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Abstract
The objective of original cover location models is to cover demand within a given
distance by facilities. Locating a given number of facilities to cover as much demand
as possible is referred to as max-cover, and finding the minimum number of facilities
required to cover all the demand is referred to as set covering. When the objective is to
maximize the minimum cover of demand points, the maximin objective is equivalent
to set covering because each demand point is either covered or not. The gradual (or
partial) cover replaces abrupt drop from full cover to no cover by defining gradual
decline in cover. Both maximizing total cover and maximizing the minimum cover
are useful objectives using the gradual cover measure. In this paper we use a recently
proposed rule for calculating the joint cover of a demand point by several facilities
termed “directional gradual cover”. The objective is to maximize the minimum cover
of demand points. The solution approaches were extensively tested on a case study of
covering Orange County, California.

Keywords Cover location models · Partial cover · Gradual cover

1 Introduction

Cover locationmodels constitute amain branch of location analysis. A demand point is
covered by a facility within a certain distance (Church and ReVelle 1974; ReVelle et al.
1976). Facilities need to be located in the area to provide as much cover as possible.
Such models are used for cover provided by emergency facilities such as ambulances,
police cars, or fire trucks. They are also used tomodel cover by transmission towers for
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cell-phone, TV, radio, radar among others. For a review of cover models see Berman
et al. (2010b), García and Marín (2015), Plastria (2002), Snyder (2011).

Gradual cover models (also referred to as partial cover) assume that up to a certain
distance r the demand point is fully covered and beyond a greater distance R it is
not covered at all. Between these two extreme distances the demand point is partially
covered. There exist several formulations of the partial cover. Berman andKrass (2002)
suggested a declining step function between r and R. Drezner et al. (2004) suggested
a linear decline in cover between r and R, and Drezner et al. (2010) suggested a linear
decline between random values of r and R. The original cover models are a special
case of gradual cover models. When the two extreme distances are the same, cover
drops abruptly at that distance.

Church and Roberts (1984) were the first to propose a discrete gradual cover model.
The network version with a step-wise cover function is discussed in Berman and Krass
(2002). The network and discrete models with a general non-increasing cover function
were analyzed in Berman et al. (2003). The single-facility planar model with a linearly
decreasing cover function between the distance of full coverage and the distance of
no coverage was optimally solved in Drezner et al. (2004), and its stochastic version
analyzed and optimally solved in Drezner et al. (2010). Additional references include
(Berman et al. 2010b, 2019; Drezner and Drezner 2014; Eiselt and Marianov 2009;
Karasakal and Karasakal 2004).

Amain issue when several facilities partially cover a demand point is the estimation
of the total cover, also referred to as joint cover. If the partial cover is interpreted as
“the probability of cover”, then assuming independent probabilities, the probability
of cover can be evaluated. If the probabilities are correlated, then the probability of
total cover can be evaluated by a multivariate distribution. For a discussion of ways to
estimate the joint cover see Berman et al. (2019), Drezner and Drezner (2014), Eiselt
and Marianov (2009), Karasakal and Karasakal (2004).

Drezner et al. (2019) introduced a directional approach to gradual cover. Demand
points are represented by circular discs rather thanmathematical points and the facility
covers points within a given distance. To find a demand point’s partial cover by one
facility, the intersection area between two discs (the demand point’s disc and the
facility’s coverage disc) is calculated. An explicit formula for the intersection area is
given in Drezner et al. (2019). The partial cover of the demand point is the intersection
area divided by the demand point’s disc area.

2 An illustrative example

If several facilities exist in the area, the joint cover of a demand point is the union of
the individual areas covered by the facilities. This joint cover depends on the distances
to the facilities and on their directions. See Fig. 1 for an example. Six facilities are
located in the area. Their coordinates and cover radii Dj are depicted in Table 1. The
demand point is located at (0, 0) and the disc of the “demand point” of radius 1 is
marked by dots. The discs centered at the facilities are marked with thick circular
lines.
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Fig. 1 An illustrative example

Table 1 Parameters of six
facilities

j x j y j D j

1 2 0 1.8

2 0 2 1.5

3 − 3 0 2.7

4 0 − 2.5 2.4

5 2 2 2.6

6 0 − 1.5 1.2

Each of the six facilities covers part of the demand point’s disc. The joint cover of
the demand point is the union of intersection areas between the facilities’ discs and
the unit disc surrounding the demand point.

The joint cover of several facilities depends on the directions of the facilities. To
illustrate the effect of direction, consider in the illustrative example cover by two
facilities as if the other four facilities are not in the area. Facility 2 is to the north of
the demand point and facilities 4 and 6 are south of the demand point. The total area
covered by facilities 2 and 4 is the sum of the cover areas. Facility 2 covers part of the
northern region of the neighborhood while facility 4 covers part of the southern region
and there is no overlap. The same is true for facilities 2 and 6 and also facilities 1 and
3. However, facilities 4 and 6 are both to the south and cover the southern part of the
neighborhood. Because of the overlap between the cover areas, the total cover is the
area covered by facility 4 and no additional cover is provided by facility 6. The total
cover of facilities 1 and 4 is less than the sum of the areas and more than the largest
area. There is an intersection area between the two cover areas which is counted only
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once. Contrary to all gradual cover models, the joint cover depends on the direction.
In order to calculate the joint cover, it is not sufficient just to have for each facility the
value of its partial cover.

Evaluating the union of the individual cover areas is quite complex. Drezner et al.
(2019) suggested to estimate the union’s area by numerical integration using Gaus-
sian quadrature based on Legendre polynomials (Abramowitz and Stegun 1972). For
complete details the reader is referred to Drezner et al. (2019).

Drezner et al. (2019) experimented with the objective of maximizing the sum of
the partial covers. In the present paper we maximize the minimum partial cover at
all demand points. It turns out that maximizing the minimum cover is a much more
difficult problem than maximizing the sum of partial covers. Even if only one demand
point is not covered, the objective function is zero. Heuristic algorithmsmay be unable
to improve it.

3 Heuristic approaches for maximizing theminimum cover

We constructed and tested two heuristic algorithms based on tabu search and simulated
annealing which are similar to those proposed in Drezner et al. (2019) for the objective
of maximizing the sum of the partial covers. However, contrary to the experience
reported in Drezner et al. (2019), we found by computational experiments that for
maximizing the minimum partial cover the quality of the results for large problems
depends heavily on the starting solutions. We therefore constructed and tested five
approaches for generating starting solutions. Some perform well when the number of
facilities is small and the objective function is close to zero and others perform well
for larger values of p when the objective function is close to full coverage. We were
not able to find a starting solution approach that performs well for the whole range.

Consider a problem with n demand points andm potential facility’s locations. Note
that co-location is not beneficial for cover. When two facilities are located at the same
point, the intersection area for the facility with a smaller or equal cover radius is
included in the intersection area of the facility with the larger radius. The union is
the intersection area of the facility with a larger cover radius. Once the coverage by
selecting p potential locations can be calculated, the problem reduces to selecting the
best set of p out of m potential locations. If p and m are relatively small, the optimal
solution can be found by total enumeration or a branch and bound algorithm. We
constructed and tested two heuristic algorithms based on tabu search and simulated
annealing which are similar to those proposed in Drezner et al. (2019). However,
there are many implementation issues when applying these algorithms to the maximin
objective. Detailed discussions of these issues are described in Sects. 4 and 5.

Tabu search and simulated annealing are based on evaluating moves. A move con-
sists of removing one of the p selected potential locations and replacing it with one of
the non-selected m − p potential locations. There are p(m − p) possible moves. We
briefly summarize the two meta heuristics used in this paper.
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3.1 Tabu search

Tabu search (Glover and Laguna 1997) allows downward moves in the hope of
obtaining a better solution in subsequent iterations. A tabu list of forbidden moves
is maintained. Tabu moves stay in the tabu list for tabu tenure iterations. To avoid
cycling, the tabu list contains potential locations that were removed from the selected
set during the recent tabu tenure iterations. The process continues for a pre-specified
N iterations. Random range for the tabu tenure was suggested by Taillard (1991).

A vector V = {Vj , 1 ≤ j ≤ m} is maintained. Vj is the last iteration number at
which potential location j was removed from the selected set.

1. A starting solution is selected and is the best found solution. Set i ter = 0.
2. Set V to large negative numbers.
3. Set i ter = i ter + 1.
4. If i ter > N stop with the best found solution as the result of the algorithm.
5. Otherwise, the tabu tenure, T , is randomly selected in the range [Tmin, Tmax].
6. All moves are evaluated (one potential location is in and one is out) and the value

of the objective function is calculated for each move.
7. If a move yields a better solution than the best found one, continue evaluating all

the moves and perform the most improving move. Update the best found solution
and go to Step 2.

8. If no move yields a solution better than the best found solution, select the non-
forbidden move (moves for which i ter − Vin > T ) with the best value of the
objective function, whether improving or not.

9. Set Vout = i ter and go to Step 3.

3.2 Simulated annealing

Simulated annealing (Kirkpatrick et al. 1983) simulates the cooling process of hot
melted metals. Three parameters are required: the starting temperature T0, the final
temperature TF , and the number of iterations N . Based on these three parameters, the

temperature reduction factor α =
(
TF
T0

)1/N
is calculated.

1. A starting solution is selected and is the best found solution. Set i ter = 0 and
T = T0.

2. A random move is generated by randomly selecting a potential location from the
solution to be removed, and a non-selected potential location to be added to the
solution.

3. �F is the change in the value of the objective function by the move.
4. For �F ≥ 0: if the new solution is better than the best found solution, update the

best found solution. Perform the move and go to Step 2.

5. For �F < 0: perform the move with a probability π = e
�F
T , and do not perform

the move with a probability 1 − π .
6. Advance i ter = i ter+1 andmultiply T byα. If i ter ≤ N , go to Step 2.Otherwise,

stop with the best found solution as the result of the algorithm.
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4 Implementation

When maximizing the total coverage, these algorithms performed well starting from
a random solution (Drezner et al. 2019). However, when maximizing the minimum
coverage the algorithms performed poorly, especially for a large number of demand
points. Suppose that p facilities’ locations are randomly selected as a starting solution.
It is quite common that at least one demand point is not covered at all and therefore the
value of the objective function is zero. Furthermore, it is likely that all moves from this
solution would also have an objective of zero. Simulated annealing will always accept
the move regardless of the temperature thereby turning the process into a randomwalk
of moves “hoping” to get a positive objective.

Tabu searchwill have allmoves tied for the “best”move.Dependingon the computer
code used either the first or the last move will always be selected. When the “IF”
statement selects a move as the best one if it is greater than the best found move, the
first move is always selected (first checked facility will always be replaced and all
others will not change). When the “IF” statement selects a move as the best one if it
is greater than or equal to the best found move, the last move is always selected (last
checked facility will always be replaced and all others will not change). In both cases
the algorithm performs poorly.

It is therefore suggested to randomly select the “best” move if there are ties. This
is good practice for any tabu search or ascent/descent algorithms. This can be done
by either checking the moves in random order or by saving all tying moves in a list
and once all moves are checked, randomly select one tying move from the list. A very
simple approach to breaking ties was proposed in Drezner (2010).

4.1 Breaking ties

Tie Breaking Rule: The kth tying move replaces the selected move with probability
1
k .

By this rule the first move (or a new best found move) is always selected (k = 1).
When a tying move is found, it replaces the selected move with probability 1

2 , and so
on. When the process ends and K moves are tied for the best one, each of the tying
moves is selected with probability 1

K (Drezner 2010).

4.2 Identifying optimal zero objective

When the number of facilities p is small, it is possible that there is no solution where
all demand points have a positive cover. Therefore, the optimal value of the objective
function for such a p is zero minimum cover. We can find the minimum value of p for
which there exist a solution with all demand points having a positive cover. Demand
point i has a radius Ri and facility j has a cover distance Dj . We need to find the
smallest value of p for which there exist a solution where all demand points are closer
than Ri + Dj to at least one facility. This is the original set covering problem that can
be solved by an IP solver such as CPLEX (CPLEX, IBM ILOG 2009).
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Let di j be the distance between demand point i and potential location j . A matrix{
ai j

}
is defined:

ai j =
⎧⎨
⎩
1 | di j < Ri + Dj

0 | otherwise
(1)

A vector of binary variables x j is defined. The IP formulation is

p = min

{
m∑
i=1

x j

}

Subject to:
m∑
j=1

ai j x j ≥ 1 for i = 1, . . . n

x j ∈ {0, 1} for j = 1, . . .m (2)

Once the minimum value of p is found, there is no need to solve problems with a
smaller value of p because the optimal value of the objective function is zero and any
selection of p potential locations is tied for the optimum.

4.2.1 Isolated demand points

It is possible that one or more demand points do not get partial (or full) cover by any
potential location, i.e., being “isolated”. Such demand points cannot be even partially
covered and the optimal value of the objective function is zero for any value of p.
There is no feasible solution to the IP (2) because for such demand points ai j = 0
for all j . This is not a major issue when the objective is to maximize the total cover
(Drezner et al. 2019), but even in this case full coverage of all demand points cannot
be achieved for any value of p.

Another possibility is that there are no isolated demand points but one or more
demand points are “semi-isolated”, meaning that they get partial (or full) cover by
only one potential location. In this case, such potential locations must be selected
for locating a facility in order to get a positive value of the objective function. Such
demand points have ai j = 0 for all j except one and

∑m
j=1 ai j = 1. The optimal value

of the objective function cannot exceed the smallest partial cover (it can be full cover)
of such demand points for any value of p. In the Orange County data set, that was
tested in Sect. 6, there is one “semi-isolated” demand point that is covered by only one
potential location which is the location of that demand point. See Fig. 2 where this
demand point is marked with an arrow. In the case study, the set of potential locations
are all the demand points. We used r = 2 miles and R = 4 miles. A facility located
more than 4 miles from a demand point does not provide any cover. The demand point
marked with an arrow is at least 4.18 miles away from all other demand points (which
are also potential locations) and thus can be covered only by itself.

This argument can be extended to any number of potential locations covering each
demand point. For each demand point i there exist a list of all potential locations that
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Fig. 2 Full cover of Orange County by 44 towers

partially (or fully) cover it. If all such potential locations are selected, the maximum
possible cover of demand point i can be calculated. The minimum of these maximal
covers is an upper bound for the optimal value of the objective function. Another way
to interpret this property is that the value of the objective function when all potential
locations are selected (p = m) is an upper bound for any value of p because the value
of the objective function cannot increase when facilities are removed. This property
is true also for the total cover objective.

5 Improved starting solutions

We experimented first with randomly generated starting solutions on two case studies
detailed in the next section. The smaller instance has 131 demand points and 131
potential locations for facilities and the larger instance has 577 demand points and
577 potential locations for facilities. The results were disappointing for the larger
instances. We therefore designed several ways to generate better starting solutions
and obtain better results.

The following five approaches to generating starting solutions were tested:

Random: Random starting solutions.
Greedy: A greedy-like approach.
Reverse: A reverse greedy-like approach.
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Set Covering: Solving set covering considering only cover by the closest facility.
SetCovering2;Solving a variant of set covering based on the closest two facilities.

5.1 Greedy-like approach

Two lists are created. One includes all potential locations for facilities and the other
one includes all demand points. The following is repeated until p potential locations
are selected.

1. For each potential location in the list we find the number of demand points in the
list which would be partially covered by a facility located there within a distance
less than Dj + Ri .

2. The potential location that partially covers the largest number of demand points is
selected.

3. The selected potential location and all demand points that are nowpartially covered
are removed from the list of potential locations and the list of demand points. Go
to Step 1.

Note: if there are several potential locations tied for the the largest number of
partially covered demand points, ties are broken by the approach detailed in Sect. 4.1.
Breaking ties this way will usually yield different starting solutions when the process
is replicated with different random seeds.

When p is relatively large, it is possible that all demand points are partially covered
before p potential locations are selected. In this case, all remaining potential locations
are tied for the maximum of zero and the tie breaker rule in Sect. 4.1 selects one
of the remaining potential locations with equal probability for each until p potential
locations are selected.

5.2 The reverse greedy-like approach

We start with locating all m facilities and discard facilities one at a time until we are
down to p facilities. Each iteration, a facility whose removal leads to the highest value
of the objective function is removed. Ties are broken by the rule in Sect. 4.1. At the
begining of the process when close to m facilties are selected, there are likely ties for
full coverage. Since the tie breaking rule incorporates random draws, it is likely that
different starting solutions are obtained when different initial random seeds are used.

5.3 Using set covering solutions

It is reasonable to assume that the demand point with the minimum cover is partially
covered by only one facility. Using this assumption, if no such solution is found, the
maximum value of the objective function is known to be zero. If such a solution is
found, it has a positive value of the objective function. It may serve as a good starting
solution. Such a solution may be optimal for small values of p when in the optimal
solution the least covered demand point is indeed covered by only one facility.
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For simplicity, we first show the analysis for the casewhen all radii of demand points
are the same (Ri = R) and all cover distances by facilities are the same (Dj = D).
The modification required for the general case is detailed in Sect. 5.3.4. The cover of
a demand point by one facility is increasing when the facility is closer to that demand
point. Therefore, maximizing the minimum cover by one facility is equivalent to
minimizing, among all demand points, the minimum distance between the demand
point and its closest selected facility. The minimum distance between a demand point
and all the facilities is calculated for each demand point. The objective is to minimize
the maximum among these values.

This problem can be solved in several ways. We propose the following IP formu-
lation. Suppose that p potential locations are selected for locating facilities. Let d be
the maximum of the minimum distances among all demand points. We would like to
find the minimum possible d by selecting p potential locations. It can be done by a
binary search in the range D − R ≤ d ≤ D + R. A value of d = d in the range
is selected. We can find whether there is a selection of p potential locations that the
maximum of the minimum distances among all demand points is less than or equal to
d. We propose two options to determine it:

5.3.1 Option 1

Solving problem (2) defining ai j by (1) replacing di j < Ri + Dj by di j ≤ d . If the
solution is less than or equal to p such a solution exists. If it is greater than p no such
solution exists.

5.3.2 Option 2

Add the constraint
∑m

i=1 x j = p to the constraints in (2) and find whether there is a
feasible solution to the formulation without an objective function.

5.3.3 Binary search

A desired accuracy ε > 0 is given.

1. Set the range dmin = D − R, dmax = D + R.
2. Select d = 1

2 (dmin + dmax).
3. Find by Option 1 or Option 2 whether there is a selection of p potential locations

such that the minimum distance for each demand point is less than or equal to d .
4. If there is such a solution: set dmax = d , save this solution, and go to Step 6.
5. If there is no such solution: set dmin = d .
6. if dmax − dmin > ε go to Step 2. Otherwise, stop with the saved solution and the

corresponding d as the result of the search.

5.3.4 Unequal radii and cover distances

It is shown in Drezner et al. (2019) that the proportion cover P by one facility of
coverage distance Dj of a demand point of radius Ri for Dj − Ri ≤ d ≤ Dj + Ri is:
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P = 1

2π

[
2θ − sin 2θ + D2

j

R2
i

(2φ − sin 2φ)

]
(3)

where

θ = arccos
d2 + R2

i − D2
j

2dRi
; φ = arccos

d2 + D2
j − R2

i

2dD j
, (4)

The binary search is performed for P ∈ [0, 1]. The value of ai j can be determined
by substituting d into (3) because P is a monotonically decreasing function of d. Also,
when d ≤ Dj − Ri , then P = 1 and when d ≥ Dj + Ri , then P = 0. For example,
when d = Dj + Ri ,

d2+R2
i −D2

j
2dRi

= 2R2
i +2Dj Ri
2dRi

= Ri+Dj
d = 1 and θ = 0,

d2+D2
j−R2

i
2dD j i

= 2D2
j+2Dj Ri
2dD j

= Ri+Dj
d = 1 and φ = 0.

Thus, P = 0.

Similarly, when d = Dj − Ri , θ = π and φ = 0 and thus P = 1.

5.4 Starting solutions with two covering facilities

Since the set covering starting solutions did not perform well for large values of p,
we also experimented with finding a starting solution by the set covering approach
but requiring each demand point to be at least partially covered by two facilities. This
means changing the right hand side of the constraints in (2) from 1 to 2.

Since there might be “semi-isolated” demand points (see Sect. 4.2.1), we changed
problem (2) to accommodate such cases. If demand point i is covered (partially or
fully) by only one potential location j , we set ai j = 2. Such potential location must
be selected. Also, if demand point i is fully covered by at least one potential location,
we set ai j = 2 for all potential locations that provide full cover. If such a potential
location is selected, there is no need for selecting a second potential location.

The binary search described in Sect. 5.3.3, is applied to find the best solution for
a given p so that the second shortest distance to all selected potential locations is
maximized.

6 Case study: transmission towers in Orange County, California

We investigate covering Orange County, California with transmission towers of cell
phone, TV or radio. The data from the 2000 census for Orange County, California is
given in Drezner (2004) and was also used in Berman et al. (2010a, 2019), Drezner
andDrezner (2007, 2014), Drezner et al. (2006, 2019). There are 577 census tracts and
their population counts are given. The total Orange County population is 2,846,289.

Computer programs were coded in Fortran using double precision arithmetic and
were compiled by an Intel 11.1 Fortran Compiler using one thread with no parallel
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processing. They were run on a desktop with the Intel i7-6700 3.4 GHz CPU processor
and 16 GB RAM.

Full cover within 2 miles and no cover beyond 4 miles were applied in Berman
et al. (2019), Drezner and Drezner (2014), Drezner et al. (2019). To have comparable
results we assign a radius of Ri = 1 mile for each demand point and a cover radius of
Dj = 3 miles for each tower.

We tested simulated annealing and tabu search. The simulated annealing and tabu
search were replicated 10 times for each p. The number of iterations for simulated
annealing is 1000p(m− p) and for the tabu search N = 1000. For simulated annealing
we tested T0 = 0.1 and T0 = 0.001 and for both TF = 0.00001. We consider tying
solutions for the best one if they are within 10−6 of the best found solution.

6.1 Covering north Orange County

We first selected the northernmost 131 census tracts, all with a y-coordinate of at least
30, that were tested in Berman et al. (2019), Drezner and Drezner (2014), Drezner
et al. (2019). The total population residing in north Orange County is 639,958. Each
census tract is a demand point and a potential location for a tower thus m = n = 131.

For north Orange County the minimum value of p is 4 by solving (2).We solved the
instances for 4 ≤ p ≤ 12 towers. Every solution approach and every starting solution
matched the best known multiple times and in many cases for all ten runs. Since all
approaches for solving the north Orange County instances performed very well and
equally well, we do not see the need to report them.

It is interesting that ten towers cover all the demand while in Berman et al. (2019),
Drezner and Drezner (2014) using linear decay, the solution for covering all demand
is 13. The best found minimum cover for 10 towers is 0.96674 (Drezner and Drezner
2014). Run times using our procedure are quite short. For the largest instance (p = 12)
they are around 3–6 min for all runs.

6.2 Covering all of Orange County

There are 577 demand points and equal number of potential locations in Orange
County and thus m = n = 577. The minimum value of p is 18 by solving (2). We
tested 18 ≤ p ≤ 44 because full cover was found for p = 44.

The results from the random starting solutions were unusually bad. For tabu search
all results were zero except for p = 36 for which a maximum of 0.75181 was found
once while the best known solution is 0.91810. All results for simulated annealing for
p ≤ 32 were also zero. Note that when the best found solution is zero for simulated
annealing, the starting and ending temperatures do not affect the randomwalk because
everymove is accepted.We therefore report in Table 2 only results for the two versions
of simulated annealing from the random starting solutions for p ≥ 33. The best
known solutions (marked in boldface) include results obtained by further experiments
reported below. The algorithms did not perform well from random starting solutions.
Only two instances yielded the best known solution for T0 = 0.1 and three instances
for T0 = 0.001.
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Table 2 Covering Orange
County from a random starting
solution

p Best S.A. T0 = 0.1 S.A. T0 = 0.001

Known Best † Time‡ Best † Time‡

33 0.83173 0.82240 1 70.48 0.83173 1 77.01

34 0.88154 0.83737 1 75.42 0.86464 1 88.86

35 0.88411 0.88298 1 96.08 0.86464 1 91.96

36 0.91810 0.89796 1 88.51 0.89898 2 118.55

37 0.93675 0.93675 1 109.24 0.91861 4 149.53

38 0.95985 0.94415 1 111.73 0.94748 1 213.81

39 0.96705 0.96573 1 174.24 0.95985 1 198.46

40 0.97515 0.97236 4 211.81 0.97412 1 279.95

41 0.98897 0.98464 1 230.76 0.98756 1 336.44

42 0.99405 0.99405 2 278.63 0.99405 2 362.26

43 0.99918 0.99911 1 284.16 0.99911 2 372.18

44 1.00000 0.99981 1 316.32 1.00000 1 365.97

†Number of times best found solution obtained
‡Total time in minutes for all runs

The results for the greedy-like starting solutions are reported in Table 3. Simulated
annealing using T0 = 0.1 performed poorly. The best known solution was not found
even once. When the starting temperature is too high, most random moves during the
early stages of the search are accepted, causing simulated annealing to perform like
the random starting solution. We therefore re-ran the greedy-like starting solutions
using T0 = 0.0001, and used this starting temperature for the other starting solution
approaches, and report these in Table 3. Simulated annealing performed better than
tabu search.

The reverse greedy-like starting solutions results are reported in Table 4. The solu-
tion quality is similar to the quality of the greedy-like starting solutions. Simulated
annealing performed much better than tabu search.

We then tested the set covering starting solution. In Table 5 we report the values of
the objective function at the starting solution and the cover by only one facility. For
9 instances the value of the objective function is equal to the coverage by only one
facility. In Table 6 We report the results from the set covering starting solution. We
conclude fromTable 6 that the quality of the solutions by the two versions of simulated
annealing and tabu search are comparable with a slight edge to simulated annealing.
The simulated annealing using T0 = 0.0001 matched the best known solution 9 times,
using T0 = 0.001 matched it also 9 times and tabu search matched it 7 times. All of
them matched the best known solution for the five smallest values of p ≤ 22. None
of them matched the best known solution for the thirteen largest values of p ≥ 32.

Since the set covering starting solutions did not perform well for large values of p,
we also experimented with the starting solution described in Sect. 5.4. The minimum
possible p is 29. The results for larger values of p are better than those reported in
Table 6. They are much closer to the best known solution but failed to match it even
once. We therefore do not report the results of these experiments.
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Table 3 Covering Orange County from a greedy starting solution

p Best S.A. T0 = 0.0001 S.A. T0 = 0.001 Tabu Search

Known Best † Time‡ Best † Time‡ Best † Time‡

18 0.02723 0.00000 10 12.19 0.00000 10 12.20 0.00000 10 10.52

19 0.12326 0.00000 10 14.04 0.00000 10 14.04 0.00000 10 12.18

20 0.17440 0.00000 10 16.05 0.00000 10 16.04 0.00000 10 13.32

21 0.21968 0.00000 10 18.26 0.00000 10 18.26 0.21940 1 36.94

22 0.30988 0.30988 1 32.71 0.00404 1 20.63 0.30988 6 87.22

23 0.35513 0.00000 10 23.15 0.00000 10 23.16 0.35513 2 131.71

24 0.36449 0.36449 1 39.31 0.00137 1 25.94 0.36174 7 155.08

25 0.49943 0.49943 1 42.56 0.00404 1 28.89 0.49943 1 167.01

26 0.56640 0.56640 3 77.32 0.00547 1 32.07 0.56640 1 184.49

27 0.62252 0.60880 1 85.99 0.59345 1 51.35 0.62252 1 194.39

28 0.62965 0.62965 2 91.28 0.62965 1 56.34 0.62965 1 205.97

29 0.65966 0.65966 3 113.54 0.00404 3 43.00 0.65942 5 219.01

30 0.71520 0.71520 1 141.06 0.67328 1 84.55 0.67624 1 230.79

31 0.76668 0.76668 1 107.12 0.76668 1 69.67 0.76668 2 243.78

32 0.80536 0.80536 3 114.68 0.80536 1 134.94 0.80476 1 255.17

33 0.83173 0.83173 3 165.53 0.83173 1 124.60 0.83173 1 272.39

34 0.88154 0.87628 1 215.66 0.88154 2 194.86 0.84567 1 288.64

35 0.88411 0.88411 1 208.49 0.88411 2 204.75 0.88154 1 298.71

36 0.91810 0.89898 6 235.40 0.91161 1 190.47 0.91161 1 316.36

37 0.93675 0.93177 1 235.86 0.91861 3 233.89 0.92897 1 314.50

38 0.95985 0.95985 1 256.72 0.95985 1 257.46 0.94200 1 338.55

39 0.96705 0.96237 3 296.56 0.96705 1 253.11 0.95985 2 347.16

40 0.97515 0.97475 1 336.55 0.97515 1 360.71 0.97034 1 358.60

41 0.98897 0.98464 2 344.18 0.98897 1 346.68 0.97811 2 371.46

42 0.99405 0.99335 1 359.01 0.99405 1 343.76 0.99266 1 378.76

43 0.99918 0.99911 1 368.42 0.99911 2 371.04 0.99540 1 381.27

44 1.00000 1.00000 1 376.35 1.00000 1 365.44 0.99917 1 391.33

Best known results are marked in bold
†Number of times best found solution obtained
‡Total time in minutes for all runs

The solution for p = 44 facilities covering the whole demand is depicted in Fig. 2.
There is one “semi-isolated” demand point (see Sect. 4.2.1) marked with an arrow. As
expected, a facility is located there.

6.3 Summary of experiments

A summary of the results by four approaches for generating starting solutions and
three meta heuristic applications (two simulated annealing with different starting tem-
peratures and one tabu search) are summarized in Table 7. The number of times the

123



Directional approach to gradual cover: a maximin objective 135

Table 4 Covering Orange County from a reverse greedy starting solution

p Best S.A. T0 = 0.0001 S.A. T0 = 0.001 Tabu Search

Known Best † Time‡ Best † Time‡ Best † Time‡

25 0.49943 0.00000 10 42.45 0.00000 10 42.45 0.42473 1 52.30

26 0.56640 0.52245 1 62.16 0.00137 1 45.64 0.51698 1 68.79

27 0.62252 0.61670 1 98.14 0.60880 2 82.72 0.61276 1 118.72

28 0.62965 0.62965 2 190.34 0.62965 1 137.95 0.62252 7 199.95

29 0.65966 0.65966 5 196.66 0.65966 2 144.05 0.65966 2 211.09

30 0.71520 0.69468 1 247.01 0.69468 1 246.13 0.68714 1 224.26

31 0.76668 0.76668 8 251.15 0.76668 8 251.97 0.76668 4 231.24

32 0.80536 0.80536 4 267.67 0.80536 2 265.84 0.79309 2 241.48

33 0.83173 0.83173 5 281.42 0.83173 5 286.15 0.83173 1 249.71

34 0.88154 0.88154 1 299.18 0.88154 2 299.68 0.87890 1 259.43

35 0.88411 0.88411 2 303.83 0.88411 2 306.65 0.88154 3 272.64

36 0.91810 0.91810 2 311.62 0.89898 7 309.65 0.88825 1 292.48

37 0.93675 0.93543 2 325.87 0.92172 1 328.72 0.91006 1 300.31

38 0.95985 0.95272 1 347.07 0.95985 2 347.58 0.95754 1 312.62

39 0.96705 0.96237 3 353.83 0.96237 7 353.12 0.95985 2 328.83

40 0.97515 0.97236 4 369.23 0.97236 4 368.50 0.96983 1 332.40

41 0.98897 0.98897 1 376.07 0.98897 1 376.11 0.98008 1 339.43

42 0.99405 0.99266 3 379.76 0.99405 1 382.57 0.98835 1 351.77

43 0.99918 0.99918 2 386.07 0.99911 2 382.21 0.99724 1 360.44

44 1.00000 1.00000 1 375.16 0.99998 1 383.70 0.99929 1 366.47

Best known results are marked in bold
†Number of times best found solution obtained
‡Total time in minutes for all runs

Table 5 Minimum cover at the set covering starting solution

p One* All** Time† p One* All** Time† p One* All** Time†

18 0.02723 0.02723 37.21 27 0.41533 0.46453 42.28 36 0.74781 0.74781 42.57

19 0.12326 0.12326 38.91 28 0.48070 0.51698 40.45 37 0.74979 0.76062 43.09

20 0.14831 0.14831 39.59 29 0.51698 0.51698 42.21 38 0.81487 0.82133 42.46

21 0.19940 0.20193 41.28 30 0.57253 0.60869 40.95 39 0.81840 0.82133 43.85

22 0.21351 0.21470 39.00 31 0.57870 0.59595 43.09 40 0.82391 0.82972 43.73

23 0.27750 0.28189 41.04 32 0.62698 0.64033 42.71 41 0.84140 0.84140 44.20

24 0.30988 0.30988 38.55 33 0.64685 0.65451 43.09 42 0.87610 0.88154 42.07

25 0.36704 0.37632 41.25 34 0.66446 0.70518 43.26 43 0.88154 0.88154 42.51

26 0.39771 0.39771 40.69 35 0.69967 0.70518 48.00 44 0.88566 0.88825 42.60

*Minimum cover of demand points at the starting solution. Cover by only one facility
**Minimum cover of demand points at the starting solution. Cover by all facilities
†Time (s) for finding the starting solution
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Table 6 Covering Orange County from a set covering starting solution

p Best S.A. T0 = 0.0001 S.A. T0 = 0.001 Tabu Search

Known Best † Time‡ Best † Time‡ Best † Time‡

18 0.02723 0.02723 10 98.81 0.02723 10 98.37 0.02723 10 91.93

19 0.12326 0.12326 10 106.62 0.12326 10 106.25 0.12326 10 99.17

20 0.17440 0.17440 9 118.44 0.17440 10 118.06 0.17440 5 110.60

21 0.21968 0.21968 10 125.35 0.21968 9 125.68 0.21968 7 119.80

22 0.30988 0.30988 10 142.96 0.30988 10 143.09 0.30988 10 134.20

23 0.35513 0.32890 10 152.96 0.32890 9 154.20 0.32890 5 145.78

24 0.36174 0.32890 10 165.50 0.32890 10 165.61 0.32890 10 152.59

25 0.49943 0.49943 8 173.98 0.49943 6 175.31 0.49943 3 170.42

26 0.56640 0.56640 3 198.25 0.56640 2 197.87 0.52350 3 187.27

27 0.62252 0.57307 5 200.16 0.57307 8 202.58 0.55279 7 193.08

28 0.62965 0.62965 3 222.64 0.62965 7 221.73 0.60880 10 208.20

29 0.65966 0.65942 10 224.79 0.65942 10 225.99 0.65942 4 219.10

30 0.69468 0.68220 2 241.00 0.68399 2 242.80 0.68220 1 222.75

31 0.76668 0.76668 4 250.92 0.76668 7 247.00 0.76668 2 243.24

32 0.80536 0.80081 3 265.49 0.80115 6 263.73 0.80115 1 255.46

33 0.83173 0.82133 6 276.70 0.82133 8 277.26 0.82133 2 258.34

34 0.88154 0.86464 8 292.82 0.86464 10 291.67 0.86464 3 263.11

35 0.88411 0.88329 1 308.39 0.88154 5 304.72 0.88154 2 285.71

36 0.91810 0.88411 8 315.04 0.88411 5 317.69 0.88298 1 300.38

37 0.93675 0.90782 1 323.92 0.90146 1 324.11 0.89796 1 309.01

38 0.95985 0.82133 10 377.88 0.82133 10 376.25 0.82133 10 351.05

39 0.96705 0.82133 10 399.45 0.82133 10 400.36 0.82133 10 373.68

40 0.97515 0.92373 10 384.22 0.92373 10 382.06 0.92373 5 352.29

41 0.98897 0.89003 10 417.99 0.89003 10 416.26 0.89003 10 399.34

42 0.99405 0.93969 10 415.73 0.93969 10 412.47 0.93969 10 387.54

43 0.99918 0.93969 10 430.60 0.93969 10 428.06 0.93969 10 403.16

44 1.00000 0.91205 10 461.61 0.91205 10 459.14 0.91205 10 424.29

Best known results are marked in bold
†Number of times best found solution obtained
‡Total time in minutes for all runs

results of each experiment matched the best known results are reported. To provide
better visual assessment, when no results matched the best known one, the value is
entered as blank rather than zero. The count and sum for each row and each column
are also reported.

By inspecting Table 7 we conclude that simulated annealing performed better than
tabu search. The random starting solution is not useful and can be ignored. For small
values of p (especially for p ≤ 21) only the set covering starting solutions provided
any best known results. The other three approaches yielded an objective of zero for
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Table 7 Summary of matched best known solutions

p Random Greedy Reverse Set Covering Count Sum

(1) (2) (3) (1) (2) (3) (1) (2) (3) (1) (2) (3)

18 10 10 10 3 30

19 10 10 10 3 30

20 9 10 5 3 24

21 10 9 7 3 26

22 1 6 10 10 10 5 37

23 2 1 2

24 1 1 1

25 1 1 8 6 3 5 19

26 3 1 3 2 4 9

27 1 1 1

28 2 1 1 2 1 3 7 7 17

29 3 5 2 2 4 12

30 1 1 1

31 1 1 2 8 8 4 4 7 2 9 37

32 3 1 4 2 4 10

33 1 3 1 1 5 5 1 7 17

34 2 1 2 3 5

35 1 2 2 2 4 7

36 2 1 2

37 1 1 1

38 1 1 2 3 4

39 1 1 1

40 1 1 1

41 1 1 1 3 3

42 2 2 1 1 4 6

43 2 1 2

44 1 1 1 1 4 4

Count 2 3 0 13 12 8 11 10 3 9 9 7 87 –

Sum 3 4 0 22 14 15 33 26 7 67 71 47 – 309

(1) Simulated Annealing. T0 = 0.1 for random, T0 = 0.0001 for the rest
(2) Simulated Annealing with a starting temperature T0 = 0.001
(3) Tabu Search

these values of p. However, the set covering starting solutions did not match any of
the best known solutions for p ≥ 32.

The greedy-like starting solution performed best overall and the reverse greedy-like
starting solution is second. There are 27 instances and each instance was solved ten
times by twelve approaches for a total of 3240 runs. Less than 10% of the runsmatched
the best known solutions. The greedy-like approach matched the best known solutions
in 33 cases for a total of 51 runs. The reverse greedy-like approach matched the best
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known solutions in 24 cases for a total of 66 runs. The set covering got 185 runs that
matched the best known solutions, but 140 of them were obtained for the five smallest
problems.

There are nine instances out of 27 for which only one of the twelve approaches
matched the best known solution. In 13 instances only one starting solution approach
yielded the best known solution and the three others did not. Most of the approaches
are essential to get the best known solution. This suggests that better solutions may
be found for many of the instances by other solution approaches to be developed in
future research.

7 Conclusions

The objective of original cover location models is to cover demand within a given
distance by facilities. The gradual (or partial) cover replaces abrupt drop from full
cover to no cover by defining gradual decline in cover. We use a recently proposed
rule for calculating the joint cover of a demand point by several facilities termed
“directional gradual cover” (Drezner et al. 2019). Contrary to all gradual covermodels,
the joint cover depends on the direction. In order to calculate the joint cover, it is not
sufficient just to have for each facility the value of its partial cover. The objective is
to maximize the minimum cover of demand points by locating p facilities.

We constructed and tested two heuristic algorithms based on tabu search and simu-
lated annealing. However, contrary to the experience reported in Drezner et al. (2019),
we found out by computational experiments that the quality of the results depends
heavily on the starting solutions. We therefore constructed and tested five approaches
for generating starting solutions: (i) random starting solution; (ii) greedy-like start-
ing solution; (iii) reverse greedy-like starting solution; and (iv) two variants based on
solving the set covering formulation.

We tested the procedures on two case studies of coveringOrange County, California
by cell-phone towers. One is covering north Orange County (131 demand points) and
one covering the entire Orange County (577 demand points).

The procedures performed well solving the smaller north Orange County instances.
However, covering Orange County presents challenges that may be addressed by
developing other solution approaches. We were not able to find a starting solution
approach that performs well for the whole range of instances. For small values of p
the set covering based starting solution considering the cover by the closest facility
performed best. However, it performed poorly for large p instances. The greedy-like
and reverse greedy-like approaches performed well for large values of p but very
poorly on small values of p. The set covering based on the distances to the closest
two facilities did not perform well but performed better than the other variant of set
covering based on the closest facility for large values of p. The randomstarting solution
performed poorly for all values of p and can be removed from consideration.
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