. We show
the results when the seed for the random draw is 1, sowewere not cherry-picking some
specific output. We can find much lower, as well as much higher, discrepancy if we
choose different samples, especially in the case of smaller number (15) of scenarios.

123

290 V. Prochazka, S. W. Wallace

The main point of this test is to demonstrate how our framework can shape the
scenarios according to needs of the optimization problem, but without an explicit
analysis of the problem. With such an approach we can tremendously reduce the
number of scenarios. In our numerical example, three scenarios perform similarly7 as
fifty randomly picked scenarios.

Let us point out that any method for scenario generation, which is based on a
good fit between the scenario tree and the original distribution without considering
the optimization problem, would inevitably return an identical scenario tree for both
cases, since the original distribution is shared in both cases. Therefore, a tree with
three scenarios would generate (at best) two useful scenarios for one case and only
one useful scenario for the other case. Obviously, such a scenario tree would perform
worse than our tree in both cases, especially in the case where only one scenario is
useful.

To put it from a different perspective, one scenario tree used for both cases would
need at least twice as many scenarios as our tailor-made trees for each case to reach
similar quality of performance. We admit that the problem is artificially set, but it
clearly demonstrates our point that scenario trees derived purely from the original dis-
tribution, without considering the optimization problem, may lead to some redundant,
or little important, scenarios.

Then, a natural question is howmuch it actually matters from a computational point
of view to keep the number of scenarios small. That will be discussed in Sect. 4, where
we discuss potential applications of our approach.

2.4 Binary distributions

In this section,wediscuss problemswhere the uncertainty is describedby amultivariate
Bernoulli distribution (binary distribution in short). This represents a large class of
real-world applications: a customer is present or not during delivery services, weather
allows a ship to sail a certain edge or not, a machine is broken or not in a scheduling
problem, just to give some examples.

And yet, stochastic programs with binary distributions are rarely studied in the
literature and if they are [for example Ball et al. (1995) in the context of network
reliability or Bent and Van Hentenryck (2004) in a routing problem], the focus is
on the problem as such, not on handling scenarios (generation, reduction etc.). An
exception is a paper Prochazka and Wallace (2018), where two useful methods are
proposed; one for an efficient out-of-sample evaluation, and the second for reduction
of the scenario tree into a minimal number of scenarios needed for an exact solution
of the problem. However, to the best of our knowledge, there is no paper offering an
efficient method for scenario generation for binary distributions (other than sampling)
that would be suitable for solving, approximately, larger instances.

The advantage of our framework is that it does not rely on statistical properties
and relationships among distributions. All we require are a heuristic for generating
solutions, out-of-sample evaluations and an efficient procedure for minimizing the

7 Based on a visual assessment. In order to provide a numerical justification of that claim, we would need
to define an appropriate metric for the comparison.

123

Scenario tree construction driven by heuristic solutions… 291

loss function. The requirements on a good scenario tree and, therefore, the definition
of the loss function, do not have to be adjusted.

Although the overall framework remains unchanged, we identify two cases of prob-
lems that differ in the procedure of loss function minimization. Let us consider the
following example of the knapsack problem, where items have constant value and
volume, but it is uncertain whether a particular item will appear or not after the deci-
sions (to pick or not) are made. The optimization program (using the same notation
as in 2.3.1) is as follows:

max
x∈{0,1}n

∑

s∈S
ps

(
∑

i∈I
rsi ci xi − d es

)
(11)

s.t es ≥
∑

i∈I
rsiwi xi − W ∀s ∈ S (12)

es ≥ 0 ∀s ∈ S (13)

where rsi is the indicator of appearance of items, taking the value 1 if item i is present
in scenario s, 0 if not. Assuming we have a pool of solutions, we formulate the loss
function (3), where scenarios rsi and ps are decision variables. For n items, we get 2n

possible combinations (scenarios), which results in unsolvable problems for large n.
Even though the scenarios are inherently binary, there is no reason to follow that

restriction when constructing the scenario tree. Relaxation of scenarios (allowing all
values for rsi) decreases the value of the loss function by extending the search space,
and therefore, decreases discrepancy between performance of the scenario tree and
the true distribution. Moreover, we can find sub-gradients with respect to r and p and
use the same procedure (Algorithm 1) for minimizing the loss function as in the case
of continuous scenarios.

Even though the optimization problem (11)–(13) gets a different interpretation:
suddenly an item can be half-present and half-missing, it remains computationally
meaningful. We need to remember that the goal is to find solutions for such a modified
problem which are good also in the original problem.

In the following computational test, we consider an example with 8 items, eachwith
a probability of appearance of 50% (independently of each other), so all the scenarios
have equal probabilities. In total, there are 256 scenarios. We have a training pool
consisting of 50 solutions and a testing pool of 70 solutions (all randomly generated).
We want to have 4 scenarios to represent the whole distribution.

In Fig. 3a, we show the performance of 4 scenarios obtained by our framework
when allowing relaxed scenarios. In 3b, we choose the best combination (with mini-
mal loss function on the training pool) of 4 binary scenarios. We see that the relaxed
scenarios perform much better on the testing pool in preserving ranking among solu-
tions and approximating their true value (they perform better on the training pool by
definition). We compare the performance with scenarios that are randomly sampled
(random seed 1). Four relaxed scenarios obtained by our framework outperforms 20
sampled scenarios and provide comparable results as 50 sampled scenarios by visual
assessment.

123

292 V. Prochazka, S. W. Wallace

Fig. 3 Computational test for a problem with binary scenarios

There are, however, cases where the relaxation of scenarios is not helpful, albeit
possible. An example would be a location-routing problem with uncertain customer
appearance. A first-stage decision is the location of a warehouse, from which cus-
tomers will be served (second-stage decision). It is uncertain which customers will
use the service (contracts are not signed yet). Performing an optimal routing between
customers in the second stage requires solving an optimization model that contains a
constraint of type

∑

i

xi j ≥ d̂s j (14)

where xi j is a binary decision variable about a choice of traversing an arc from a node
i to j . d̂s j indicates whether a customer is present in node j in scenario s. In words,
if a customer is present, he must be served. Let us assume the constraint is associated
with a penalty for violation.

Any entry between 0 and 1 performs as if it was 1 in this constraint (at least one arc
to j must be used). Let us assume that the parameter d̂s j does not appear anywhere
else in the optimization problem, just in (14). Then, whether d̂s j is 1 or any arbitrary
number between 0 and 1 does not have any impact on violation/non-violation of the
constraint, and hence on the value of the objective function, and therefore on the value

123

Scenario tree construction driven by heuristic solutions… 293

of the loss function. As a consequence, there is no change in the value of the loss
function if the parameter d̂s j , which is already greater than zero, is changed by an
infinitesimally small number. Therefore, there is no useful change of (sub)gradients
in the loss function minimization procedure and the relaxation of the scenarios is
pointless.

So even if the scenarios can be principally continuous, there is no advantage in
considering them to be so. We would still have to treat them as binaries (d̂s j is either
zero or greater than zero). That means that the minimization of the loss function
is more problematic as it leads to solving a non-linear and non-convex problem with
binary variables. In such a case, we suggest usingmeta-heuristics (for example genetic
search), which are state-of-art methods for combinatorial optimization problems. But
the general scheme—we minimize the discrepancy between in-sample and out-of-
sample performance—remains unchanged.

Dealing with a network with n potential customers, the total number of possible
scenarios is exponential in n. That is, again, often impossible to handle for large
instances. Thus we can use only a subset of all possible scenarios. Our framework can
help us identify a suitable set.

2.5 Feasibility

So far in the text, we assumed (relatively) complete recourse. That is, we assumed that
all feasible first-stage decisions would lead to feasible second-stage problems for all
possible values of the random variables. We also assumed that the heuristic producing
our pool of solutions makes sure that they are all first-stage feasible.

In this section, we discuss the casewhere, for some reason, feasibility of the second-
stage problem is an issue. We want to point out that this should be rather seldom. A
constraint saying that (random) demand must always be satisfied leads to a worst-case
(and at the same time, most likely, a subjective) model, which hardly makes sense. It
may be true that a time window is hard in the sense that outside the time window it is
impossible to deliver, but it hardly means that life does not go on if the truck is late.
Rather, a penalty is incurred, and the activities continue. So, really hard constraints
(violating the ideas behind relatively complete recourse) are extremely rare from an
applied perspective. Even so, we shall discuss the issue to some extent here. Note
that even in cases where some constraints need to be satisfied in every scenario, it
is possible to use a penalty several orders of magnitude larger than the other profits
(costs) in the objective function. Then, if there is a solution that can satisfy all the
constraints, the optimization model will prefer it. If there is not such a solution, we
can see which constraints have been violated. Such information is more valuable for
analyzing the problem than a simple report that there is no feasible solution for the
problem. For further discussion on feasibility modeling, see King andWallace (2012).

In addition, it is also challenging to incorporate a (in)feasibility classification into
our framework from a computational point of view as we lose some properties of the
loss function, mainly the utilization of sub-gradients. Thus, we recommend to use
penalization whenever possible.

123

294 V. Prochazka, S. W. Wallace

However, if feasibility in the second stage really is an issue, for example due to a
constraint related to some laws of physics, and which therefore cannot be violated, we
introduce a new requirement on a good scenario tree that stands above those formulated
in Sect. 2.1. We postulate it as follows:

0. A good scenario tree classifies feasibility of solutions correctly. That is, true feasi-
ble solutions are also feasible in the tree. The same holds for infeasible solutions.
But as with outliers, we find it acceptable if occasionally a solution that is feasible
in reality, is classified as infeasible by the tree, especially if the solution is weak.
On the other hand, we want to avoid cases where solutions that are infeasible in
reality, become feasible and very good in the tree.

Let us assume that the heuristic generates both feasible and infeasible solutions.
We construct a list F of feasibility indicators, that is Fa = 1 if xa is feasible (out-of-
sample), 0 otherwise. Further, let the function u(x, T) return 1 if x is feasible in the
tree and 0 if the solution is infeasible in the tree.

We keep all the terms from the loss function as they were defined previously to
reflect Requirements 1–4, and we add some new terms to capture Requirement 0. The
loss function is

LF (T ,A) = L(T , A) +
∑

xa∈A

(
za3 u(xa, T)(1 − Fa) + za4

(
1 − u(xa, T)

)
Fa

)

(15)

We simply add the weight za3 if an out-of-sample infeasible solution is classified as
feasible by the tree, and weight za4 if an out-of-sample feasible solution is classified
as infeasible. Since the first case is more critical, penalties za3 are set higher than za4.
Similarly as for za1, weights z

a
3 and za4 also depend on the quality of the solution xa .

The higher the out-of-sample value is, the higher weights we set, especially in the case
of za3, so we penalize very good (high value of the objective function) but infeasible
solutions that are incorrectly classified as feasible by the tree.

Naturally, it is challenging to set all the weights z1–z4 properly to create a perfect
balance between classification of feasibility and approximation of the out-of-sample
values. The balance should be derived from the usage of the model and assessment of
importance of having feasible solutions.

In addition, it is also challenging to incorporate a (in)feasibility classification into
our framework froma computational point of viewdue to the added classification terms
that cause discontinuity of the loss function. Thus, we recommend to use penalization
whenever possible. Away to dealwith theminimization of the discontinuous loss func-
tion, which is used in the following computational test, is discussed in “Appendix A”.

Example

Let us consider an alternative version of the stochastic knapsack problem

max
x∈{0,1}n

∑

i∈I
ci xi − d

∑

s∈S
pses (16)

123

Scenario tree construction driven by heuristic solutions… 295

s.t 0 ≥
∑

i∈I
wsi xi − Wmax ∀s ∈ S (17)

es ≥
∑

i∈I
wsi xi − W ∀s ∈ S (18)

es ≥ 0 ∀s ∈ S (19)

The total volume of picked items may exceed the capacity of the knapsack and we pay
the corresponding penalty, but we cannot exceed the total value Wmax (> W) in any
single scenario.

We compare the performance of scenarios constructed by our framework with
scenarios obtained by pure sampling from the original distribution and by using a
copula-based heuristic (Kaut 2014) in Fig. 4. The comparison is made on the testing
pool as it was not used to construct scenarios by our framework. The testing pool can
be perceived as a proxy for the whole search space. Each pool consists of feasible
and infeasible solutions sorted in ascending order based on the value of the objective
function with highlighted incorrectly classified solutions.

Since no feasible solution leads to a total size exceeding Wmax in any realization
(scenario) of the original distribution (by the definition of the feasible solution), the
size also does not exceed Wmax in any subset of scenarios drawn from the original
distribution. In other words, sampled scenarios will always classify correctly out-of-
sample feasible solutions, see Fig. 4a. However, it may happen that in some scenario
from the original distribution, the limit Wmax is exceeded, but such a scenario is not
chosen in the sampled subset. Thus, several out-of-sample infeasible solutions are
classified as feasible in the tree. Since some of them return high value of the objective
function, they have a negative impact on the subsequent optimization as they provide
too optimistic and almost always infeasible (out-of-sample) solutions, even if the
sample is very large.

We observe a similar phenomena in the case the scenarios are obtained by the
copula-based heuristic, Fig. 4b, c. The scenarios are constructed by generating real-
izations from marginal distributions and then combining them to match the shape
of the copula of the original distribution. Thus, even feasible solutions can be occa-
sionally incorrectly classified. This heuristic works extremely well when it comes to
matching most of the properties of the original distributions (notice almost perfect
estimation of the objective value). However, it is not designed to focus on capturing,
in some sense, extreme scenarios that cause second-stage infeasibility. Thus, even a
large scenario tree consisting of 100 scenarios might cause the occasional appearance
of missclassified solutions that look feasible in the tree, but are infeasible in reality
(due to one extreme scenario for example).

In contrast to the above described methods, our framework (Fig. 4d) primarily
focuses on correct classification of (in)feasibility, especially on not letting good (high
value of the objective function) infeasible solutions be classified as feasible in the
tree. To satisfy that requirement, the tree tends to set scenarios more towards their
extremes, and thus classify feasible solutions as infeasible more often in favor of
correct classification of high-value infeasible solutions. That is a preferable situation
for solving the optimization program.

123

296 V. Prochazka, S. W. Wallace

Fig. 4 Computational test for a problem with infeasible solutions

Naturally, there is no guarantee that the presented approach is able to always capture
the extreme directions of all scenarios to prevent that a good infeasible solution is
incorrectly classified. This risk could be reduced by using a larger training pool.

To further minimize that risk, it would be possible to tighten constraints that cause
infeasibility. In our case we could set Wmax smaller, when solving the optimization
program with the scenario tree. Then we have more certainty that we are on the “safe”
side.

This leads to an idea that it is possible to set other parameters (input data), not
only the scenarios, to mimic performance of the original distribution. Our approach

123

Scenario tree construction driven by heuristic solutions… 297

provides a framework that can serve that purpose (minimizing discrepancy between in-
sample and out-of-sample performance). However, minimization of the loss function
becomes more complicated as there are more variables to set.

3 Numerical analysis

In the previous sections, the computational experiments were performed on simple
problems set up to illustrate some specific points. Here, we take a closer look at the
computational aspects.

For the test, we use an extension of the model from Sect. 2.4 (random appearance
of items) by considering several knapsacks. The computational time for solving this
problem grows rapidly with the increasing number of scenarios and knapsacks, and
thus, it is beneficial (or necessary) to have a small scenario tree. We compare the
performance of scenarios produced by our framework and scenarios that are randomly
sampled.

Let us denote by J the set of m identical knapsacks, each with capacity W . Thus,
we need to decide not only which items i to pick, but also to which knapsack j each
of them should be assigned. With notation from previous sections, the problem is
formulated as follows:

max
x∈{0,1}m×n

∑

s∈S
ps

[∑

j∈J

(∑

i∈I
rsi ci xi j

)
− d e js

]
(20)

s.t
∑

j∈J
xi j ≤ 1 ∀i ∈ I (21)

e js ≥
∑

i∈I
rsiwi xi j − W∀ j ∈ J ∀s ∈ S (22)

e js ≥ 0 ∀ j ∈ J ∀s ∈ S (23)

To perform our numerical analysis, we create several instances of the problem. We
consider {2, 3, 4, 5} knapsacks with the number of items being equal to {6, 8, 10}
times of the number of knapsacks. Input data are created randomly. Costs are taken
from the uniform distribution U{100, 140} and weights from U{7, 13}. We generate
2000 scenarios to represent our true distribution. An indicator rsi is 1 with probability
0.5. Each ps is chosen randomly from U{0, 1} with subsequent normalization of the
vector p (sum to be 1).

The capacity of the knapsack is set to 15 and the penalty to 14. These numbers are
chosen such that the optimal (or best found) solution does not include all the items,
but at the same time does not lead to a solution where the capacity is never exceeded
(which is the case if the penalty is too high).

We create five instances for each (|J |, |I|) pair and each instance is completely8

re-run 10 times both by our framework and by sampling. We then display (in Table 1)

8 That is, we start the whole procedure by generating a new pool of solutions with the subsequent loss
function minimization and final optimization. In the case of sampling, we generate a new scenario tree.

123

298 V. Prochazka, S. W. Wallace

the average statistics over these 50 runs on a personal laptop (Intel i5-4300 CPU, 4 x
4GBRAM, 1.6 GHz). The model is implemented in Python with linked Gurobi solver.

Theheuristic to generate thepool is using theGurobi solver and its embeddedheuris-
tic procedures. First, two scenarios are randomly sampled from the true distribution
and the problem is solved with a short execution time limit (0.1s). All discovered fea-
sible solutions from that short period of time are considered, evaluated out-of-sample
and inserted into the pool. This whole procedure is repeated until the pool consists of
at least 1000 solutions. We denote by h1000 the highest out-of-sample value observed
in the pool.

We utilize the relaxed scenarios (see Sect. 2.4). The minimization of the loss
function is then performed by the stochastic gradient descent (SGD) with multiple
starts—in our case five. Each start is initialized with random scenarios taken from
U{0, 1} and weights ps = 1

|S| for each s and run for 400 epochs. Then, additional
5000 epochs are run for the thread with the best loss function value reached after the
400 runs.

We display the CPU time spent on the minimization of the loss function in Table 1
(columnCPU scenarios). However, in rows showing the pool’s best solution, we show
the CPU time needed to generate the entire pool in this column.

The most important statistics, is obviously the out-of-sample value, that is, the
true value of the solution found by solving the optimization model (20)–(23) with
corresponding scenarios. In addition to that, we show the gap between the out-of-
sample (OOS) value and the in-sample (IS) value defined as:

in-sample gap = |OOS − IS|
OOS

(24)

We compare results obtained by using scenarios from our framework and scenarios
that are randomly sampled from the real distribution (after normalization of the p
vector). We consider 10, 20, 30 and 50 scenarios used in the tree. We observe the
fast growth of the solution time needed, so we set a time limit of 120 seconds9 on
solving the problem. If the optimal solution is not returned, the best found solution
is considered. Again, the main focus is on the out-of-sample value and the in-sample
gap.

There are several takeaways from Table 1. The tree that consists of only 2 scenarios
produced by our framework leads to a better solution than the best solution from the
heuristic phase at all instances except for the smallest one—(2, 12).10

Notice how the comparison of the pool’s best solution, our framework and sam-
pling progresses with the increasing complexity of the problem (more knapsacks).
For example, in the (2, 16) instance, even h1000 outperformed sampled trees consist-
ing of 10 and 20 scenarios. Then, our framework was capable of outperforming all
sampled scenario trees (even with 30 and 50 scenarios). In the (3, 24) case, h1000 was

9 The time limit is set in wall-clock time. This corresponds to CPU time which oscillates around 430s due
to presence of 4 cores (not all the subprocesses can be parallelized).
10 In the (2, 12) case, there are only 211 = 2048 unique feasible solutions. Thus, it is not so surprising that
some very high-quality (if not optimal) solution can be found among 1000 solutions, especially if they are
not generated purely randomly.

123

Scenario tree construction driven by heuristic solutions… 299

Ta
bl
e
1

C
om

pa
ri
so
n
of

ou
r
fr
am

ew
or
k
w
ith

ra
nd

om
ly

sa
m
pl
ed

sc
en
ar
io
s

In
st
an
ce

ou
r
fr
am

ew
or
k

Sa
m
pl
in
g

(|J
|,|

I|)
#
T
re
e

O
ut
-o
f-
sa
m
pl
e

In
-s
am

pl
e
ga
p
(%

)
∑ s

p s
C
PU

(s
)
sc
en
ar
io
s

#
T
re
e

O
ut
-o
f-
sa
m
pl
e

in
-s
am

pl
e
ga
p
(%

)
C
PU

(s
)
op
tim

iz
at
io
n

(2
,1

2)
h
10
00

34
9.
2

–
–

3.
5

10
33
8.
3

13
.5

0.
1

2
34
7.
4

0.
9

0.
90

25
.7

20
34
4.
1

9.
1

0.
1

4
34
8.
9

0.
9

0.
92

26
.5

30
34
4.
7

6.
7

0.
1

50
34
7.
9

4.
2

0.
3

(2
,1

6)
h
10
00

40
8.
1

–
–

3.
4

10
39
6.
2

11
.7

0.
1

2
41
3.
1

1.
8

0.
93

25
.8

20
40
4.
7

6.
6

0.
1

4
41
2.
2

0.
9

0.
95

27
.4

30
40
8.
5

6.
7

0.
2

50
41
1.
5

4.
2

0.
3

(2
,2

0)
h
10
00

37
9.
1

–
–

4.
4

10
36
2.
2

14
.1

0.
1

2
38
2.
5

1.
3

0.
91

26
.4

20
37
9.
3

8.
2

0.
2

4
38
2.
9

0.
7

0.
93

27
.8

30
37
9.
8

7.
2

0.
3

50
38
2.
0

5.
1

0.
4

(3
,1

8)
h
10
00

49
1.
5

–
–

9.
3

10
48
6.
2

15
.6

0.
2

2
49
6.
5

2.
2

0.
89

28
.3

20
49
3.
2

10
.5

0.
6

4
49
6.
6

1.
4

0.
91

30
.2

30
49
7.
0

8.
9

1.
5

50
49
8.
5

6.
7

4.
7

(3
,2

4)
h
10
00

52
9.
3

–
–

10
.2

10
52
5.
3

13
.9

0.
3

2
54
0.
8

2.
1

0.
91

30
.0

20
53
6.
1

10
.0

0.
8

4
53
8.
8

2.
0

0.
93

57
.4

30
53
8.
3

8.
2

1.
6

50
54
2.
6

5.
5

6.
6

(3
,3

0)
h
10
00

56
4.
4

–
–

11
.3

10
55
4.
7

14
.5

0.
3

2
57
2.
5

2.
2

0.
91

31
.2

20
57
4.
4

10
.1

0.
9

4
57
4.
7

2.
3

0.
92

58
.6

30
57
8.
6

7.
9

3.
1

50
57
7.
5

5.
9

10
.8

123

300 V. Prochazka, S. W. Wallace

Ta
bl
e
1

co
nt
in
ue
d

In
st
an
ce

ou
r
fr
am

ew
or
k

Sa
m
pl
in
g

(|J
|,|

I|)
#
T
re
e

O
ut
-o
f-
sa
m
pl
e

In
-s
am

pl
e
ga
p
(%

)
∑ s

p s
C
PU

(s
)
sc
en
ar
io
s

#
T
re
e

O
ut
-o
f-
sa
m
pl
e

in
-s
am

pl
e
ga
p
(%

)
C
PU

(s
)
op
tim

iz
at
io
n

(4
,2

4)
h
10
00

63
5.
4

–
–

23
.2

10
63
1.
3

18
.1

1.
3

2
63
8.
5

2.
0

0.
88

32
.3

20
64
0.
8

13
.1

9.
2

4
62
9.
5

1.
9

0.
90

60
.3

30
63
4.
2

10
.0

10
6.
3

50
62
5.
4

7.
1

38
9.
3*

(4
,3

2)
h
10
00

69
3.
5

–
–

18
.3

10
69
4.
2

16
.4

1.
6

2
71
5.
2

1.
6

0.
90

34
.6

20
70
2.
4

11
.7

15
.2

4
70
9.
8

1.
7

0.
91

63
.0

30
71
2.
5

9.
9

71
.7

50
70
8.
7

7.
4

37
6.
1*

(4
,4

0)
h
10
00

75
0.
3

–
–

18
.4

10
75
4.
5

14
.9

2.
0

2
75
8.
9

1.
5

0.
90

63
.7

20
76
7.
9

10
.2

11
.4

4
75
9.
1

2.
4

0.
91

65
.9

30
77
4.
5

8.
7

12
3.
8

50
77
7.
2

6.
8

40
5.
9*

(5
,3

0)
h
10
00

78
4.
0

–
–

23
.1

10
78
7.
6

18
.2

8.
5

2
79
8.
6

1.
6

0.
84

63
.9

20
80
4.
4

13
.5

23
9.
2

4
79
7.
6

1.
8

0.
86

65
.8

30
80
0.
1

11
.2

44
4.
4*

50
81
3.
8

7.
9

42
1.
4*

(5
,4

0)
h
10
00

86
1.
1

–
–

22
.7

10
90
5.
5

16
.2

14
.2

2
90
8.
0

0.
9

0.
86

68
.4

20
91
6.
6

11
.8

23
1.
7

4
90
2.
9

1.
1

0.
86

70
.5

30
92
2.
4

9.
7

43
8.
3*

50
91
9.
6

7.
6

43
1.
2*

(5
,5

0)
h
10
00

91
5.
3

–
–

23
.1

10
94
9.
3

14
.4

27
.5

2
95
4.
5

1.
3

0.
87

73
.3

20
96
9.
6

11
.4

23
1.
6

4
95
9.
0

1.
2

0.
88

75
.5

30
98
2.
3

9.
0

43
7.
1*

50
98
7.
3

6.
9

43
0.
5*

*S
om

e
of

th
e
in
st
an
ce
s
w
er
e
cu
to

ff
be
fo
re

fin
di
ng

th
e
op
tim

al
so
lu
tio

n

123

Scenario tree construction driven by heuristic solutions… 301

better “only” than 10 sampled scenarios, but further enhanced scenarios (fitted by the
minimization of the loss function) produced better results than 20 and 30 sampled
scenarios. In the most complex case—(5, 50)—the best solution from the pool was
far behind the sampled tree of 10 scenarios, but after the enhancement, two scenarios
performed better than 10 randomly sampled ones (but not better than larger trees).

Thus, for more complex cases, our framework produces relatively weaker solutions
compared to sampling, but we contribute this fact mainly to a weaker heuristic phase.
This leads to an idea for a future extension of the method—iteratively improving the
pool by adding the solutions obtained from the current best tree (in the sense of the
minimal loss function). After the addition of new solutions, the loss function can be
recomputed and further minimized.

We do not observe any significant improvement by using 4 scenarios compared to
2 by our framework. We explain this counter-intuitive phenomena by the fact that no
special adjustment of parameters (weights z1 and z2, learning rates, etc.), were used
for the 4 scenario case, which might suit better for 2 scenarios.

An important (and positive) feature of our framework is the scalability. The time
needed to set scenarios does not grow as fast as the computational time needed to solve
the model.

Another point to mention is the smaller in-sample gap obtained by our framework.
This is obviously not an issue if the problem we face was the final application. Then,
applying the out-of-sample evaluation can follow to give the true value of the solution.
However, in some applications, for example if the problemunder study is a subproblem
of a larger application, immediate knowledge (or a good approximation) of the out-
of-sample value is very useful – for example in the case of decomposition techniques,
where the value of the objective function leads to cuts generation for the first-stage
problem. In the example of the stochastic knapsack problem, the average in-sample
gap of the solution obtained by our framework varies around 1–2%, whereas sampling
returns the gap of around 5–7% even for 50 scenarios (andmore for a smaller number).
Moreover, this is the average value—there is much larger variance11 in this value when
sampling is used compared to our approach.

Notice that letting p be free variables is utilized by our framework and the sum
of the weights

∑
s ps is generally set below 1. This contributes to reaching a better

in-sample fit as it decreases the natural overestimate of the objective value (present in
the sampling case.)

Finally, we would like to emphasize that this is a “vanilla comparison”. That is, we
did not introduce any extra dependencies, nor other special attributes of the distribution.
But as we demonstrate in Sect. 2.3.2 (identifying useless scenarios), our framework
can be advantageous exactly in these “odd cases” compared to pure sampling. For
example, we could come up with a true distribution and a problem, for which only one
tenth (or any arbitrary fraction) of the mass is relevant. That would simply mean that
we would need 10 times more sampled scenarios to produce similar results compared
to our test. In otherwords, we could set the entire numerical test to be (arbitrarilymuch)
in favor of our approach. We do not want to do that in this section, however, there
are many real-life applications where the described structure appears—for example

11 Based on our numerical test. Due to the lack of space, we do not report the variance in the table.

123

302 V. Prochazka, S. W. Wallace

in some risk models, only the tail of the distribution may impact the decisions. Then,
our framework can be even more effective tool than it appears in this test.

4 Applications

In this section, we summarize the main advantages and drawbacks of the framework.
Based on that, we comment for what types of applications our approach could be
beneficial, and where it is better to use a different method.

The main advantage is the number of scenarios needed to represent the underlying
distribution.We demonstrate on several examples that just a small number of scenarios
can perform as well as a much larger tree since they are “tailor-made” for a particular
optimization problem. Our framework enables identifying spots where the scenarios
are most useful. Thus, we aim for applications where it is crucial to keep the number
of scenarios small.

The main disadvantage is the time to develop two subroutines; a heuristic for gen-
erating solutions and the subsequent procedure for minimization of the loss function,
which is difficult. Therefore, we do not see any reason to use our framework for opti-
mization problems that are run only once in principal (strategic problems) and/or can
handle a large number of scenarios relatively easily (linear programs). In such a case,
savings in computational time when solving the program (2) with a smaller number of
scenarios do not exceed (most likely) the time needed for running the heuristic, tuning
parameters of the loss function minimization procedure and running it. In addition,
we need time to develop these procedures. Thus, for simple linear two-stage models,
we recommend using some different method, for which a publicly released code can
be found.

A typical example that could utilize our framework would be a stochastic vehicle
routing problem12 (VRP) that needs to be solved repeatedly. Stochasticity in routing
problems can be related to uncertain travel conditions (potential congestion), uncertain
demand, etc. See an overview of the field in Gendreau et al. (2016). For a dispatching
company, this means solving the problem every day (or several times per day) with
different input data, but the formulation of the optimization problem is the same. Thus,
one can invest into the development of a heuristic, especially if it is likely that one
needs the heuristic even for solving the final optimization problem. Typical state-of-art
heuristics (genetic search, adaptive neighborhood search, simulated annealing, etc.)
for VRPs produce many solutions very quickly during the process. We can imagine
that the pool of solutions is obtained by multiple runs of the heuristic with different
subset of scenarios (for example randomly sampled), and then, the same heuristic is
run with the final scenario tree obtained by minimizing the loss function. We can even
imagine that the two subroutines—solution search and the scenario tree search—can
be merged and cleverly implemented into one heuristic with several updates of both
subprocesses.

12 Or generally a difficult problem, where the number of scenarios, and thus the number of con-
straints/variables significantly influence the computational time.

123

Scenario tree construction driven by heuristic solutions… 303

Another application of our framework is on problems with distributions that have
no alternative ways to generate scenarios, except for sampling. But sampling often
requires too many scenarios to provide a stable solution, and that is sometimes unaf-
fordable from a computational point of view. To this class of problems we can include
programswith themultivariate Bernoulli distribution.An example isVRPswith uncer-
tain appearance of customers. We already made some points that play in favor of our
approach when dealing with VRPs. Issues related to binary distributions are analyzed
in Sect. 2.4.

There aremany real-world applicationwherewe need toworkwith a combination of
different distributions (different random variables). Some of them might be empirical,
some theoretical, some might by binary, some continuous, etc. It is difficult to handle
this issue by other methods for scenario generation. Due to the fact that our framework
does not rely on statistical properties of the distribution, but simply looks for a scenario
tree that mimics the out-of-sample performance in some (defined) way, it can, in
principal, be used in such a case once we are able to evaluate the out-of-sample
quality of a solution.

The last area we want to mention is multi-stage optimization [for example Dantzig
and Infanger (1993)]. Our numerical experiments show that our framework can pro-
duce scenario trees with a smaller number of scenarios than other methods with the
same level of solution quality. Since the size of the scenario tree growth exponentially
with the number of stages in a multi-stage setting, the smaller number of scenarios per
stage implies significant reduction in size of the overall tree. Moreover, the scenarios
can be generated stage by stage by simply trying to mimic the behavior of the original
distribution at that particular stage. Thus, we do not have to control dependencies
across the stages as is the case when matching statistical properties of the scenario
tree and the original distribution. This is not further studied in this paper.

5 Conclusion

We introduce a new problem-oriented approach for generating scenarios for stochastic
optimization. It is not based on matching the scenario tree and the underlying distri-
bution in some probabilistic sense, but it sets the scenario tree in such a way that the
tree performs similarly as the original distribution. The performance is evaluated on a
pool of solutions that are produced by some heuristics. The similarity of performance
is measured by a loss function that we introduce. Its formulation is derived from our
postulates on what constitutes a good scenario tree.

Hence, it is the optimization problem that drives the scenario generation by search-
ing for a tree that minimizes the loss function. Thus, the parts of the original
distributions that are more crucial for good solutions are approximated with greater
emphasis. This approach often leads to a smaller number of scenarios compared with
other methods. The main disadvantage is that two main subroutines—the heuristic for
generating solutions and the procedure for minimization of the loss function—are not
necessarily trivial and need to be developed specially for a given problem.

Thus, the framework is suited for applications where it is critical to use as few
scenarios as possible, for example difficult problems (non-linear, integer) that seri-

123

304 V. Prochazka, S. W. Wallace

ously increase their complexity with the number of used scenarios. We believe it is
worthwhile to choose our approach especially in cases where the problem is solved
repeatedly (with different input data), so we can utilize the implemented parts several
times.

Another usage of our framework is on problems where uncertainty is represented
by distributions, for which there is no alternative to pure sampling (even that might
be problematic when we have a combination of different distribution types). In this
paper, we discuss the case of binary distributions that have many applications in real
life, for example a customer that appears randomly in a routing problem, a machine
that might not work in a scheduling problem, or a cargo from A to B that is available
on a future spot market with a certain probability.

We offer an alternative point of view on the relationship between optimization
problems and scenario trees. Even if a different method for scenario generation is
used, a simple visual test that compares in-sample and out-of-sample performance of
a pool of heuristic solutions, can provide an intuitive way to assess the quality of the
tree.

We introduce some ideas for further extension of this research. One is to use our
framework on multi-stage optimization problems, where the number of scenarios
grows exponentially with the number of stages. Thus, it is desirable to have as few
scenarios per stage as possible. Another idea, that is not elaborated in this paper, is to
consider other input data (parameters), and not only the scenarios, to be set accord-
ing to our framework. Thus, we would create a modified problem, whose solution
would, hopefully, be similar to the solutions of the original problem using the entire
distribution.

Appendix A: Heuristic for loss functionminimization

We provide a detailed description of the heuristic used in the example 2.3.1 for the
minimization of the loss function. The method is based on sub-gradients of the loss
function with respect to the decision variables, denoted gp and gw. In order to use
them, we derive13 dL

d f —the gradient of the loss function with respect to the in-sample

evaluation function, further d f
de—the gradient of the in-sample evaluation function

with respect to the exceeded capacity, and so on. By doing so, we get a chain of
simple operations (square, multiplication, addition, max(),14 etc.), for which we have
standard differentiation rules. By simple applications of the chain rule we get the
desired sub-gradients gp and gw.

Let us note that in other optimization problems it might not be so straightforward to
derive sub-gradients as in our case. More complicated functions might come into play.
Thus it could require more effort in analytical derivation or the use of numerical sub-

13 We can compute the numerical approximation of sub-gradients directly from the definition of the
sub-gradient instead of deriving them analytically. That is, however, computationally too expensive and
significantly influence the computational time.
14 The function max(·, ·) is non-differentiable at the point where the two arguments are equal. Hence we
use sub-gradient instead of gradient to be precise. It has no practical impact from the computational point
of view.

123

Scenario tree construction driven by heuristic solutions… 305

gradients, which should always be available, at least in in principle. Or it is possible
to choose a different method from non-linear optimization theory, that is not based
on gradients [see some textbook on non-linear optimization, for instance Hendrix and
Tóth (2010), Boyd and Vandenberghe (2004)].

With the sub-gradient method, we take a small step in the direction of the negative
sub-gradient, that is, in the direction of the steepest descent, at every iteration. Such an
approach converges to a local minimum, which is also a global minimum in the case
of convex minimization. However, not in our case, so we add two features to enhance
exploration of the search space in order to avoid termination of our procedure at some
low-quality local minimum.

Thefirst feature is to usemultiple starts of the procedure fromdifferent initial points.
The second feature is the recognition and replacement of “useless” scenarios. We
recognize these scenarios by evaluating their impact on the loss function. The impact
is defined as the change of the loss function values if we remove a particular scenario
from the scenario tree. If the change is very small, it means that the particular scenario
is not very useful, and we replace the scenario by a new one (chosen randomly). The
heuristic is summarized in Algorithm 1.

Algorithm 1Minimization of the loss function

1: for m = 1 to M do
2: initialize p and w

3: for j = 1 to J do
4: compute sub-gradients gp and gw

5: p = p − α
p
j gp

6: w = w − αw
j gw

7: compute L jm(p, w) according to (9)
8: for k = 1 to K do
9: if

∥∥gwk

∥∥∞ < εw then
10: p̃ = {pl : l �= k}
11: w̃ = {wl : l �= k}
12: if |L(p̃, w̃) − L(p, w)| < εL then
13: replace wl with a new scenario

14: choose p and w that correspond to the smallest L jm value.

The parameters p andw are updated (rows 5 and 6 in Algorithm 1) by small steps in
the direction of the steepest descent. The step sizes, denoted α p and αw, are decreased
with the increasing number of iterations. They are hyper-parameters that enter the
procedure and need to be carefully set (too small steps lead to slow convergence, too
large to oscillation or divergence). We set these steps based on some trial tests.

The routine of scenario usefulness assessment is computationally expensive. It
would require computation of the loss function K times at every iteration. To avoid
it, we run a pre-test, where we check the ∞-norm of the sub-gradient related to each
scenario (row 9), which allows us to break the test once we find one of its element
greater than εw. Only if the sub-gradient is small, do we proceed to the evaluation of
the impact on the loss function.

123

306 V. Prochazka, S. W. Wallace

Initialization and replacement of scenarios is performed by a random draw from
the original data ŵ, weights p are randomly set. Algorithm 1 is just a pseudo-code,
not the most efficient implementation. Obviously, storing all L jm is not necessary,
since at any time, we can store just two best values—a local one for the j cycle and a
global one for the m cycle. We can also compute the value of the loss function while
evaluating the sub-gradients of the function.

Note

Wedo not claim that this is themost effective heuristic for the problem.Most likely it is
not. It is based on a simple sub-gradient method. If the main focus was on developing
the most efficient algorithm for this task, it would be possible to build it on more
sophisticated algorithms for non-linear optimization, such as the adaptive gradient
method, possibly with momentum, or methods based on the second sub-derivative.

We believe this can still serve as an inspiration for developing more efficient algo-
rithms, if needed. We pointed out some issues and suggestions how to overcome them.
But for some applications, the presented algorithm is “good enough”, as it was in our
case. It is important to realize that even if we could guarantee the global optimum of
the loss function, the whole framework would still be a heuristic in the sense that there
are no guarantees relative to other feasible solutions that are not included in the pool.

Heuristic for (in)feasibility classification

Themain issuewhen considering (in)feasibility is theminimization of the loss function
(15). The problem is that we cannot utilize the sub-gradients of the function u(x, T).
The function is not continuous and returns only two values, that means its derivative
is 0 (if it is defined). One needs to either use methods for non-linear optimization
that do not utilize derivatives or approximate the function u with some differentiable
function. The latter approach is used for the computational test in Sect. 2.5.

In our computational test, the classification of (in)feasibility, i.e., the approximation
of u(x, T), is performed by a simple neural network model with one hidden layer,
sigmoid function as the activation function in both layers and the sum of squares as
the measurement of the error. As input we use the vector es scaled to (0, 1). The neural
network is trained on the training pool of heuristically obtained solutions. This simple
model works well in our case and correctly classifies (in)feasibility of solutions.

The main advantage of this approach is that the neural network can back-propagate
the sub-gradients of error (miss-classified solutions) via the weights of the neural
network to the sub-gradient of the es vector and further to scenarios wsi . Thus, we
can, in principal, use Algorithm 1 to find the scenario tree.

123

Scenario tree construction driven by heuristic solutions… 307

References

Ball MO, Colbourn CJ, Provan JS (1995) Network reliability. In: Ball MO, Magnanti TL, Monma CL,
Nemhauser GL (eds) Network models, volume 7 of handbooks in operation research & management
science, chapter 11. North-Holland, Amsterdam

Bent RW, Van Hentenryck P (2004) Scenario-based planning for partially dynamic vehicle routing with
stochastic customers. Oper Res 52(6):977–987

Birge J, Louveaux F (1997) Introduction to stochastic programming. Springer, New York
Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge
Cario MC, Nelson B (1997) Modeling and generating random vectors with arbitrary marginal distribu-

tions and correlation matrix. Technical report, Department of Industrial Engineering andManagement
Sciences, Northwestern University, Evanston, IL

Dantzig GB, Infanger G (1993)Multi-stage stochastic linear programs for portfolio optimization. Ann Oper
Res 45(1):59–76

Fairbrother J, Turner A, Wallace S (2017) Problem-driven scenario generation: an analytical approach to
stochastic programs with tail risk measure. ArXiv e-print 1511:03074

Garey M, Johnson D (1979) Computers and intractability, a guide to the theory of NP-completeness.
Freeman, New York

GendreauM, JabaliO,ReiW(2016) 50th anniversary invited article—future researchdirections in stochastic
vehicle routing. Transp Sci 50(4):1163–1173

Haugland D, Wallace SW (1988) Solving many linear programs that differ only in the righthand side. Eur
J Oper Res 37(3):318–324

Hendrix E, Tóth B (2010) Introduction to nonlinear and global optimization. Springer, New York
Higle JL, Sen S (1991) Stochastic decomposition: an algorithm for two-stage linear programswith recourse.

Math Oper Res 16:650–669
Høyland K, Wallace SW (2001) Generating scenario trees for multistage decision problems. Manag Sci

47(2):295–307
Kall P, Wallace SW (1994) Stochastic programming. Wiley, Chichester
Kaut M (2014) A copula-based heuristic for scenario generation. Comput Manag Sci 11(4):503–516
Kaut M, Wallace SW (2007) Evaluation of scenario-generation methods for stochastic programming. Pac

J Optim 3(2):257–271
Kaut M, Wallace SW, Vladimirou H, Zenios S (2007) Stability analysis of portfolio management with

conditional value-at-risk. Quant Finance 7(4):397–409
King AJ, Wallace SW (2012) Modeling feasibility and dynamics, chapter 2. In: Modeling with stochastic

programming. Springer series in operations research and financial engineering. Springer, New York
King AJ, Wallace SW, Kaut M (2012) Scenario-tree generation, chapter 4. In: Modeling with stochastic

programming. Springer series in operations research and financial engineering. Springer, New York
Lurie PM, Goldberg MS (1998) An approximate method for sampling correlated random variables from

partially-specified distributions. Manag Sci 44(2):203–218
Pflug GC (2001) Scenario tree generation for multiperiod financial optimization by optimal discretization.

Math Program 89(2):251–271
Prochazka V, Wallace SW (2018) Stochastic programs with binary distributions: structural properties of

scenario trees and algorithms. Comput Manag Sci 15(3):397–410

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Scenario tree construction driven by heuristic solutions of the optimization problem
	Abstract
	1 Introduction
	2 Framework
	2.1 Properties of a good scenario tree
	Demonstration of the requirements of a good scenario tree
	Note

	2.2 Loss function
	2.3 Minimization of the loss function
	Note
	2.3.1 Illustration on the Stochastic knapsack problem
	2.3.2 Computational test

	2.4 Binary distributions
	2.5 Feasibility
	Example

	3 Numerical analysis
	4 Applications
	5 Conclusion
	Appendix A: Heuristic for loss function minimization
	Note

	Heuristic for (in)feasibility classification
	References

