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Abstract In this paper, we approach the problem of valuing a particular type of
variable annuity called GMWB when advanced stochastic models are considered.
As remarked by Yang and Dai (Insur Math Econ 52(2):231–242, 2013), and Dai et
al. (Insur Math Econ 64:364–379, 2015), the Black–Scholes framework seems to
be inappropriate for such a long maturity products. Also Chen et al. (Insur Math
Econ 43(1):165–173, 2008) show that the price of GMWB variable annuities is very
sensitive to the interest rate and the volatility parameters. We propose here to use
a stochastic volatility model (the Heston model) and a Black–Scholes model with
stochastic interest rate (the Black–Scholes Hull–White model). For this purpose, we
consider four numerical methods: a hybrid tree-finite difference method, a hybrid tree-
Monte Carlo method, an ADI finite difference scheme and a Standard Monte Carlo
method. These approaches are employed to determine the no-arbitrage fee for a popular
version of the GMWB contract and to calculate the Greeks used in hedging. Both
constant withdrawal and dynamic withdrawal strategies are considered. Numerical
results are presented, which demonstrate the sensitivity of the no-arbitrage fee to
economic and contractual assumptions as well as the different features of the proposed
numerical methods.
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1 Introduction

Variable annuities are investment contracts with insurance coverage. In recent years,
they have become a source of attraction for many investors, because of their specific
features: they are tax-deferral products able to guarantee a minimum return for a long
period and to take advantage of favorable market movements. As observed by Horneff
et al. (2015), this kind of investments have been one of the most rapidly growing
financial products over the past few decades: in 2013, the variable annuities sold in
the US market totaled more than $140 billions, while the assets invested in variable
annuities contracts by the US investors were more than double than the assets invested
in fixed annuities.

The majority of the models in the literature present the analysis of these products
in the Black–Scholes model, usually disregarding possible changes in the interest rate
and the volatility of the underlying, which drives the value of the policy. Some recent
works begin to address the problem of pricing in more comprehensive models.

In this article, we consider a Guaranteed Minimum Withdrawal Benefit (GMWB)
annuitywhich is oneof themost popular contracts for bothpractitioners and academics.
We restrict our attention to a simplified form of a GMWBwhich is initiated by making
a lump sum payment to an insurance company. This lump sum is then invested in
risky assets, usually a mutual fund. The benefit base, or guarantee account balance, is
initially set to the amount of the premium payed. The holder of the policy (hereinafter,
the PH) is entitled to withdraw a fixed amount at some dates specified by the contract,
even if the actual investment in the risky asset declines to zero. The PH may withdraw
more than the guaranteed amount, including complete surrender of the contract, upon
payment of a penalty. In most cases, this penalty for full or partial surrender declines
to zero after 5–7years. During contract execution, a death benefit may come with the
PH’s death: in this case, her heirs receive the remaining amount in the risky asset
account.

The hedging costs for this guarantee are offset by deducting a proportional fee from
the risky asset account. From an insurance point of view, these products are treated as
financial ones: they are hedged as if they were pure financial and the mortality risk is
hedged using the law of large numbers [see Lin et al. (2016) and Bernard and Kwak
(2016) for a description of move-based and semi-static hedging of variable annuities].

Moreover these products have long maturities that could last almost 25years, and
thus the Black–Scholes model, which assumes the interest rate and the volatility to be
constant, seems to be unsuitable. In order to shed light on this matter, we present
the considered pricing methods in two stochastic models which provide stochas-
tic volatility (Heston 1993) and stochastic interest rate (Hull–White model 1994)
respectively.

There have been several recent articles on pricing GMWBs. Some of them focus
on the mathematical properties of optimal withdrawals. Chen and Forsyth (2008)
use an impulse stochastic control formulation to price GMWB, assuming the PH to
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optimally withdraw money from the account value continuously or only at anniver-
saries. Chen et al. (2008) analyze the impact of several product and model parameters
using a PDE approach, which demonstrates to be very fast and accurate. In a recent
work, Huang and Kwok (2014) provide a characterization of the pricing properties
of the GMWB products and perform a full mathematical analysis of the optimal
dynamic withdrawal policies, reducing the pricing formulation to an optimal stopping
problem.

Some authors prefer Monte Carlo methods. In their seminal work, Bacinello et al.
(2011) apply a Monte Carlo approach to evaluate different types of variable annu-
ities including GMWB products. In particular, they assume the PH’s behavior to be
semi-static (i.e. the holder withdraws at the contract rate or surrenders the contract).
Also Bauer et al. (2008) consider a universal pricing framework to evaluate differ-
ent variable annuities by using both Monte Carlo methods and a generalization of
a finite mesh discretization approach. Concerning the GMWB policies, they con-
sider the PH to withdraw at a constant rate or to follow a simplified optimization
approach.

Other works focus on the research of efficient numerical methods to evalu-
ate GMWB contracts. In particular, Donnelly et al. (2014) apply partial derivative
equations to efficiently price GMWB, considering stochastic interest rate and stochas-
tic volatility and assuming a simplified PH behavior. Later, Luo and Shevchenko
(2015a, b) compute the value of a GMWB contract in the Black–Scholes model under
optimal PH behavior by means of Gauss-Hermite integration, and more recently, in
Shevchenko and Luo (2017), they prove the efficiency of their approach in evalu-
ating GMWB contracts when the Vasicek interest rate model is assumed. Similarly,
Ignatieva et al. (2018) introduce the Fourier Space Time-Stepping algorithm to eval-
uate the contracts embedding GMWB rider in the Black–Scholes model, assuming
static or dynamic withdrawals. Some other authors propose pricing methods based
on the use of trees. Costabile (2017) considers a trinomial tree method to evaluate
GMWB contracts in a regime-switching model. Yang and Dai (2013) use a method
based on a flexible tree and more recently Dai et al. (2015) improve such a tree based
model to include stochastic interest rate and mortality.

Other authors focus on the effects of stochastic interest rates, stochastic volatility
and jumps of the fund value. For example, Peng et al. (2012) price variable annuities
such as GMWB contracts, under the Vasicek stochastic interest rate model. In partic-
ular, under the assumption of deterministic withdrawal rates, they develop the pricing
formulation of the value function of a GMWB contract, comparing their results with a
Monte Carlo benchmark. Huang et al. (2012) investigate the singular stochastic con-
trol problem which arises when pricing GMWB products whose underlying fund is
assumed to follow a jump diffusion process.

In this paper, we price a simplified version of a GMWB contract. Specifically, we
compute the no-arbitrage fee in the Heston model and the Black–Scholes model with
stochastic interest rate following the Hull–White model (Black–Scholes Hull–White
model). The term no-arbitrage fee designates the fee which is required to maintain a
replicating portfolio in a complete market [the interested reader can find a description
of the replicating portfolio for these types of guarantees in Chen and Forsyth (2008)
and Bélanger et al. (2009)]. The GMWB products described in the literature are not
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always standardized and they exhibit some differences in the mechanisms that define
them. Therefore, we consider the contract proposed byChen and Forsyth (2008) which
embeds aGMWB type rider. First, we treat a staticwithdrawal strategy inwhich the PH
withdraws money from the risky asset account exactly at the rate specified in the con-
tract. Then, we price the guarantees assuming the PH to follow a dynamic withdrawal
strategy, in which the PH selects the amount to withdraw in order to maximize her total
wealth. In order to evaluate the considered contracts, we employ four numerical meth-
ods: a hybrid tree-finite difference method and a Hybrid Monte Carlo method [both
introduced by Briani et al. (2017a, b)], an ADI finite difference scheme (Haentjens and
In’t Hout 2012) and a Standard Monte Carlo method which employs some common
simulation techniques [see Alfonsi (2010) and Ostrovski (2013)]. In particular, both
the two Monte Carlo methods consider a Longstaff-Schwartz least squares regression
type (Longstaff and Schwartz 2001) to deal with the optimal withdrawal case. We
accentuate that these methods have already been employed to evaluate the Guaranteed
Lifelong Withdrawal Benefit (GLWB) variable annuities in Goudenège et al. (2016)
but, in this case, the achievement is harder since the problem dimension is greater. In
fact, the dimension of the GLWB pricing problem is equal to 2, while it is equal to
3 in the GMWB case. Moreover, the problem in the dynamic case is more difficult
since a simple Bang-Bang strategy is not enough (see Luo and Shevchenko 2015b):
the optimal withdrawal is often different from standard choices (no-withdrawal, with-
draw the contract guaranteed amount and surrender) which work for GLWB contracts.
These differences in the problem under examination force us to improve the algorithms
introducing new features.

The main results of this paper are the following ones. We investigate the impact of
considering stochastic volatility or stochastic interest rate on pricing and Greeks cal-
culation, and the sensitivity of the GMWB fee to various modeling parameters. To this
aim, we compute the cost of maintaining a replicating hedging portfolio in the Heston
model and in the Black–Scholes Hull–White model using different pricing methods.
In particular, one of the most important outcomes is the introduction of an innovative
procedure to evaluate the GMWB contracts under dynamic withdrawals with Monte
Carlo procedure.Wewould like to remark that, to the best of our knowledge, this is the
first time that a Monte Carlo method is proposed to evaluate GMWB policies under
dynamic withdrawals.

The reminder of the paper is organized as follows. In Sect. 2, we describe the main
features of the contract such as event times, withdrawals and penalties. In Sect. 3,
we provide a brief review of the stochastic models used afterwards. In Sect. 4, we
describe the numerical methods that we propose to solve the GMWB pricing problem.
In Sect. 5, we provide some numerical results and we study the sensitivity of the
no-arbitrage fee to economic and contractual assumptions. Finally, in Sect. 6, some
conclusions are drawn.

2 The GMWB contract

In our framework, we refer to the contract described in the paper of Chen and Forsyth
(2008). Let us present a brief summary of the main features of such a contract.
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2.1 Mortality

Similar to the work of Chen and Forsyth (2008), Dai et al. (2015), and Milevsky and
Salisbury (2006), we ignore the mortality effects.

2.2 Contract state parameters

At time t = 0 the PH pays with a lump sum the premium P to the insurance company.
The premium P is invested in a fund whose price at time t is denoted by St .

We suppose that the PH can withdraw only during a set of discrete times
{ti = i�t, i = 1, . . . N }, which we term event times. Immediately after the last event
time, the PH receives a final payoff and the contract ends. Usually, withdrawals happen
on an annual or semi-annual basis, i.e. �t = 1 or �t = 1

2 . We stress out that the first
withdrawal is available at t1 and not at t = 0.

The contract state parameters at a given time t are the account value (At , A0 = P)
and the base benefit (Bt , B0 = P). Moreover, in the Heston model, also the volatility
of the underlying fund vt affects the option value, and so does the interest rate rt in
the Black–Scholes Hull–White model. To be brief, let ut denote the volatility vt as far
as the Heston model is concerned and the interest rate rt as far as the Black–Scholes
Hull–White model is concerned.

Finally, let V (A, B, u, t) denote the fair value of the considered GMWB contract
at time t with account value equal to A, base benefit equal to B and interest rate or
volatility equal to u.

2.3 Evolution of the contract in the deferred period and between the event times

During the deferred period (i.e. the time between 0 and t1) and during the time between
two consecutive event times (ti and ti+1), the account value At follows the same
dynamics of the underlying fund St , with the exception that some fees, determined by
the parameter αtot , may be subtracted from At :

d At = At

St
dSt − αtot Atdt. (2.1)

Specifically, we suppose that the total annual fees are charged to the PH (the insurance
company pays no fees to a third party) and withdrawn proportionally and continuously
only from the account value. These fees include the mutual fund management fee αm

and the fee αg charged to fund the guarantee, so that

αtot = αm + αg.

The only portion used by the insurance company to hedge the contract is that coming
from αg: the other part of the fees has to be considered as an outgoing money flow as
well as the PH’s withdrawals are.
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2.4 Event times and final payoff

During the event times, the PH is entitled to withdraw a guaranteed amount G from
her account. The amount G is set in the contract statements and usually it is equal
to the initial premium P divided by the number of event times N (i.e. G = P/N ).
Let us present how the contract state variables change at one of these event times.

Let us denote
(
A
t (−)
i

, B
t (−)
i

, u
t (−)
i

, ti
)
the contract state variables just before the event

time ti occurs, and
(
A
t (+)
i

, B
t (+)
i

, u
t (+)
i

, ti
)
the same state variables just after ti occurs.

Moreover, let Wi represent the amount withdrawn at time ti , which is required to be
non-negative and smaller than the base benefit B

t (−)
i

.

If the amount withdrawn satisfies Wi ≤ G, then there is no penalty imposed,
whereas, if Wi > G, a proportional penalty charge κi (Wi − G) is imposed, which
reduces the amount actually received by the PH. Therefore, the PHmay not receive all

the money she withdraws from the risky asset account: let fi (Wi ) :
[
0, B

t (−)
i

]
→ R

be the function ofWi denoting the cash flow received by the PH due to the withdrawal
at time ti , that is given by the following expression:

fi (Wi ) =
{
Wi if Wi ≤ G

Wi − κi (Wi − G) if Wi > G.

The contract state variables just after the withdrawal are given by:

(
A
t (+)
i

, B
t (+)
i

, u
t (+)
i

, ti
)

=
(
max

(
A
t (−)
i

− Wi , 0
)

, B
t (−)
i

− Wi , ut (−)
i

, ti
)

. (2.2)

After the last event time tN has occurred, the PH receives the final payoff, which is
worth

FP = max (AT , (1 − κN ) BT ) , (2.3)

and the contract terminates.
As far as the determination of Wi is concerned, we consider two possible

approaches. In the first case, the so called static withdrawal, the PH withdraws at
each event time exactly the guaranteed amount G, which is stated in the contract. In
the second case, the so called dynamic withdrawal, the PH chooses Wi in order to
maximize her total wealth, that is

Wi = argmax

wi∈
[
0,B

t(−)
i

] V
(
max

(
A
t (−)
i

− wi , 0
)

, B
t (−)
i

− wi , uti , t
+
i

)
+ fi (wi ) . (2.4)

Furthermore, numerical tests prove that the optimization problem in (2.4) can be solved
by simply comparing the objective function at the multiples of G, that is the elements

of the set
{
nG : n = 0, . . . , N , and nG ≤ B

t (−)
i

}
. This fact is particularly useful for

the numerical evaluation of GMWB products, since it permits to quickly compute the
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best withdrawal, as well as it reduces the actual possible values of B to the elements
of the set {nG : n = 0, . . . , N }.

2.5 Last event time

Let T = tN denote the last event time. In this particular case, it is possible to prove
that the optimal last withdrawal in the dynamic case is given by

WN = min
(
G, BT (−)

)
, (2.5)

and the value of the contract before the withdrawal is given by

V
(
AT (−) , BT (−) , uT (−) , T (−)

)
= max

(
AT (−) , (1 − κN ) BT (−) + κ min

(
G, BT (−)

))
,

(2.6)
which again simplifies the computation of the optimal withdrawal.

3 The stochastic models

To understand the different impacts of stochastic volatility and stochastic interest rate
over such a long maturity contract, we price the GMWB according to two models: the
Hestonmodel,which provides stochastic volatility, and theBlack–ScholesHull–White
model, which provides stochastic interest rate.

3.1 The Heston model

The Heston model (1993) is one of the most known and used models in finance to
describe the evolution of an underlying asset and of its volatility. In order to fix the
notation, we report its dynamics under a risk neutral probability:

{
dSt = r Stdt + √

vt St d Z S
t

dvt = k (θ − vt ) dt + ω
√

vt d Zv
t ,

(3.1)

where Z S and Zv are Brownian motions and d
〈
Z S
t , Zv

t

〉 = ρdt .

3.2 The Black–Scholes Hull–White model

The Hull–White model (1994) is one of historically most important interest rate mod-
els, which is nowadays often used by insurance companies. The important advantage
of the Hull–White model is the existence of closed formulas which allow one to calcu-
late the prices of bonds, caplets and swaptions. In order to fix the notation, we report
the model dynamics under a risk neutral probability:

123



224 L. Goudenege et al.

{
dSt = rt Stdt + σ Std Z S

t ,

drt = k (θt − rt ) dt + ωdZr
t ,

(3.2)

where Z S and Zr are Brownian motions and d
〈
Z S
t , Zr

t

〉 = ρdt .
The process r is a generalizedOrnstein-Uhlenbeck process. In fact, θt is not constant

but it is a deterministic function which is completely determined by the market values
of the zero-coupon bonds by calibration (see Brigo and Mercurio 2007) so that the
theoretical prices of the zero-coupon bonds match exactly the market prices. It is well
known that the short rate process r can be written as

rt = ωXt + β (t) , (3.3)

where X is a stochastic process given by the following relation

dXt = −kXtdt + dZr
t , X0 = 0, (3.4)

and β (t) is a function given as follows:

β (t) = f M (0, t) + ω2

2k2
(1 − exp (−kt))2 . (3.5)

Then, using relations (3.3) and (3.4), the Black–Scholes Hull–White model (3.2) can
be rewritten as follows: ⎧

⎪⎨
⎪⎩

dSt = rt Stdt + σ Std Z S
t

dXt = −kXtdt + dZr
t

rt = ωXt + β (t) .

(3.6)

If we assume that the market price of a zero-coupon bond at time t with maturity t̄ is
given by PM

(
t, t̄

) = e−r0(t̄−t), then we obtain the so-called flat curve case. In this
very particular case the function β (t) is given by the following expression

β (t) = r0 + ω2

2k2
(1 − exp (−kt))2 ,

and no additional calibration is required.

4 Numerical methods of pricing

In this section, we describe the four pricing methods proposed: a Hybrid Monte Carlo
method, a Standard Monte Carlo method, a Hybrid PDE method, and an ADI PDE
method. The numerical methods proposed here resume the same principles employed
by Goudenège et al. (2016) in the case of GLWB variable annuities and thus we only
provide a brief description of them [the interested reader can find more details about
the employed numerical procedures in Goudenège et al. (2016)]. Moreover, we focus
on the algorithm improvements specifically introduced for theGMWBcontracts, since
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the evaluation of these products presents new numerical obstacles with reference to
the GLWB contracts.

We remember that our aim is to find the fair value for αg: this is the charge that
makes the initial value of the policy V (P, P, u0, 0) equal to the initial premium P .
To this aim, we employ the secant method to approach the fair value of αg , calculating
at each step the value of the contract by employing one of the considered methods.
Therefore, the main goal is to compute the value V (P, P, u0, 0) assuming a given
value for αg .

Finally, as far as the Greeks computation is concerned, we apply the same meth-
ods described in Goudenège et al. (2016), which still rely on the computation of
V (P, P, u0, 0).

4.1 Hybrid Monte Carlo

TheHybridMonte Carlomethod employs a set ofMonte Carlo simulations to compute
an approximation VHMC (A, B, u, t) of the value V (A, B, u, t) of the policy.

First of all, we select a positive integer ns and we simulate ns random trajectories
of the stochastic process (S, u) by employing the Hybrid Monte Carlo simulation
approach, introduced by Briani et al. (2017a, b). This method is called hybrid because
it combines trees and Monte Carlo techniques to simulate the paths of the stochastic
process (S, u). Moreover, it is particularly appealing because of its easiness of imple-
mentation, efficiency and flexibility (it can easily be applied to different stochastic
models with a small computational cost).

First of all, a simple tree needs to be built: this can be done according to the
procedure described in Goudenège et al. (2016). Then, using a vector of Bernoulli
random variables, we move from the root along the tree, describing the path of the
volatility or the interest rate process. Finally, the values of the underlying S at each
time step are obtained by using an Euler scheme (see Goudenège et al. 2016).

Once the ns random trajectories are simulated, the initial value of the contract
V (P, P, u0, 0) can be approximated as the average of the initial policy values deter-
mined by the trajectories. In particular,

VHMC (P, P, u0, 0) =
ns∑
k=1

Vk (P, P, u0, 0)

ns
,

where Vk (P, P, u0, 0) denotes the value of the policy when the kth trajectory is
considered, that is the sum of the particular discounted cash flows (withdrawals plus
final payoff).

We stress out that, once the PH behavior is stated, a trajectory of (S, u) fully
determines the withdrawals performed by the PH. In order to present how the cash
flows are computed in the Monte Carlo approaches, we distinguish between the two
possible methods of withdrawing, that is static or dynamic.
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4.1.1 Static withdrawal

In the static withdrawal case, the PH withdraws at each event time the guaranteed
amount G. The initial value of the policy can be simply calculated as the sum of
discounted cash flows as follows:

Vk (P, P, u0, 0) =
N∑
i=1

Ge− ∫ ti
0 rks ds + max

(
Ak
tN , (1 − κN ) Bk

tN

)
e− ∫ tN

0 rks ds, (4.1)

where Ak
tN , B

k
tN and rks denote respectively the final account value, the final base benefit

and the interest rate at time s when the kth trajectory is considered.

We stress out that, if the Heston model is assumed, the discount factor e− ∫ ti
0 rsds

in relation (4.1) is equal to e−r ti , while if the Black–Scholes Hull–White model is
assumed, the discount factor can be approximated via the trapezoidal rule from the
simulated values of the interest rate r (see Stoer and Bulirsch 2013).

4.1.2 Dynamic withdrawal

In the dynamicwithdrawal case, the PHperforms optimalwithdrawals, i.e. she chooses
at each event time how much to withdraw in order to maximize her total wealth. In a
recent article [see section 3, “Numerical Algorithm” in Luo and Shevchenko (2015a)]
Luo and Shevchenko assert that it is not possible to use the Least Squares Monte
Carlo method to price GMWB contracts in case of optimal withdrawal, because of the
dynamic behavior of the PH affecting the paths of the underlying risky asset account.
Conversely, in this section we show that such a computation is possible and we explain
how to do it.

Let us suppose that, at each event time ti , the PH withdraws the amount Wi deter-
mined as follows:

Wi = argmax

w∈
[
0,B

t(−)
i

] VHMC
(
max

(
A
t (−)
i

− w, 0
)

, B
t (−)
i

− w, uti , ti
)

+ fi (w) . (4.2)

As we observed in Sect. 2.5, the choice of the last withdrawal WN is simple and
determined by Eq. (2.5). To deal with the search for the optimal withdrawal in equa-
tion (4.2) in a generic event time ti , we have to solve two issues: how to compute
VHMC (A, B, u, ti ) and how to maximize the expression in (4.2). As already observed
inSect. 2.4, the latter question canbe solvedby simply evaluating the objective function
at the multiples of G which are smaller than B

t (−)
i

. On the other hand, the calcula-

tion of VHMC (A, B, u, ti ) can be successfully performed by proceeding backwards
in time and by employing a least squares polynomial approximation based on the
simulated trajectories. In fact, if the value VHMC

(
A, B, u, t j

)
is already known for

all j = i + 1, . . . , N , then the value VHMC (A, B, u, ti ) can be approximated as the
(empirical) expected discounted value of future cash flows, assuming A, B and u as the
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initial values at time ti and assuming the PH to withdraw dynamically at the upcoming
event times t j , for j = i + 1, . . . , N .

Of course, we can not compute VHMC (A, B, u, ti ) via Monte Carlo simulations
for all the possible values A, B and u, and therefore we perform such a calculation
only for the values of A and B which belong to a set G = {(Ak, Bk) , 0 ≤ k ≤ K }, and
considering the values of u determined at time ti by the ns simulated trajectories. These
points are then employed to estimate a three variates polynomial function Qi (A, B, u)

by performing a least squares regression. The value of VHMC (A, B, u, ti ) for some
generic values of A, B andu is then approximated by Qi (A, B, u) and the optimization
problem (4.2) can be handled.

We stress out that the use of a set G lets us be sure that at each event time, the initial
values for the account value and the base benefit are well distributed and useful for
polynomial regression (this is not necessary for u since its value is not affected by the
PH particular withdrawals). Anyway, the approximation via polynomials proves to be
hard: this is due to the fact that at each event time ti , the function VHMC depends on
three variates, it is very curved when the values A and B are close and is very straight
elsewhere. To face this issue, the use of Qi (A, B, u) as a piecewise polynomial rather
than a polynomial is advisable. The choice of the type of the function Qi (A, B, u)

used in the regression must be made taking into account the computational time, the
number of data available and the particular set G employed. We propose here two
possible choices, called respectively full regression and regression by levels, which
are conceived in order to improve the computational time and the convergence rate
respectively.

4.2 Full regression

In this case, we consider G = A×B, whereA is a set of uniform nodes from 0 to 3P
and B as a set of Chebychev nodes from 0 to P (see Fig. 1). The function Qi (A, B, u)

is defined as follows:

Qi (A, B, u) =
{
Qup

i (A, B, u) if A ≥ B

Qdw
i (A, B, u) otherwise,

where Qup
i (A, B, u) and Qdw

i (A, B, u) are two polynomials estimated by employing
the values of VHMC (A, B, u, ti ) at the points (A, B) of the set G which satisfy A ≥ B
and A < B respectively.

4.3 Regression by levels

The regression by levels approach is based on the observation that, as already pointed
out, the optimal withdrawal is always amultiple ofG and therefore we have to evaluate
(and approximate) the function VHMC (A, B, u, ti ) only for those values of B which
aremultiples ofG (in fact B0 = NG and B is progressively reduced by thewithdrawals
Wi which are assumed to be multiples of G).
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Fig. 1 The grids used in the full regression method and in the regression by levels method for a GMWB
with T = 10 and annual withdrawals (WF = 1). In the first picture, purple points are used in both the two
regions. In the second picture, for each B level, the gray points border the different sectors

In this case, the set of the points for the polynomial regression is G =
{(A, B) |B ∈ B and A ∈ A (B)} where B = {nG, for n = 0, . . . , N } is the set of
all multiples of G from zero to P and

A (B) = A1 (B) ∪ A2 (B) ∪ A3 (B)

where

A1 (B) =
{
n

B

2NRBL
, for n = 0, . . . , NRBL

}

A2 (B) =
{
B

2
+ n

B

NRBL
, for n = 0, . . . , NRBL

}

A3 (B) =
{
3B

2
+ n

6P − 3B

2NRBL
, for n = 0, . . . , NRBL

}
.

In particular, for each B ∈ B, the set A (B) is the union of three sets, each of them
containing NRBL+1 uniformly distributed points in

[
0, 1

2 B
]
,
[ 1
2 B, 3

2 B
]
and

[ 3
2 B, 3P

]
respectively. The particular form of the set A (B) permits to increase the density of
points (A, B) which satisfy A ≤ B (this condition is very common during the life of
a GMWB contract) and also to have a relevant amount of points which satisfy A ≈ B
(for such those points the curvature of VHMC is the highest). An example of the set
G is shown in Fig. 1. In particular, we can see that the set G is structured by levels,
that is the points of G can be divided in N + 1 subsets of points having all the same
ordinate B.

Since we need to calculate VHMC (A, B, u, ti ) only for those values of B which
are multiples of G, in order to approximate such a function, we can employ a different
piecewise polynomial for each value of B. Specifically, we define

Qi (A, nG, u) =

⎧⎪⎨
⎪⎩

Qup
i,n (A, u) if A ≤ nG

2

Qmd
i,n (A, u) if nG

2 < A < 3nG
2

Qdw
i,n (A, u) if A ≥ 3nG

2
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where Qup
i,n (A, u), Qmd

i,n (A, u) and Qdw
i,n (A, u) are polynomials estimated by employ-

ing the values of VHMC (A, B, u, ti ) at the points (A, B) of the set G which satisfy
B = nG, and A ∈ [

0, 1
2 B

]
, A ∈ [ 1

2 B, 3
2 B

]
and A ∈ [ 3

2 B, 3P
]
respectively.

We remark that the regression by levels method implies more polynomial regres-
sions than full regression method, which entails a better quality of the results but also
an higher computational cost.

4.4 Standard Monte Carlo method

The Standard Monte Carlo method is similar to the Hybrid Monte Carlo one. The
only difference consists in the generation of the random trajectories. Specifically, the
trajectories for the Heston model (underlying and volatility) are simulated using a
third order scheme described by Alfonsi (2010), while the trajectories for the Black–
Scholes Hull–White model (underlying and interest rate) are obtained using an exact
scheme described by Ostrovski (2013), with a few changes in order to incorporate the
correlation between the underlying and the interest rate.

These two numerical approaches are standard methods to generate trajectories for
the Heston model and the Black–Scholes Hull–White model and therefore we call
such a Monte Carlo method the Standard one.

4.5 Hybrid PDE method

The Hybrid PDE approach is a PDE pricing method introduced by Briani et al.
(2017a, b) both for the Heston and the Hull–White models. Here we simply give a
brief description of how this approach can be employed to compute an approxima-
tion VHPDE (A, B, u, t) of the value V (A, B, u, t), and for further details about this
numerical method, we refer the interested reader to Goudenège et al. (2016).

In order to develop the algorithm, we consider a bi-dimensional grid G = A × B,
whose points represent a couple of values for the account value and the bene-
fit base. In particular, the set A is given by A = {A0} ∪ Aexp, where A0 = 0
and Aexp = {Ak, k = 1, . . . , K } is a mesh of K exponentially distributed points
around the value P . Again, the set B is given by B = {nG, n = 0, . . . , N }, as
in the regression by levels method (see Sect. 4.3). Moreover, in order to imple-
ment the hybrid component of the method, we also consider a quadrinomial tree
U = {(

τi , ui, j
)
, for i = 0, . . . , MN , and j = 0, . . . 3i

}
. Specifically, ui, j repre-

sents the j-th possible state for the process u at time τi = i�τ , where �τ = �t/M
is the tree time step and M is a positive integer. We stress out that, since �t = M�τ ,
the event times are included in the time mesh of U .

TheHybrid PDEmethod for GMWBpricing consists in employing theHybrid PDE
approach during the deferred period and between the event times, and in applying the
changes due to the withdrawals performed at each event time by the PH. Moreover,
the algorithm computes the function VHPDE only for those values of A, B, u, t such
that (A, B) is a point of G and (t, u) is a point of U (the value VHPDE (P, P, u0, 0)
which defines the initial price of the policy is therefore computed).

123



230 L. Goudenege et al.

Fig. 2 The grid employed for the Hybrid PDE method

First of all, we set the final condition, that is we compute VHPDE
(
Ak, Bh,

uMN , j , T
)
according to equation (2.6). Then, we proceed backwards: for each event

time ti , i = 1, . . . , N − 1, we employ the Hybrid PDE approach to compute

VHPDE
(
Ak, Bh, ui, j , t

(+)
i

)
from the values of VHPDE at time t (−)

i+1 and then we

apply the relations (2.2) and (2.4) to compute VHPDE
(
Ak, Bh, ui, j , t

(+)
i

)
. Finally,

we apply a last step of the Hybrid PDE approach to compute VHPDE (P, P, u0, 0)
from the values of VHPDE at time t (−)

1 .
Weobserve that, sincewe employ a discrete gridG, an approximation of the function

VHPDE in certain point outside G is required. To this aim, we employ natural cubic
splines (see Powell 1981): for each event time ti , for each node ui, j of U and for each
value of Bh of B, we compute a natural cubic spline sp (A) calibrated on the values

VHPDE
(
Ak, Bh, ui, j , t

(+)
i

)
, k = 1, . . . , K . As already observed, we consider only

the withdrawals which are multiples of G: this assures that the only values of B to be
considered in order to solve (2.4) are those inB. Therefore, the size of the interpolation
problem can be reduced from 2 to 1, and then natural cubic splines can be successfully
employed.

In Fig. 2we represent an example of the gridG (red, green andblue points) employed
to price a product withG = 20, and we outline how to perform the optimal withdrawal
search (see the yellow points) for a particular point (the red bold one).

We stress out that, during the accumulation phase and between the event times, the
Hybrid PDE approach works diffusing alternately the underlying and the additional
stochastic process (the interest rate or the volatility process) as described inGoudenège
et al. (2016) for a GLWB contract. The computational cost of such an algorithm is low
and the use of curtailing techniques speeds up the algorithm (see again Goudenège
et al. 2016 for more details).

4.6 ADI PDE method

TheADI PDEmethod is similar to the Hybrid PDE one. In this case we do not consider
a bi-dimensional grid G and a tree U as in the Hybrid PDE method, but we employ
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a tri-dimensional grid G = A × B × U . The sets A and U are defined according to
Haentjens and In’t Hout (2012), while B is the same employed by the Hybrid PDE
method. The ADI PDE method employs the same steps of the Hybrid PDE method.
First of all, it sets the final condition; then, proceeding backwards, for each event
time ti , i = N − 1, . . . , 1 it solves the model PDE within

[
ti , ti+1

]
and reproduce

withdrawals effects; finally, it solves the PDE within [0, t1].
In the ADI framework, the intermediate steps need modified boundary conditions,

because at each stepweonly consider a reduced part of the partial differential equation -
only one direction,most of the time.This is a technical and numerical question, because
the speed of convergence could be impacted by a mis-specified boundary condition. In
theBlack–Scholesmodelwith stochastic interest rate and in theHestonmodel,we have
assumed every time that the boundary conditions are given by homogeneous Neumann
conditions for the full partial differential equation. Thus, at each intermediate step, this
Neumann condition is compatible with intermediate steps. Moreover it simplifies the
numerical procedure because it is straightforward to implement Neumann conditions
on linear systems.

For further details about the numerical method, we refer the interested reader to
Goudenège et al. (2016).

4.7 The secant method for the computation of the fair fee

The secant method is commonly used to compute the fair value of the parameter αg

as far as variable annuities are concerned. For example, Huang and Kwok (2016) use
such a method in the case of GLWB. Actually we can prove that the value function V
is Lipschitz with respect to αg in various Sobolev norms and spaces. Indeed, between
two event times, it can be proved using classical estimation on partial differential
equations that the solution is smooth with respect to αg in various Sobolev norms
and spaces. Moreover, at an event time, we can prove that the jump transformation
preserves the continuity with respect to αg , but furthermore a Lipschitz regularity in
the following sense: the function

�α : A 	→ argmax(w 	→ V(α;max(A − w, 0), B − w, u, t) + f (w))

is such that

Vα : A 	→ V(α;max(A − �α(A)), B − �α(A), u, t) + f (�α(A))

and

‖Vα − Vβ‖∞ ≤ ‖Vα − Vβ‖∞

since the control variable Wi realizes this function �. Thus, if the initial point of
the secant method is close enough to the solution, then the secant method, together
with one of the proposed methods for the computation of the value function, should
converge to the solution.
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5 Numerical results

In this section we compare pricing and Greeks computation, assuming static or
dynamic withdrawal, by using the numerical methods introduced in Sect. 4: Hybrid
Monte Carlo (HMC), Standard Monte Carlo (SMC), Hybrid PDE (HPDE) and ADI
PDE (APDE). Moreover, we employ the Standard Monte Carlo method with 108

independent scenarios (doubled by the antithetic variables technique) as a benchmark
(BM).

We employ the numerical methods according to 4 configurations (A, B, C, D),
each of them with an increasing number of steps, determined in order to achieve
approximately these run times using an ordinary computer: (A) 30s, (B) 120s, (C)

480s, (D) 1920s. Table 1 reports the parameters considered for the 4 configurations
using the following notation: (time steps per year× space steps× u steps) for the ADI
PDE method, (time steps per year × space steps ) for the Hybrid PDE method and
(time steps per year× number of simulations) for theMonte Carlomethods.Moreover,
as far as the dynamic withdrawal case is concerned, we also report the degree of the
approximating polynomials employed by the Monte Carlo methods.

The initial values considered for the secant method are αg = 0 bp and αg = 200 bp.
To reduce the run time we perform the secant iterations using an increasing number
of time steps for all the methods. In particular, the values in Table 1 are those used for
the last 3 iterations of the secant method.

Finally, the contract parameters employed for these tests are inspired by those
employed by Chen and Forsyth (2008) and they are reported in Table 2.

5.1 Static withdrawal

The tests presented in this subsection assume the PH to withdraw at each event time
an amount equal to G.

5.1.1 Test 1: Black–Scholes Hull–White model

In this test we price a GMWB product according to the Black–Scholes Hull–White
model. In particular, for reasons of simplicity, we simply calibrate the Hull–White
model considering a flat curve for the yield. Model parameters are shown in Table 3,
while results are available in Table 4.

All the four methods behave well and in the configuration D they give results which
are consistent with the benchmark. The HPDE method proves to be the best: all of
its configurations give results very close to the benchmark. Then, APDE, SMC, and
HMC give good results too. In particular, SMC performs a little better than HMC: the
first method simulates the underlying value and the interest rate exactly and so it is
enough to simulate the values at each event time ti . On the contrary, HMC matches
the first three moments of the Black–Scholes Hull–White r process, but it doesn’t
reproduce exactly its law and therefore we have to increase the number of steps per
year to achieve convergence to the correct value of αg . So, for a given run time, we can
simulate less scenarios with HMC than with SMC and thus the confidence intervals
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Table 2 Parameters used by Chen and Forsyth (2008)

Contract parameters Model parameters

Expiry time T 5, 10, 20years S0 100.0

Withdrawal frequency WF 1 or 2 per year r 0.05

Premium P 100.0 σ 0.20

Withdrawal penalty κ 0.10

Management fees αm 0

Table 3 The model parameters
for Test 1

Model parameters

S0 100.0 k 1.0

σ 0.20 ω 0.2

r0 0.05 ρ − 0.5

Curve Flat

provided by HMC are generally larger than those yielded by SMC. On the contrary,
the two PDE methods returns stable result and they often converge monotonically.

With regard to the numerical results, we observe that the values of αg decrease
when the maturity increases and they increase a little when the withdrawal frequency
increases, just as in the Black–Scholes model (see Chen and Forsyth 2008).

5.1.2 Test 2: Heston model

In this test we price a GMWB product according to the Heston model. Model param-
eters are shown in Table 5, while results are available in Table 6.

In this test, the Monte Carlo methods have more difficulties. In fact, all the values
computed with the PDE methods are close to the benchmark, while some values from
Monte Carlo methods are less accurate (but still consistent with the benchmark since
the value of BM is inside the confidence interval). If we compare the two Monte
Carlo approaches we can state that they are equivalent as they both rely on high order
approximations of the Heston model. Specifically, HMC proves to be faster than SMC
when using few time steps (we can exploit approximately 11% more simulations in
configuration A), while SMC proves to be slightly faster when simulations with many
time steps are considered, because of the more time needed to build the volatility tree
(8% less simulations in configuration D). HPDE shows to be very stable (case T = 10,
WF = 2, αg do not change through configurations B–D) and APDE behaves well too
(often monotone convergence).

With regard to the numerical results, we observe that the values of αg decrease
when the maturity increases and they increase a little when the withdrawal frequency
increases, just as in the Black–Scholes model (see Chen and Forsyth 2008).
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Table 4 Test 1: in the first table, the fair fee αg (in basis points) for the Black–Scholes Hull–White model,
considering annual or semi-annual withdrawals

In the second table the run times for the case WF = 1, T = 10. Finally, the plot of the relative error (with
reference to the benchmark value) for the four methods, again in the case WF = 1, T = 10

5.1.3 Test 3: delta computation

In this test we apply the different methods to calculate the value of the Greek Delta
under the same assumptions of Test 1 and Test 2.

In this particular case, the value of αg is assumed to be already settled (see
Tables 7, 9). Specifically, the values considered are such as to cover the costs of
the insurer and may be plausible on a real case. The results, which are available in
Table 8 (all values in table must be multiplied by 10−4) are very accurate for all the
employed methods. Anyway, the values calculated by employing HPDE and APDE
are the most accurate.

We remark that, despite the value of the fair fee changes a lot when changing the
maturity of the policy, the value of Delta changes much less.

5.2 Dynamic withdrawal

The tests presented in this subsection assume the PH to withdraw at each event time
the amount that maximizes her total wealth.
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Table 5 The model parameters
for Test 2

Model parameters

S0 100.0 k 1.0

r 0.05 ω 0.2

v0 0.04 ρ − 0.5

θ 0.04

Table 6 Test 2: in the first table, the fair fee αg (in basis points) for the Heston model, considering annual
or semi-annual withdrawals

In the second table the run times for the caseWF = 1, T2 = 10. Finally, the plot of the relative error (with
reference to the benchmark value) for the four methods, again in the case WF = 1, T = 10

Table 7 The αg values used for
Delta calculation in the static
Black–Scholes Hull–White case
(in basis points)

T WF = 1 WF = 2

5 200 200

10 100 100

20 50 50

In this case, the SMC employed as benchmark is based on the regression by levels
approach. Specifically, the degree of the employed polynomials is equal to 4 and we
consider 106 scenarios (doubled by the antithetic variables technique), excluding the
case T2 = 20,WF = 2 where we used half scenarios (so as to contain the calculation
time). In particular, the computational time required to perform the benchmark calcu-
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Table 9 The αg values used for
Delta calculation in the static
Heston case (in basis points)

T WF = 1 WF = 2

5 250 250

10 100 100

20 50 50

lations varies from 30min (case T2 = 5 , WF = 1) to 38h (case T2 = 20, WF = 2).
On the contrary, when SMC and HMC are considered, we employ the full regression
method which permits to obtains better results when a small computational time is
required (Table 10).

5.2.1 Test 4: Black–Scholes Hull–White Model

In this test we price a GMWB product according to the Black–Scholes Hull–White
model. Model parameters are shown in Table 3, while results are available in Table 11.

In this test PDE methods prove to be much more efficient than Monte Carlo ones.
In fact, Monte Carlo methods use a least-squares regression approach to find the
optimal withdrawal: this method needs many trajectories to approximate, through the
polynomial regression, the value of the policy. Thus, working at fixed time, we can
perform fewer scenarios than in the static withdrawal case, since much of the time is
devoted to the least squares regression.

The two Monte Carlo methods give equivalent results: the differences in scenarios
generation run-time are negligible because most of the time is spent in finding the best
withdrawal. The HPDE method gives good and stable results, while APDE has more
troubles, with estimated values which do not converge monotonically.

The case (T,WF) = (20, 2) is the most challenging: the long maturity and the
large number of withdrawal dates (40 event times) make the problem hard also for
PDEmethods. Moreover, the Monte Carlo methods in configuration A also give lower
values than static approach (18.64 bp vs 25.20 bp), which is not possible: in this very
particular case, due to the few scenarios considered, the least squares regression does
not increase the gain of the PH.

5.2.2 Test 5: Heston Model

In this test we price a GMWB product according to the Heston model. Model param-
eters are shown in Table 5, while results are available in Table 12.

The results are similar to those of Test 4 but the accuracy of the results is higher:
Monte Carlo methods provide good estimations of αg , especially when using high
level configurations. PDE methods behave good as usual. In particular, they both give
good results except for the case (T,WF) = (20, 2) where the initial approximations
of αg of APDE are too large. The case (T,WF) = (20, 2) is still the most insidious,
but this time we do not obtain any value lower than the value of αg for the static
withdrawal case.
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Table 11 Test 4: in the first table, the fair fee αg (in basis points) for the Black–Scholes Hull–White model,
considering annual or semi-annual withdrawals

In the second table the run times for the case WF = 1 , T = 10. Finally, the plot of the relative error (with
respect to the benchmark value) for the four methods, again in the caseWF = 1, T2 = 10

We note that the dynamic strategy increases the value of αg more when the Black–
Scholes Hull–White model is assumed than when the Heston is considered: probably,
playing on interest rate lets the PH gain more than playing on volatility.

5.2.3 Test 6: Grid analysis

In Sect. 2.4 we observe that the optimal amount to bewithdrawn is always amultiple of
the guaranteed amount G. We did not prove this property, but we observed it through
some numerical experiments. In this Test, we compute the fair price of the product
of Tables 11 and 12 with maturity T = 10 and withdrawal frequency WF = 1,
considering both the Black–Scholes Hull–White and the Heston model. We consider
the uniform gridB described in Sect. 4, which verifies Bi+1− Bi = G, and in addition
two other uniform grids with Bi+1−Bi = G

2 and Bi+1−Bi = G
10 , which successively

refine the first grid. As shown in Table 13, the value of fair fee parameter αtot does not
change when the grid for B is refined, which confirms that the optimal withdrawals
can be found in the set B of all the multiples of G from 0 to P .
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Table 12 Test 5: in the first table, the fair fee αg (in basis points) for the Heston model, considering annual
or semi-annual withdrawals

In the second table the run times for the case WF = 1, T = 10. Finally, the plot of the relative error (with
respect to the benchmark value) for the four methods, again in the caseWF = 1, T2 = 10

Table 13 Test 6: the fair fee αg
(in basis points), reducing the
step �B of the grid G

�B BS-HW model Heston model

HPDE APDE HPDE APDE

G A 163.5 160.4 133.7 133.9

B 163.0 157.8 133.9 133.9

C 162.9 159.7 134.0 134.0

D 162.9 157.4 134.0 134.0
G
2 A 163.5 160.4 133.7 133.9

B 163.0 157.8 133.9 133.9

C 162.9 159.7 134.0 134.0

D 162.9 157.4 134.0 134.0
G
10 A 163.5 160.4 133.7 133.9

B 163.0 157.8 133.9 133.9

C 162.9 159.7 134.0 134.0

D 162.9 157.4 134.0 134.0
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Table 14 The αg values (in
basis points) used for Delta
calculation in the Dynamic
Black–Scholes Hull–White case

T2 WF = 1 WF = 2

5 350 350

10 200 200

20 150 150

Table 15 The αg values (in
basis points) used for Delta
calculation in the Dynamic
Heston case

T2 WF = 1 WF = 2

5 300 300

10 150 150

20 100 100

5.2.4 Test 7: delta computation

In this test we apply the different numerical methods to calculate the value of theGreek
Delta under the same assumptions of Test 4 and Test 5. The employed valued for αg

are available in Tables 14 and 15, while results are presented in Tables 16 and 17.
The values obtained by HPDE are quite accurate and they are very regular despite

the high dimension of the problem. Results from APDE are good but in this case they
are a bit worse than HPDE, especially when the Black–Scholes Hull–White model
is considered (see for example the case (T,WF) = (20, 2)). Monte Carlo methods
suffer the few scenarios performed and sometimes the confidence interval is large.

5.2.5 Optimal Withdrawal Strategy Plots

In Figs. 3 and 4 we report the optimal withdrawals at the second event time t2 for a
GMWB with (T,WF) = (10, 1) for both the Black–Scholes Hull–White model and
the Heston model. In particular, these optimal withdrawals are computed by applying
the HPDE method. We remark that these plots are very similar to those reported by
Chen and Forsyth (2008). In particular, we observe the same structure around the
bisector and the wide region of regular withdrawals.

6 Conclusions

In this article we propose four numerical methods to evaluate and to compute the
Greeks of a GMWB contract. Regarding to the stochastic model, both stochastic
interest rate and stochastic volatility effects are investigated. According to the policy
holder’s behavior, both static and dynamic strategies are considered.

All four methods give reliable results both for pricing and delta calculation, in
particular when staticwithdrawal is considered. The PDEmethods prove to be efficient
and reliable in all conditions, whileMonte Carlo methods prove to be less accurate and
more computationally demanding especially when dynamic withdrawal is considered.
The Hybrid PDE is the most effective method (good convergence speed and stability
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Fig. 3 Plots of the optimal withdrawals at time t2 = 2 for the Black–Scholes Hull–White model according
to different values of r2: from the top to the bottom r2 = 0.03, r2 = 0.05 and r2 = 0.07. The parameters
used to obtain these plots are the same as for Delta calculation for case T = 10, WF = 1: see Tables 2, 3
and 14
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Fig. 4 Plots of the optimal withdrawals at time t2 = 2 for the Heston model according to different values
of the volatility v2: from the top to the bottom v2 = 0, v2 = 0.04 and v2 = 0.16. The parameters used to
obtain these plots are the same as for Delta calculation for case T = 10, WF = 1: see Tables 2, 5 and 15
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of results). Also ADI PDE is accurate, but the implementation of this method is a little
harder than Hybrid PDE one; moreover the choice of the good parameters for ADI
PDE may be a source of issues. In the Black–Scholes Hull–White model case, the
Standard Monte Carlo method, thanks to its exact simulation, outperforms the Hybrid
method while, in the Heston model case, the two Monte Carlo methods prove to be
roughly equivalent (even if the Hybrid Monte Carlo is easier to implement).

The gap among the different methods is clear cut when they are applied to eval-
uate a contract which allows the PH to dynamically withdraw. In this case the PDE
methods are the most efficient. As far as the Monte Carlo methods are concerned, a
good approximation of the correct value of the contract can be obtained by employing
the regression by levels approach, but such a method is time demanding. Anyway, we
have to remark that Monte Carlo methods offer confidence intervals for the numerical
results, they are useful in risk measures calculation (for example VAR or ES), and they
are preferred by insurance companies because of their attachment to the idea of finan-
cial scenario. Insurance companies may be very interested by these new Monte Carlo
techniques that allow one to evaluate GMWB contracts under dynamic withdrawal
without leaving Monte Carlo methods for PDE methods.

We conclude by pointing out that our methods are quite flexible in that they can
accommodate a wide variety of policy holder withdrawal strategies such as ones
derived from utility-based models.
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