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Abstract
We consider decision problems of rating alternatives based on their pairwise compar-
isons according to two criteria. Given pairwise comparisonmatrices for each criterion,
the problem is to find the overall scores of the alternatives. We offer a solution that
involves the minimax approximation of the comparison matrices by a common con-
sistent matrix of unit rank in terms of the Chebyshev metric in logarithmic scale. The
approximation problem reduces to a bi-objective optimization problem to minimize
the approximation errors simultaneously for both comparison matrices. We formu-
late the problem in terms of tropical (idempotent) mathematics, which focuses on the
theory and applications of algebraic systems with idempotent addition. To solve the
optimization problem obtained, we apply methods and results of tropical optimization
to derive a complete Pareto-optimal solution in a direct explicit form ready for fur-
ther analysis and straightforward computation. We then exploit this result to solve the
bi-criteria decision problem of interest. As illustrations, we present examples of the
solution of two-dimensional optimization problems in general form, and of a decision
problem with four alternatives in numerical form.

1 Introduction

Tropical (idempotent) mathematics, which is an area concerned with the theory and
applications of algebraic systems with idempotent addition, incorporates tropical opti-
mization as an important research domain. Since the first studies in early 1960s,
real-world optimization problems have often served to motivate and illustrate the
developments in tropical mathematics. Tropical optimization problems are formu-
lated and solved in the tropical mathematics setting, and appear in many recent works
in the area, which include the monographs and textbooks by Golan (2003), Heider-

B Nikolai Krivulin
nkk@math.spbu.ru

1 St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, Russia 199034

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10287-018-0341-x&domain=pdf
http://orcid.org/0000-0003-3070-9355
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gott et al. (2006), McEneaney (2006), Gondran and Minoux (2008), Butkovič (2010),
Maclagan and Sturmfels (2015), and a great many contributed papers.

Applications of tropical optimization cover various problems in project scheduling,
location analysis, decision making and in other fields. Some related examples can be
found, e.g., in Krivulin (2015a, c, 2016, 2017a, b, c) and Krivulin and Sergeev (2017).
There are multidimensional tropical optimization problems that can be solved directly
to describe all solutions in a compact closed vector form, whereas for other problems,
only algorithmic solutions are available, which offer numerical iterative procedures to
find a solution if one exists. For a brief overview of tropical optimization problems,
one can see, e.g., Krivulin (2014, 2015b).

Multi-criteria decision problems, in which one needs to rate alternatives by eval-
uating their scores from the results of pairwise comparisons under several criteria,
constitute a theoretically interesting and practically important class of problems in
decision analysis [see, e.g., Saaty (1990) and Gavalec et al. (2015)]. The most com-
mon solution to the problems is based on the Analytical Hierarchy Process (AHP)
method, developed in Saaty (1977, 1990, 2013), which involves calculating the prin-
cipal eigenvectors of pairwise comparison matrices. Available solutions include the
fuzzy AHP, interval AHP, and other techniques as in van Laarhoven and Pedrycz
(1983), Gavalec et al. (2015), Kubler et al. (2016) and Ahn (2017).

In the context of tropical mathematics, the decision problems of rating alternatives
are examined in Elsner and van den Driessche (2004, 2010), Gursoy et al. (2013)
and Tran (2013), which offer solutions that follow the AHP method with the tropical
eigenvectors or subeigenvectors used instead of the conventional principal eigenvec-
tors.

Another approach to the solution of the problems is proposed and developed in
Krivulin (2015c, 2016) and Krivulin and Sergeev (2017), which is based on the min-
imax log-Chebyshev approximation of pairwise comparison matrices. The approach
involves the representation of the approximation problems in terms of tropical math-
ematics as tropical optimization problems, and the direct solution of these problems
using methods and techniques of tropical optimization.

In this paper, we further develop the above approach to solve the problem of rating
alternatives from pairwise comparisons under two equally weighted (unweighted)
criteria. Given pairwise comparison matrices for each criterion, the problem is to find
the overall scores of the alternatives. We offer a solution that involves the minimax
approximation of the comparisonmatrices by a common consistent matrix of unit rank
in terms of the Chebyshev metric in logarithmic scale. The approximation problem
reduces to a bi-objective optimization problem to minimize the approximation errors
simultaneously for both comparison matrices.

Furthermore, we formulate the problem in terms of tropical mathematics as a trop-
ical optimization problem. To solve the optimization problem obtained, we apply
methods and results of tropical optimization to derive a complete Pareto-optimal
solution in a direct explicit form ready for further analysis and straightforward compu-
tation. We then exploit this result to solve the bi-criteria decision problem of interest.
As illustrations, we present examples of the solution of two-dimensional optimiza-
tion problems in general form, and of a decision problem with four alternatives in
numerical form.
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The paper is organized as follows. We start in Sect. 2 with a brief overview of
one and bi-criteria decision problems under consideration and their representation as
problems of the log-Chebyshev approximation of pairwise comparison matrices. In
Sect. 3, we give an introduction to basic definitions and notation, and present some
preliminary results of tropical algebra to provide an analytical framework for solv-
ing a bi-objective tropical optimization problem. Section 4 includes the main result,
which offers a direct complete Pareto-optimal solution to the bi-objective problem.
In Sect. 5, we illustrate the obtained result with examples of the complete solution
of two-dimensional optimization problems in general form. Finally, in Sect. 6 we
demonstrate application of the solution to a bi-criteria decision problem.

2 One and bi-criteria decision problems

The method of pairwise comparisons finds wide application in decision making to
estimate scores (rates, preferences) of alternatives (choices, decisions) when a direct
rating of the alternatives is impossible or infeasible. The method uses the result of
pairwise comparisons of alternatives with an appropriate scale under one or several
criteria to evaluate the individual score of each alternative [see, e.g., Thurstone 1927
and Saaty (1977, 1990) for further details and application examples].

2.1 Rating by pairwise comparison

Consider a problem to rate n alternatives from a given pairwise comparison matrix
A = (ai j ), where the entry ai j shows the relative priority of alternative i over j . The
matrix is symmetrically reciprocal, which implies that the equality ai j = 1/a ji > 0
holds for all i, j = 1, . . . , n. A pairwise comparison matrix A is called consistent if
its entries are transitive in the sense of the condition ai j = aikak j , which must hold
for all i, j, k = 1, . . . , n.

Furthermore, each consistent matrix A is of unit rank, and has entries ai j = xi/x j
given by a positive vector x = (xi ) that entirely specifies A. If a pairwise comparison
matrix A is consistent, its related vector x defines, up to a positive factor, the individual
scores of alternatives. In case that the matrix A is inconsistent, as is usually the case in
practice, an approximation problem arises to find an approximating consistent matrix
X = (xi j ) with xi j = xi/x j , or, equivalently, the corresponding vector x = (xi ).

The commonly used approach to the problem is based on the approximation in the
Frobenius (or spectral) norm [see, e.g., Saaty (1977, 1990, 2013)], which results in the
principal (Perron) eigenvector method, where the principal eigenvector of the pairwise
comparison matrix is taken as the vector of scores x. Other solutions, proposed and
examined in a range of works, including Saaty and Vargas (1984), Barzilai (1997),
Chu (1998), Farkas et al. (2003) and Gavalec et al. (2015), employ least squares
and logarithmic least squares methods, Chebyshev approximation and some other
techniques.

Another approach, which applies the best approximation of matrices in the Cheby-
shev sense on logarithmic scale, is proposed in Krivulin (2015c, 2016), where the
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minimax log-Chebyshev approximation is represented as a tropical optimization prob-
lem, which can be completely solved in an exact vector form.

2.2 Minimax approximation in log-Chebyshev sense

Consider the problem to approximate a pairwise comparison matrix A = (ai j ) by
a consistent matrix X = (xi j ), where ai j = 1/a ji and xi j = xi/x j for all i, j =
1, . . . , n. Observing that the matrix A is assumed to be positive, we can measure the
approximation error by the Chebyshev distance in logarithmic scale.

Let log denote a logarithmic function with a base greater than one. Since this
function is monotone increasing, the log-Chebyshev distance between A and X to be
minimized can be written as

max
1≤i, j≤n

| log ai j − log xi j | = log max
1≤i, j≤n

max

(
ai j
xi j

,
xi j
ai j

)
.

Moreover, the monotonicity property makes the problem of minimizing the last
logarithm equivalent to minimizing its argument. As a result, under the conditions
ai j = 1/a ji and xi j = xi/x j , the approximation problem reduces to minimizing

max
1≤i, j≤n

max

(
ai j
xi j

,
xi j
ai j

)
= max

1≤i, j≤n
max

(
ai j x j
xi

,
a ji xi
x j

)
= max

1≤i, j≤n

ai j x j
xi

,

where the functions on the right are minimized over all positive vectors x = (xi ).
Note that, in approximating reciprocal matrices by consistent matrices of unit rank,

minimizing the log-Chebyshev approximation error is equivalent to minimizing the
relative error

max
1≤i, j≤n

|ai j − xi/x j |
ai j

.

To verify the equivalence [see also Elsner and van den Driessche (2004)], we rep-
resent the relative error as

max
1≤i, j≤n

|ai j − xi/x j |
ai j

= max
i< j

max

{∣∣∣∣ xi
ai j x j

− 1

∣∣∣∣ ,
∣∣∣∣ai j x jxi

− 1

∣∣∣∣
}

= max
i< j

max

{
xi

ai j x j
− 1,

ai j x j
xi

− 1

}
= max

1≤i, j≤n

ai j x j
xi

− 1.

Since these error functions differ only by an additive constant, we conclude that both
approximation problems with the log-Chebyshev and relative errors are equivalent to
the problem of finding vectors x = (xi ) that

minimize max
1≤i, j≤n

ai j x j
xi

.
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Complete solutions to this and related problems in the context of rating alternatives
on the basis of pairwise comparisons, are given in Krivulin (2015c, 2016), Krivulin
and Sergeev (2017) and Krivulin (2018).

2.3 Pairwise comparison under two criteria

Suppose n alternatives are compared in pairs under two equallyweighted (unweighted)
criteria, which results in two pairwise comparison matrices A = (ai j ) and B = (bi j ).
The problem is formulated as a bi-criteria problem to find vectors x = (xi ) such that
the matrix X = (xi/x j ) simultaneously approximate both matrices A and B.

A solution to the problem can be obtained by applying the AHP method [see, e.g.,
Saaty (1977, 1990, 2013)]. In theweighted case, theAHP solution is based on separate
approximation of each matrix A and B by consistent matrices using their principal
eigenvectors. The vector of individual scores of alternatives is calculated as a weighted
sum of normalized principal eigenvectors, where the weights (priorities) of the criteria
can be found by the principal eigenvector method from a pairwise comparison matrix
of criteria, or obtained in other ways. Under the assumption of equal weights, the
weighted sum is reduced to the ordinary (unweighted) sum of normalized principal
eigenvectors.

In the framework of the minimax log-Chebyshev approximation, the problem can
be formulated as the bi-objective problem of finding positive vectors x = (xi ) to

minimize

(
max

1≤i, j≤n

ai j x j
xi

, max
1≤i, j≤n

bi j x j
xi

)
. (1)

The common way to handle this problem, which has two competing objectives in
conflict with each other, is to find a compromise solution that could not be improved.
The set of solutions, where one objective can be improved only at the expense of the
other objective, is usually considered the best compromise solution, which is called
the nondominated or Pareto-optimal solution [see, e.g., Ehrgott (2005), Luc (2008),
Pappalardo (2008), Benson (2009)].

Note that problem (1) can be solved using the technique described in Krivulin
(2015c, 2016) and Krivulin and Sergeev (2017). The solution involves a matrix C =
(ci j ) with the entries ci j = max{ai j , bi j } to find vectors x = (xi ) that

minimize max
1≤i, j≤n

ci j x j
xi

.

This approach presents an analogue of the AHP decision scheme, which applies the
minimax log-Chebyshev approximation instead of the principal eigenvector method
and the direct calculation of weighted sums. The solution is based on methods and
techniques of tropical optimization, and offers the result in a compact vector form.
However, this solution involves a scalarization of the bi-criteria problem, and hence
can hardly provide a way to obtain all Pareto-optimal solutions.
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Below, we further develop the tropical optimization approach to provide a direct,
explicit representation for all Pareto-optimal solutions of problem (1), which is given
in a form ready for further analysis and straightforward computation.

3 Algebraic definitions and preliminary results

We start with a brief overview of the algebraic definitions and preliminary results of
tropical mathematics from Krivulin (2015a, b, 2017a, b), which provide an analytical
framework for the formulation and solution of the bi-objective tropical optimization
problem to be considered in the next section. For further details at both basic and
advanced levels, and for application examples, one can consult, e.g., the recent books
by Golan (2003), Heidergott et al. (2006), McEneaney (2006), Gondran and Minoux
(2008), Butkovič (2010) and Maclagan and Sturmfels (2015).

3.1 Idempotent semifield

Consider a nonempty set X equipped with addition ⊕ and multiplication ⊗ such that
both operations are associative and commutative, addition is idempotent andhas zero0,
whereas multiplication distributes over addition, has identity 1, and is invertible for all
nonzero elements. The system (X,⊕,⊗,0,1), which is an idempotent commutative
semigroupwith zero under addition andAbelian group under multiplication, is usually
called the idempotent semifield.

Idempotent addition ⊕ conforms to the rule x ⊕ x = x for all x ∈ X, and induces
a partial order on X such that x ≤ y if and only if x ⊕ y = y. This partial order is
assumed extended to a compatible total order. Invertible multiplication ⊗ provides an
inverse x−1 for any x �= 0 to satisfy the identity xx−1 = 1. (Here and henceforth,
the multiplication symbol ⊗ is omitted to save writing.) The powers with integer
exponents indicate iterated products, and are defined as x p = xx p−1, x−p = (x−1)p,
and x0 = 1 for all nonzero x ∈ X and integer p ≥ 1. Moreover, the equation x p = a
is assumed solvable with respect to x for all a ∈ X and integer p ≥ 1, which extends
the power notation to rational exponents.

The operations in the semifield have the following properties with respect to the
order relation induced by the idempotent addition. First, the inequalities x ≤ x ⊕ y
and y ≤ x ⊕ y hold. Furthermore, the inequality x ⊕ y ≤ z is equivalent to the pair of
inequalities x ≤ z and y ≤ z. Both operations⊕ and⊗ aremonotone in each argument,
which implies that the inequality x ≤ y yields the inequalities x⊕ z ≤ y⊕ z and xz ≤
yz for all z ∈ X. The inversion is antitone,whichmeans that x ≤ y results in x−1 ≥ y−1

for all x, y �= 0. Finally, the exponential inequalities xq ≥ xr if x ≤ 1 and xq ≤ xr

if x ≥ 1 are valid under the condition q ≤ r , where q and r are positive rationals.
As examples of the idempotent semifield under study, consider real semifields

Rmax,+ = (R ∪ {−∞},max,+,−∞, 0) and Rmax,× = (R+,max,×, 0, 1), where R
is the set of reals, andR+ = {x ≥ 0| x ∈ R}. In the semifieldRmax,+, which is typically
called the max-plus algebra, addition ⊕ is defined as max and multiplication ⊗ as +.
The zero 0 and identity 1 are given by −∞ and 0. The inverse x−1 coincides with the
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opposite number −x in the conventional arithmetic. The power x y corresponds to the
arithmetic product yx , and is well-defined for any x, y ∈ R. The partial order induced
by the idempotent addition is compatible with the natural linear order on R.

The semifield Rmax,× is commonly referred to as the max-algebra, and has the
operations defined as⊕ = max and⊗ = ×, and neutral elements as 0 = 0 and 1 = 1.
The inverse and power notations have the standard meaning, and the partial order
extends to the natural linear order. The max-algebra will serve below as the basis for
the application of tropical optimization to the bi-criteria decision problem of interest.

3.2 Matrices and vectors

We now consider matrices with entries in X, and denote the set of the matrices
with m rows and n columns by Xm×n . Idempotent algebra of matrices over X is
routinely defined, where the matrix operations follow the standard rules with the
scalar operations ⊕ and ⊗ in place of the ordinary arithmetic addition and multipli-
cation. Specifically, for any matrices A = (ai j ) ∈ Xm×n , B = (bi j ) ∈ Xm×n and
C = (ci j ) ∈ Xn×l , and a scalar x ∈ X, matrix addition and multiplication, and scalar
multiplication are given by the entry-wise formulas

{A ⊕ B}i j = ai j ⊕ bi j , {AC}i j =
n⊕

k=1

aikck j , {x A}i j = xai j .

The properties of the scalar operations ⊕ and ⊗ with respect to the order relation
extend to the matrix operations, where the inequalities are understood entry-wise. A
matrix that has all entries equal to 0 is the zero matrix denoted by 0. A matrix with at
least one nonzero entry in each column is called column-regular.

A square matrix with all diagonal entries equal to 1 and the off-diagonal entries to
0 is the identity matrix denoted by I . The power notation serves to indicate repeated
multiplication of a matrix with itself, defined as A0 = I and Ap = AAp−1 for any
square matrix A and integer p ≥ 1.

Consider a square matrix A = (ai j ) ∈ Xn×n . The trace of A is given by

trA = a11 ⊕ · · · ⊕ ann =
n⊕

k=1

akk .

For any matrices A, B ∈ Xn×n and scalar x ∈ X, the following identities hold:

tr(A ⊕ B) = trA ⊕ trB, tr(AB) = tr(BA), tr(x A) = x trA.

To describe the solution to optimization problems in the sequel, we need to define
the function, which assigns to the matrix A the scalar

Tr(A) = trA ⊕ · · · ⊕ trAn =
n⊕

k=1

trAk . (2)

123



86 N. Krivulin

Provided that the condition Tr(A) ≤ 1 holds, we apply the asterate operator, also
known as the Kleene star, which yields the matrix

A∗ = I ⊕ A ⊕ · · · ⊕ An−1 =
n−1⊕
k=0

Ak

Finally, we use the the spectral radius of the matrix A, which is given by

λ = trA ⊕ · · · ⊕ tr1/n(An) =
n⊕

k=1

tr1/k(Ak). (3)

Amatrix with one column or row forms a vector overX. The vectors are considered
as column vectors unless otherwise specified. The set of column vectors with n ele-
ments is denoted by Xn . A vector with all entries equal to 0 is the zero vector denoted
by 0. A vector is called regular if it has no zero elements.

For any regular vector x = (xi ), the multiplicative conjugate transposition yields
the row vector x− = (x−

i ) with the elements x−
i = x−1

i if xi �= 0, and x−
i = 0

otherwise.

3.3 Vector inequalities

Given a matrix A ∈ Xm×n and a vector d ∈ Xm , consider the problem to solve, with
respect to the unknown vector x ∈ Xn , the inequality

Ax ≤ d. (4)

A direct solution to the problem is described as follows [see, e.g., Krivulin (2015a)].

Lemma 1 For any column-regular matrix A and regular vector d, all solutions to
inequality (4) are given by

x ≤ (d−A)−.

Now suppose that, given a matrix A ∈ Xn×n , the problem is to find regular vectors
x ∈ Xn to satisfy the inequality

Ax ≤ x. (5)

The next result, obtained in Krivulin (2015b), offers a direct solution.

Theorem 1 For any matrix A, the following statements hold:

1. If Tr(A) ≤ 1, then all regular solutions to (5) are given by x = A∗u, where u is
any regular vector.

2. If Tr(A) > 1, then there is only the trivial solution x = 0.

123



Using tropical optimization techniques in bi-criteria… 87

3.4 Identities and inequalities for traces

We start with an obvious binomial identity that is valid for any square matrices A, B ∈
Xn×n and positive integer m in the following form [see also Krivulin (2017a)]:

(A ⊕ B)m = Am ⊕
m⊕

k=1

⊕
i0+i1+···+ik=m−k

Ai0(BAi1 · · · BAik ).

Taking trace of both sides and using properties of traces yield

tr(A ⊕ B)m = trAm ⊕
m⊕

k=1

⊕
i1+···+ik=m−k

tr(BAi1 · · · BAik ).

After summing over m = 1, . . . , n, and rearranging terms, we obtain the identity

Tr(A ⊕ B) =
n⊕

k=1

trAk ⊕
n⊕

k=1

n−k⊕
m=0

⊕
i1+···+ik=m

tr(BAi1 · · · BAik ). (6)

Furthermore, we assume s, t > 0, and introduce two functions

G(s) =
n−1⊕
k=1

n−k⊕
m=1

⊕
i1+···+ik=m

s−k/m tr1/m(BAi1 · · · BAik ),

H(t) =
n−1⊕
k=1

n−k⊕
m=1

⊕
i1+···+ik=m

t−m/k tr1/k(BAi1 · · · BAik ).

(7)

The functions G and H possess a duality property that holds for the pair of inequal-
ities G(s) ≤ t and H(t) ≤ s, which appear to be equivalent. To verify this property,
suppose that, for some s and t , the first inequality G(s) ≤ t is valid. This inequality
is equivalent to the system of inequalities

⊕
i1+···+ik=m

s−k/m tr1/m(BAi1 · · · BAik ) ≤ t, m = 1, . . . , n−k; k = 1, . . . , n−1.

Multiplication of both sides of the inequalities by t−1sk/m , followed by raising to
the power m/k, leads to the system

⊕
i1+···+ik=m

t−m/k tr1/k(BAi1 · · · BAik ) ≤ s, m = 1, . . . , n − k; k = 1, . . . , n − 1.

123
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By summing up the inequalities in the system, we obtain the second inequality

H(t) =
n−1⊕
k=1

n−k⊕
m=1

⊕
i1+···+ik=m

t−m/k tr1/k(BAi1 · · · BAik ) ≤ s.

Observing that all transformations performed are invertible, we conclude that both
inequalities G(s) ≤ t and H(t) ≤ s are equivalent.

Let us discuss the computational complexity of the functions G and H . Consider
the function G, and rewrite it in equivalent form as

G(s) =
n−1⊕
k=1

n−k⊕
m=1

s−k/m tr1/m(Rkm), Rkm =
⊕

i1+···+ik=m

BAi1 · · · BAik ,

which shows that the computational time required to calculate G is determined by the
time taken to calculate the matrices Rkm for all k = 1, . . . , n and m = 1, . . . , n − k.

Note that Rkm is defined as the sum of products BAi1 · · · BAik over all nonnegative
integers i1, . . . , ik such that i1 + · · · + ik = m. Since the recurrence equation

Rkm = BRk−1,m ⊕ Rk,m−1A, R0m = Am, Rk0 = Bk, R00 = I,

is valid for all k,m ≥ 1, each matrix Rkm can be obtained from the matrices Rk−1,m
and Rk,m−1 through two matrix multiplications and one matrix addition. Observing
that one matrix multiplication takes at most O(n3) scalar operations, and the number
of matrices Rkm used in the coefficients of the function G is n(n − 1)/2, the overall
time needed to calculate G(s) is O(n5). The calculation of H(t) takes the same time.

4 Unconstrained bi-objective optimization problem

We are now in a position to describe our main result, which offers a complete solution
to a tropical bi-objective optimization problem in the form of a direct, explicit repre-
sentation of both Pareto frontier and related Pareto-optimal solution of the problem.

Suppose that, given square matrices A, B ∈ Xn×n , we need to find regular vectors
x ∈ Xn that solve the bi-objective optimization problem

minimize (x−Ax, x−Bx). (8)

To cope with this problem, we implement the approach, which is based on the use
of parameters, introduced to represent optimal values of the objective functions in
the Pareto frontier. We reduce the problem to a parametrized vector inequality, and
then exploit the existence condition for the solution of the inequality to evaluate the
parameters and to construct the Pareto frontier. Finally, the solutions of the inequality,
which correspond to the parameters in the Pareto frontier, are taken as a complete
Pareto-optimal solution to the problem.

The next statement offers a complete solution to problem (8).
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Theorem 2 Let A be a matrix with spectral radius μ > 0, B a matrix with spectral
radius ν > 0, and G(s) and H(t) be corresponding functions defined as (7).

Then the following statements hold:

1. If μ < G(ν), then the Pareto frontier of problem (8) is the set of points (α, β)

defined by the conditions

μ ≤ α ≤ G(ν), β = H(α), (9)

and all regular Pareto-optimal solutions are given by

x = (α−1A ⊕ β−1B)∗u, u > 0;

2. If μ ≥ G(ν), then the Pareto frontier is reduced to the single point

α = μ, β = ν,

and all regular solutions are given by

x = (μ−1A ⊕ ν−1B)∗u, u > 0.

Proof Denote the minimum values of the objective functions x−Ax and x−Bx in the
Pareto frontier of problem (8) by α and β. Then, all solutions are defined by the system
of equations

x−Ax = α, x−Bx = β.

Since we assume α and β to be the minimum values, the set of corresponding
regular solutions does not change if the equalities are replaced by the inequalities

x−Ax ≤ α, x−Bx ≤ β.

By using Lemma 1, we solve the first inequality with respect to Ax and the second
to Bx to rewrite the system in equivalent form as

α−1Ax ≤ x, β−1Bx ≤ x,

which then combine into one inequality

(α−1A ⊕ β−1B)x ≤ x.

According to Theorem 1, regular solutions of the last inequality exist if and only if
the following condition holds:

Tr(α−1A ⊕ β−1B) ≤ 1, (10)

and all solutions are given, through a vector of parameters u, by

x = (α−1A ⊕ β−1B)∗u, u > 0. (11)
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To examine the existence condition, we first use (6) for calculating

Tr(α−1A⊕β−1B) =
n⊕

k=1

α−k trAk ⊕
n⊕

k=1

n−k⊕
m=0

⊕
i1+···+ik=m

α−mβ−k tr(BAi1 · · · BAik ).

In this case, inequality (10) is equivalent to the system of inequalities

α−k trAk ≤ 1,

β−k
n−k⊕
m=0

⊕
i1+···+ik=m

α−m tr(BAi1 · · · BAik ) ≤ 1, k = 1, . . . , n.

By rearranging the terms to isolate powers of α and β on the right-hand side, and
taking roots, we rewrite the system as

tr1/k(Ak) ≤ α,

n−k⊕
m=0

⊕
i1+···+ik=m

α−m/k tr1/k(BAi1 · · · BAik ) ≤ β, k = 1, . . . , n.

We aggregate all these inequalities into two inequalities

α ≥
n⊕

k=1

tr1/k(Ak),

β ≥
n⊕

k=1

tr1/k(Bk) ⊕
n−1⊕
k=1

n−k⊕
m=1

⊕
i1+···+ik=m

α−m/k tr1/k(BAi1 · · · BAik ).

With the spectral radii of the matrices A and B given by

μ =
n⊕

k=1

tr1/k(Ak), ν =
n⊕

k=1

tr1/k(Bk),

and the notation

H(α) =
n−1⊕
k=1

n−k⊕
m=1

⊕
i1+···+ik=m

α−m/k tr1/k(BAi1 · · · BAik ),

the last inequalities take the more compact form

α ≥ μ, β ≥ ν ⊕ H(α). (12)

We now consider the feasible area in the αβ-coordinate system, which is defined
by these inequalities. Our aim is to determine Pareto-efficient points (α, β) in the
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feasible area, such that no coordinate of the point can be decreased without increasing
the other, and thus to construct the Pareto frontier for the problem.

Since all interior points cannot be Pareto-efficient, we need only examine the points
on the boundary of the area, which includes an open left vertical segment with α = μ,
lower-left segment, where β = ν ⊕ H(α), and an open lower horizontal segment
with β = ν. Observing that the points of both vertical and horizontal segments are
obviously not Pareto-efficient, we conclude that the Pareto frontier coincides with the
lower-left boundary segment of the feasible area.

To represent the Pareto frontier in a more convenient form, we examine the second
inequality at (12). First, assume that the condition

H(α) ≤ ν

is valid. In this case, the Pareto frontier, which is now the lower-left boundary of the
area given by the inequalities α ≥ μ and β ≥ ν, degenerates into one point

α = μ, β = ν.

We solve the inequality H(α) ≤ ν with respect to α by turning to the equivalent
inequalityG(ν) ≤ α. Taking into account that the inequalityα ≥ μ holds,we conclude
that, under the condition

μ ≥ G(ν),

solution (11), which simultaneously minimizes both criteria, is reduced to

x = (μ−1A ⊕ ν−1B)∗u, u > 0.

Otherwise, the Pareto frontier is given by the conditions

μ ≤ α ≤ G(ν), β = H(α),

whereas the Pareto-optimal solution takes the general form of (11). ��
We conclude this section with the observation that the solution obtained has a

polynomial time complexity. Indeed, the evaluation of the parameters α and β by
using the functions G(s) and H(t) requires at most O(n5) scalar operations. At the
same time, given the parameters α and β, the calculation of the Kleene star matrix
to represent the solution vector x takes at most O(n4) operations, which leads to the
overall polynomial time complexity of order O(n5).

5 Examples of two-dimensional problems

In this section,we consider illustrative examples of bi-objective two-dimensional prob-
lems, and provide complete Pareto-optimal solutions of these problems. The purpose
of this section is to demonstrate computational technique involved in the solution, and
to give illuminating geometrical illustrations of the results obtained.
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Example 1 Consider problem (8) with n = 2 and the matrices

A =
(
a11 a12
a21 a22

)
, B =

(
b11 b12
b21 b22

)
,

and assume the entries of both matrices to be nonzero.
To apply Theorem 2, we first evaluate the spectral radii μ and ν of the matrices A

and B. With the matrix powers, given by

A2 =
(

a211 ⊕ a12a21 a12(a11 ⊕ a22)
a21(a11 ⊕ a22) a12a21 ⊕ a222

)
, B2 =

(
b211 ⊕ b12b21 b12(b11 ⊕ b22)
b21(b11 ⊕ b22) b12b21 ⊕ b222

)
,

we apply (3) for n = 2 to obtain

μ = a11 ⊕ a1/212 a1/221 ⊕ a22, ν = b11 ⊕ b1/212 b1/221 ⊕ b22.

Furthermore, we use (7) to construct the functions

G(s) = s−1tr(BA), H(t) = t−1tr(BA),

where the trace of the matrix

BA =
(
a11b11 ⊕ a12b21 a11b12 ⊕ a12b22
a21b11 ⊕ a22b21 a21b12 ⊕ a22b22

)

on the right-hand sides is calculated as

tr(BA) = a11b11 ⊕ a12b21 ⊕ a21b12 ⊕ a22b22.

Next, we follow (2) to expand the Kleene star matrix (α−1A ⊕ β−1B)∗, whose
columns generate the solution vectors. Taking onto account that α ≥ μ ≥ aii and
β ≥ ν ≥ bii for i = 1, 2, we obtain

(α−1A⊕β−1B)∗ = I ⊕α−1A⊕β−1B =
(

1 α−1a12 ⊕ β−1b12
α−1a21 ⊕ β−1b21 1

)
.

We are now in a position to rewrite the statement of Theorem 2 in terms of the
two-dimensional problem under consideration. With the notation c = tr(BA), the
solution to the problem is given as follows. If μν < c, then the Pareto frontier (α, β)

of problem (8) is defined by the conditions

μ ≤ α ≤ ν−1c, β = α−1c. (13)

All regular Pareto-optimal solutions are written, using a vector u = (u1, u2)T , as

x =
(

1 α−1a12 ⊕ β−1b12
α−1a21 ⊕ β−1b21 1

)
u, u > 0. (14)
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Let us examine the collinearity of the columns in the generating matrix, given by

(
1

α−1a21 ⊕ β−1b21

)
,

(
α−1a12 ⊕ β−1b12

1

)
.

It is easy to see that these two columns are collinear if and only if the equality
condition (α−1a12 ⊕ β−1b12)(α−1a21 ⊕ β−1b21) = 1 holds. After expanding the
left-hand side, the condition becomes

α−2a12a21 ⊕ α−1β−1(a12b21 ⊕ a21b12) ⊕ β−2b12b21 = 1. (15)

It follows from the conditions on α and β at (13) that α ≥ μ ≥ (a12a21)1/2,
αβ = c ≥ a12b21 ⊕ a21b12, and β = α−1c ≥ ν ≥ (b12b21)1/2.

As a direct consequence, we obtain the following inequalities: α−2a12a21 ≤ 1,
α−1β−1(a12b21 ⊕ a21b12) ≤ 1, and β−2b12b21 ≤ 1. Note that the first inequality
holds as equality if and only if α = μ and μ = (a12a21)1/2. The second inequality
becomes an equality if c = a12b21 ⊕ a21b12, and the third does if α = ν−1c and
ν = (b12b21)1/2.

The inequalities obtained combine into one inequality, which has the same left-hand
side as the collinearity condition at (15),

α−2a12a21 ⊕ α−1β−1(a12b21 ⊕ a21b12) ⊕ β−2b12b21 ≤ 1. (16)

This composite inequality holds as equality, resulting in collinear columns in the
generating matrix, if and only if at least one component inequality holds as equality.

We now summarize the above discussion on the collinearity of columns to refine
the solution by dropping one of the columns, say the first, if they are collinear. We
consider the following conditions, which yield collinear columns.

First suppose that the condition α = μ = (a12a21)1/2 holds, Then, β = μ−1c, and
the Pareto-optimal solution is given up to a positive factor by the vector

(
a1/212 a−1/2

21 ⊕ a1/212 a1/221 b12c−1

1

)
.

Under the condition c = a12b21 ⊕a21b12, we have β = α−1(a12b21 ⊕a21b12), and
the solutions take the form of the vector

(
α−1a12 ⊕ αb12(a12b21 ⊕ a21b12)−1

1

)
, μ ≤ α ≤ ν−1(a12b21 ⊕ a21b12).

Note that these solutions are generated by the matrix with columns obtained from
the above vector by setting α = μ and α = ν−1(a12b21 ⊕ a21b12), which is given by

(
μ−1a12 ⊕ μb12(a12b21 ⊕ a21b12)−1 νa12(a12b21 ⊕ a21b12)−1 ⊕ ν−1b12

1 1

)
.
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Furthermore, with β = ν = (b12b21)1/2, we have α = (b12b21)−1/2c, which yields
the solution (

a12b
1/2
12 b1/221 c ⊕ b−1/2

12 b1/221
1

)
.

If none of the above conditions is valid, inequality (16) becomes strict, whichmeans
that the columns in the generating matrix are non-collinear. In this case, the solution
retains the general form (14), where the matrix cannot be reduced to a vector.

Consider the Pareto frontier, which forms a segment with the endpoints

(μ, μ−1c), (ν−1c, ν).

The first endpoint corresponds to the solution

xμ =
(

1 μ−1a12 ⊕ μb12c−1

μ−1a21 ⊕ μb21c−1 1

)
u, u > 0.

It follows from the above discussion that, if either the conditions μ = (a12a21)1/2

or c = a12b21 ⊕ a21b12 are satisfied, then the solution takes the form of unique (up to
a positive factor) vectors, given respectively by

(
a1/212 a−1/2

21 ⊕ a1/212 a1/221 b12c−1

1

)
,

(
μ−1a12 ⊕ μb12(a12b21 ⊕ a21b12)−1

1

)
.

The second endpoint yields the solution in the form

xν =
(

1 νa12c−1 ⊕ ν−1b12
νa21c−1 ⊕ ν−1b21 1

)
v, v > 0,

which, under the conditions c = a12b21 ⊕ a21b12 or ν = (b12b21)1/2, reduces to
unique vectors, defined respectively as

(
νa12(a12b21 ⊕ a21b12)−1 ⊕ ν−1b12

1

)
,

(
a12b

1/2
12 b1/221 c−1 ⊕ b1/212 b−1/2

21
1

)
.

In the case that μν ≥ c, the Pareto frontier shrinks into the single point

α = μ, β = ν,

and all regular solutions are given by

x =
(

1 μ−1a12 ⊕ ν−1b12
μ−1a21 ⊕ ν−1b21 1

)
u, u > 0.
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Fig. 1 Examples of Pareto frontiers with μν < c (left), and μν ≥ c (right), where c = tr(BA)

Fig. 2 Examples of Pareto-optimal solution cone (left), and single-vector solution (right)

If one of the conditionsμ = (a12a21)1/2, c = a12b21⊕a21b12, and ν = (b12b21)1/2

holds, the solution reduces to unique (up to a positive factor) vectors, given by

(
a1/212 a−1/2

21 ⊕ ν−1b12
1

)
,

(
μ−1a12 ⊕ ν−1b12

1

)
,

(
μ−1a12 ⊕ b1/212 b−1/2

21
1

)
.

Note that, in the case when the Pareto frontier degenerates into one point, the
solution does not have to be a unique (up to a positive factor) vector, and can be a cone
formed by two non-collinear vectors, if the above conditions do not hold.

In Figs. 1 and 2, we provide a graphical illustration of the discussion, given in the
framework of the Rmax,× semifield (max-algebra). Figure 1 offers examples of Pareto
frontiers in the form of a segment (left), and in the degenerate form of a point (right).

In Fig. 2, we demonstrate examples of the Pareto-optimal solutions in the form of
a cone (left), and of a vector (right).
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Example 2 Suppose that the matrices in problem (8) are symmetrically reciprocal, and
given by

A =
(

1 a
a−1 1

)
, B =

(
1 b
b−1 1

)
, a �= b.

By using results of the previous example, we obtain

μ = ν = 1, tr(BA) = ab−1 ⊕ a−1b = c.

Furthermore, we represent the matrix, which generates the solutions, as follows:

(α−1A ⊕ β−1B)∗ =
(

1 α−1a ⊕ β−1b
α−1a−1 ⊕ β−1b−1 1

)
.

Since a �= b, we have c = a−1b ⊕ ab−1 > 1, and hence the condition μν <

tr(BA) holds. The Pareto frontier (α, β) is defined as

1 ≤ α ≤ c, β = α−1c,

and all regular Pareto-optimal solutions are given by

x =
(

1 α−1a ⊕ β−1b
α−1a−1 ⊕ β−1b−1 1

)
u, u > 0.

Observing that β = α−1c, c = a−1b ⊕ ab−1 and α ≤ c, we have

(α−1a ⊕ β−1b)(α−1a−1 ⊕ β−1b−1) = α−2 ⊕ (ab−1 ⊕ a−1b)c−1 ⊕ α−2c−2 = 1,

which implies that the columns in the generating matrix are collinear. Taking one of
them, say the second, we reduce the generating matrix to one parametrized column

(
α−1a ⊕ αbc−1

1

)
, 1 ≤ α ≤ c.

Then, we see that, as α passes from 1 to c, the value of α−1a ⊕ αbc−1 changes
from a to b. As a result, all solutions can be generated by the columns (a,1)T and
(b,1)T to provide a new matrix representation, where the parameter α is eliminated,

x =
(
a b
1 1

)
u, u > 0.

The endpoints of the frontier segment are given by

(1, c), (c, 1),
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Fig. 3 Examples of Pareto frontier segment (left) and corresponding solution cone (right)

which correspond to the solutions

xμ =
(
a
1

)
u, u > 0; xν =

(
b
1

)
v, v > 0.

In Fig. 3, we give a graphical illustration in terms of the semifield Rmax,× for the
example considered. The Pareto frontier is shown on the left as the lower-left segment
of the hatched border of the feasible area for the criteria. The Pareto-optimal solutions
x are depicted on the right as the cone with hatched boundaries, generated by the
vectors xμ and xν .

It is clear from the illustration that, as b tends to a, the frontier degenerates into
the point (1, 1), whereas the solution cone does to the single (up to a positive factor)
vector x = (a, 1)T .

6 Application to bi-criteria decision problem

We now turn back to the problem of evaluating scores of alternatives based on pairwise
comparisons under two equallyweighted (unweighted) criteria, and apply results of the
previous sections to solve this problem. We use the solution approach, which involves
minimax log-Chebyshev approximation of pairwise comparison matrices, and leads
to the solution of the bi-objective problem in the form of (1).

It is not difficult to see that the representation of problem (1) in terms of the semifield
Rmax,× (max-algebra) yields problem (8). In this case, a complete Pareto-optimal
solution to the problem is given by the direct application of Theorem 2. Below, we
demonstrate the use of the theorem by an illustrative numerical example.

Example 3 Consider a problem to rate n = 4 alternatives using pairwise comparison
data obtained according to two equally weighted criteria, and given by the matrices
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A =

⎛
⎜⎜⎝

1 3 4 2
1/3 1 1/2 1/3
1/4 2 1 4
1/2 3 1/4 1

⎞
⎟⎟⎠ , B =

⎛
⎜⎜⎝

1 2 4 2
1/2 1 1/3 1/2
1/4 3 1 4
1/2 2 1/4 1

⎞
⎟⎟⎠ .

To find the solution vector x = (x1, x2, x3, x4)T by applying Theorem 2, we have
to start with evaluating the spectral radii μ and ν, and constructing the functions G
and H . First, we calculate the matrix powers

A2 =

⎛
⎜⎜⎝

1 8 4 16
1/3 1 4/3 2
2 12 1 4
1 3 2 1

⎞
⎟⎟⎠ , A3 =

⎛
⎜⎜⎝
8 48 4 16
1 6 4/3 16/3
4 12 8 4
1 4 4 8

⎞
⎟⎟⎠ , A4 =

⎛
⎜⎜⎝

16 48 32 16
8/3 16 4 16/3
4 16 16 32
4 24 4 16

⎞
⎟⎟⎠ ,

and then use (3) to obtain the spectral radius of A as follows:

μ = trA ⊕ tr1/2(A2) ⊕ tr1/3(A3) ⊕ tr1/4(A4) = 2.

In the same way, we form the matrices

B2 =

⎛
⎜⎜⎝

1 12 4 16
1/2 1 2 4/3
2 8 1 4
1 2 2 1

⎞
⎟⎟⎠ , B3 =

⎛
⎜⎜⎝

8 32 4 16
2/3 6 2 8
4 8 8 4
1 6 4 8

⎞
⎟⎟⎠ , B4 =

⎛
⎜⎜⎝
16 32 32 16
4 16 8/3 8
4 24 16 32
4 16 4 16

⎞
⎟⎟⎠ ,

to calculate their traces, and thus find the spectral radius of B to be

ν = 2.

Furthermore, with n = 4, the function G defined by (7) takes the form

G(s) = s−1tr(BA) ⊕ s−1/2 tr1/2(BA2) ⊕ s−1/3 tr1/3(BA3)

⊕ s−2tr(B2A) ⊕ s−1 tr1/2(B2A2) ⊕ s−1 tr1/2((BA)2) ⊕ s−3tr(B3A).

To evaluate the coefficients in the function, we calculate the matrices

BA =

⎛
⎜⎜⎝

1 8 4 16
1/2 3/2 2 4/3
2 12 3/2 4
2/3 3 2 1

⎞
⎟⎟⎠ , BA2 =

⎛
⎜⎜⎝

8 48 4 16
2/3 4 2 8
4 12 8 6
1 4 8/3 8

⎞
⎟⎟⎠ ,

BA3 =

⎛
⎜⎜⎝
16 48 32 16
4 24 8/3 8
4 18 16 32
4 24 4 32/3

⎞
⎟⎟⎠ , B2A =

⎛
⎜⎜⎝

8 48 6 16
2/3 4 2 8
8/3 12 8 4
1 4 4 8

⎞
⎟⎟⎠ ,

B2A2 =

⎛
⎜⎜⎝
16 48 32 24
4 24 8/3 8
4 16 32/3 32
4 24 8/3 16

⎞
⎟⎟⎠ , (BA)2 =

⎛
⎜⎜⎝
32/3 48 32 16
4 24 3 8
6 18 24 32
4 24 6 32/3

⎞
⎟⎟⎠ ,
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B3A =

⎛
⎜⎜⎝
32/3 48 32 16
4 24 3 8
4 16 16 32
4 24 4 16

⎞
⎟⎟⎠ .

Evaluating the traces of the matrices obtained yields

tr(BA) = 3/2, tr(BA2) = 8, tr(BA3) = 24, tr(B2A) = 8,

tr(B2A2) = 24, tr(BA)2 = 24, tr(B3A) = 24.

After substitution of traces and rearrangement of terms, the function becomes

G(s) = 24s−3 ⊕ 8s−2 ⊕ 241/2s−1 ⊕ 81/2s−1/2 ⊕ 241/3s−1/3.

Similarly, we construct the function

H(t) = t−1tr(BA) ⊕ t−2tr(BA2) ⊕ t−3tr(BA3) ⊕ t−1/2 tr1/2(B2A)

⊕ t−1 tr1/2(B2A2) ⊕ t−1 tr1/2((BA)2) ⊕ t−1/3 tr1/3(B3A),

and then reduce it to

H(t) = 24t−3 ⊕ 8t−2 ⊕ 241/2t−1 ⊕ 81/2t−1/2 ⊕ 241/3t−1/3.

We now construct the Pareto frontier for the problem as a set of points (α, β)

given by (9). We start with the adjustment of the range of the parameter α, defined
by the inequality μ ≤ α ≤ G(ν). Since, the substitution ν = 2 yields G(2) = 3, the
inequality becomes 2 ≤ α ≤ 3.

Next, we consider the equality β = H(α), and refine the function H(t) on the right-
hand side by taking into account the range 2 ≤ t ≤ 3. First, we note that the condition
t ≥ 2 leads to the inequalities 8t−2 ≤ 241/3t−1/3 and 81/2t−1/2 ≤ 241/3t−1/3. At the
same time, it follows from the inequality t ≤ 3 that 241/2t−1 ≥ 81/2t−1/2. As a result,
if 2 ≤ t ≤ 3, the function reduces to H(t) = 24t−3 ⊕ 241/2t−1 ⊕ 241/3t−1/3.

We denote θ = 241/4 ≈ 2.2134, and observe that, for all t ≥ θ , we have the
inequality 241/2t−1 ≤ 241/3t−1/3, and for t ≤ θ , the inequality 241/2t−1 ≤ 24t−3. In
this case, the function becomes H(t) = 24t−3 ⊕ 241/3t−1/3, which, together with the
boundary condition on α, yields the description of the Pareto frontier in the form

2 ≤ α ≤ 3, β = 24α−3 ⊕ 241/3α−1/3.

With α and β given by these conditions, and a vector u = (u1, u2, u3, u4)T , the
Pareto-optimal solution to the problem is represented as

x = (α−1A ⊕ β−1B)∗u, u > 0.

We conclude with the computation of two extreme solutions corresponding to the
endpoints of the Pareto frontier, and an intermediate solution for an inner point of
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the frontier segment. After calculating H(2) = 3 and H(3) = 2, we represent the
endpoints of the Pareto frontier segment as

(μ, H(μ)) = (2, 3), (G(ν), H(G(ν))) = (3, 2).

To obtain the matrix, which generates the solution under the conditions α = 2 and
β = 3, we take matrix

2−1A ⊕ 3−1B =

⎛
⎜⎜⎝
1/2 3/2 2 1
1/6 1/2 1/4 1/6
1/8 1 1/2 2
1/4 3/2 1/8 1/2

⎞
⎟⎟⎠ ,

and calculate its second and third powers

⎛
⎜⎜⎝

1/4 2 1 4
1/12 1/4 1/3 1/2
1/2 3 1/4 1
1/4 3/4 1/2 1/4

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1 6 1/2 2
1/8 3/4 1/6 2/3
1/2 3/2 1 1/2
1/8 1/2 1/2 1

⎞
⎟⎟⎠ .

With these powers, we obtain the generating matrix in the form

(2−1A ⊕ 3−1B)∗ =

⎛
⎜⎜⎝

1 6 2 4
1/6 1 1/3 2/3
1/2 3 1 2
1/4 3/2 1/2 1

⎞
⎟⎟⎠ .

It is easy to verify that all columns of this matrix are collinear to each other. Indeed,
multiplications of the first column by 6, 2 and 4 yield the second, third and fourth
columns, respectively. Therefore, we can drop all columns except one, say the first,
and write the solution, corresponding to the first endpoint of the Pareto frontier, as

xμ =

⎛
⎜⎜⎝

1
1/6
1/2
1/4

⎞
⎟⎟⎠ u, u > 0.

By setting u = 1, we have the vector of rates xμ ≈ (1, 0.1667, 0.5, 0.25)T .
In the similar way, we examine the second endpoint with α = 3 and β = 2. We

consider the matrix

3−1A ⊕ 2−1B =

⎛
⎜⎜⎝
1/2 1 2 1
1/4 1/2 1/6 1/4
1/8 3/2 1/2 2
1/4 1 1/8 1/2

⎞
⎟⎟⎠ ,
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and calculate its powers to obtain the generating matrix

(3−1A ⊕ 2−1B)∗ =

⎛
⎜⎜⎝

1 4 2 4
1/4 1 1/2 1
1/2 2 1 2
1/4 1 1/2 1

⎞
⎟⎟⎠ .

Since all columns in this matrix are collinear, we take the first column, and write
the solution as

xν =

⎛
⎜⎜⎝

1
1/4
1/2
1/4

⎞
⎟⎟⎠ v, v > 0.

With v = 1, we have xν = (1, 0.25, 0.5, 0.25)T .
Finally, we assume that α = θ , where θ = 241/4, and note that β = H(θ) = θ . We

form the matrix

θ−1(A ⊕ B) = θ−1

⎛
⎜⎜⎝

1 3 4 2
1/2 1 1/2 1/2
1/4 3 1 4
1/2 3 1/4 1

⎞
⎟⎟⎠ ,

and then find its second and third powers

θ−2

⎛
⎜⎜⎝
3/2 12 4 16
1/2 3/2 2 2
2 12 3/2 4
3/2 3 2 3/2

⎞
⎟⎟⎠ , θ−3

⎛
⎜⎜⎝

8 48 6 16
1 6 2 8
6 12 8 6
3/2 6 6 8

⎞
⎟⎟⎠ .

Calculation of the generating matrix yields

(θ−1(A ⊕ B))∗ =

⎛
⎜⎜⎝

1 2θ 4θ−1 2θ2/3
θ−1/2 1 θ2/12 θ/3
θ/4 θ2/2 1 4θ−1

θ2/16 3θ−1 θ/4 1

⎞
⎟⎟⎠ .

Since all columns are collinear, we take the first column to write the solution
corresponding to α = β = θ , as

xθ =

⎛
⎜⎜⎝

1
θ−1/2
θ/4

θ2/16

⎞
⎟⎟⎠w, θ = 241/4, w > 0.

If w = 1, the solution can be represented as xθ ≈ (1, 0.2259, 0.5533, 0.3062)T .
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Let us consider the obtained solutions

xμ ≈

⎛
⎜⎜⎝

1
0.1667
0.5
0.25

⎞
⎟⎟⎠ , xθ ≈

⎛
⎜⎜⎝

1
0.2259
0.5533
0.3062

⎞
⎟⎟⎠ , xν =

⎛
⎜⎜⎝

1
0.25
0.5
0.25

⎞
⎟⎟⎠

All of these solutions assign the highest rate to the first alternative. Next come the
third and fourth alternatives. Finally, the second is rated lower than or equal to (as an
extreme solution) the fourth alternative.

7 Conclusions

In this paper, we have developed an analytical solution to a bi-criteria decision problem
to rate alternatives on the basis of pairwise comparisons according to two criteria.
The problem was first formulated as a bi-objective optimization problem, where the
objective functions are defined as the errors of the log-Chebyshev approximation of
two symmetrically reciprocal matrices by a reciprocal matrix of unit rank. Then, we
represented and solved the bi-objective problem in terms of a general idempotent
semifield as a tropical optimization problem.

The solution approach is based on the introduction of two parameters that describe
the optimal values of the objective function, and the reduction of the bi-objective prob-
lem to a parametrized vector inequality. The conditions for the existence of solutions
to the inequality serve to describe the Pareto frontier for the optimization prob-
lem, whereas the corresponding solutions of the inequality act as the Pareto-optimal
solution. We used this approach to derive a complete solution to the optimization
problem in the form, which provides a direct description of both the Pareto frontier
and corresponding Pareto-optimal solutions, and involves a polynomial computational
complexity.

We have applied the solution of the optimization problem to solve the bi-criteria
decision problem of rating alternative in a compact vector form, which is ready for
formal analysis and practical implementation. Examples of solving optimization and
decision-making problems were given to illustrate the results obtained.

Possible lines of future research can include the application of tropical optimization
to solve bi-criteria decision problems, where the criteria have different weights, and
multi-criteria decision problems with equal and different weights.
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