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Abstract
The delineation of the transportation network is a strategic issue for all over the place.
The problem of locating new facilities among several existing facilities and minimiz-
ing the total transportation cost are the main topics of the location network system.
This paper addresses the transportation-p-facility location problem (T-p-FLP) which
makes a connection between the facility location problem and the transportation prob-
lem, where p corresponds to the number of facilities. The T-p-FLP is a generalization
of the classical transportation problem in which we have to seek where and how we
impose the p-number of facilities such that the total transportation cost from exist-
ing facility sites to the potential facility sites will be minimized. The exact approach,
based on the iterative procedure, and a heuristic approach as applied to the T-p-FLP are
discussed and corresponding results are compared. An experimental example is incor-
porated to explore the efficiency and effectiveness of our proposed study in reality.
Finally, a summary is given together with suggestions for future studies.
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1 Introduction

The facility location problem (FLP) is actually a strategy, where and how to locate the
new facilities among several existing facilities in such a way that at least one of the
objective functions will be optimized (like cost, profit, travel distance, service, waiting
time and market shares). Mainly, the traditional FLP contains three given sets: a set
of existing facility sites, a set of potential facility sites and a set of weights related to
existing facility sites. In fact, it seeks the best locations for a set of facilitieswith respect
to a set of all existing facility sites. Industries locate assembly plants and warehouses.
Stores are located by retail outlets. The efficiency of manufacturing and marketing of
products is dependent on the location of facilities. Similarly, the government also takes
the decisions about the location of schools, fire stations, hospitals, etc. In any case,
good services depend on the location of facilities. The FLP was studied by several
researchers. A few of them are depicted here. Interested readers may follow the books
of Love et al. (1995) and Farahani and Hekmatfar (2009) to find more about the FLP.
In fact, Farahani et al. (2010) made a comprehensive survey of the location problems
under multi-criteria environment. Later, the FLP could be applied in a broad area of
transportation industries, public facilities, business areas and public health-care such
as Bieniek (2015), Chen et al. (2016), Dias et al. (2008), Gadegaard et al. (2016), Kim
and Kim (2013), Klose and Kurt (2016) and Tokgöz et al. (2015).

In the real world, the network system provides a useful way for communications,
logistics as well as electronic systems. The well-known network problem, the trans-
portation problem (TP), is a special kind of linear programming problem which asks
for the minimum cost to transport goods from a set of sources to a set of destinations.
The classical TP consists of two sets: a set of all sources, a set of all demand points,
and a single objective function as transportation cost. The amounts available at sources
and demands at destination points are called supply and demand. Here, transportation
cost is directly proportional to the amount of units to be transported. The TP was
the first introduced by Hitchcock (1941); then Koopmans (1949) studied on optimum
utilization of the transportation system. So many researchers have studied on the TP
in several environments. Some research works could be annexed like Roy (2016); Roy
et al. (2017a, b), Mahapatra et al. (2013), Roy (2015) and Maity et al. (2016).

In the present decade, the FLP and TP are a “hot topic” in supply chain manage-
ment as well as the transportation planning system. Determining the best locations for
the facilities (i.e., plants, depots, warehouses, offices, fire stations, railway stations,
etc.) and minimizing the total transportation cost from existing sites to facilities can
significantly affect the transportation planning system. Melo et al. (2009) depicted a
review of the FLP and supply chain management. Cooper (1964) first introduced the
location-allocation problem and he also discussed a heuristic approach to solve the
problem. Afterwards, several researchers made connections between the FLP and dis-
tribution system in many different ways such as Das et al. (2019), Dohse (1996), Klibi
et al. (2010), Loaiza et al. (2017), Mis̆ković et al. (2016), and Sherali and Tuncbilek
(1992).

In this paper, the main aim is to introduce a way to connect the FLP and TP. We
generalize the concept of TP by taking the sources as existing facility sites and demand
points as potential facility siteswhich are to bedetermined. In fact, theT-p-FLP is a cost
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minimizationproblemobtainedby integrating theFLPandTP.Thereafter, theT-p-FLP
can be solved in a continuous planner surfaces with Euclidean distance. We determine
the best location of a facility and the effective transportation cost from sources to
this facility locations simultaneously by solving the T-p-FLP. Our formulation can be
applied to plant location problems where minimizing transportation cost is the main
priority. We believe that this model is more reasonable than the classical TP and FLP
approach. The proposed formulation will be useful for the models of transportation
systems, emergency services and online-shopping systems.

The rest of this paper is catalogued as follows: In Sect. 2, the T-p-FLP model
formulation, the connection between the T-p-FLP and TP and its characteristics are
discussed. The solution methodology of the exact approach with its algorithm and an
algorithm of Loc-Alloc heuristic are described in Sect. 3. Thereafter, the scenario is
illustrated by an example in closer detail, and two approaches are used to evaluate the
results in Sect. 4. In Sect. 5, computational results are given and compared. Finally,
conclusions and directions for future research work of the paper are placed at last.

2 Mathematical identification

In this section, we first incorporate the proposed problem. Thereafter, the mathemat-
ical formulation is stated on the basis of the following notations and assumptions.
The model formulation, a connection between this formulation and the TP, and the
structural properties are presented.

2.1 Problem description

Herein, a logistical problem is inspected from an economical point of view. Our pro-
posed problem deals with a transportation network, which consists of multiple existing
sites or sources, potential facility sites or demand points, and products are transported
from existing sites to potential facility sites. The main aim is to minimize the total
transportation cost of locating the potential facility sites simultaneously. For example,
there are three existing facility sites and four potential facility sites. The corresponding
supply and demand of the existing facility sites and the potential facility sites are given.
Furthermore, the locations of existing sites are known. But, the locations of potential
facility sites are not given on the planner surface (Euclidean plane). In this situation,
the decision maker has to seek the optimal locations for the potential facility sites in
such a way that the total transportation cost from existing facility sites to potential
facility sites will be minimized.

2.2 Notations and assumptions

The notations are as follows:

m: number of existing facility sites (origins).
p: number of potential facility sites (demand points).
αi : non-negative weights of existing facility sites (i = 1, 2, . . . ,m).
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ai : availability at the i-th existing facility site (i = 1, 2, . . . ,m).
b j : demand at the j-th potential facility site ( j = 1, 2, . . . , p).
(ci , di ): coordinates of i-th existing facility sites (i = 1, 2, . . . ,m).
(x j , y j ): coordinates of j-th potential facility sites ( j = 1, 2, . . . , p).
ui j : amounts of flow to be transported from the i-th existing facility site to

the j-th potential facility site (i = 1, 2, . . . ,m; j = 1, 2, . . . , p).
F : {(ui j ) : ui j subject to the constraints}: the feasible set with respect to the

matrix variable u.
UB : (uB

i j : i = 1, 2, . . .m; j = 1, 2, . . . , p): the initial basic feasible solu-
tion.

φ: transportation cost function per unit commodity from an existing facility
site to a potential facility site.

There are the following assumptions:

• The solution space is continuous. The space in which potential facility sites are
located is the planner. Potential facility sites are assumed as points. Parameters are
deterministic.

• Facilities are capacitated. No relationship between potential facility sites. We
ignore the opening cost of new potential facility sites.

• The objective function is to be minimized. The type of distance is the usual
Euclidean distance in 2-dimensional space (φ(ci , di ; x j , y j )
= [(ci − x j )2 + (di − y j )2]1/2).

2.3 Model formulation

Here, we introduce a formulation based on the classical FLP and TP. However, instead
of minimizing the total transportation cost, this model finds optimal locations by
determining the potential facility sites. We consider the mathematical model of the
T-p-FLP as follows:

Model 1

minimize(x,y,u) Z =
m∑

i=1

p∑

j=1

αi ui jφ(ci , di ; x j , y j ) (2.1)

subject to
p∑

j=1

ui j ≤ ai (i = 1, 2, . . . ,m), (2.2)

m∑

i=1

ui j ≥ b j ( j = 1, 2, . . . , p), (2.3)

ui j ≥ 0 ∀ i and j . (2.4)

The objective (2.1) aims to minimize the total transportation cost from existing
facility sites to potential facility sites. Constraint (2.2) enforces that the total flow
from each existing facility site cannot exceed its amount available. Constraint (2.3)
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imposes that the total flow to each potential facility site should satisfy its demand.
Constraint (2.4) consists of non-negativity conditions.

2.4 Connection between the T-p-FLP and TP

The objective function (2.1) of theModel 1 depends on the locations of potential facil-
ity sites. If we fix the locations of potential facility sites, then the set of cost functions
converts into the set of constant cost functions. Subsequently, in viewof objective func-
tion (2.1) we use the short notation φ(ci , di ; x j , y j ) = si j (constant cost functions),
now αi si j is chosen as ti j (unit transportation cost from sources to demand points).
Hence, the objective function of Model 1 is reduced; the following Model 2 looks as:

Model 2

minimize(u) Z =
m∑

i=1

p∑

j=1

ti j ui j

subject to the constraints (2.2) to (2.4); (2.5)

this is the classical form of a TP. Hence, for constant cost function the T-p-FLP
becomes the TP.

2.5 Structural properties

In this subsection, we discuss some fundamental propositions and a theorem to rec-
ognize the nature of the T-p-FLP.

Proposition 1 A necessary and sufficient condition for a feasible solution of the prob-
lem T-p-FLP is that

∑m
i=1 ai ≥ ∑p

j=1 b j .

Proof This property is called the feasibility condition. It depends on the constraints.
In fact, both the problems, i.e., Model 1 and 2 have the same constraints. Moreover,
the proof is given in Hitchcock (1941) for the case of a TP. ��
Proposition 2 The feasible solution of the T-p-FLP is never unbounded.

Proof The constraints of the T-p-FLP are as follows:

p∑

j=1

ui j ≤ ai (i = 1, 2, . . . ,m),

m∑

i=1

ui j ≥ b j ( j = 1, 2, . . . , p),

ui j ≥ 0 ∀ i and j .

So, b j ≤ ui j ≤ ai ∀ i and j , and also ui j ≥ 0 ∀ i and j .We conclude that min{0, b j } ≤
ui j ≤ ai ∀ iand j . As b j > 0 ∀ j , now min{0, b j } = 0 and 0 ≤ ui j ≤ ai . This
completes the proof of the proposition. ��
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Proposition 3 The number of basic variables in the T-p-FLP is at most (m + p − 1).

Proof This property is also dependent on the constraints. Here, we see that the con-
straints of two the problems, i.e., Model 1 and 2 are the same. So, this proposition is
also the same as the TP. ��

Proposition 4 For the problem minimize(x,y,u) Z = ∑m
i=1

∑p
j=1 αi ui j

φ(ci , di ; x j , y j ), (ui j ) ∈ F, an optimal solution exists at an extreme point of the
convex set F of feasible solutions to the T-p-FLP.

Proof Let (x, y) = (x j , y j ) ( j = 1, 2, . . . , p), u = (ui j : i = 1, 2, . . . ,m; j =
1, 2, . . . , p) and uE ∈ {(uE

i j ) (i = 1, 2, . . . ,m; j = 1, 2, . . . , p) :
extreme points of F}. If we choose the destination such that (x, y) = (x∗

j , y
∗
j )

by seeking the optimal location, then the objective function to minimize is Z =∑m
i=1

∑p
j=1 αi ui jφ(ci , di ; x∗

j , y
∗
j ), (ui j ) ∈ F , which is a classical TP. Then it always

has a solution at an extreme point uE ∈ F . Thus, we conclude that (x∗, y∗, uE ) is an
optimal solution at an extreme point of F to the T-p-FLP. ��

Proposition 5 The number of basic feasible solutions of a T-p-FLP is atmost
( mp
m+p−1

)
.

Proof The T-p-FLP has mp variables and at most m + p − 1 basic variables. Hence,
the number of basic feasible solutions of the T-p-FLP is at most

( mp
m+p−1

)
. The proof

is left to the reader. ��

Theorem 1 The objective function Z = ∑m
i=1

∑p
j=1 αi uB

i jφ(ci , di ; x j , y j ) is a convex
function in the joint variable (x, y) on R

2p.

Proof We know that a function Z is convex over the region iff the Hessian matrix
associated with Z is positive semidefinite over the region (Rockafellar 1970). Let Z =∑p

j=1 Z j , where Z j = ∑m
i=1 αi uB

i jφ(ci , di ; x j , y j ) and the terms uB
i j are constants.

Here, Z j only depends on the variables x j and y j . Hence we can consider Z j to be a
function in two variables x j and y j . The Hessian matrix for Z j at (x j , y j ) is

Hj =
⎛

⎜⎝

∂2Z j

∂x2j

∂2Z j
∂x j ∂ y j

∂2Z j
∂ y j ∂x j

∂2Z j

∂ y2j

⎞

⎟⎠ .

The principal minors of Hj are
∂2Z j

∂x2j
and det Hj (determinant of Hj ).

∂2Z j

∂x2j
=

m∑

i=1

αi uB
i j (di − y j )2

[(ci − x j )2 + (di − y j )2]3/2 ,
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and

det Hj = ∂2Z j

∂x2j

∂2Z j

∂ y2j
−

( ∂2Z j

∂x j∂ y j

)2 (
since

∂2Z j

∂x j∂ y j
= ∂2Z j

∂ y j∂x j

)

=
(

m∑

i=1

αi uB
i j (di − y j )2

[(ci − x j )2 + (di − y j )2]3/2
) (

m∑

i=1

αi uB
i j (ci − x j )2

[(ci − x j )2 + (di − y j )2]3/2
)

−
(

m∑

i=1

αi uB
i j (ci − x j )(di − y j )

[(ci − x j )2 + (di − y j )2]3/2
)2

=
⎛

⎝
m∑

i=1

(
√

αi uB
i j (di − y j )

[(ci − x j )2 + (di − y j )2]3/4
)2

⎞

⎠

⎛

⎝
m∑

i=1

(
√

αi uB
i j (ci − x j )

[(ci − x j )2 + (di − y j )2]3/4
)2

⎞

⎠

−
⎛

⎝
m∑

i=1

√
αi uB

i j (di − y j )

[(ci − x j )2 + (di − y j )2]3/4

√
αi uB

i j (ci − x j )

[(ci − x j )2 + (di − y j )2]3/4

⎞

⎠
2

.

Now,
(∑m

i=1(

√
αi uBi j (di−y j )

[(ci−x j )2+(di−y j )2]3/4 )
2
)( ∑m

i=1(

√
αi uBi j (ci−x j )

[(ci−x j )2+(di−y j )2]3/4 )
2
) ≥

(∑m
i=1

√
αi uBi j (di−y j )

[(ci−x j )2+(di−y j )2]3/4

√
αi uBi j (ci−x j )

[(ci−x j )2+(di−y j )2]3/4
)2

(by Cauchy–Schwarz inequality).

As αi > 0, uB
i j ≥ 0, (ci − x j )2 ≥ 0 and (di − y j )2 ≥ 0, we conclude that

∂2Z j

∂x2j
≥ 0

and det Hj ≥ 0 for all values of x j , y j . Hence, Z j is convex with respect to x j and
y j . Let

(
(x1, y1), (x2, y2), . . . , (xp, yp)

)
and

(
(x ′

1, y
′
1), (x

′
2, y

′
2), . . . , (x

′
p, y

′
p)

)
be two

arbitrary points of R2p, and t ′ ∈ [0, 1].
Herewith,

Z
(
t ′
(
(x1, y1), (x2, y2), . . . , (xp, yp)

) + (1 − t ′)
(
(x ′

1, y
′
1), (x

′
2, y

′
2), . . . , (x

′
p, y

′
p)

))

=
p∑

j=1

Z j

(
t ′
(
(x1, y1), (x2, y2), . . . , (xp, yp)

) + (1 − t ′)
(
(x ′

1, y
′
1), (x

′
2, y

′
2), . . . , (x

′
p, y

′
p)

))

≤ t ′
p∑

j=1

Z j
(
(x1, y1), (x2, y2), . . . , (xp, yp)

) + (1 − t ′)
p∑

j=1

Z j
(
(x ′

1, y
′
1), (x

′
2, y

′
2), . . . , (x

′
p, y

′
p)

)

= t ′Z
(
(x1, y1), (x2, y2), . . . , (xp, yp)

) + (1 − t ′)Z
(
(x ′

1, y
′
1), (x

′
2, y

′
2), . . . , (x

′
p, y

′
p)

)
.

Therefore, Z is convex in the variable (x, y) on R
2p. ��
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3 Solutionmethodology

In this section, we first briefly describe an exact method with its algorithm, and then
present a heuristic algorithm for solving our model.

3.1 Exact approach

The iterative procedure is an exact and simple solution procedure in which we find the
best nearest optimal locations.We see that the objective function has a minimum value
at an extreme point of the convex set F and the number of basic feasible solutions
in F are finite (by Theorem 1 and Propositions 4 and 5). First, we find all basic
feasible solutions in F by solving the constraints of the T-p-FLP. Then we observe
that these constraints are the same as the constraints of the classical TP. Therefore,
we apply the Northwest-Corner method (Hadley 1962) to generate the initial basic
feasible solutions which are UB = (uB

i j : i = 1, 2, . . . ,m; j = 1, 2, . . . , p); then for
each such solution, we solve the problem.

minimize(x,y) Z B =
m∑

i=1

p∑

j=1

αi u
B
i j

√
(ci − x j )2 + (di − y j )2

subject to the constraints (2.2) to (2.4).

Now we can write the problem as

minimize(x,y) Z B =
p∑

j=1

Z B
j

subject to the constraints (2.2) to (2.4),

where Z B
j = ∑m

i=1 αi uB
i j

√
(ci − x j )2 + (di − y j )2 ( j = 1, 2, . . . , p). Then, we

minimize Z B
j ( j = 1, 2, . . . , p) for minimizing Z B . We use the iterative formulas

(A.8) to (A.11) (see Appendix A) to minimize the function Z B
j . Let S = {Z∗

n :
the optimum value for Z B for n-th basic feasible solutions}. Clearly, S is a finite
set from Proposition 5. Hence, it has a minimum, then the optimal value of the
objective function Z∗ for the T-p-FLP will be Z∗ = min S. If the optimum has
been attained at n = l, then the best nearest optimal solutions are (xlj , y

l
j ), ( j =

1, 2, . . . , p), and uB
i jl (i = 1, 2, . . . ,m; j = 1, 2, . . . , p), where (xlj , y

l
j ) indicates

(x j , y j ) for the l-th basic feasible solution and uB
i jl
are the values of uB

i j for this solution.

3.2 An exact algorithm

Here, we describe an algorithm for solving the T-p-FLP. The following steps are
appraised for selection of optimal potential facility sites in the T-p-FLP as:

123



An exact and a heuristic approach for the transportation… 397

Step 1First, we solve the constraints using theNorthwest-Cornermethod to evaluate
the initial basic feasible solutions.

Step 2We address each such l-th basic feasible solution as uB
i jl
. Based on each such

solution, we consider a set of problems as indicated below:

minimize(x,y) Z B
l =

p∑

j=1

Z B
jl

subject to the constraints (2.2) to (2.4),

where Z B
jl

= ∑m
i=1 αi uB

i jl

√
(ci − x j )2 + (di − y j )2 ( j = 1, 2, . . . , p).

Step 3 We solve the set of problems in Step 2 by using the iterations Eqs. (A.8) to
(A.11).

Step 4 After a finite number of iterations, we observe that when the coordinates of
some existing facility sites are equal to the potential facility sites, then the denominator
of the iteration in Step 3 becomes 0. In that case, we cannot move to the next iteration.
As our aim is to seek the best nearest location of the existing facility sites, we take
this result as an optimal location and terminate the loop.

Step 5 Repeat Steps 3 and 4 until no further changes are possible in correct up to 4
decimal places.

Step 6 We choose optimal solutions are (xlj , y
l
j ) and Z∗ = min S.

Step 7 Stop.

3.3 A Loc-Alloc heuristic algorithm

The locate-allocate (Loc-Alloc) heuristic algorithm was first introduced to solve the
large-scale traditional location problems by Cooper (1964), which provides always a
good solution (sub-optimal) within a relatively short computational time.Wemoderate
it to solve the T-p-FLP. The steps of the Loc-Alloc heuristic algorithm are as follows:

Step 1 First, we choose the initial locations for the p-facilities from m-existing
locations.

Step 2 Therefore, two cases arise: If p ≤ m, then we can easily find the distances
between the existing and the potential facility sites. But, if p > m, then we cannot
find all the distances. So, in that case, we assign a positive number for each distance
to less calculation burden.

Step 3 Without loss of generality, we assume that the distances are proportional to
the cost functions. So, we take these distances as the cost coefficients ti j [in Eq. (2.5)].
Then, it is converted to the classical TP.

Step 4 Using the LINGO optimization tool we easily find the set of initial basic
feasible solutions UB .

Step 5 Employing UB from Step 4 and the iteration from Eqs. (A.8) to (A.11), we
solve the T-p-FLP to generate a new set of potential locations.

Step 6 If any of the locations have changed correct up to 4 decimal places, then
repeat Step 5; otherwise, stop.
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4 Experimental analysis

In this section, we incorporate a real-life based experiment to illustrate our model and
to work out that our procedures are effective to locate the potential facility sites in
the Euclidean plane with the objective to minimize the total transportation cost. A
reckoned company wishes to establish some new wings in such a way that the total
transportation cost from the existing plants is minimized. The company has four plants
S1, S2, S3 and S4, and the company want to set-up three new wings (plants) D1, D2
and D3. The capacities of supply at S1, S2, S3 and S4, the requirement to the wings
D1, D2 and D3, the position and the weights of the plants S1, S2, S3 and S4 are also
known. The supplied data of the problem are given in Tables 1 and 2.

We code the approaches in C++ and execute it using a code-block compiler on a
Lenovo z580 computer with 2.50 GHz Intel (R) Core (TM) i5-3210M CPU and 4
GB RAM. We set up the same configuration as above, and compared its performance
with our Loc-Alloc heuristic. In contrast, we compare the results obtained from Linux
terminal on a computer with Intel(R) Core (TM) i3-4130 CPU @3.40 GHz and 4 GB
RAM.

4.1 Performance of the exact approach

Here, we mainly concentrate on the following topics:

• First, wefind the possible initialBasic Feasible Solutions (BFSs) by theNorthwest-
Corner method.

• To fix the optimum position of D1, D2 and D3 for minimizing transportation cost
and maximizing the profit.

Now, we use the Northwest-Corner method by utilizing Table 1 and get the possible
initial BFS sets. They are placed in Tables 3, 4 and 5.

Table 1 The capacities of
supply and demand of the plants

D1 D2 D3 ai

S1 uB11 uB12 uB13 10

S2 uB21 uB22 uB23 60

S3 uB31 uB32 uB33 50

S4 uB41 uB42 uB43 30

b j 20 90 40

Table 2 The positions and
weights of the existing plants

Position Weight

S1 (0, 1) 0.1

S2 (0, 0) 0.2

S3 (1, 0) 0.3

S4 (1, 1) 0.4
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Table 3 The possible BFS set 1 D1 D2 D3 ai

S1 10 10

S2 10 50 60

S3 40 10 50

S4 30 30

b j 20 90 40

Table 4 The possible BFS set 2 D1 D2 D3 ai

S1 10 10

S2 10 10 40 60

S3 50 50

S4 30 30

b j 20 90 40

Table 5 The possible BFS set 3 D1 D2 D3 ai

S1 10 10

S2 10 40 10 60

S3 50 50

S4 30 30

b j 20 90 40

Table 6 Computational results for Tables 3, 4 and 5

Initial BFS Location of D1 Location of D2 Location of D3 Value of Z

Table 3 (0.000000, 0.000066) (0.883816, 0.000000) (1.000000, 1.000000) 14.232434

Table 4 (0.000000, 0.000066) (0.991361, 0.055396) (0.000000, 0.000000) 15.162587

Table 5 (0.000000, 0.000066) (0.999790, 0.000000) (1.000000, 1.000000) 9.829962

The computational results for Tables 3, 4 and 5 using the C++ programming lan-
guage are shown in Table 6.

4.2 Performance of the Loc-Alloc heuristic

For solving the T-p-FLP by the Loc-Alloc heuristic, we focus on the following:

• First, we choose three initial locations for each of the 3 wings from Table 2. Then,
4 possible cases have arisen and they are displayed in Tables 7, 8, 9 and 10.
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Table 7 1st case Position Weight

D1 (0, 1) 0.1

D2 (0, 0) 0.2

D3 (1, 0) 0.3

Table 8 2nd case Position Weight

D1 (0, 0) 0.2

D2 (1, 0) 0.3

D3 (1, 1) 0.4

Table 9 3rd case Position Weight

D1 (1, 0) 0.3

D2 (1, 1) 0.4

D3 (0, 1) 0.1

Table 10 4th case Position Weight

D1 (1, 1) 0.4

D2 (0, 1) 0.1

D3 (0, 0) 0.2

• Now, we calculate the distances between existing plants and initial locations of
wings by using Tables 7, 8, 9 and 10. We put the distances as cost coefficients in
Tables 11, 12, 13 and 14, respectively.

• We use the LINGO optimization tool for initial BFSs by utilizing Tables 11, 12, 13
and 14, and the obtained results are shown in Tables 15, 16, 17 and 18, respectively.

• Finally, the computational results for Tables 15, 16, 17 and 18 using C++ pro-
gramming language are placed in Table 19.

Table 11 Cost coefficients for
Table 7

D1 D2 D3 ai

S1 0 1
√
2 10

S2 1 0 1 60

S3
√
2 1 0 50

S4 1
√
2 1 30

b j 20 90 40
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Table 12 Cost coefficients for
Table 8

D1 D2 D3 ai

S1 1
√
2 1 10

S2 0 1
√
2 60

S3 1 0 1 50

S4
√
2 1 0 30

b j 20 90 40

Table 13 Cost coefficients for
Table 9

D1 D2 D3 ai

S1
√
2 1 0 10

S2 1
√
2 1 60

S3 0 1
√
2 50

S4 1 0 1 30

b j 20 90 40

Table 14 Cost coefficients for
Table 10

D1 D2 D3 ai

S1 1 0 1 10

S2
√
2 1 0 60

S3 1
√
2 1 50

S4 0 1
√
2 30

b j 20 90 40

Table 15 Initial BFS for Table 7 D1 D2 D3 ai

S1 10 10

S2 60 60

S3 10 40 50

S4 20 10 30

b j 20 90 40

Table 16 Initial BFS for Table 8 D1 D2 D3 ai

S1 10 10

S2 20 40 60

S3 50 50

S4 30 30

b j 20 90 40
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Table 17 Initial BFS for Table 9 D1 D2 D3 ai

S1 10 10

S2 30 30 60

S3 20 30 50

S4 30 30

b j 20 90 40

Table 18 Initial BFS for
Table 10

D1 D2 D3 ai

S1 10 10

S2 20 40 60

S3 50 50

S4 20 10 30

b j 20 90 40

Table 19 Computational results for Tables 15, 16, 17 and 18

Initial BFS Location of D1 Location of D2 Location of D3 Value of Z

Table 7 (1.000000, 1.000000) (0.000598, 0.000393) (1.000000, 0.000000) 9.660450

Table 8 (0.000000, 0.000000) (0.999790, 0.000000) (1.000000, 1.000000) 9.001470

Table 9 (1.000000, 0.000000) (0.869809, 0.476981) (0.000000, 0.000000) 17.869660

Table 10 (1.000000, 1.000000) (0.999997, 0.000003) (0.000000, 0.000000) 9.414249

Table 20 The optimal solution of the proposed T-p-FLP

Decimal places Location of D1 Location of D2 Location of D3 Value of Z

4 decimal (0.0000, 0.0000) (0.9997, 0.0000) (1.0000, 1.0000) 9.8299

6 decimal (0.000000, 0.000066) (0.999790, 0.000000) (1.000000, 1.000000) 9.829962

5 Computational results and discussion

Here, first, we present the optimal solutions of the experimental study, obtained by
two approaches. Second, we compare the performances of the proposed solution pro-
cedures for the T-p-FLP, based on our experiment analysis.

Exact approach We obtain the following nearest optimal solution by our iterative
procedure, utilizing Table 6, as shown in Table 20. The convergence performance of
the iterative procedure is delineated in Fig. 1.

Loc-Alloc heuristicWe derive the sub-optimal solution by the Loc-Alloc heuristic,
employing Table 19, which is displayed in Table 21. Figure 2 shows the convergence
performance of the heuristic.
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Fig. 1 Performance of the exact approach

Table 21 The sub-optimal solution of the proposed T-p-FLP

Decimal places Location of D1 Location of D2 Location of D3 Value of Z

4 decimal (0.0000, 0.0000) (0.9997, 0.0000) (1.0000, 1.0000) 9.0014

6 decimal (0.000000, 0.000000) (0.999790, 0.000000) (1.000000, 1.000000) 9.001470

Fig. 2 Performance of the Loc-Alloc heuristic
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Fig. 3 Comparison between the obtained results

5.1 Comparison of the obtained results

Here, we confront the computational results obtained by our two approaches. From
Tables 20 and 21, the following conclusions are made and offered to further consid-
eration and research.

• No difference exists between solutions (correct up to 4 decimal places).
• When we consider correct up to 6 decimal places, then the solution of the Loc-
Alloc heuristic is slightly sub-optimal, compared to the exact solution which is
depicted in Fig. 3.

6 Conclusions and future works

This study has introduced a practical problem for the transportation network that aims
to minimize the total transportation cost along the entire supply chain and to select
potential facility sites for different plants. In fact, we have provided a way of analyzing
the connection between the FLP and TP. Thereafter, some fundamental propositions
and a theorem on the T-p-FLP have been introduced to investigate the nature of
the T-p-FLP. In addition to the aforementioned achievements, the development of
novel versions of two approaches is analyzed to solve the proposed problem in an
efficient manner. The studied model and developed procedures have been tested by
a real-life based example. Finally, the obtained computational results from our two
approaches have been compared with suggestions for selecting the potential facility
sites. In comparison, the iterative approach is more appropriate to solve the T-p-FLP
with small sizes, for which it is possible to generate better solutions with a reasonable
timeframe. The Loc-Alloc heuristic is more suitable for the T-p-FLP of larger size
since it can generate comparable solutions in less computational time. In fact, the
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formulation presented here can be employed in large-scale industrial applications
such as the manufacturing of plants, transportation systems, emergency services, and
online-shopping systems.

Several research directions remain open, so that scientists can initiate the prob-
lem treatment by alternative methodologies such as Lagrangian relaxation heuristic,
genetic algorithm, branching method, greedy algorithm, etc. Moreover, they can
use different distance functions (or, cost functions) like rectangular distance, block
distance, signed distance, Hausdorff distance, etc. One may consider uncertain envi-
ronments such as intuitionistic fuzzy, rough set and grey numbers within the frame
of our proposed model. Finally, in our future study, we will focus on flourishing the
T-p-FLP in the light of multi-objective optimization problems and techniques.
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Appendix A

Here, we describe the iteration formulas used in the solution methodology section.
Now, we refer to

Z(x, y) =
m∑

i=1

p∑

j=1

αi u
B
i jφ(ci , di ; x j , y j ),

where φ(ci , di ; x j , y j ) = [(ci − x j )2 + (di − y j )2]1/2 and the terms uB
i j are con-

stants. Differentiating Z with respect to (x j , y j ) and equating with 0, we get

m∑

i=1

αi uB
i j (ci − x j )

φ(ci , di ; x j , y j ) = 0 ( j = 1, 2, . . . , p), (A.6)

m∑

i=1

αi uB
i j (di − y j )

φ(ci , di ; x j , y j ) = 0 ( j = 1, 2, . . . , p). (A.7)

Now, from Eqs. (A.6)–(A.7) we obtain

m∑

i=1

αi uB
i j ci

φ(ci , di ; x j , y j ) − x j

m∑

i=1

αi uB
i j

φ(ci , di ; x j , y j ) = 0 ( j = 1, 2, . . . , p),

m∑

i=1

αi uB
i j di

φ(ci , di ; x j , y j ) − y j

m∑

i=1

αi uB
i j

φ(ci , di ; x j , y j ) = 0 ( j = 1, 2, . . . , p).
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Then,

x j =
∑m

i=1
αi uBi j ci

φ(ci ,di ;x j ,y j )
∑m

i=1
αi uBi j

φ(ci ,di ;x j ,y j )
( j = 1, 2, . . . , p),

y j =
∑m

i=1
αi uBi j di

φ(ci ,di ;x j ,y j )
∑m

i=1
αi uBi j

φ(ci ,di ;x j ,y j )
( j = 1, 2, . . . , p).

These equations are solved iteratively. The iteration equations for (x j , y j ) are as
follows:

xk+1
j =

∑m
i=1

αi uBi j ci

φ(ci ,di ;xkj ,ykj )
∑m

i=1
αi uBi j

φ(ci ,di ;xkj ,ykj )

( j = 1, 2, . . . , p; k ∈ N), (A.8)

yk+1
j =

∑m
i=1

αi uBi j di

φ(ci ,di ;xkj ,ykj )
∑m

i=1
αi uBi j

φ(ci ,di ;xkj ,ykj )

( j = 1, 2, . . . , p; k ∈ N), (A.9)

where φ(ci , di ; xkj , ykj ) = [(ci − xkj )
2 + (di − ykj )

2]1/2. The initial estimates of
(x j , y j ) are simply chosen by the weighted mean coordinates:

x0j =
∑m

i=1 αi uB
i j ci∑m

i=1 αi uB
i j

( j = 1, 2, . . . , p), (A.10)

y0j =
∑m

i=1 αi uB
i j di∑m

i=1 αi uB
i j

( j = 1, 2, . . . , p). (A.11)
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