
Comput Manag Sci (2019) 16:433–479
https://doi.org/10.1007/s10287-018-0310-4

ORIGINAL PAPER

Volatility versus downside risk: performance protection
in dynamic portfolio strategies

Diana Barro1 · Elio Canestrelli1 ·
Giorgio Consigli2

Received: 13 May 2017 / Accepted: 6 May 2018 / Published online: 23 May 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract Volatility-based and volatility targeting approaches have become popular
among equity fund managers after the introduction in 1993 of the VIX, the implied
volatility index on the S&P500 at the Chicago Board of Exchange (CBOE), followed,
in 2004, by futures and option contracts on the VIX: since then we have assisted to
an increasing interest in risk control strategies based on market signals. In January
2000 also the FTSE implied volatility index (FTSEIVI) was introduced at the London
Stock Exchange. As a result, specifically in the US, portfolio strategies based on com-
binations of market indices and derivatives have been proposed by Stock Exchanges
and investment banks: one such example is the S&P500 protective put index (PPUT).
Early in 2016, relevant to the definition of optimal bond-equity strategies, CBOE
launched an Index called TYVIX/VIX featuring an investment rotation strategy based
jointly on signals coming from the VIX and the 10-year Treasury Yield implied volatil-
ity (TYVIX). All these are rule-based portfolio strategies in which no optimization
methods are involved. While rather effective in reducing the downside risk, those
index-based portfolio approaches do not allow an optimal risk-reward trade-off and
may not be sufficient to control financial risk originated by extreme market drops. To
overcome these limits we propose an optimization-based approach to portfolio man-
agement jointly focusing on volatility and tail risk controls and able to accommodate
effectively the return payoffs associated with option strategies, whose cost as market
volatility increases may become excessive. The model is based on a mean absolute
deviation formulation and tested in the US equity market over the 2000–2016 period
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and with a focus on three periods of high volatility, in 2000, 2001 and 2008. The
results confirm that optimal volatility controls produce better risk-adjusted returns if
compared with rule-based approaches. Moreover the portfolio return distribution is
dynamically shaped depending on the adopted risk management approach.

Keywords Volatility · Tail risk · Mean absolute deviation · Derivatives payoffs · Risk
management · Hedging · Stochastic programming

Mathematics Subject Classification 49M27 · 90C06 · 90C15 · 90C90

Introduction

Since the start of this century, due either to an endogenous increase of systemic risk or
to exogenous political events, global financial markets are experiencing a prolonged
period of very volatile returns, sometimes leading to financial turmoils, and an overall
reduction of investment horizons induced by deteriorating economic expectations.
Not only sovereign and corporate bond markets but commodity and equity markets
alike, amid a widespread negative economic cycle, have gone in Europe and the US
through prolonged negative phases. Those market conditions, as well known, are by
no means new to global and equity markets, in particular (Consigli et al. 2009), and
they represent one of the factors underlying the persistent growth of selected (when
also considering credit derivatives and structured product markets) derivative markets.
Over the last few years, several portfolio management approaches have been put for-
ward treating volatility as an asset class (Chen et al. 2011), or add overlays to risky
portfolios through derivatives based on the volatility (Benson et al. 2013). For an
extended analysis of the use of volatility derivatives in equity portfolio management
we also refer to (Guobuzite and Martinelli 2012). The inclusion of volatility-based
financial payoffs within investment portfolios for diversification purposes relies on
the inverse relationship between equity returns and their volatility. Moreover, such
negative correlation patterns seem to be stronger in periods of market downturns.
For empirical evidence and economic foundations see, for example, (Christie 1982;
Dopfel and Ramkumar 2013; Schwert 1989). The importance of volatility in invest-
ment decisions is discussed also in Dempster et al. (2007, 2008), Fleming et al. (2001),
Xiong et al. (2014). In 2016 the CBOE launched the TYVIX/VIX index to propose a
market instrument capturing jointly volatility signals from the Treasury and the equity
markets and their inherent trade-offs to determine an effective bond-equity portfolio
composition.

In the above financial scenario, many investment institutions have indeed success-
fully proposed over the last twenty years or so over the counter (OTC) products
based on volatility strategies or volatility targeting approaches. In extreme summary,
these strategies are designed to keep a desired and fixed level of volatility, that is
a constant level of risk exposure through time. Recently, several authors advocated
the benefits of constant volatility approaches to investment. Among them, Hocquard
et al. Hocquard et al. (2013) have proposed an approach to target constant level of
portfolio volatility consistent with multivariate normal returns. Thomas and Shapiro

123



Volatility versus downside risk: performance protection... 435

Fig. 1 S&P500, VIX, PPUT index. Weekly data: January 5, 1990–June 10, 2016

(2009) argued that equity strategies that maximize return while targeting low lev-
els of volatility are increasingly interesting for insurance companies and institutional
investors for their ability to produce better risk-return profiles. Dopfel and Ramku-
mar Dopfel and Ramkumar (2013) discussed the advantages of managed volatility
strategies in response to the presence of volatility regimes.

When analysing volatility dynamics, as shown in Fig. 1, an important difference
is related to the underlying source of volatility: we distinguish between volatility
increases due to (increasing) continuous squared returns with an impact on the fourth
(the kurtosis) but not the third central moment (the skewness), and those due to mar-
ket jumps leading to severe asymmetries of the return distribution. In this article,
without introducing any parametric assumption on the return process, we present an
optimization approach able to capture hedging and speculative strategies specifically
for equity portfolios based on implied volatility signals. Despite its generality, the
model is motivated and developed considering the US equity market in particular. We
consider a fund manager with a short planning horizon (1-month) whose investment
policy focuses on volatility control and tail risk protection in specific periods while
tracking a market portfolio during positive phases. Index-based portfolio strategies
and signals coming from (1-month) implied volatility also influence the fund manager
strategy.

Hedging against tail risk is in general quite a complex task and a full protection
can be highly expensive either due to the costs of the insurance, or due to the imple-
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mentation of a too defensive investment strategy. Derivative-based strategies, such
as protective put and option-based portfolio insurance, suffer from the first problem;
while, active equitymanagement strategies, such as defensive equity, low-beta alterna-
tive investments, constant-proportion portfolio insurance and stop-loss strategies, may
fail to provide interesting returns during bull market periods. Moving from the obser-
vations that tail events are typically associated with a heightened volatility, and that a
high volatile environment increases the costs of risk protection strategies we support
the idea of using volatility for tail risk mitigation. With the purpose of benchmark-
ing index-based portfolio strategies and derivatives-based strategies, we propose here
below an approach to integrate volatility and tail risk controls in a portfolio optimiza-
tion model. We tackle the problem from a dynamic portfolio management perspective
and the model is built on a well-known approach in portfolio management, the mean
absolute deviation (MAD) approach.

The use of absolute deviation measures in portfolio modeling was introduced in
1991 byKonno andYamazaki (1991) and, since then, extensively studied. For the static
case, we refer, for example, to (Dembo and Rosen 1999; King 1993; Michalowski and
Ogryczak 2001; Rudolf et al. 1999; Worzel et al. 1993; Zenios and Kang 1993). For
dynamic replication problems see (Barro and Canestrelli 2009; Dempster and Thomp-
son 2002; Gaivoronski et al. 2005). We refer to (Zenios 2007) for a detailed discussion
onmean absolute deviationmodels in stochastic programming problems. In this article
we extend (Barro and Canestrelli 2014) by formulating a multistage stochastic pro-
gram (MSP) based on three interacting goals: the first one based on index-tracking,
the second related to volatility control, the third to tail risk protection. Thus, the model
can be interpreted in terms of different layers of protection to respond to risky mar-
ket conditions. The approach is inspired by asset management models (Zenios and
Ziemba 2006; Mitra et al. 2011; Consigli et al. 2015) carrying several decision criteria
and a stochastic tracking component which is tested over recent periods in the US
equity market. The article carries three relevant contributions: (i) the formulation of
an optimal risk control problem based on a set of commonly used derivative-based
payoff functions; (ii) the benchmarking of the resulting optimal strategies against
derivatives-based market indices. The two lead to (iii) the study of the relationship
between volatility regimes, as reflected in derivatives’ implied volatility signals, the
selection of a given portfolio rule and the resulting performance. From a methodolog-
ical viewpoint the development of a MAD model integrating in a MSP framework
well-known derivatives payoffs (without including those derivatives as investment
classes) and forward volatility signals in a data-driven optimization approach is also
relevant. MSP approaches have been widely applied to long-term financial planning
problems (Bertocchi et al. 2011) while hardly on short-term decision problems such
as those characterizing portfolio managers, specifically under risky market condi-
tions. From an operational viewpoint, furthermore, we are not aware of any attempt to
benchmark index-based portfolio policies and derivatives-based insurance approaches
with an optimization model based on asymmetric payoff functions. Throughout the
paper we take the view of a fund manager with long equity positions and negligible
transaction costs, assumed to be fully compensated by management fees.

The paper is organized as follows. In Sect. 1 we analyse the rationale of risk control
strategies starting from recent US market history and relate those controls to the
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payoffs of specific derivatives’ portfolios. In Sect. 2 those payoffs are considered in
relation to an optimal risk control problem, which can be formulated as a stochastic
linear program (SLP) and compared to an index-based portfolio policy as clarified in
Sect. 3.

In Sect. 4 the mathematical instance of a portfolio model for optimal risk control is
introduced as a dynamic stochastic program whose solution will depend on the input
volatility and tail risk tolerances and on the postulated underlying uncertainty. This,
as common in discrete decision problems, is introduced through an event tree whose
nodal values are generated by sampling from data history. A non-parametric model
for scenario generation is briefly described. In Sect. 5 we present the results of an
application to real market data. We finally delimit the scope of the proposed modeling
framework in Sect. 6, before concluding in Sect. 7. An appendix with a more extended
set of evidences corresponding to several global financial crises is included at the
end.

1 Market regimes and volatility signals

Equity portfolio managers and, increasingly, fund managers operating in risky mar-
kets aim at achieving and preserving over time a positive risk-adjusted performance
with a premium over prevailing money-market, non risky allocations (Zenios 2007).
Historically, the adoption of global market indices, such as the S&P500 index, as
portfolio benchmarks in passive portfolio management, originated from its postulated
market efficiency in the sense of modern portfolio theory. In periods of increasing
volatility, thus decreasing risk-adjusted returns a common form of performance pro-
tection was based on option strategies. Target volatility strategies originate from the
introduction after 1993 of implied volatility indices such as the VIX at the Chicago
Board of Exchange (CBOE). Financial engineers have developed several approaches
to incorporate volatility-based portfolio management within financial products for
investors and portfolio managers (Hill 2011). More recently, still outside optimization
approaches, simulation-based investment policy evaluations have been considered to
enhance portfolio performance (Mulvey et al. 2016). The introduction of the VIX, as
the subsequent development of an associated derivative market, provides on one side
a direct instrument for risk control in the largest equity market in the world and, on
the other side, represents maybe the most common information vehicle to evaluate
financial agents expectations over the months ahead. We are here primarily interested
in this second feature and relying on it as early warning signal (EWS) we propose a
VIX-based adaptive investment approach.

Implied volatility signals from derivatives markets are known to be consistent
with market returns fat-tails and/or increasing negative skewness. The adoption of
semi-variance and MAD semi-deviation (Mansini et al. 2014) as risk measures in
optimization approaches respond as well to both asymmetric risk and tail-risk control
objectives and their payoffs can be analysed from a financial engineering perspective.
To further clarify the financial motivation of a (market) regime-dependent risk control
approach, consider in Fig. 1 the S&P index data history since 1990, together with the
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Fig. 2 S&P500—Annualized returns and Annualized volatilities (computed using 52-observation moving
windows—Weekly data January 4, 1991–June 10, 2016)

VIX and the S&P-based protective put index (PPUT).1 The US stock market went
over several phases and indeed the need for volatility control and downside protection
emerged many times during the 1990–2016 period. From Fig. 1, in which actual index
values are reported (on the left Y axis the S&P and the PPUT and on the right Y axis
the VIX), we see that when replicating the equity index with a put protection, the
investor would greatly constrain the market volatility and both up- and down-sides.
The inverse relationship between equity returns and historic volatility in this market is
confirmed by the data in Fig. 2 where we summarize the S&P500 annualized volatility
and returns computed on a 52-weeks moving window.

From Figs. 1 and 2 we can infer the behaviour over time of themaximum drawdown
(MaxDD) andmaximum implied volatility (MaxVIX) series: these are computed from
52-weeks moving windows between 1991 and 2016 with weekly steps. The MaxDD
level is defined as the difference between the highest and lowest S&P values over the
past 1-year moving window, while the MaxVIX value is just the maximum VIX over
the same period. We can in this way identify a VIX time-varying moving average
(Average VIX). These series are plotted and compared in Fig. 3. The horizontal lines

1 PPUT Index is constructed by adding to the S&P index a proportional put option protection with monthly
expiry and a strike which is 5% below the current index value. Accordingly upon market drop we should
observe an index loss compensated by the put incremental value. The resulting index dynamics over the
sample period is representative of a synthetic portfolio strategy based on those underlyings.
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Fig. 3 S&P500—Max DD, Max VIX and average VIX (computed using 52-observation moving
windows—Weekly data January 4, 1991–June 10, 2016). The horizontal line identifies the VIX thresh-
old corresponding to the long run mean plus one standard deviation

are computed ex-post to identify the VIX threshold corresponding to the long-run
mean plus one standard deviation. We recall that volatility units are in percentage and
a volatility index at x is equivalent to an implied annual volatility of x%.

Consistently with stylised financial evidence, Fig. 3 helps clarifying the nature of
the relationship between the implied volatility and the market phase: a VIX above the
threshold is constantly coupled with a stepwise increase of the maximum drawdown
while periods of market recovery are typically associated with decreasing VIX and
MaxVIX series.

The following sub-periods are considered as particularly relevant for model vali-
dation:

1. From January 07, 2000 to December 29, 2000: this is the period including the
dot.com speculative bubble; we have sustained volatility and limited downside
(with average VIX value of 22.98 and maximum VIX value of 33.5). It is an
example of market instability which originates within the market after a prolonged
period of growth: the risk source is endogenous and ex-post year 2000 has been
recorded as originating from a fundamental distortion between equity and fixed
income returns.

2. From February 09, 2001 to January 25, 2002: the period preceding and following
the 9/11 terrorist attack: from a financial standpoint this can be recorded as a period
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of high volatility and relevant maximum drawdown (with average VIX value of
25.23 and maximum VIX value of 42.66) not entirely due to that attack, however,
as we will see below. Unlike in the first example, here, we have though, a relevant
exogenous shock source, hardly predictable by any EWS.

3. From January 04, 2008 to December 26, 2008: this is the period associated with
the global financial crisis which originated in the US before spreading globally
with long-term market and economic consequences. This is a period with relevant
market instability and dramatic downside (with average VIX value of 32.79 and
maximum VIX value as high as 79.13) that will last for long.

We show below that indeed when the MAD functional is adopted to characterize
agents’ risk preferences a relevant set of contingent claim payoffs emerges in the for-
mulation of the portfolio optimization problems. When confronted with the described
market conditions the following strategies may prove of interest to a portfolio manager
and should be compared with derivatives-based or index-based market strategies:

• Aneffective replication of the equity benchmarkwithin a passive fundmanagement
strategy: the outcome corresponds to a tracking error control strategy.

• A downside risk control also based on a tracking error criterion, in which however
the replication strategy is suspended during negative market phases.

• A local volatility control inwhich, upon exceedance of a given threshold a volatility
corridor with fixed width over a limited time period will determine the portfolio
rebalancing dynamics.

• A target volatility strategy based on the definition of a volatility target and a
portfolio strategy based on periodic rebalancing between a risky and a riskfree
portfolios over the entire data-history.

• A tail-risk control strategy based on the definition of a negative return threshold
and the control of shortfalls with respect to that threshold.

The above strategies reflect a defensive approach to portfolio management, they
are not meant to be exhaustive but, as shown next, help spanning a large range of
risk-aversion degrees. We consider next the formulation of an optimization problem
and analyze its distinctive elements relative to index-driven decision policies.

2 Optimal strategies and decision policies

Denote by xt the value at time t of a portfolio invested in the S&P500 and themanaged
portfolio value by yt , where t ∈ T and T = {0,�t, 2�t, ..., n�t = T } corresponds
to a discrete and countable time set. Assume a bi-weekly portfolio revision with time
step �t . Associated with yt is an investment universe Y which, as further detailed
below, is assumed to include a set of S&P500 sub-indices. We assume that the initial
value of the two portfolios coincide, that is x0 = y0.

Tracking error strategy At t = 0,�t, .., (n − 1)�t construct a portfolio yt , so that
prior to further revision, at t + �t , yt+�t

xt+�t
= 1 as close as possible. Such goal can

be expressed by |yt − xt | = 0 in absolute value for t ≥ 0. If the downside only
is considered we would have max{0, xt − yt } associated with an asymmetric payoff
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function |yt − xt |−. The absolute downside deviation formulation is equivalent to the
payoff a put option with strike equal to xt and maturity in two weeks time. Whereas
the MAD functional can be seen as a combination of the payoffs of a call and a put on
the same strike, given by the stochastic benchmark value. A long call position and a
short put, in particular, will replicate the underlying index.

Local volatility and target volatility strategies Over the same timeframe and time
discretization consider a portfolio corridor defined by zdt = yt−�t (1 − σ) and zut =
yt−�t (1+σ). Then, at the beginning of each time period the payoffsmax{0, zdt −yt } =
|yt − zdt |− and max{0, yt − zut } = |zut − yt |− will generate a local volatility control
driven by the parameter σ . A portfolio strategy based on volatility control, implies an
objective function in the MAD formulation that is equivalent to the payout function
of a long call with strike on the upper volatility and long put option with strike on the
portfolio lower-bound. Such local volatility strategy is typically employed on specific
time periods where forward volatility is signaling a forthcoming instability.
A target volatility strategy leads, instead, to portfolio rebalancing between a risky and
a riskfree portfolio where the exposure to the risky market is determined over time
by a ratio between a target volatility σ̃ and the one-period-ahead forecasted volatility.
Target volatility strategies may be employed actively with the definition of a less risky
or even risk-free allocation or just investing in a synthetic index which, as in the case
of the protecting put index, will replicate that strategy. In this paper we consider both
options.

Tail risk control Under the same assumptions we may consider a rich set of payoffs,
whose rationale is strictly related with portfolio protection from tail events. Let ρ

be a tolerable percentage tail loss on the given portfolio position yt for t ≤ T . Then
yt−�t (1−ρ)will represent a price loss to be controlled at t resulting in the asymmetric
payoff max{0, yt−�t (1 − ρ) − yt } = |yt − ρ

y
t |− at the end of each period, which,

again, in the MAD formulation captures the payoff of a put contract.
We consider here the potentials in terms of risk-control effectiveness, of an MSP

formulation whose objective function is defined taking a linear combination of the
above set of symmetric and asymmetric payoffs. The type of control strategy will
however be determined adaptively through aVIX-based feedback rule. In the sequelwe
first test in Sect. 3 the effectiveness of the proposed approach in providing the desired
risk control in a one-period static optimization model, and then we extend the model
to a 2-stage setting to allow for a recourse portfolio decision still facing a residual,
one-period, uncertainty. The proposed optimization approaches are validated against a
set of well-established policy rules: namely based on a target volatility decisionmodel,
on a perfectly diversified portfolio model, and on a fix-mix strategy.

3 Risk controls’ LP characterization

InSect. 2,we considereddifferent risk control approaches resulting, thanks to theMAD
functional, into linear programming (LP) formulations of the associated optimization
problems.We consider next the labeling convention adopted to describe discrete event
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tree processes then we formulate the optimization problems associated with the risk
control approaches previously discussed.

We consider a planning horizon T specified as a discrete set of decision stages.
The beginning of the decision horizon coincides with the current time t = 0, while
T will denote the end of the decision horizon. A reference period 0−, prior to 0 is
introduced in themodel to define holding returns to be evaluated at time 0. Consistently
with a stochastic programming formulation, random dynamics are modeled through
a discrete tree process with non-recombining sample paths in a probability space
(�,F ,P) (Consigli et al. 2012). Nodes along the tree, for t ∈ T , are denoted by
n ∈ Nt and for t = 0 the root node is labeled n = 0. The root node is associated
with the partition N0 = {�,∅} corresponding to the entire probability space. Leaf
nodes n ∈ NT correspond one-to-one to the atoms ω ∈ �. For t > 0 every n ∈ Nt

has a unique ancestor n− and for t < T a non-empty set of children nodes n+. We
denote with Nt the number of nodes or height of the tree in stage t and with tn the
time period associated with node n: tn − tn− will then denote the time length between
node n− and node n. The set of all predecessors of node n: n−, n−−, .., 0 is denoted
by Pn . We define the probability distribution P on the leaf nodes of the scenario tree
so that

∑
n∈NT

πn = 1 and for each non-terminal node n ∈ Nt with t ≤ T − 1 we
have unconditional probabilities πn = ∑

m∈n+ πm . With each branch being equally
probable along the tree we can derive the conditional probability to reach node n from
n− as πn = n

#n+ where #n+ will denote the cardinality of descending nodes. We
denote with EFt the conditional expectation with respect to information available in t .
A scenario is a path from the root to a leaf node and represents a joint realization of the
random variables along the path to the planning horizon. We shall denote by S = NT

the number of scenarios or sample paths from the root node to the leafs. In this study
the tree structure will be particularly simple with two equal 2-week periods spanning
one month and a symmetric scenario tree: all scenarios will carry equal probability.

We can now specify the set of variables associated with the risk controls introduced
in Sect. 2. Let θ+

n = |yn − xn|+ and θ−
n = |yn − xn|− denote respectively positive

and negative deviations of the managed portfolio yn from the benchmark portfolio
xn . We use η−

n = |yn − zdn |− and η+
n = |yn − zun |+ to denote deviations associated

with volatility control, where we recall zun = yn−(1 + σ), zdn = yn−(1 − σ). Finally
ν−
n = |yn − ρ

y
n |− is used to characterize the control of tail risk.

Risk control strategies and derivative payoffs
In the following we discuss the connections between the proposed risk control strate-
gies and a set of derivatives’ portfolios’ payoffs:

1. A passive portfolio manager seeking a market benchmark tracking will act as a
derivative trader long a call option with strike set by the index and short a put
option with the same strike. Indicating the benchmark with xn and the managed
portfolio with yn , we have: θ+

n − θ−
n = yn − xn .

2. By the same reasoning we can consider a portfolio manager applying volatility
control as one carrying an objective function equivalent to the payout function
of two long option positions, so to keep the portfolio value within a prescribed
corridor: a long call with strike zun and a long put with strike zdn . By setting η−

n ≥
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Table 1 Risk controls, their representations in the MAD framework

Obj. function MAD formulation Payoff

Tracking error (symmetric) min {θ+
n + θ−

n } min{|yn − xn |+ + |yn − xn |−}
Volatility control min {η+

n + η−
n } min{|yn − zun |+ + |yn − zdn |−}

Tail risk control min ν−
n min |yn − ρ

y
n |−

zdn − yn and η+
n ≥ yn − zun we treat the two auxiliary variables, that has to be

minimized, as upper bounds on in-the-money (ITM) option values.
3. When however the implied volatility exceeds a certain threshold, the equitymarket

is actually often experiencing sequences of negative shocks resulting into returns’
outliers and increasing tail risk: ν−

n = |yn −ρ
y
n |− defines the payoff of a put option

with strike ρ
y
n . By setting ν−

n ≥ ρ
y
n − yn we can introduce an auxiliary variable

for the positive payoff associated with an ITM option.

In Table 1 we summarize the risk controls introduced in the objective function and
their representations in the MAD framework.

The above risk control strategies can be analysed from the perspective of derivative
contracts’ hedging properties. To discriminate between each risk control type, we
consider risk controls activated separately through the choice of the coefficients α j ,
j = 1, 2, 3 in the objective function in (1) here below.
First, in normalmarket period—theVIX is belowa certain thereshold—themanager

is assumed to track the market portfolio. The tracking error strategy minimizes both
positive and negative deviations from the benchmark, which in the objective function
(1) below, will generate a straddle-type of payoff with a strike identified by the value
of the benchmark.

Second, when instead the VIX signals a future increase of equity volatility, the
manager is assumed to minimize portfolio dynamics outside a given corridor and this
is the situation in which a short position in a strangle is profitable. Finally, when VIX
values are above a given threshold, we assume relevant forward market instability and
a portfolio manager seeking minimal downside deviations from a maximum accept-
able loss level. This corresponds to a situation in which a long put is used to hedge
the portfolio value.

The proposed portfolio management approach aims at generating a portfolio profit
and loss distribution as the one that could be obtained by combining the market bench-
mark and the derivatives. Consider, for instance, a Protective Put strategy obtained buy-
ing the underlying and a longout-of-the-money (OTM)put contract. The payoff of such
portfolio may be replicated by tracking the benchmark when the market is calm (and
there is a positive outlook) and switching to a tail risk control when the volatility signal
anticipates a negative downturn of the market. Along the same line, a strangle pay-
off provides protection against sharp movements of the underlying. When there is an
increase in the expected volatility themanager can switch to a volatility controlled port-
foliowith the aim of limiting the losses associatedwith hugemovements of themarket.

Finally, in the case of a stable market situation, the manager is assumed to track
the benchmark and the payoff of this strategy could be obtained with a long call and a
short put with the advantage of allowing for a stochastic benchmark rather than a fixed
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strike level. The suggested formulation does not replicate a derivative contract, per
se, in the sense of providing the same payoff. However, the combination of different
risk controls will lead to portfolio dynamics that resemble the behaviour of a portfolio
hedged with derivative overlays without the need to enter into derivative contracts and
with a more flexible risk control policy, driven by the implied volatility signals.

We can now define the cost functions associated with each type of control. For
t ∈ T , n ∈ Nt , θ+

n + θ−
n defines a positive cone pointed at xn which is the minimum

of the function. Similarly η+
n + η−

n defines a stepwise positive function which is
decreasing for yn ≤ zdn , constant at 0 between zdn and zun and increasing for yn ≥ zun .
Finally ν−

n is constant at 0 for yn ≥ ρ
y
n and nonegative for yn ≤ ρ

y
n . Summing up the

following formulation translates all the above payoffs in a stochastic linear program
which can be solved with standard methods, e.g. dual simplex for instance, over a
single period. Let t = {0, 1}, with n ∈ N1 at the end of the period, we write:

min
q1 0 ...qI 0,l0

EF0{α1
(
θ+
n + θ−

n

) + α2
(
η+
n + η−

n

) + α3ν
−
n } (1)

s.t.

l0 +
I∑

i=1

qi 0 = ȳ (2)

yn = (1 + rl n)l0 +
I∑

i=1

(1 + ri n)qi 0 (3)

θ+
n − θ−

n = yn − xn (4)

η−
n ≥ zdn − yn (5)

η+
n ≥ yn − zun (6)

ν−
n ≥ ρ

y
n − yn (7)

qi 0 ≥ 0 i = 1, . . . , I (8)

θ+
n , θ−

n , η+
n , η−

n , ν−
n ≥ 0 n ∈ N1 (9)

The vector (q1 0, . . . , qI 0, l0) denotes the portfolio composition to be determined
in the root node, where qi , i = 1, . . . , I represents the amount invested in the risky
asset i with return ri,n , and l denotes the money market account for which an interest
rate rl = 0.5%, constant over the year, is assumed; ȳ denotes the initial portfolio
endowment. According to model (1)–(9) with

∑
j=1,2,3 α j = 1 over a single period,

the fundmanager would control jointly different risk sources: through θ
+/−
n the risk of

under or overperforming the market benchmark xn ,through η
+/−
n the risk of exceed-

ing a certain volatility and through ν−
n the risk of loosing more than a certain value in

extremely unstable market conditions. We are interested to analyse every VIX-based
control problem separately to validate the adopted model formulation with only one
α j = 1 for j = 1, 2, 3. The extension to weighted combinations of controls leading to
the activation of mixed strategies is also possible and straightforward in the adopted
model formulation. When assessing ex-ante the preferable form of risk control the
current VIX value, associated with 1-month forward market volatility expectations,
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Table 2 Investment risk control type according to observed values of the VIX Index

VIX value Market condition (α1, α2, α3)

V I X < 20 Normal market condition—Tracking goal (1, 0, 0)

20 ≤ V I X < 45 High volatility condition—Volatility control (0, 1, 0)

V I X ≥ 45 Instability—Shortfall control (0, 0, 1)

will provide an important source of information. We consider here the case in which
ex-ante the fundmanagerwill determine subjectively constant volatility thresholds dis-
criminating between the different approaches. In Sect. 5.2.2 we test a path-dependent
signal updates.

Table 2 summarizes the coefficients set in the objective function at each step as a
function of the at-the-time prevailing VIX value.

1. If the current level of the VIX Index is below 20 we assume we are in normal
market conditions and we activate a (symmetric) tracking goal;

2. For observed values of the VIX Index between 20 and 45 there are signals of
increased volatility in the market and the corresponding volatility control goal is
activated (σ = 0.01);

3. Whereas if the VIX Index is above 45 we assume this is a signal of instability and
the shortfall control goal is activated (ρ y = 0.05).

The introduced 20 and 45% thresholds on stock market volatilities have been deter-
mined analysing the behaviour of US equitymarket volatility indices: to derive reliable
long-term volatility thresholds we consider not only the VIX index but also the VXO
index, computed since 1983 on the S&P 100 options. The values correspond to the
long-run mean and a tail quantile of the VXO distribution for the period 02/01/1986–
31/12/1999, and they are coherent with the values of the VIX index in the entire
sample 05/01/1990–10/06/2016 taken into account. They can be regarded as subjec-
tive assessments of high volatility regimes versus financial turmoils typically adopted
in financial practice (Consigli et al. 2009).

The parameters σ = 0.01 and ρ = 0.05 are subjectively chosen and characterize a
risk tolerance level in which a loss threshold of 5% and a corridor width for portfolio
variations of 1% on a biweeekly basis are assumed.

We test model (1)–(9) in the three sample periods corresponding to different market
crises. 2 We are here primarily interested in validating the adopted problem formulation
and clarify the impact of the introduced volatility thresholds on the adopted control
strategy and its hedging effectiveness.

Table 3 reports details on the three periods considered along with the average and
maximum VIX values during those periods.
The following settings define the experiment: the S&P500 is the equity benchmark,
its initial value is set to 1000 as the input portfolio value.

2 A more detailed list of major crises and bear market periods in the 2000–2016 period together with the
corresponding results of the one-period model are presented in the Appendix.
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Table 3 Market crises and bear periods considered in the experiments

Crisis Simulation period Average VIX Max VIX

Dot-com bubble 07/01/2000–29/12/2000 22.98 33.49

9/11 Attacks 09/02/2001–25/01/2002 25.23 42.66

2008 Financial crisis 04/01/2008–26/12/2008 32.79 79.13

Table 4 Descriptive statistics (mean, standard deviation, skewness and excess of kurtosis) for the index
and the sub-indices, for the period 05/01/1990–10/06/2016, weekly data

Mean SD Skewness Ex. Kurtosis

SPX Index 0.00129 0.02298 −0.73795 6.72371

S5COND Index 0.00156 0.02745 −0.39952 5.33490

S5CONS Index 0.00159 0.02018 −0.75991 7.09894

S5ENRS Index 0.00125 0.03030 −0.95500 7.35309

S5FINL Index 0.00102 0.03584 −0.08955 12.2778

S5HLTH Index 0.00176 0.02461 −0.62778 5.16486

S5INDU Index 0.00135 0.02656 −0.47417 4.34034

S5INFT Index 0.00172 0.03541 −0.54836 3.23885

S5MATR Index 0.00096 0.03000 −0.39938 3.39595

S5TELS Index 0.00042 0.02708 −0.37305 5.43324

S5UTIL Index 0.00067 0.02312 −1.14410 8.92834

We adopt as investment universe the set of S&P sub-indices reported in Table 4,3

which includes also a summary of descriptive statistics, and a money market account.
The volatility target over the 2weeks is set at 1% and the problem is solved over 400

possible scenarios at the end of the 2-week investment period. The scenario tree for the
returns of the benchmark and of the sub-indices are generated using a bootstrapping
procedure from past data realizations. The returns’ trees are then applied to the initial
value of the portfolio and of the benchmark to compute the MAD functions and
payoffs. To guarantee consistency not only in the first but also in subsequent steps of
the simulation, the values of the benchmark portfolio in each node of the scenario tree
are computed as xn = (1 + r xn )y0 n ∈ N1, where y0 is the initial endowment of the
portfolio, either 1000 at the first step or the market value of the portfolio at subsequent
steps of the experiment.

Each experiment is carried out spanning the entire reference year: we solve 26 (bi-
weekly) optimization problems setting, at the beginning of each run and depending on
the current VIX value, one α j = 1, j = 1, 2, 3. Depending on the adopted risk control
approach the redundant constraints in model (1)–(9) are not considered. At the end of
each 2-week investment problem the outcome of the optimal portfolio is compared ex-
post, thus out-of-sample, with the value of the portfolio corresponding to the S&P500,

3 The following acronyms are used for the S&P sectors: COND = consumer discretionary, CONS = con-
sumer staples, ENRS = energy, FINL = financials, HLTH = health care, INDU = industrials, INFT =
information technology, MATR = materials, TELS = telecommunications,UTIL = utilities.
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the PPUT Index and a target volatility strategy. The latter, as mentioned, represents
a policy rule under which the switching from the S&P500 to a riskfree portfolio and
viceversa is determined by the ratio between a target and the current forward volatility.
The results are presented in the Figs. 4, 5, 6, 7 and 8.By considering these three periods,
we aim at both validating the model formulation and analysing the effectiveness of
the volatility signal and the derived optimal controls within a static one-period model.
The analysis is then extended in Sect. 4 to a multi-period setting.

Consider the 2000 dot.com crisis first.
The sequence of optimal portfolios is determined by the prevailing volatility signal:

at each run the input portfolio value is preserved and we show in Fig. 4 the 2-week
return that, given the initial portfolio allocation would have been generated by the
observed market dynamics. The peak of the speculative bubble in the Nasdaq was at
the beginning of the year and afterwards the crisis spreaded to the S&P market. The
VIX signals (bottomplot) lead to the sequence of controls displayed in the intermediate
plot and then to the results shown in the upper plot of Fig. 4. Given the introduced
volatility thresholds we see that the strategy switches few times over the year from
tracking error to volatility control and indeed the managed portfolio is very well
immunized against market volatility.

Table 5 presents the statistics of the returns’ distribution over the test period for the
optimal portfolio and for the other strategies. We observe that the introduction of the
volatility control succeeds in reducing not only the variability but also the negative
skewness of the distribution. As a consequence of the consistent reduction of the
standard deviation, induced by the VC, we obtain a highly concentrated distribution of
returns with associated kurtosis markedly higher if compared with the other strategies.
The optimal portfolio allocation leads also to a consistent reduction of the maximum
drawdown. The returns’ histograms generated by the different strategies are presented
in Fig. 5 and they help analysing some of the strategies implications. The optimal
controls generate over the year a positively skewed, highly concentrated portfolio
return distribution, since the VIX increases at the end of the first quarter and during
the fall do actually anticipate a sequence of market drops, while VIX reductions do
correspond to positive market phases: those signals thus jointly lead to timely and
effective hedging and index-tracking strategies. To evaluate the performance of the
proposed strategies we consider risk-adjusted performance measures. We compute the
Sharpe ratio, the Sortino ratio and the Omega ratio 4 to better evaluate the implications
of the control strategies.

4 TheOmega ratio represents a ratio of the cumulative probability of an investment’s outcome above a given
threshold level, to the cumulative probability of an investment’s outcome below the threshold. Expected
returns are divided into two parts, returns above the expected rate (the upside) and those below it (the
downside), gains and losses, respectively. It is a measure of performance that does not assume a normal
distribution of returns and that takes into account the whole distribution without the need to estimate sample
moments. We recall the definition from (Keating and Shadwick 2002)

�(r) =
∫ +∞
r (1 − F(x))dx

∫ r
−∞ F(x)dx

(10)

where F is the distribution function of returns, and r is the loss threshold.
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Fig. 4 Dot-com bubble. Comparison of optimal hedging portfolio with the S&P500 and the target volatility
portfolio (target volatility level 0.01)—bi-weekly data 07/01/2000–29/12/2000

As shown in Table 5, optimal portfolios provide better risk-adjusted performances
and outperforms all competing strategies, for all measures considered. The improve-
ment is due to a reduction of the volatility, of the negative skewness and to an
increase of the right tail of the distribution as can be seen by comparing the cor-
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Table 5 Dot-com bubble S&P Opt-ptf Targ. Vol. PPUT

SD 0.0373 0.0084 0.0113 0.030

Mean return − 0.0040 0.0017 − 0.0012 − 0.0057

Skeweness − 0.2807 3.2350 − 0.2807 − 0.1354

Kurtosis 3.2589 15.1036 3.2589 2.5144

MaxDD 0.1463 0.0154 0.0464 0.1590

Sharpe ratio − 0.1101 0.2057 − 0.1038 − 0.1950

Sortino ratio − 0.1402 0.6825 − 0.1329 − 0.2355

Omega ratio 0.7544 2.6530 0.7666 0.6236

IR − 0.1685 0.1226 − 0.1757

TEV − 0.0337 0.0238 0.0098

Comparison of optimal hedging
portfolio with the S&P500 the
target volatility portfolio (target
volatility level 0.01) and the
Protective Put Index. Statistics
and performance measures for
the returns’
distributions—bi-weekly data
07/01/2000–29/12/2000

Fig. 5 Dot-com bubble. Comparison of the histograms for the S&P500 (top left), the optimal hedging
portfolio (top right), the target volatility portfolio (target volatility level 0.01) (bottom left) and the Protective
Put Index (bottom right)— bi-weekly data 07/01/2000–29/12/2000

responding histograms in Fig. 5. Finally, we consider the Information Ratio (IR)
and the Tracking Error Volatility (TEV) to compare the considered strategies with
the benchmark portfolio (S&P500), the optimized portfolios exhibit the highest IR
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Fig. 6 September, 2001. Comparison of optimal hedging portfolio with the S&P500 and target volatility
portfolio (target volatility level 0.01)—bi-weekly data 09/02/2001–25/01/2002

motivated by a considerable reduction in the standard deviation of the associated
distribution.

Unlike the dot.com crisis which was endogenous and determined by a fundamen-
tal departure of conditional market expectations from justifiable equity values in the
US market, the 2001 crisis came relatively unexpected at the time of the September
11 terrorist attack. The S&P500 was at the time already going through a period of
relatively high volatility and negative expectations: we consider this period as inter-
esting, however, given that in correspondence with the terrorist attack the market
experienced a relevant peak of the VIX which was not entirely attributable to current
market conditions at that time. As shown in Fig. 6, when employing the VIX-based
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Fig. 7 September, 2001. Comparison of the histograms for the S&P500 (top left), the optimal hedging
portfolio (top right), the target volatility portfolio (target volatility level 0.01) (bottom left) and the Protective
Put Index (bottom right)—bi-weekly data 09/02/2001–25/01/2002

control rule, the resulting optimal portfolio value is generated throughout the year
by a VC strategy, with two noticeable reductions of the VIX below the threshold of
20. During the September market shock the VIX does not exceed the 45 value and
the TR control is never active. At the time of decreasing VIX however the market
is still experiencing a negative phase which is reflected in the optimal portolio nega-
tive returns between September and October. The optimal portfolio return distribution
in Fig. 7 displays accordingly a bimodal profile which is reflected in the statistics
reported in Table 6. Interestingly, during the last part of the year, at the time in which
the market started recovering both the protective Put and the target volatility strategies
generated a positive return, while the optimal portfolio was unable to capture the mar-
ket inversion as it is documented by the comparison of the performance measures in
Table 6.

Table 6 shows the statistics of the returns distributions for different strategies,
over the considered period. We observe that the introduction of the volatility control
succeeds in reducing the variability but limits the portfolios’ upside. Indeed, in the
last part of the period we can observe a progressive reduction of the VIX associated
with a recovery phase of the market, however, according to the adopted thresholds,
the values of the VIX still signal a high volatility condition and thus the portfo-
lio persists in a volatility control strategy. The reduction of the variability impacts
also on the level of kurtosis which is sensitive to the location and frequency of tail
outliers.
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Table 6 September, 2001
Comparison of optimal hedging
portfolio with the S&P500 the
target volatility portfolio (target
volatility level 0.01) and the
Protective Put Index

S&P Opt-ptf Targ. Vol. PPUT

SD 0.0480 0.0166 0.0201 0.0343

Mean return − 0.0070 − 0.0036 − 0.0029 − 0.0023

Skeweness 0.1308 − 4.6108 0.1308 1.1875

Kurtosis 3.9065 22.885 3.9065 4.5645

MaxDD 0.2654 0.0946 0.1204 0.1491

Sharpe ratio − 0.1485 − 0.2205 − 0.1455 − 0.0694

Sortino ratio − 0.1917 − 0.2163 − 0.1883 − 0.1130

Omega ratio 0.6530 0.1771 0.6585 0.8281

IR − 0.0822 0.1512 0.1715

TEV − 0.0420 0.0292 0.0272

Statistics and performance
measures for the returns’
distributions—bi-weekly
09/02/2001–25/01/2002

Table 7 September 2008
Financial Crisis

S&P Opt-ptf Targ. Vol. PPUT

SD 0.0744 0.0105 0.0295 0.0287

Mean return − 0.0160 − 0.0012 − 0.0063 − 0.0065

Skeweness − 2.2445 1.0087 − 2.2445 0.622

Kurtosis 9.5048 7.0291 9.5048 2.861

MaxDD 0.4333 0.0616 0.2004 0.2458

Sharpe ratio − 0.2189 − 0.1172 − 0.2168 − 0.2312

Sortino ratio − 0.2310 − 0.1697 − 0.2290 − 0.2956

Omega ratio 0.4748 0.6735 0.4781 0.5700

IR − 0.2065 0.2176 0.1739

TEV − 0.0658 0.0434 0.0544

Comparison of optimal hedging
portfolio with the S&P500 the
target volatility portfolio (target
volatility level 0.01) and the
Protective Put Index. Statistics
and performance measures for
the returns’ distributions –
bi-weekly data
04/01/2008–26/12/2008

Figure 7 displays the returns’ histograms generated by the introduced strategies.
Finally, during 2008, the adaptive approach based on incoming VIX information

turns out to be very effective in controlling the downside and preserve the portfolio
value during prolonged phases of extremely relevant market falls.

The depth of the market adjustment experienced by the S&P500 during 2008 is
relevant and it will be remembered as a period of previously unknown systemic risk.
The VIX signals are frequent in particular after the Summer and the strategy switches
from VC to TR control with overall an effective outcome. Table 7 shows, for different
strategies, the returns’ distributions and the performancemeasures over the considered
period.

Figure 9 presents the histograms of the returns associated with each strategy.
In summary, taking all three periods into account, we can conclude that the intro-

ducedmodel specifications do actually generate effective and timely hedging strategies
and dominate two popular index-based protection schemes. A limited drawback of the
introduced approach may be associated with the persistence of relatively high VIX
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Fig. 8 September 2008 Financial crisis. Comparison of optimized adapted portfolio with the S&P500 and
target volatility portfolio (target volatility level 0.01)—bi-weekly data 04/01/2008–26/12/2008

values at times in which the market was actually recovering, in this way leading to a
volatility control or a tail-risk control (rather than a tracking error approach) or, on the
contrary, VIX reductions during negative market phases, resulting into tracking error
minimisation rather than risk control.

In Sect. 4 we extend the analysis beyond the one-period, myopic case and formulate
an optimal selection problem for short-termportfoliomanagement based on a two stage
model with by-weekly rebalancing.

123



454 D. Barro et al.

Fig. 9 Financial Crisis 2007–2008. Comparison of the histograms for the S&P500 (top left), the optimal
hedging portfolio (top right), the target volatility portfolio (target volatility level 0.01)(bottom left) and the
Protective Put Index (bottom right)— bi-weekly data 04/01/2008–26/12/2008

4 Volatility-based portfolio management

We extend program (1)–(9) to a dynamic setting by introducing the canonical inven-
tory balance and cash balance constraints to track ongoing portfolio revisions and
associated cash-inflows and out-flows. Unlike in the previous section we span here
an extended 17-year period including the three financial turmoils above but others as
well (see the report in appendix). From a modeling viewpoint, starting at t = 0, the
associated σ -algebra N0 reflects current market conditions and in particular the cur-
rent VIX value, from which a given optimal control problem will result. The decision
vector includes amoneymarket account and the 10 S&P sub-indices: we indicate with
qi,n, ai,n and vi,n the amounts held, bought and sold, respectively, of risky asset i in
node n, and with ln the position in the moneymarket account in node n. The analysis is
simplified by assuming transaction costs compensated over time by management fees.

The portfolio manager, starting in 0 and with t = �t, 2�t, ..., n�t , �t = 2 weeks
and n ∈ Nt , will face a sequence of 2-stage problems:

min
qi,n ,ai,n ,vi,n

t+�t∑

τ=t

ENτ

[
α1

(
θ+
n + θ−

n

) + α2
(
η−
n + η+

n

) + α2 ν−
n

]
(11)

qi n = (1 + ri n)
[
qi n− + ai n− − vi n−

]
i = 1, . . . , I (12)
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ln = (1 + rl n)

[

ln− −
I∑

i=1

ai n− +
I∑

i=1

vi n−

]

(13)

yn = ln +
I∑

i=1

qi n (14)

ln ≥ 0 qi n ≥ 0 ai n ≥ 0 vi n ≥ 0 (15)

θ+
n − θ−

n = yn − xn (16)

η−
n ≥ zdn − yn (17)

η+
n ≥ yn − zun (18)

ν−
n ≥ ρ

y
n − yn (19)

θ+
n , θ−

n , η+
n , η−

n , ν−
n ≥ 0 (20)

where ENt [ωt ] := ∑
n∈Nt

[πnωn], with πn being the conditional probabilities of
moving to node n ∈ Nt from the ancestor n− ∈ Nt−1. The initial endowments for the
liquidity component and the risky assets are l0 ≥ 0 and qi,0 ≥ 0, i = 1, .., n, and they
determine the value of the portfolio at time t = 0, y0 = l0 + ∑n

i=1 qi 0.
As shown below, we formulate and solve in each period a sequence of 2-stage,

2 periods optimization problems, following formulation (11)–(20), and report their
outcome again benchmarking out-of-sample the dynamic of the resulting optimal
portfolio against the market benchmark, the protective put index, a synthetic target
volatility strategy, a constant proportion fix-mix portfolio and the 1/n portfolio.

At every iteration the previous portfolio value is input as initial portfolio in the
following optimization problem. Unlike in the static, one-period case described in
Sect. 2, here we solve a recourse problem with optimal non-anticipative investment
strategies at τ = t, t + �t for each t over the validation period. The first stage
decision is then actually implemented and revised at the subsequent run, while the
recourse decisions are discarded and not considered for policy validation purposes.

We consider the S&P500 as benchmark and the S&P sector indices as elements of
the investment universe plus a liquidity component in the form of a money account.
We proceed as follows:

– VIX-based adaptive portfolio management simulation scheme.
– Step 0 Let t ∈ {0,�t, 2�t, ..., n�t = T }, set τ = t . �t corresponds to 2 weeks.
– Step 1Generate a two-period scenario tree using data up to t with branching degree

{401, 101} resulting in 400 scenarios over the forthcoming month: between τ and
τ + 2�t .

– Step 2Collect the currentVIXvalue and identify the appropriate decision criterion,
– Step 3 Formulate the objective function and constraints accordingly and solve
problem (11)–(20) using scenario tree created at Step 1.

– Step 4 Adopt the first period optimal decision obtained in step 2.
– Step 5 Evaluate the portfolio in step 4 using market realised returns at time τ +�t :
this value represents the new budget available for investment at the beginning of
next period ([τ + �t, τ + 2�t]).

– Step 6 Set τ = t + �t . If t ≤ T − 2�t go to step 1, otherwise exit.
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Themodel validation is entirely carried out out-of-sample and the optimal portfolios
are evaluated using realized returns in the market.

5 Empirical study

Aim of this section is to assess the VIX-based portfolio management approach and
check its effectiveness over an extended time period against other commonly adopted
investment policies. We test the adaptive scheme over the period January 2000-
December 2016. We take the view of an equity fund manager with a short 1-month
decision horizon and a rebalancing frequency of 2weeks. It is also of interest to analyse
the effectiveness of this approach for hedging purposes. Every fortnight, as mentioned,
the portfolio manager will reformulate and solve a new optimization problem always
using 1 month forward implied volatility information and defining an optimal policy
based on the current implementable, here-and-now decision and a forward recourse
decision. The managed portfolio generated by the investment decisions {qn, an, vn} in
problem (11)–(20), is based on 10 S&P500 sub-indices and themoneymarket account.
In Sect. 5.2 we provide evidence on the portfolios’ dynamic compositions and the
resulting value dynamics. At the time the portfolio is revised the market uncertainty
characterising the problem is defined through a rich scenario tree with 400 scenarios
over the next 2 periods generated relying on a bootstrapping method and 10 year of
data history. In Sect. 5.1 we summarise the steps adopted to generate the event tree,
following a very easy data-driven approach. Relying on a sequence of scenario trees,
we evaluate two possible adaptive portfolio schemes, based on constant long-term
volatility thresholds or on time-varying thresholds leading to market-dependent risk
controls.

5.1 Scenario generation and historical out-of-sample simulation

When formulating problem (11)–(20) the issue of introducing the coefficient tree
process needed to implement and solve the problem comes about.We intend to validate
a set of regime-dependent optimal policies relying on actual market data and avoiding
parametric assumptions on the return distributions, recently reported to have led to
significant model risk. The use of a multistage stochastic optimization approach for
very short-term investment management is here motivated primarily by the effort to
control emerging risky conditions in the market and rely on implied 1-month forward
information on the stock market volatility as captured by the VIX.

We describe briefly the approach adopted to generate a 2-period scenario tree with
40 branches at the root node and for each descending node additional 10 branches.
The expectation is taken giving to every scenario equal probability of occurrence. In
every node of the scenario tree we need to specify all the assets returns rn and the S&P
return r xn .

The coefficient scenarios are generated through a bootstrapping procedure frompast
data realizations (Brandimarte 2014; Calafiore 2016; Çetinkaya and Thiele 2015). At
the beginning of year 2000 a 10 year data history is considered for the S&P equity
benchmark, the VIX and all sub-indices. The current VIX value will be the first volatil-
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ity reference to determine the risk control rule within the first iteration. The 10-year
data history is then preserved via a rolling window until the last 400 scenario tree
and associated optimal strategy are determined. A 2-week time update is adopted and
the return vector is sampled at random from the past 10 year history. The multidi-
mensional character of the data and the dependence among time series are preserved
through simultaneous sampling from all the series involved, while we do not account
for autocorrelation or serial dependence since the returns for each node in the scenario
tree are randomly sampled from past realizations.

The benchmark itself is stochastic. For each node of the tree we generate jointly
the returns for the market benchmark and the sub-indices. The returns’ trees are then
applied to the initial value of the portfolio and of the benchmark to jointly determine
the MAD functions and associated returns payoffs. To avoid inconsistencies between
the portfolio value and the S&P500 evolutions, at the beginning of the experiment,
the initial values of the portfolio and of the benchmark are both set at 1000. In order to
guarantee consistency also at each subsequent step of the simulation, the scenario trees
for portfolio values and benchmark values, are obtained from the initial market value
of the portfolio, applying the bootstrapped returns from the assets’ return distribution
and from the S&P500 distribution, respectively. In detail, let r xn denotes the benchmark
return bootstrapped for node n, the benchmark values along the tree are computed as
follows:

xn = (1 + r xn ) y0 n ∈ N1 xn = (1 + r xn ) x−
n n ∈ N2

where y0 is the initial endowment of the portfolio, either 1000 at the first step or the
market value of the portfolio at subsequent steps of the simulation. These positions
guarantee that the tracking errors are computed in terms of differences in the returns
at each step.

The bootstrapping approach is opposed to a model-based one in which a (multi-
variate) stochastic model for the stochastic components is introduced and estimated
on the historical data in order to be subsequently used to generate the data for the
scenario tree. In extreme summary what are the implications of such method? That
can be roughly regarded as an extension of common historial simulation methods for
risk management into a multiperiod portfolio optimization context. Among the pros’:

• No need of any parametric assumption and thus lack of any source of model risk,
• Through the bootstrapping, the generation of robust optimal decisions relative
to alternative data samples: this is what we refer to as in-sample stability of the
optimal decision,

• Easy implementation and consistency with past market data and associated statis-
tical properties,

• Event study selection and dedicated filtering approaches on past data.

In summary these are well-known positive properties of generic data-driven
approaches (Consigli et al. 2017). From which few cons’ can also be deduced: the
lack of serial dependence when needed, the persistence of tail events within the sam-
ple space that may influence the risk control accuracy, the impossibility to carry I/O
what-if analysis commonly adopted with respect to alternative statistical assumptions
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in input data. As for a MSP set-up, the forced limitation of the tree process depth
with respect to the adopted planning horizon and often a cumbersome derivation of
time-dependent coefficients within the optimization model.

The output of the scenario tree generation is represented by the coefficient speci-
fication of the stochastic programme: in the next section we consider alternative risk
control rules and analyze their effectiveness over an extended 16 years period in the
US equity market. The collected evidences can provide a benchmark for studies in
other equity markets, such as the European or the far East and the UK, also very devel-
oped and endowed with implied volatility benchmarks. A further relevant extension is
represented by the introduction of early-warning-signals other than or together with
the implied volatility, see (Consigli et al. 2009).

5.2 Volatility regime switches and optimal portfolio policy

In Sect. 3 the definition of different investment rules and hedging strategies was
given a mathematical characterization in terms of MAD risk measures. Depending
on the VIX information, either one of the policies was activated: a passive track-
ing error (TE) minimization problem for low current values of the implied volatility,
an active volatility control (VC) policy within a corridor for VIX values within a
lower and upper bounds, and finally for values beyond a certain threshold a tail
risk (TR) control strategy. The three types of risk control are determined by two
volatility bounds. Among these 3 classical investment approaches the second and
the third are expected to lead to an effective limitation of the portfolio downside but
they might jeopardise extra returns at times in which the market is growing. The
first criterion instead is consistent with a risk-neutral investor and, depending, on
the equity benchmark is expected to generate positive returns as well as negative
returns. The definition of the input volatility bounds, leading to different risk control
problems, will reflect indirectly the risk-attitude of the portfolio manager. The above
market characterization does not consider the possibility of aggressive risk-seeking
investment policies, which may be of interest. We focus instead on the feedback of
a volatility signal coming from the option market into a limited set of risk control
types.

The different controls have been introduced as alternative to each other: only pure,
rather than mixed, TE, VC and TR strategies were considered in section and the
volatility thresholds were assumed constant over time, see Table 2. In what follows,
we relax such assumption to analyse how theoptimal controlwill evolve under different
specifications of the volatility signal: constant or time-varying.

To evaluate the effectiveness of the strategies in the long run with multiple switches
to different market conditions we consider a 16 year period, starting in January 2000
until December 2015. The aim is here both to further validate the adopted mod-
eling approach (in terms of effective replication of option strategies) and analyse
how different assumptions on the feedback rule (from implied volatility to risk con-
trol) translate into alternative portfolio policies and their market potential. From a
decision-making viewpoint the proposed modeling approach, integrating an implied
market signal with the derivation of an optimal risk control, provides an effective
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framework to consider other types of signals and other replicating portfolio rules.
In this work we have paid a primary attention to hedging portfolios and downside
protection rather than allowing for more aggressive strategies. Risk controls based
on a convex combination of the three criteria are also practical and would in general
reflect investors risk attitudes even more effectively. In what follows, however, we will
focus as mentioned on pure strategies, to derive the necessary modeling and policy
implications.

5.2.1 Constant volatility thresholds

We indicate the VIX at time t with σt : σ u and σl are constant volatility upper and
lower bounds. These are inputs by the portfolio manager relying on a given data his-
tory and they will determine the adopted policy throughout the 2000–2016 period.
Consider again the set of volatility bounds introduced in Table 2: let σl = 20%
and σu = 45%. Below 20 a TE will be activated, above 45 a TR control and
within the two bounds the VC policy. As noted in Sect. 3 these values are deter-
mined ex-ante analysing the behaviour of the US equity market volatility indices
over a prolonged period and assumed to reflect different volatility regimes. Once
a form of control holds, its quality will depend on two parameters associated with
each one of the two: we indicate with +/ − σ̃ the positive and negative volatility
increments needed to specify the corridor associated with VC and with ρ y the max-
imum tolerable negative market movement before activating TR. We show here next
graphical evidence of the sensitivity of the policy rules to the settings σ̃ = 1% and
ρ y = 5%.

Figure 10 displays the outcome of the introduced policies, the frequency of the
control switches over the 16 years and at the bottom the behaviour of the VIX during
the period. We focused in the previous sections on three subperiods and we have
shown that across those periods the introduced controls were effective in a static
model. Here we evaluate the control policy within a recourse model over an extended
16 years’ test-period. According to the chosen thresholds, along this period, themarket
results to be in an instability condition, with the activation of tail risk control, only
during the 2008 Financial Crisis. While, volatility control and tracking error alternate
along the remaining periods. We observe that, when the market is in a positive phase
associated with low volatility levels the tracking error strategy allows to follow the
market. However, the signal is not able to recognize periods in which the market
experiences losses in a low volatility setting and thus it is not able to avoid associated
losses. The volatility control is rather effective and allows to avoid the most relevant
downturns in the period.

Figure 11 displays in colour the optimal portfolio composition as a result of the
introduced feedbacks: we present in dark blue the investment in the money market
and then a range of colours spans the 10 S&P sub-indices.

A good portfolio diversification characterizes the optimal portfolio allocation under
the tracking error minimisation rule, a partial diversification is introduced under the
tail risk control, while the money market allocation is prevalent under the volatility
control rule. It must be pointed out that both α2 = 1 and α3 = 1 penalize portfolio
returns outside the given1%volatility corridor andbelow the 5% tail risk threshold: any
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Fig. 10 Comparison of optimal adaptive policy against the S&P500, the PPUT, a target volatility portfolio
(target volatility level 0.01), a fixed-mix market-weighted portfolio and the equally-weighted 1/n portfolio.
Regime switching frequency and VIX behaviour—bi-weekly data 07/01/2000–10/06/2016

portfolio satisfying those conditionswouldwork and indeed be optimal under the given
model specification. Inmarket practice, portfolio revisionswill likely be determined by
policy and turnover constraints aswell and, asmentioned,mixed strategieswill prevail.

Table 8 displays the statistics associated with the returns’ distributions generated
by each strategy over the considered period. Optimal portfolios are shown to dominate
all other portfolios according to all three performance ratios. Furthermore, to measure
the distance of the different strategies with respect to the benchmark, we consider the
Information Ratio (IR) and the Tracking Error Volatility (TEV).

Figure 12, finally, presents the returns histograms generated by each strategy over
the test-period.
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Fig. 11 Optimal here-and-now portfolios composition over the test-period, sequence of 2-stage problems
with bi-weekly data 07/01/2000–10/06/2016

Table 8 Comparison of optimal adaptive policy against the S&P500, the PPUT, a target volatility portfolio
(target volatility level 0.01), a fixed-mix market-weighted portfolio and the equally-weighted 1/n portfolio

S&P Opt-ptf Targ. Vol. PPUT Eq. Weighted Fix Mix

SD 0.0335 0.0171 0.0168 0.0260 0.0319 0.0339

Mean return 0.0008 0.0009 0.0004 0.0008 0.0009 0.0010

Skewness − 0.9192 − 0.9655 − 0.9192 − 0.2517 − 1.0386 − 0.9064

Kurtosis 6.6007 8.2548 6.6007 3.8429 7.7987 7.0489

MaxDD 0.5613 0.2483 0.3374 0.4176 0.5507 0.5777

Sharpe ratio 0.0238 0.0528 0.0267 0.0325 0.0281 0.0297

Sortino ratio 0.0310 0.0713 0.0350 0.0453 0.0365 0.0389

Omega ratio 1.0675 1.1834 1.0762 1.0871 1.0821 1.0861

IR − 0.004 − 0.0093 0.0033 0.0163 0.0534

TEV − 0.0268 0.0158 0.0152 0.0063 0.0039

Statistics and performance measures on return distributions. Information Ratio (IR) and Tracking Error
Volatility (TEV) are computed with respect to the benchmark portfolio (S&P500)– bi-weekly data
07/01/2000–10/06/2016

The histograms in Fig. 12 display the return frequency distribution generated ex-
post by actual market returns: at first glance the optimal portfolio return distribution
top right dominates the other distributions.
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Fig. 12 Comparison of the histograms for the S&P500 (top left), the optimal hedging portfolio (top right),
the target volatility portfolio (target volatility level 0.01)(middle left), the Protective Put Index (middle
right), the equally-weighted 1/n portfolio (bottom left) and a fix-mix market-weighted portfolio (bottom
right)—bi-weekly data 07/01/2000–10/06/2016

The risk controls considered aim at shaping the resulting returns’ distribution
according to different risk preferences. In particular, the TE control determines a
returns’ distribution that resembles the one of the benchmark, the VC aims at shrinking
the dispersion of the returns’ distribution obtaining a more concentrated distribution
around the mean value, finally in the TR control the goal is the reduction of the tail of
the distribution.
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In Table 9 the statistics and performance measures computed with reference to
Tracking error, Volatility control and Tail risk control periods, separately.

By disaggregating the analysis with respect to the adopted risk control type, we
can evaluate each strategy. In particular, by comparing the distributions of the optimal
portfolio against the others during the period in which the Tracking error was active
(top section in Table 9) we observe that the return distribution of the optimal portfolio
closely resembles the statistical features of the benchmark. This is confirmed by the
Information Ratio and the Tracking Error Volatility in the last two rows of the table.

In the Volatility control case (middle part of Table 9) we can confirm its effective-
ness, as witnessed by the return distribution minimal dispersion w.r.t the distribution
of the benchmark, this determines also the higher value reported for the kurtosis given
that even small deviations from the mean are thus relevant for the measure of tails. In
the Tail risk control case (bottom section in Table 9) we can observe a considerable
reduction of the maximum drawdown.

5.2.2 Path-dependent volatility thresholds

We consider now the evidence collected when including in the model time-varying
thresholds σ l

t and σ u
t to discriminate between different policies. The fund manager

is assumed to revise regularly the volatility thresholds to capture changing market
conditions. We introduce a VIX moving average μσ

t computed over the preceding
year [t − 52, t] as t evolves from 2000 until 2016 with weekly observations. Over the
same period let σσ

t be the estimated so-called volvol process, i.e. the volatility of the
implied volatility: it was shown already in Fig. 1 that indeed the VIX has gone over the
last 20 years or so through several relevant breaking points. Here we do overlook such
phenomenon and just test how alternative time-varying volatility thresholds influence
the policy switches across the three introduced policies: TE, VC and TR.

Figures 1 and 10 support at first sight the stylized evidence that the S&P500 carries
a fat-tailed and asymmetric return distribution and indeed even stochastic volatility
processes such as the celebrated GARCH model may be unsuitable to capture the
volatility regime switches and their intensity. With this in mind we evaluate the feed-
back from volatility signals to control actions by considering the following thresholds
specifications. For σl(t) = μσ

t − kσσ
t with k = 2, 1.5, 1, 0.5 we consider differ-

ent time-varying thresholds discriminating the adoption of TE (below those values)
and VC (above those values). Instead we keep σ u

t = μσ
t + 2σσ

t to discriminate
between a VC policy and a TR control policy (above the threshold). Alternative
threshold definitions may very well be adopted in search of superior portfolio per-
formances: here, however, we are only interested to generalize the adaptive scheme
and evaluate its hedging effectiveness when explicitly considering evolving market
conditions.

Under the given definition of σ u
t a tail risk control policy will become active only

for sufficiently high VIX values. This quantile will change over time but remaining
always on the extreme tail of the VIX distribution. Given such threshold, consider
for k = 0.5, 1, 1.5 and 2 the cases of increasing expansion/reduction TE/VC policy
areas. As before it is of interest here to evaluate the associated frequency of policy
rule changes and the quality of the introduced forms of control.
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Table 9 Comparison of optimal adaptive policy against the S&P500, the PPUT, a target volatility portfolio
(target volatility level 0.01), a fixed-mix market-weighted portfolio and the equally-weighted 1/n portfolio
disaggregated for risk control

S&P Opt-ptf Targ. Vol. PPUT Eq. Weigh. Fix Mix

Tracking error control

SD 0.0226 0.0218 0.0124 0.0203 0.0214 0.0226

Mean return 0.0012 0.0016 0.0007 0.0010 0.0013 0.0014

Skewness − 0.8193 − 0.8370 − 1.3950 − 0.4142 − 0.9126 − 0.8478

Kurtosis 5.1557 5.2842 9.7035 3.1474 5.4794 5.2448

MaxDD 0.3864 0.2447 0.1828 0.2815 0.3212 0.3351

Sharpe ratio 0.0542 0.0745 0.0579 0.0496 0.0630 0.0612

Sortino ratio 0.0727 0.1012 0.0760 0.0683 0.0844 0.0822

Omega ratio 1.1466 1.2086 1.1704 1.1289 1.1752 1.1677

IR − 0.0860 − 0.0516 − 0.0531 0.0249 0.0844

TEV − 0.0029 0.0116 0.0040 0.0042 0.0021

Volatility control

SD 0.0405 0.0010 0.0229 0.0308 0.0383 0.0406

Mean return 0.0006 0.0001 0.0010 0.0000 0.0006 0.0008

Skewness − 0.7267 − 0.6965 − 0.6205 − 0.1933 − 0.9158 − 0.7839

Kurtosis 4.4219 7.3023 5.6465 3.1089 5.4413 4.6718

MaxDD 0.4479 0.2035 0.3193 0.3541 0.4275 0.4500

Sharpe ratio 0.0143 0.1001 0.0419 − 0.0003 0.0161 0.0207

Sortino ratio 0.0187 0.1409 0.0567 − 0.0004 0.0209 0.0271

Omega ratio 1.0379 1.3719 1.1243 0.9992 1.0439 1.0559

IR − − 0.0120 0.0192 − 0.0338 − 0.0043 0.0362

TEV − 0.0396 0.0197 0.0176 0.0085 0.0054

Tail risk control

SD 0.0909 0.0241 0.0616 0.0542 0.0914 0.0975

Mean return − 0.0098 − 0.0035 − 0.0074 0.0072 − 0.0075 − 0.0084

Skewness − 0.2971 − 0.5975 − 0.3455 − 0.2303 − 0.2659 − 0.1907

Kurtosis 1.9122 2.1309 1.8967 2.1093 1.9851 1.8922

MaxDD 0.3783 0.077 0.2776 0.2095 0.3713 0.4026

Sharpe ratio − 0.1132 − 0.1549 − 0.1269 0.1395 − 0.0862 − 0.0912

Sortino ratio − 0.1384 − 0.1779 − 0.1528 0.2105 − 0.1081 − 0.1149

Omega ratio 0.7593 0.6827 0.735 1.4124 0.8113 0.8001

IR − 0.0975 0.084 0.2708 0.5441 0.1678

TEV − 0.0638 0.0278 0.0625 0.0042 0.0079

Statistics and performance measures on return distributions. Information Ratio (IR) and Tracking Error
Volatility (TEV) are computed with respect to the benchmark portfolio (S&P500). Top table: Tracking
error control (243 steps out of 416). Middle table: Volatility control (163 steps out of 416). Bottom table:
Tail risk control (10 steps out of 416)—bi-weekly data in the period 08/01/2000–10/06/2016
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Fig. 13 Comparison of optimal adaptive policy against the S&P500, the PPUT, a target volatility portfolio
(target volatility level 0.01), a fix-mix market-weighted portfolio and the equally-weighted 1/n portfolio.
Time varying volatility bounds—bi-weekly data 08/01/2000–10/06/2016. Top left σ l

t = μσ
t − 2σσ

t and
σ u
t = μσ

t + 2σσ
t . Top right σ l

t = μσ
t − 1.5σσ

t and σ u
t = μσ

t + 2σσ
t . Bottom left σ l

t = μσ
t − σσ

t and
σ u
t = μσ

t + 2σσ
t . Bottom right σ l

t = μσ
t − 0.5σσ

t and σ u
t = μσ

t + 2σσ
t

Figure 13 displays the optimal portfolio dynamics relative to the introduced set of
benchmarks for decreasing k: on the top left we have k = 2, then right k = 1.5 on
the bottom left plot k = 1 and finally k = 0.5 on the bottom right plot. We see that
in the top-left plot with σ l

t = μσ
t − 2σσ

t and σ u
t = μσ

t + 2σσ
t the VC area is so

large that the resulting optimal strategy is always targeting a portfolio with almost null
volatility and indeed as outcome we see that this strategy provides a perfect protection
throughout the 16 years. For k = 1.5, 1 and 0.5 the area for index tracking expands
and the resulting strategy will progressively focus on an optimal S&P replication. In
parallel, the switches from VC to TE minimization will become significantly more
frequent as shown here next in Fig. 14.

Notice that in both cases, here above and in the previous experiment based on
constant thresholds, we apply the same discriminating rule throughout the 16 years:
the evidence presented in Fig. 13 supports however the need to adapt not only the
thresholds but also such discriminating rule over time as the statistical properties of
the VIX distribution change. Surely an asymmetric upper and lower deviation from
the mean appears necessary to achieve a good hedging performance. We complete
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Fig. 14 Comparison of the activated controls for varying volatility thresholds—bi-weekly data 08/01/2000–
10/06/2016. Top leftσ l

t = μσ
t −2σσ

t andσ u
t = μσ

t +2σσ
t . Top rightσ l

t = μσ
t −1.5σσ

t andσ u
t = μσ

t +2σσ
t .

Bottom left σ l
t = μσ

t − σσ
t and σ u

t = μσ
t + 2σσ

t . Bottom right σ l
t = μσ

t − 0.5σσ
t and σ u

t = μσ
t + 2σσ

t

the analysis of this case of continuously evolving volatility thresholds by showing the
associated optimal root-node portfolio allocations over the 2000–2016 period.

The four plots in Fig. 15 help understanding, in case of very tight volatility con-
trol, the preference for risk-free money market allocation. As the space for portfolio
tracking and relaxed volatility control increases the optimal portfolio strategy starts
diversifying. By only considering the top left plot and the bottom right plot, based on
the {+2,−2} and {+2,−0.5} threshold definitions, respectively, we present here next
the associated out-of-sample performance evidence.

The results in Table 10 highlight the optimal portfolio returns’ distributions under
the adopted threshold specifications against the benchmark policies. In the top table,
based on {+ 2,− 2} threshold definition in which there is a prevalence of the VC,
the returns’ distribution is extremely concentrated around the mean and negatively
skewed. In the bottom table, based on the {+ 2,− 0.5} case with a more relevant
presence of TE periods, the distribution is less negatively skewed but the thresh-
old specification in this case inhibits the consistent upward movement of the market
when associated with high levels of volatility thus resulting in a worsening of the risk
adjusted performance indicators. The strategies’ outcome is determined by both the
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Fig. 15 Comparison of optimal first stage portfolio compositions for varying volatility thresholds—bi-
weekly data 08/01/2000–10/06/2016. Top left σ l

t = μσ
t − 2σσ

t and σ u
t = μσ

t + 2σσ
t . Top right σ l

t =
μσ
t − 1.5σσ

t and σ u
t = μσ

t + 2σσ
t . Bottom left σ l

t = μσ
t − σσ

t and σ u
t = μσ

t + 2σσ
t . Bottom right

σ l
t = μσ

t − 0.5σσ
t and σ u

t = μσ
t + 2σσ

t

specification of k and by the length of the adopted moving window, in our case of 1
year.

Overall we may summarise that under a path-dependent thresholds definition, the
optimal policywill adapt consistently to the varying hedging constraints, however con-
sidering prolonged periods the opportunity to introduce regime-based discriminating
rules appears relevant.

6 Volatility signals and risk control: a summary

In Sects. 5.2.1 and 5.2.2we gave evidence of the quality of the optimal controls induced
by different model specifications. From a decision-paradigm viewpoint wemay regard
the adopted approach as a 4-legs decision process based on (1) a volatility signal from
the derivative market, (2) the definition of the appropriate hedging or policy rule, (3)
the subsequent derivation of an optimal portfolio replication within a recourse model
and (4) its out-of-sample validation based on market data. Step (4) may lead over time
to a refinement of (1) and so forth.
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Table 10 Comparison of optimal adaptive policy against the S&P500, the PPUT, a target volatility portfolio
(target volatility level 0.01), a fixed-mix market-weighted portfolio and the equally-weighted 1/n portfolio

S& P Opt-ptf Targ. Vol. PPUT Eq. Weigh. Fix Mix

σ l
t = μσ

t − 2σσ
t and σ u

t = μσ
t + 2σσ

t

SD 0.0335 0.0055 0.0168 0.026 0.0319 0.0339

Mean return 0.0008 0.0002 0.0004 0.0008 0.0009 0.001

Skeweness − 0.9192 − 2.3829 − 0.9192 − 0.2517 − 1.0386 − 0.9064

Kurtosis 6.6007 39.5579 6.6007 3.8429 7.7987 7.0489

MaxDD 0.5613 0.1007 0.3374 0.4176 0.5507 0.5777

Sharpe ratio 0.0238 0.0293 0.0267 0.0325 0.0281 0.0297

Sortino ratio 0.0310 0.0379 0.035 0.0453 0.0365 0.0389

Omega ratio 1.0675 1.2303 1.0762 1.0871 1.0821 1.0861

IR − − 0.0204 − 0.0093 0.0033 0.0163 0.0534

TEV − 0.0311 0.0158 0.0152 0.0063 0.0039

σ l
t = μσ

t − 0.5σσ
t and σ u

t = μσ
t + 2σσ

t

SD 0.0335 0.0166 0.0168 0.026 0.0319 0.0339

Mean return 0.0008 0.0002 0.0004 0.0008 0.0009 0.001

Skeweness − 0.9192 − 0.2889 − 0.9192 − 0.2517 − 1.0386 − 0.9064

Kurtosis 6.6007 13.5432 6.6007 3.8429 7.7987 7.0489

MaxDD 0.5613 0.2474 0.3374 0.4176 0.5507 0.5777

Sharpe ratio 0.0238 0.0124 0.0267 0.0325 0.0281 0.0297

Sortino ratio 0.031 0.017 0.035 0.0453 0.0365 0.0389

Omega ratio 1.0675 1.0468 1.0762 1.0871 1.0821 1.0861

IR − − 0.0226 − 0.0093 0.0033 0.0163 0.0534

TEV − 0.0265 0.0158 0.0152 0.0063 0.0039

Statistics and performance measures. Time-varying volatility threshold definition. Top table {+2%,−2%},
Bottom table {+2%,−0.5%} update rules—bi-weekly data 08/01/2000–10/06/2016

The (non trivial) relationship between (2) and (3) represents the main focus of the
analysis and motivates a core part of this research. We believe that the collected evi-
dences are sufficient to validate the adopted problem formulation (11)–(20). The tests
were limited to relatively common and simple derivatives-based hedging policies, thus
assuming a risk-averse decision maker primarily concerned with downside portfolio
protection. The representation as MAD functionals for the cases in which short posi-
tions and long positions are jointly present is problematic. This represents a limitation
of the proposed optimization approach and a task for future research.

The elements for other types of maybe bullish and speculative option strategies
have been introduced in Sect. 4 and are definitely worth considering to extend the
scope and practical applicability of the method. In market practice, a fund manager
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would hardly stick to only 3 risk management rules and depending on the market
phase other portfolio payoffs may be appropriate. In our setting we didn’t discrimi-
nate at a macro-level between volatility regimes: between 1990 and 2016 it is widely
acknowledged that the US equity market went through several volatility breaks (e.g.
in 1998, 2007). Such evidence once statistically validated should lead to a revision
of policy rules and signals across volatility macro-regimes. It must be finally recalled
that the analysis has been developed under the simplifying, though realistic, assump-
tion of no transaction costs and no management fees, assumed compensating one
another.

The relationship between (1) and (2), being associated with the quality of for-
ward signals collected in derivatives markets and their mapping into different types
of regime-dependent policies, is also extremely relevant for portfolio managers. The
continuous growth of volatility-based market indices employing an automatic revi-
sion of model portfolios further qualifies the search of effective feedback criteria
to span agents’ risk preferences. Of particular interest and not treated in this arti-
cle, the signals generated by indices or hidden market variables other than the VIX:
in Consigli et al. (2009) we studied for the US equity market the ratio between
the 10-year bond yield and the equity yield and develop a risk indicator. Increas-
ing markets’ information efficiency is primarily reflected into growing and liquid
derivatives markets and the adoption both for risk management and policy making
objectives of implied information. This research stream was recently consolidated
by the launch at CBOE of the TYVIX/VIX index and fits naturally in the proposed
methodology, resulting in the definition of more comprehensive optimal portfolio
replication problems. Other market signals may also be proposed and associated
with desirable portfolio return profiles. The introduction of a weighted combina-
tions of risk controls, obtained allowing α j �= 0 for more than one j , results in
the activation of mixed hedging strategies and represents a possible extension of
the adopted model. Preliminary evidences, however, suggest that the relationships
among the risk preferences of the decision maker, the market signals and thresholds
used to activate the risk controls and the resulting optimal policies require further
investigations.

Specifically from a methodological viewpoint the adoption of a data-driven short-
term portfolio optimization model based on a 2-stage recourse program is new: we
consider a fund manager with a 1 month horizon and as such employing 1-month
forward implied market information and facing an uncertainty associated with a sce-
nario tree representation of the problem. The performances reported in the preceding
sections qualify the use of portfolio optimization approaches relative to automatic
volatility trading rules and index-based strategies. The proposed framework is contigu-
ous but substantially different from the stream of policy rule optimization approaches
(Powell 2014) seeking through intensiveMonte Carlo methods and heuristics, optimal
policy rules over medium to long-term horizons. Here we only discriminate between
different rules (TE or VC or TR) depending on a volatility signal and then solve an
optimal portfolio replication problem given the rule. From a financial management
viewpoint the adopted approach is close to so-called contingency approaches in which
upon specific market conditions, likely to jeopardise ongoing optimal investment
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strategies, the portfolio manager protects the portfolio risk-adjusted performance over
very short horizons.

7 Conclusion

This article’s ambitious contributions, broadly speaking, include: (i) the formulation
of a recourse stochastic linear program, which replicates a set of option strategies com-
monly adopted for hedging purposes in equitymarkets, (ii) the validation of the associ-
ated policies when a derivative-market EWS, such as the implied volatility, is adopted
over an extended time period, and (iii) the formulation of a stochastic programming
model for short-term hedging purposes relying on a data-driven approach to model
uncertainty.

For (i), in the first part of the article we have clarified the rationale for
adopting an optimization approach rather than a direct derivative-based portfo-
lio or a composite market benchmark: the effectiveness of the MAD formulation
has been tested over three periods of market instability relying on a static one-
period framework. After assessing the accuracy of the MAD formulation, with
evidence on three risk control models—for tracking error minimization with
respect to a benchmark, volatility control within a volatility corridor and tail risk
control—we have extended the model to a two-stage formulation which has been
implemented and tested out-of-sample over an extended 17 years period, between
January 2000 and December 2016 under two possible volatility-based hedging
schemes.

The model formulation and methodology relies entirely on market data with-
out introducing any parametric assumption on returns distributions. The collected
evidence supports the effectiveness of the adopted model formulation for hedging
purposes, particularly during periods of high volatility in equity markets and illiquid
and extremely expensive derivative contracts. The adoption of a data-driven character-
ization of the uncertainty is consistent with a decision model for short-term portfolio
management as generally adopted in derivatives markets and fund management: as
such the inclusion of an implied volatility signal based on 1 month derivative expiries
coincides with the portfolio manager planning horizon. The extension of the proposed
methodology to a full multistage setting, still relying on non parametric, market based
scenario returns, must thus be taken with care. To infer the general properties of each
type of policy, in this article we have limited the analysis to risk control strategies
treated as alternative one another: the adoption of mixed strategies based on a multi-
criteria approach appears desirable in practice and likely to induce superior portfolio
performances.
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Appendix A: List of crisis periods

In Table 11 recent stock market crashes and bear market periods in the period 2000-
2016 are listed. For each period we test model (1)–(7) to validate the adopted problem
formulation under different market conditions. The settings used in the experiments
are the same presented in Sect. 3. Each experiment spans a period of 1 year and we
solve 26 (bi-weekly) optimization problems.

Results of the management experiments for the Dot-com bubble, the September 11,
2001 attacks and the 2008 Financial Crisis are presented in Sect. 3 in the paper while
results for the remaining periods are presented in Figs. 16, 17, 18, 19, 20 and 21.

Evidences obtained in different bear market periods confirm that the introduced
model and the associated optimal hedging strategies are overall effective in providing
protection from downside with the relevant exceptions of the Chinese stock bubble of
2007 and the Chinese stock market crash of June 2015 periods for which the signal
seems to be too delayed and is thus not effective in activating the proper risk control.
In these two periods the VIX crosses the lower threshold several times thus activating
alternatively the VC and the TE strategies. A second limitation of the model confirmed
by theDubai debt crisis period is the inability of themodel to capture and followupward
trends in the market when they are associated with high volatility levels signalled by
levels of the VIX that are in the VC zone.

Table 11 List of major stock market crashes and bear markets in the period 2000–2016

Dot-com bubble 10 March 2000

9/11 Attacks 11 September 2001

Stock market downturn of 2002 October 2002

Chinese stock bubble and U.S. bear market of 2007 27 February 2007

Financial crisis of 2007–2008 September 2008

Dubai debt standstill November 2009

European sovereign debt crisis April 2010

August 2011 stock market fall August 2011

Chinese stock market crash 2015–2016 June 2015
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Fig. 16 October, 2002 downturn. Comparison of optimized adapted portfolio with the benchmark
portfolio (S&P500) and target volatility portfolio (target volatility level 0.01)—bi-weekly data 23/08/2002–
08/08/2003
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Fig. 17 Chinese stock bubble and US bear market, 2007. Comparison of optimized adapted portfolio with
the benchmark portfolio (S&P500) and target volatility portfolio (target volatility level 0.01)—bi-weekly
data 30/03/2007–14/03/2008
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Fig. 18 November, 2009– Dubai debt crisis. Comparison of optimized adapted portfolio with the bench-
mark portfolio (S&P500) and target volatility portfolio (target volatility level 0.01)—bi-weekly data
13/02/2009–05/02/2010
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Fig. 19 2010—European sovereign debt crisis. Comparison of optimized adapted portfolio with the
benchmark portfolio (S&P500) and target volatility portfolio (target volatility level 0.01)—bi-weekly data
08/01/2010–24/12/2010

123



476 D. Barro et al.

Fig. 20 August 2011—Stock market fall. Comparison of optimized adapted portfolio with the benchmark
portfolio (S&P500) and target volatility portfolio (target volatility level 0.01)—bi-weekly data 08/04/2011–
23/03/2012
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Fig. 21 June, 2015—Chinese stock market crash. Comparison of optimized adapted portfolio with the
benchmark portfolio (S&P500) and target volatility portfolio (target volatility level 0.01)—bi-weekly data
06/02/2015–22/01/2016
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