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Abstract
Stochastic programming with recourse usually assumes uncertainty to be exogenous.
Our work presents modelling and application of decision-dependent uncertainty in
mathematical programming including a taxonomyof stochastic programming recourse
models with decision-dependent uncertainty. Thework includes several ways of incor-
porating direct or indirectmanipulation of underlying probability distributions through
decision variables in two-stage stochastic programming problems. Two-stage models
are formulated where prior probabilities are distorted through an affine transforma-
tion or combined using a convex combination of several probability distributions.
Additionally, we present models where the parameters of the probability distribution
are first-stage decision variables. The probability distributions are either incorporated
in the model using the exact expression or by using a rational approximation. Test
instances for each formulation are solved with a commercial solver, BARON, using
selective branching.

1 Introduction

Most practical decision problems involve uncertainty at some level, and stochastic
programming was introduced by Dantzig (1955) and Beale (1955) to handle uncer-
tain parameters in optimization models. Their approach was to model a discrete time
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decision process where uncertain parameters are represented by scenarios and their
respective probabilities. In a scenario-based stochastic program, decisions are made,
and uncertain values are revealed at discrete points in time. Some decisions are made
before the actual values of uncertain parameters are known, but the realization of the
stochastic parameters is independent of the decisions. This framework will later be
referred to as stochastic programs with exogenous uncertainty or stochastic program-
ming with decision-independent uncertainty. In recent years stochastic programs with
endogenous uncertainty or decision-dependent uncertainty have received increased
attention. Some early examples of papers with decision-dependent uncertainty are
Jonsbråten (1998), Jonsbråten et al. (1998) andGoel andGrossmann (2004). The terms
decision-dependent uncertainty and endogenous uncertainty are used interchangeably.

The main contribution of our paper is to provide new formulations for endoge-
nous stochastic programming models where the probabilities of future events depend
on decision variables in the optimization model, in the following called stochastic
programs with decision-dependent probabilities. This is a subclass of endogenous
stochastic programmingmodels that has received little attention in the literature. There
are some examples in the existing literature of problems where a decision may shift
from one predefined set of probabilities to another. To the best of our knowledge,
there are no examples in the literature where the relation is modeled as a continuous
function. In Sect. 2 a more thorough description of problem classes with endogenous
uncertainty is presented together with the choices a problem owner ormodeler needs to
make. An extended taxonomy for stochastic programs with endogenous uncertainty
and a literature review is suggested in Sect. 3. New formulations for models with
decision-dependent probabilities are found in Sect. 4. Several test instances of mod-
els using these formulations are presented in Sect. 5. Computational results follow in
Sect. 6.1 and conclusions in Sect. 7.

2 Decision problems with decision-dependent uncertainty

To discuss the concept of decision-dependent uncertainty, it is useful to first make
distinctions between the real world, the description of the real world presented to the
modeler as a problem and the actual mathematical model formulation. A problem
description belongs to one of these classes:

Deterministic problems are problemswhere there is no substantial uncertainty, there
may for example be available precise measurements of all parameters, or there may
be some official values available, such as the prices for today’s operations.

Exogenous uncertainty problems are problems with substantial uncertainty, where
the distribution of the stochastic parameters is known, for example based on historical
data or expert opinion. The information structure and the probability distributions do
not depend on any decisions in the model. Rather, the model will seek a solution that
does well in expectation. Some models also include different risk attitudes or use a
risk measure.

Endogenous uncertainty problems are problemswhere decisions at one point in time
will have a substantial impact on the uncertainty faced later, either in terms of when
information about the actual value of a stochastic parameter becomes available, or the
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Reality Problem classes

Model classes

Control Theory

Exogenous

Exogenous SP
Endogenous

Deterministic
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Deterministic
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Fig. 1 Classification problem and model classes. Stochastic programming models in black, examples of
other modelling paradigms in grey. Dashed line indicates problem relaxation, whereas the full stroke indi-
cates a mapping

probability that a certain realization of a parameter occurs. A problem is classified
as having endogenous uncertainty when decisions that are part of the problem to be
solved, influences the uncertainty of parameters that are also part of the problem.

Note that there is not a one to onemapping between reality and the problem descrip-
tion or between the problem and the model choice. Figure 1 shows some alternative
mappings. In the following, this is illustrated with some examples.

First, consider a river where a dam is to be built and the design parameters of the
dam are to be determined. The risk of a dam break must be balanced against the extra
cost of further reinforcing it. The stochastic inflow is not influenced by the way the
dam is built, rather the dam’s resistance to various inflows is. In this case, a problem
description may focus on the stochastic inflow, and describe this as a design problem
with exogenous uncertainty. The risk of a dam failure would depend on the stochastic
inflow, but the design decision would not affect the stochastic parameter in the model.
Alternatively, the decision-maker could decide tomodel the probability of a dam break
by linking the uncertainty description to the damdesign,making it decision-dependent.

Next consider a petroleum reservoir where there is some uncertainty about the
properties of the reservoir, and the decisions are the technology used for drilling
wells, where to drill wells, as well as when the wells should be drilled if drilled at
all. The actual petroleum content of the reservoir is fixed, but not known precisely.
The decision to drill test wells does not change the content of the reservoir as such,
but it may provide more information about the reservoir. The information process of
a problem is described by the combination of how uncertainty is resolved, and the
sequences of decisions made as a response to that. In this case, this information is not
revealed unless the owner drills the test wells, which incurs a substantial cost. This
is a situation where the underlying reservoir content is deterministic, but unknown
to the decision-maker. The decisions affect when information is revealed and what
information is revealed. This calls for a model that handles decision-dependent uncer-
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tainty, even if the underlying reservoir size is deterministic. In the same reservoir
case, the choice between alternative drilling technologies is another, similar, consid-
eration. Some drilling approaches may jeopardize the reservoir itself by introducing
leaks between layers in the ground, something that could render part of the resources
unrecoverable. In this way, our decisions may change the recoverable volume from
said reservoir. Note that now it is not only the information revelation that leads to a
decision-dependent uncertainty formulation, now there is another uncertain variable
also depending on the decision: the drilling hazard. For this oil reservoir with fixed but
unknown petroleum content we may choose to ignore the decision-dependent part of
the information structure. The resulting model is a traditional stochastic program with
decision-independent recourse, but missing important parts of the decision-maker’s
problem.

The right-hand part of Fig. 1 shows examples of model classes. Moving on to
formulating a specific model to aid the solution of a certain problem, some relaxations
or approximationswill usually have to bemade, often to reduce cognitive load ofmodel
users or to improve computational tractability, or both. While this work focuses on
stochastic programming, also other modeling paradigms exist such as control theory,
game theory and several others that may be considered for stochastic problems. The
following literature review and taxonomy is limited to include problems described
with endogenous uncertainty and where the model choice is stochastic programming
with recourse.

3 Taxonomy

This section presents a taxonomy and literature review for stochastic programs with
decision-dependent uncertainty. Our taxonomy expands previously presented classi-
fications of such problems and is summarized in Fig. 2.

Formulation

Relax NAC
(disjunctive NAC formulation)

Direct manipulation of
tree structure

(disjunctive node formulation)

Stochastic Programming w/Recourse

Discrete
Distribution

Decision-Dependent
Distortion

Information
Revelation

Continuous
Distribution

Continuous
dependency

Exogenous
Uncertainty

Can Be Reformulated
to SP w/Recourse

Discrete
selection

Add/Delete
Stochastic Parameters

Decision-Dependent
Distribution Selection

Decision-Dependent
Parameters

Decision-Dependent
Probabilities
(Type 1)

Endogenous
Uncertainty

Decision-Dependent
Probabilities and

Information Structure (Type 3)

Decision-Dependent
Information Structure

(Type 2)

Fig. 2 Classification of endogenous SPs

123



Decision-dependent probabilities in stochastic programs with… 373

The literature on endogenous uncertainty in stochastic programming is sparse. This
should come as no surprise as one quickly departs from the domains where well
performing solution techniques are available, notably for convex programming in
general and linear programming in particular, as noted by Varaiya and Wets (1989).
Jonsbråten (1998) and Jonsbråten et al. (1998) proposed a generalized formulation of
stochastic programswith recourse ofwhich the standardSP is a special case (Eq. 1), and
suggested the classification of stochastic programs into two subclasses: endogenous
and exogenous uncertainty.

min E p f (x) =
∫

Ξ

f (ξ ; x)p(dξ) such that (p, x) ∈ K ⊂ P × R
N (1)

P is a subset of the probability measures on Ξ and K are the constraints linking
the decision x to the choice of p.

The problems discussed in the paper by Jonsbråten et al., concern situations where
the time at which information becomes available is determined by the decisions in
preceding stages. As an example, they use stochastic production costs. Only after
making the decision of which product to make, is the uncertainty of this particular
product revealed. The other possible products’ true costs remain hidden (stochastic)
until a decision to produce them is made.

Several authors (Dupačová 2006; Tarhan et al. 2009) identify two subclasses within
endogenous stochastic programs. The first class of problems is where the probabil-
ities are decision-dependent, denoted as Decision-Dependent Probabilities or Type
1. Problems with decision-dependent probabilities are discussed further in Sect. 3.2.
Equation (2) further generalizes Eq. (1) to include the possibility that the probability
measure also depends on x :

min E p f (x) =
∫

Ξ

f (ξ ; x)p(x; dξ) such that (p, x) ∈ K ⊂ P × R
N (2)

The other subclass is denoted Type 2, and concerns models where the time of
the information revelation is decision-dependent. That means that decision variables
are used to make realization of uncertain variables known earlier in time, as in buy-
ing information or drilling a well. Often type 2 problems are called problems with
Decision-Dependent Information Structure. They are discussed further in Sect. 3.1.

Some problems may have both kinds of decision-dependent uncertainty, and we
suggest adding a Type 3 to the taxonomy to include such problems. To the best of our
knowledge, problems of Type 3 have not yet been discussed in the literature. For an
overview of the different problem classes and their subclasses, see Fig. 2.

3.1 Decision-dependent information structure

By decision-dependent information structure we mean all ways of altering the time
dynamics of a stochastic program. This includes the time of information revelation, as
in endogenous problems of Type 2, as well as the addition of stochastic parameters,
and deletion of stochastic parameters. Another example is problems for which the time
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when uncertainty is redefined/refined is a decision variable, such as in using sensors
or in acquisition of information. This category includes all stochastic programs with
endogenous uncertainty were nonanticipativity constraints (NAC) can be manipulated
by decision variables, whereas the probabilities remain fixed.

3.1.1 Information revelation

The subcategory of information revelation has receivedmost attention in the literature,
following Jonsbråten (1998), Jonsbråten et al. (1998) andGoel andGrossmann (2004).
The most used technique is to relax the nonanticipativity constraints of a stochastic
program, allowing selection of the times of branching of the tree (when scenarios
become distinguishable), see discussion below.

Goel and Grossmann (2004) formulated a model for development of natural gas
resources where the time of exploitation can be selected in the model. This introduces
endogenous uncertainty as the information revelation depends on which wells are
drilled and when, and it is formulated as a disjunctive programming problem where
the nonanticipativity constraints depend on the decision variables related to drilling.
They first considered a model with pure decision-dependent uncertainty, and later
generalized it to a hybridmodel including both endogenous and exogenous uncertainty
(Goel andGrossmann2006). This formof endogenous uncertainty arises inmulti-stage
models, where the decisions to explore a field unravels the true parameter values of the
field that is explored, but not the others. As this decision can be made at different times
(stages), it is only relevant in a multi-stage environment. Effectively their approach
is a model with decision-dependent nonanticipativity constraints, and they develop
several theoretical results demonstrating redundancy in the constraints and that the
number of nonanticipativity constraints can be reduced accordingly. This improves
the practicality of the model by making it more readily solvable. The models are still
quite large, though, and they propose a branch and bound solution procedure based
on Lagrangian duality.

Solak (2007) presents portfolio optimization problems where the timings of the
realizations are dependent on the decisions to invest in the projects. The application
is from R&D in the aviation industry where a technology development portfolio is to
be optimized. Solak introduces gradual resolution of uncertainty, where the amount
invested in a project increases the resolution of the uncertainty regarding that project
up to a point where all uncertainty has been resolved. The author proposes solution
approaches for the multi-stage stochastic integer programming model with focus on
decomposability, sample average approximation andLagrangian relaxationwith lower
bounding heuristics.

A model with gradual resolution of information is also presented by Tarhan et al.
(2009), another petroleumapplicationwith amulti-stage non-convex stochasticmodel,
solved by a duality-based branch and bound method. In a series of papers Colvin and
Maravelias (2008), Colvin (2009a) and Colvin andMaravelias (2010) study a stochas-
tic programming approach for clinical trial planning in new drug development, where
information revelation depends on decisions. Colvin and Maravelias (2009b) build
on the work by Goel and Grossmann. They further improve on a reformulation with
redundant nonanticipativity constraints removed and observe that few of the remaining
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are binding. They add the constraints only as needed through a customized branch-
and-cut algorithm. The model is formulated as a pure MIP. Solak et al. (2010) deal
with a project portfolio management problem for selecting and allocating resources to
research and development (R&D) projects to design, test and improve a technology,
or the process of building a technology.

Boland et al. (2008) also build on the work of Goel and Grossman in their open pit
mining application where geological properties of the mining blocks (quality) varies,
and there is a mix of already mined blocks, and blocks where the quality is uncertain
until the point of development. They find that they can reuse existing variables for
nonanticipativity constraints and thus reduce the size of the problem. They exploit the
problem structure to omit a significant proportion of the nonanticipativity constraints.
Boland et al. implemented a version of their model with “lazy” constraints but found
that this did not improve performance for their model instances.

Peeta et al. (2010) address a pre-disaster planning problem that seeks to strengthen
a highway network whose links are subject to random failures due to a disaster. Each
link may be either operational or non-functional after the disaster. The link failure
probabilities are assumed to be known a priori, and investment decreases the likeli-
hood of failure. Escudero et al. (2016) examine a resource allocation model and an
algorithmic approach for a three-stage stochastic problem related to managing natu-
ral disasters mitigation. The endogenous uncertainty is based on the investment, for
getting a better accuracy on the disaster occurrence.

A later improvement on thework byGoel andGrossman is byGupta andGrossmann
(2011), and they also propose new methods for obtaining a more compact represen-
tation of the nonanticipativity constraints. In addition, they propose three solution
procedures. One is based on a relaxation of the problem in what they call a k-stage
constraints problem, where only nonanticipativity constraints for a given number of
stages are included. Secondly, they propose an iterative procedure for nonanticipativity
constraint relaxation, and third they present a Lagrangian decomposition algorithm.
The application is the same as in Goel and Grossmann (2006). Apap and Grossmann
(2017) discuss formulations and solution approaches for stochastic programs with
Decision-Dependent Information Structure.

An alternative and equivalentway of formulating stochastic programming problems
with recourse is using a node formulation of the scenario tree. As an alternative to the
disjunctive nonanticipativity constraints (NAC) formulation with relaxation of NAC,
problems with decision-dependent information revelation may be formulated using
a disjunctive node formulation. However, to our knowledge, such a model has never
been presented in the literature.

In an early paper, Artstein andWets (1994) present a model where a decision-maker
can seek more information through a sensor, in a model that allow a redefinition of
the probability distribution used in the stochastic program. This refines the decision
process in that it acknowledges that the inquiry process may itself introduce errors.
They solve an example based on a variant of the newsboy problem where the newsboy
may perform a poll/sampling to gain information about the probability distribution,
possibly at a cost. They provide a general approach to the situationwhen the underlying
uncertainty is not known, and decisions may influence the accuracy of the uncertainty
in a stochastic program.
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3.1.2 Problems that may be reformulated as ordinary SP

In addition to problems with decision-dependent information revelation, other struc-
tures are conceivable, that may be reformulated as stochastic programs with recourse.
This includes deleting stochastic variables, adding stochastic variables, andmodifying
the support. This may be achieved using binary variables. For a recent example, see
Ntaimo et al. (2012) where a two-stage stochastic program for wildfire initial attacks
is presented. The cost incurred by each wildfire is one of two possible outcomes for
each scenario, depending on whether the fire can be contained through an effective
attack or not. The model is formulated as a two-stage stochastic (integer) program
with recourse, with binary variables to select which set of recourse costs is incurred in
stage two based on the selection of attack means available as a consequence of deci-
sions in stage one. The scenarios are based on fire simulations, giving a large number
of scenarios. The model size is reduced by applying sample average approximation
(SAA).

3.2 Decision-dependent probabilities

The first attempt to model explicitly the relationship between the probability measure
and the decision variable was made by Ahmed (2000). He formulates single-stage
stochastic programs that are applied to network design, server selection and p-choice
facility location. Ahmed uses Luce’s choice axiom to develop an expression for the
probability that, e.g., a path is used, and this probability depends on the design variables
of the network. The resulting model is 0–1 hyperbolic program, which he solves by a
binary reformulation and by genetic programming in addition to a customized branch
and bound algorithm.

For some problemswith decision-dependent probabilities, the decision dependency
may be removed through an appropriate transformation of the probability measure,
which is called the push-in technique by Rubinstein and Shapiro (1993, 214f), see
also Pflug (1996, 143ff). Dupačová (2006) notes that in some cases, dependence of
distribution P on decision variable x can be removed by a suitable transformation of
the decision-dependent probability distribution (push-in technique).

Escudero et al. (2014) have developed a multi-stage stochastic model including
both exogenous and endogenous uncertainty. They also include risk considerations
in the form of stochastic dominance constraints. The resulting model is a mixed-
integer quadratic program where the weights (probabilities) of each scenario group
and/or outcomes of the stochastic parameters may be determined by decision variables
from previous stages. To be able to solve large problem instances the authors apply a
customized Branch and Fix Coordination (BFC) parallel algorithm.

For the problems in this section, only probabilities depend on the decision variables,
while the information structure is fixed. To be specific, nonanticipativity constraints
are not manipulated by decision variables. Dupačová (2006) identifies two funda-
mental classes of problems with endogenous probabilities. One where the probability
distribution is known, and the decisions influence the parameters of the probability
distribution, the other where some decision will cause the probability distribution to
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be chosen between a finite set of probability distributions. We extend her taxonomy
with a third category, decision-dependent distribution distortion.

In principle, both discrete and continuous distributions may be considered, where
the use of a finite set of scenarios as an approximation also for continuous distributions
is the most used method for modeling such problems. The authors are not familiar
with any attempts to model and solve problems with decision-dependent probabilities
using continuous probability distributions, and in the following only problems with
discrete probability distributions, using a finite set of scenarios, are considered.

3.2.1 Decision-dependent distribution selection

Viswanath et al. (2004) consider the design of a robust transportation network where
links can be reinforced by investing in additional measures. By investing, the proba-
bility of survival of a disruptive event is improved. The model is an investment model
with a choice between a finite number of sets of probabilities, typically two, pe and qe
where pe is used if there is investment, qe otherwise. The random variables take values
0 or 1 with probabilities given above. Dupačová (2006) also discusses the subset of
problems where available techniques from binary and integer programming can be
can be applied to choose between a finite number of set of probability distributions
with fixed parameters.

3.2.2 Decision-dependent parameters

Selection between a discrete number of parameter values can be implemented using
a generalization of the technique described above. We suggest some models where
parameters are continuous decision variables in this work, see Sect. 4. An example
of using the exact expression for a probability distribution is shown in Sect. 4.2.1
and a rational approximation in Sect. 4.2.2. We are not aware of any other attempts
to include models of Type 1 where the probability distribution parameters can be set
continuously.

3.2.3 Distortion

We also include some models where some prior set of probabilities for a distribution
with known parameters are distorted. A distortion of these probabilities controlled
by decision variables is introduced. This distortion could be applied in form of a
transformation of one set of probabilities or by combining several sets of probabili-
ties. Examples of linear transformations in Sect. 4.1 are given, distorting one set of
prior probabilities in Sect. 4.1.1 and using the convex combination of several sets of
probabilities in Sect. 4.1.2.

The authors are not aware of any other works that present this kind of model,
however Dupačová (2006) makes notes on the stability of optimal solutions. She
uses probability distribution contamination to investigate the case where a convex
combination of several distributions can be applied for convex problems.
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3.2.4 Related work

A bit on the side, Held andWoodruff (2005) consider a multi stage stochastic network
interdiction problem.The goal is tomaximize the probability of sufficient disruption, in
terms of maximizing the probability that the minimum path length exceeds a certain
value. They present an exact (full enumeration) algorithm and a heuristic solution
procedure.

Another approach to uncertainty in optimization is to search for solutions that are
robust in the sense that they are good for the most disadvantageous outcomes of the
stochastic parameters. Several research groups are working with robust optimization,
going back to Ben-Tal et al. (1994), Ben-Tal and Nemirovski (1998), Bertsimas and
Sim (2003, 2004). Also, rather than taking a worst-case approach, introducing some
ambiguity to the underlying probability distribution has been demonstrated in the
works of Pflug and Wozabal (2007) and Pflug and Pichler (2011). In three recent
papers, robust optimization is extended to the situation where uncertainty sets are
decision-dependent, see Nohadani and Sharma (2016), Lappas and Gounaris (2016,
2018). This approach should be considered as a possible Type 4 decision-dependent
uncertainty and is also described for multi-stage robust programs.

Lejeune and Margot (2017) present a static model for aeromedical battlefield evac-
uation. Endogenous uncertainty is used to make the availability of ambulances depend
on their location and of allocation of patients.

Finally,while the optimization over a finite set of scenarios is the dominant approach
within stochastic programming, Kuhn (2009) and Kuhn et al. (2011) optimize linear
decision rules over a continuous probability distribution.

4 Decision-dependent probabilities

This section presents several formulations of stochastic programs with decision-
dependent probabilities. The formulations allow the probabilities of scenarios s ∈ S
to be altered by some decision variable y, typically a first-stage variable in a two-stage
stochastic program. This section considers the casewhere the function ps : R → [0, 1]
is an affine function.

min c�
x x + c�

y y +
∑
s

ps(y)q
�
s zs

s.t. x ∈ X , y ∈ Y , zs ∈ Zs(x, y).
(3)

4.1 Affine ps

This formulation does not directly manipulate the parameters of the probability
distribution but applies a transformation to one or more predetermined probability
distributions. First consider some special cases where the function ps is an affine
function. An affine function is a linear transformation, followed by a translation, i.e.
need not be fixed at the origin as with pure linear functions. This is primarily moti-
vated by computational tractability, as it will yield optimization models where, in the
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case where the rest of the model is linear, the only nonlinearities are bilinear terms
related to variables controlling scenario probabilities. This can easily be generalized
to nonlinear transformations and nonlinear stochastic programs.

4.1.1 Linear scaling

Let s ∈ S be scenarios, each with probability p0s > 0,
∑

s∈S p0s = 1. For each
s ∈ Ŝ ⊂ S let the variable y scale the probability linearly, whereas the remaining
scenarios s ∈ S\Ŝ are adjusted:

ps(y) =
⎧⎨
⎩
p0s y, s ∈ Ŝ ⊂ S
1−y

∑
s′∈Ŝ p0s′∑

s′∈S\S p0s′
p0s, s ∈ S\Ŝ.

(4)

In the special case where the original distribution is uniform, this gives the function
ps :

ps(y) =
⎧⎨
⎩

1
|S| y, s ∈ Ŝ ⊂ S
1−y

∑
Ŝ

1
|S|

|S|−|Ŝ| , s ∈ S\Ŝ.
(5)

This model includes bilinear terms ps(y)zs in the objective. In addition, in some
cases the z may take binary or integer values, for example representing investments.
In any case the models are nonlinear and non-convex.

4.1.2 Convex combination of distributions

Let set I be discrete distributions with probabilities pi,s,
∑

s∈S pi,s = 1,∀i ∈ I
associated to each scenario s ∈ S.

Then define
ps =

∑
i∈I

pi,s yi ,∀s ∈ S. (6)

A distribution defined like this is often called a mixture distribution, see, e.g., Feller
(1943),Behboodian (1970), andFrühwirth-Schnatter (2006).One interpretationwould
be that the final outcome is selected at random from the underlying distributions, with
a certain probability yi associated with each of them. In our model the mixture weights
yi ≥ 0 are decision variables, but of course the sum of weights need to be 1. See Fig. 3
for some examples of convex combinations of normal distributions.

Mixture distributions are often used when subsets of the data have specific charac-
teristics, for examplewhere subpopulations exist in a population. Ourmodel then gives
the opportunity to influence the weights of the different subpopulations, potentially at
a cost.

To reduce the number of y-variables, let one yu be uniquely determined by the
remaining i ∈ I\{u} such that:

ps =
∑

i∈I\{u}
pi,s yi +

⎛
⎝1 −

∑
i∈I\{u}

yi

⎞
⎠ pu,s, u ∈ I,∀s ∈ S. (7)
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Fig. 3 Example of convex combination of normal distributions

This model includes bilinear terms pi,s yi in the objective and is nonlinear and
non-convex.

4.2 Parameterization of distribution

This formulation changes the parameters of a probability distribution directly, rather
than distorting or combining some pre-existing probability distributions. Taking a
known probability distribution and letting the model choose the mean, or variability,
for example, would allow for a range of interesting applications. This formulation
gives the ability to model general properties such as an increase of the expected value
or reduction of variability. It is often desirable to apply continuous distributions. To
stay within the frameworks of scenario-based recourse models the distribution must
be discretized:

For a stochastic parameter x , define an allowed interval [XL , XU ] which is
divided into |S| subintervals, one for each scenario s ∈ S. The subintervals are[
xL,s, xU ,s

]
, XL ≤ xL,s, xU ,s ≤ XU ,∀s ∈ S, using a representative value xM,s

for each scenario, normally xM,s = xL,s+xU ,s
2 . The probability of a scenario ps

is given by the cumulative probability (cumulative density function, cdf) of the
upper value less the cumulative probability of the lower value of each subinterval:
ps = cd f (xU ,s) − cd f (xL,s).

We will first give a formulation using a discretization of a probability distribution
with closed form cdf Sect. 4.2.1, then a discretization of an approximation of the
Normal distribution in Sect. 4.2.2.

4.2.1 Kumaraswamy distribution

The double bounded pdf proposed in Kumaraswamy (1980) was developed to better
match observed values in hydrology. In practice it has been in little use, but interest in it
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is increasing. This is among others because it is closely related to the Beta distribution
and because the Kumaraswamy probability density function has the nice property that
both the pdf and the cdf have closed form. With parameters a, b > 0, x ∈ [0, 1], the
probability density function is given as

f (x |a, b) = abxa−1(1 − xa)b−1. (8)

While the cumulative density function is:

F(x |a, b) = 1 − (1 − xa)b. (9)

Note that the original formulation allowsparametersa, b ≥ 0, but as valuesa, b = 0
would imply situations where the probability of all scenarios equal to 0, this possi-
bility is excluded. Interestingly, the shape of the probability density function changes
radically when parameters a or b pass from a value < 1.0 to a value > 1.0, see Fig. 4
for examples.

With the cumulative probability given as a closed form expression, the discretized
Kumaraswamy distribution can be directly included in an optimization model as fol-
lows, see also example in Sect. 5.1.4:

ps(a, b) = F(xU ,s |a, b) − F(xL,s |a, b)

= 1 − (1 − xaU ,s)
b − 1 + (1 − xaL,s)

b

= (1 − xaL,s)
b − (1 − xaU ,s)

b, ∀s ∈ S.

(10)

Fig. 4 Examples of Kumaraswamy probability density function (pdf) with different parameters a and b
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This model includes a complex polynomial expression as well as the previously
mentioned bilinear terms, resulting in a non-convex nonlinear formulation.

4.2.2 Approximation of normal distribution

Thewidely applied normal distribution has no closed form cdf, whichmakes it difficult
to apply directly. Fortunately, there are polynomial and rational approximations to the
standard normal distribution. For example, the cdf of the standard normal distribution
can be approximated for x ≥ 0with the following expression (Abramowitz and Stegun
1964, 26.2.19):

P(x) = 1 − 1

2

(
1 + d1x + d2x

2 + d3x
3 + d4x

4 + d5x
5 + d6x

6
)−16 + ε(x)

|ε(x)| < 1.5 × 10−7

d1 = 0.0498673470 d3 = 0.0032776263 d5 = 0.0000488906

d2 = 0.0211410061 d4 = 0.0000380036 d6 = 0.0000053830. (11)

This closed formapproximation for the normal distribution canbeused in themodel.
To include a normal distribution where the mean is a decision variable, an expression
for the cdf with mean a is needed, for example by applying the change of variables
x = x ′ − a (see Fig. 5) to the expression of the standard normal distribution cdf
above. As the approximation is only valid for positive x , the symmetry of the standard
normal distribution is exploited to use P−(x) = P(−x) for x < 0 to approximate the
normal distribution N (a, 1). This disjunctive formulation combining one expression
for positive x with another for negative x requires the use of binary variables, yielding
a MINLP.

Fig. 5 Examples of Normal distribution shifted mean by change of variables
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To express the split formulation of Eq. (11), split the expression into denominators
divL+

s and divU+
s for xM,s − a > 0 and divL−

s and divU−
s for xM,s − a ≤ 0:

divL+
s = (1 + d1(xL,s − a) + d2(xL,s − a)2 + d3(xL,s − a)3

+ d4(xL,s − a)4 + d5(xL,s − a)5 + d6(xL,s − a)6)16 (12)

divU+
s = (1 + d1(xU ,s − a) + d2(xU ,s − a)2 + d3(xU ,s − a)3

+ d4(xU ,s − a)4 + d5(xU ,s − a)5 + d6(xU ,s − a)6)16 (13)

divL−
s = (1 + d1(−xL,s + a) + d2(−xL,s + a)2 + d3(−xL,s + a)3

+ d4(−xL,s + a)4 + d5(−xL,s + a)5 + d6(−xL,s + a)6)16 (14)

divU−
s = (1 + d1(−xU ,s + a) + d2(−xU ,s + a)2 + d3(−xU ,s + a)3

+ d4(−xU ,s + a)4 + d5(−xU ,s + a)5 + d6(−xU ,s + a)6)16 (15)

In combination, the expressions above give the resulting interval probabilities for
p−
s and p+

s :

p−
s ≤ (1 − δs)

1

2

(
1

divL−
s

− 1

divU−
s

)
(16)

p+
s ≤ δs

1

2

(
1

divU+
s

− 1

divL+
s

)
(17)

For all scenarios s ∈ S with corresponding possible realization of the variable
xM,s ∈ [

xL,s, xU ,s
]
use xM,s and binary variables δs ∈ {0, 1},∀s ∈ S for determining

the location of the interval. This will give some inaccuracy for the interval spanning
both definitions. For improving accuracy, separate indicator variables may be used for
upper and lower interval values, doubling the number of binary variables.

Note that to calculate the cumulative probabilities correctly for the tail scenarios,
extreme values for the end points xL,1 and xU ,|S| can be used.

ps = p−
s + p+

s , (18)

p+
s ≤ 1 − δs, (19)

p−
s ≤ δs . (20)

Ensure appropriate δs is set to 1 with big M constraints using constants M+ and
M−:

xM,s − a ≤ (1 − δs)M
+, (21)

xM,s − a ≥ δsM
−. (22)

Bound probabilities to 1:

∑
s

ps = 1,
∑
s

p+
s ≤ 1,

∑
s

p−
s ≤ 1,∀s ∈ S. (23)
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Only allow one shift from negative to positive:

δs ≤ δs−1,∀s = 2 . . . S. (24)

This model includes a complex polynomial expression as well as binary variables,
resulting in a non-convex mixed integer nonlinear formulation.

5 Test instances and example

We have implemented a few test instances to investigate how hard they will be to
solve. All test models are implemented as GAMSmodels and can be downloaded from
http://iot.ntnu.no/users/hellemo/DDP/. Tests include data sets with different numbers
of scenarios. The results of these experiments can be seen in Sect. 6.1. Our test case
looks at capacity expansion of power generation. The investor seeks to minimize
the cost of meeting a given demand. Either unit cost or demand is stochastic. In
addition to the available production technologies, it is possible to invest in an activity
or technology that will alter the probabilities of the scenarios occurring. By investing
in such a technology or activity, it is possible to alter the probability distribution as
discussed in Sect. 4.

5.1 Test instances

The mathematical formulations of each test model follow here, first the base model
in Sect. 5.1.1, then in the following subsections the deviations from the base model
in accordance with the models discussed above. These modifications mostly concern
the objective function.

5.1.1 Base model

B Total investment budget,
G Set of probability distributions or subset of scenarios (index g),
I Set of available technologies (index i),
J Set of modes of electricity demand (index j),
S Set of scenarios (index s),

pgs Probability of scenario s for probability distribution g,
π js Price of electricity in mode j in scenario s,
xi New capacity of i , decided in first stage,
ci Unit investment cost of i ,
c Unit investment cost of increasing weight to a subset of scenarios,
cg Unit investment cost of increasing weight to probability distribution g,
d js Electricity demand in mode j in scenario s (if stochastic),
qis Unit production cost of i in scenario s (if stochastic)
yg Weight assigned to distribution g in a mixed distribution formulation,
y Scaling factor for a subgroup of scenarios in the scaling formulation,
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zi js Production rate from i for mode j in scenario s,
Xi Upper bound on xi ,
Xi Lower bound on xi ,
Yg Upper bound on yg ,
Yg Lower bound on yg ,

Zi j Upper bound on zi j ,
Zi j Lower bound on zi j .

min
∑
i∈I

ci xi +
∑
s∈S

ps
∑
i∈I

∑
j∈J

(qis − π js)zi js, (25)

subject to:

∑
i∈I

zi js = d js ∀s ∈ S, j ∈ J , (26)

∑
j∈J

zi js ≤ xi ∀s ∈ S, i ∈ I, (27)

∑
i∈I

ci xi ≤ B, (28)

Xi ≤ xi ≤ Xi ,∀i ∈ I, (29)

Zi j ≤ zi js ≤ Zi j ,∀i ∈ I, j ∈ J . (30)

This model takes inspiration from the model of Louveaux and Smeers (1988), an
investment problem from the electricity sector. There are I technologies available to
invest in to generate electricity in order to meet demand. The demand for electricity in
mode j ∈ J is given by the parameter d js (alternatively this could be considered as
demand in a location j) . The model is formulated as a two-stage stochastic recourse
model. As before the scenario tree is defined by scenarios s ∈ S.

New capacity of technology i is decided upon and installed in the first stage,
determined by variables xi . The objective function minimizes the aggregated costs
of investments ci xi for all technologies i and expected operational cost over all sce-
narios s, represented by the unit costsqis , unit incomeπ js and production zi js . Demand
at location (or mode) d js is met by production at locations i allocated to mode j , zi js
as described in Eq. (26). The total capacity available for technology i in stage two
is limited by the investments in the first stage xi by Eq. (27). The investments in
technologies xi are limited by the budget B (Eq. 28).

To enforce relatively complete recourse, Louveaux and Smeers (1988) make sure
there is a technology ircr ∈ I with high production cost which simulates purchases in
the market to balance supply

∑
i∈I zi js and demand d js . All variables are bounded,

Eqs. (29) and (30).
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5.1.2 Scalable subsets of scenarios

We present here an extension of the base model in Sect. 5.1.1 with scalable decision-
dependent probabilities. This is an example of the linear scaling with uniform
distributions in Sect. 4.1.1. Let as before s ∈ S be scenarios, each with equal probabil-
ity. For each s ∈ Ŝ ⊂ S let the variable y represent the possibility to invest in scaling
the probability linearly, whereas the remaining scenarios s ∈ S\Ŝ are adjusted pro-
portionally in the opposite direction. The practical interpretation is that by investing
in a technology or activity, it is possible to increase the probability of some scenarios,
while reducing the probability of the remaining scenarios, or vice versa.

Starting with the base model in Sect. 5.1.1, the objective Eq. (25) is replaced with
Eq. (31):

min
∑
i∈I

ci xi + cy +
∑
s∈Ŝ

1

|S| y
∑
i∈I

∑
j∈J

(qis − π js)zi js

+
∑

s∈S\Ŝ

1 − y
∑

s∈Ŝ
1

|S|
|S| − |Ŝ|

∑
i∈I

∑
j∈J

(qis − π js)zi js . (31)

The investment must still stay within the budget so replace Eq. (28) with:

∑
i∈I

ci xi + cy ≤ B. (32)

Apart from this the base model is unchanged.

5.1.3 Convex combination of probabilities

Here the mixture distribution is applied, modeling the possibility to change the
weights of the underlying probability distributions for the subsets of outcomes. The
decision-maker can invest to change the weight of each probability distribution g ∈ G
represented by yg , and the associated cost is given by parameter cg . This can be used
to model heterogeneous populations where the relative size of each subpopulation
g ∈ G can be influenced by a decision variable yg , determining the relative probability
pgs for each scenario s ∈ S. The sum of the weights to all probability distributions∑

g∈G yg must equal 1: ∑
g∈G

yg = 1, (33)

Replace Eq. (25) with Eq. (34):

min
∑
i∈I

ci xi +
∑
g∈G

cg yg

+
∑
s∈S

⎧⎨
⎩

G−1∑
g=1

pgs yg
∑
i∈I

∑
j∈J

(qis−π js)zi js+
⎡
⎣1−

G−1∑
g=1

yg

⎤
⎦ pGs

∑
i∈I

∑
j∈J

(qis − π js)zi js

⎫⎬
⎭ . (34)
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Fig. 6 Probabilities from solution of GAMS implementation of a model using 100 scenarios and
Kumaraswamy distribution

As before, the budget must stay within the limit so replace Eq. (28) with:

∑
i∈I

ci xi +
G−1∑
g=1

cg yg ≤ B. (35)

5.1.4 Kumaraswamy

In this formulation, the decision-maker can change directly parameters a and b in the
distribution, possibly at a cost. For this specific problem, it can for example be inter-
preted as changing the characteristics of the cost uncertainty. See Fig. 6 for an example
of scenario probabilities with parameters chosen in the example model. Replace the
expression for ps in Eq. (25) with Eq. (36):

min
∑
i∈I

ci xi + caa + cbb +
∑
s∈S

ps(a, b)
∑
i∈I

∑
j∈J

(qis − π js)zi js

=
∑
i∈I

ci xi + caa + cbb +
∑
s∈S

[
(1 − xaL,s)

b − (1 − xaU ,s)
b
] ∑
i∈I

∑
j∈J

(qis − π js)zi js

(36)
As explained in Subsection Sect. 4.2 we use a discrete approximation of the con-

tinuous distribution. This leads to a nonlinear non-convex formulation due to the
polynomial distribution function (degree depends on decision variables a and b) and
its multiplication with the continuous variable z.

Also replace the budget constraint Eq. (28) with Eq. (37):

∑
i∈I

ci xi + caa + cbb ≤ B. (37)
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Fig. 7 Probabilities from optimal solution of GAMS implementation of a model using 100 scenarios and
approximation of a normal distribution

Parameters a and b should be positive:

a, b > 0. (38)

5.1.5 Approximation of normal distribution

The cdf of a standard distribution with mean a can be found through a change of
variables x = x ′ − a. Using P−(x) = P(−x) for x < 0, the normal distribution
N (a, 1) can be approximated. See Fig. 7 for an example of resulting probabilities in
the test model.

Replace the objective function given in Eq. (25) with Eq. (39) and use the scenarios
s ∈ S with corresponding possible realization of the variable xM,s ∈ [

xL,s, xU ,s
]
:

min
∑
i∈I

ci xi + caa +
∑
s∈S

ps
∑
i∈I

∑
j∈J

(qis − π js)zi js (39)

where ps follows the definition from Sect. 4.2.2 and is defined by Eq. (12) to
Eq. (24).

Also replace the budget constraint Eq. (28) with Eq. (40):

∑
i∈I

ci xi + caa ≤ B. (40)

Parameter a should be positive:
a > 0. (41)

This model includes a complex polynomial expression due to the decision variable
for the mean a, a bilinear term where probability ps is multiplied with continuous

123



Decision-dependent probabilities in stochastic programs with… 389

variable z aswell as binary variables, resulting in a non-convexmixed integer nonlinear
formulation.

5.2 Example of the effects of DDP

To illustrate the effects of decision-dependent probabilities in ourmodels, wewill look
at the results from one test instance with the approximation of the Normal distribution
fromSect. 5.1.5. This instance has stochastic demand, and the demand can be increased
by engaging in some activity, for example by investing in campaigning, improving the
safety or by reducing emissions from production if the demand is sensitive to these
parameters. In the model, demand is influenced by shifting the mean of the probability
distribution by a.

In this instance the mean may be shifted by a ∈ [−1.0, 0]. The mean is shifted in
the opposite direction from the original model, hence a ≤ 0. The uncertain parameters
are discretized with 10 scenarios. The outcomes for the stochastic parameters are fixed
for each scenario, while the probabilities for each scenario occurring are determined
by selecting the mean of the distribution. The investment decisions are whether to
invest in any of the 10 available technologies xi , i ∈ 1, 2, . . . , 10.

The results are summarized in Fig. 8. The figure shows the optimal expected profit
for different values of a in the upper pane, while the corresponding investment levels
of technologies x8, x9 and x10 are shown in the lower pane. Expected profit increases
with more negative a (increasing demand), and so does investment in the different
technologies. As demand shifts it becomes profitable to invest in more technologies,
also the ones with higher operating costs as the maximum investment level is reached
for technologies with lower operating cost. See also Table 1 for details.

This example shows how the inclusion of decision-dependent probabilities changes
the problem. Note that for fixed a, the resulting problem is a traditional stochastic

Fig. 8 Results from example model. Investments and profit increase with more negative a

123



390 L. Hellemo et al.

Table 1 Summarized results
from one test instance with
different values of a, the
objective function value, and
values for investment in
technologies x8, x9 and x10

a Profit x8 x9 x10

0 0.009 0 0 1

−0.1 0.011 0 0 1

−0.2 0.015 0 0 1

−0.3 0.024 0 0:67 1

−0.4 0.035 0 0:89 1

−0.5 0.048 0 0:9 1

−0.6 0.062 0 0:9 1

−0.7 0.078 0:22 0:9 1

−0.8 0.1 0:22 0:9 1

−0.9 0.12 0:22 0:9 1

−1.0 0.134 0:44 0:9 1

program with recourse. While finding the optimal solution of the problem with DDP
is easy to do by inspection for this simple example, this is of course in general not a
practical solution approach for such non-convex models where decision-dependencies
are linked to several variables.

The test instances with computational results presented in the next section, are all
based on synthetic data. Aggregated results from a series of test instances are provided
to illustrate the computational difficulty of this class of problems.

6 Computational results

In this section the computational results from all four variations of the base model are
presented. The models are all implemented in GAMS. We first present our solution
strategy, followed by a summary of the computational results.

6.1 Solution strategy

All the formulations presented above introduce a continuous decision variable for
the probability in a scenario multiplied with a decision variable for some activity,
leading to a non-convex bilinear program. If the activities are continuous, this will
be in the class of continuous bilinear non-convex nonlinear programs. In addition,
other nonlinear terms may be needed in the corresponding optimization problems to
represent probability distributions or approximations of these. Many of the potential
applications of such models involve investment decisions. Fixed investment costs
often require the use of discrete variables. Hence, the models where these modeling
techniques should be applied will often already have integer variables, yielding a
deterministic equivalent that is a mixed integer nonlinear non-convex model. In all
the formulations, the complicating factor lies in the probability distribution and its
multiplication with an activity.
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Global optimization techniques must be applied to guarantee an optimal solution.
BARON is the state-of-the-art global optimization solver, using convex relaxations
for non-convex terms. A widely applied technique is to use McCormick relaxations
to construct convex relaxations of factorable functions. BARON also applies tech-
niques for constraint propagation to reduce the search spaceTawarmalani andSahinidis
(2002). Tests were performed using BARONwith three different approaches, Baron1:
the problem were fed into BARON without information about structure and bilinear
expressions expanded; Baron2: the same as the previous but using a selective branch-
ing strategy on the complicating variables motivated by Epperly and Pistikopoulos
(1997); Baron3: The problem was fed into BARON using the original un-expanded
bilinear expressions in GAMS and solved directly. In addition, the instances were
tested using an approach combining relaxations of algorithms (Mitsos et al. 2009) and
generalized Benders decomposition (Benders 1962; Geoffrion 1972) implemented for
the purpose (GGBD).

We observed initially what appeared to be good results decomposing these stochas-
tic programs based on GGBD and comparing it to the Baron1 approach. The Baron3
approachwith aGAMS implementation of the samemodel showedmuch better perfor-
mance, though. Baron2 using a selective branching strategy inferred from the problem
structure, achieved the same behaviour as Baron3.

The selective branching strategy that was implemented, was to use the decision
variables y in the decision-dependent probabilities p(y) as the complicating variables
and branching first on these in a continuous branch and bound scheme. Note that
when fixing the variables that influence the probabilities of the scenarios, the resulting
sub problems are much easier to solve. For the affine formulations given in Sect. 4.1,
the remaining problem is a standard linear or mixed integer stochastic program. Our
conclusion is that solution times for these problems can be dramatically improved
by using this selective branching strategy. Such selective branching can be readily
implemented through setting branching priority in BARON. Interestingly, using the
original, un-expanded formulation achieved similar results to the selective branching
strategy.

6.2 Solution times for test instances

In Table 2 results from running our test instances are presented, for the problems:
scalable probabilities (Subsets), convex combination (Combination), Kumaraswamy
and normal distribution (Rational). Each test instance is run with different numbers of
scenarios. The resulting problem sizes, both in terms of number of rows, columns and
number of discrete and nonlinear variables are all reported in the table. All problems
were run with a time limit of one hour, and most test instances were close to optimal
after one hour, although not as close as the stopping criterion of a relative gap <

1 × 10−5. All numbers presented are from Baron2 (Baron3 gave similar results).
Our numerical experiments show that BARON is generally able to solve the

instances of the convex combination of probabilities from Sect. 5.1.3 as well as the
scalable subsets of scenarios from Sect. 5.1.2 to optimality or close to optimal. The
instances using the approximation of the normal distribution from Sect. 5.1.5 and the
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Kumaraswamy models from Sect. 5.1.4 proved harder to solve, and while the solver
has found a good solution, optimality remains to be proved within the time limit.
BARON is able to solve relatively large problems in reasonable time if the problem
formulation provides enough structure for the solver to choose an efficient solution
strategy. In cases where we provided an unstructured problem without a selective
branching strategy, BARONwould often end up doing a lot of unnecessary branching,
which made convergence very slow and in general slower than our GGBD (Results
not included).

For larger problems in the harder categories, specialized solution techniques may
be necessary, and we hope that our test instances may come of use in future research
in this area.

7 Conclusions and further work

Little work has been done on stochastic programming problems with decision-
dependent probabilities. This work extends previous taxonomies of stochastic pro-
gramming problemswith decision-dependent uncertainty and presents some examples
of models with decision-dependent probabilities. Our contribution is to show how
direct or indirect manipulation of probability distribution can be incorporated in
stochastic programs with recourse. The work demonstrates that such problems may be
solved by the commercial solver BARON, using selective branching in the complicat-
ing variables. For the test instances, a selective branching strategy for the scenario
probability variables proved much more efficient than the decomposition method
implemented and tested. We provide a set of test cases for this class of problems.

As the models and analysis only considered linear dependency between cost and a
change on the underlying probability distribution, an extension would be to introduce
some nonlinear cost such as diminishing return to scale.

Our test cases were based on a risk neutral approach. Investigating the effects of
different risk attitudes on decision-dependent probabilities is another area of research
that would be very interesting to pursue.

Finally, as these large scale non-convex problems growmore complex, finding good
and robust decomposition techniques would greatly improve the scale at which such
techniques could be applied. We hope that the test problems provided can be a starting
point for further research on solution methods for stochastic programming problems
with decision-dependent probabilities.
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Appendix: Hardware and software used

All computations were performed on a Six-Core AMD Opteron processor 2431 with
24Gb memory. The computer was running Linux 2.6.18 (Rocks 5.3).

GAMS versions 23.6.2 and 23.7.2 with BARON using CPLEX in combination with
CONOPT or MINOS.
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