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Abstract The aim of this paper is twofold: first, to extend the area of applications
of tropical optimization by solving new constrained location problems, and second,
to offer new closed-form solutions to general problems that are of interest to loca-
tion analysis. We consider a constrained minimax single-facility location problem
with addends on the plane with rectilinear distance. The solution commences with the
representation of the problem in a standard form, and then in terms of tropical math-
ematics, as a constrained optimization problem. We use a transformation technique,
which can act as a template to handle optimization problems in other application areas,
and hence is of independent interest. To solve the constrained optimization problem,
we apply methods and results of tropical optimization, which provide direct, explicit
solutions. The results obtained serve to derive new solutions of the location prob-
lem, and of its special cases with reduced sets of constraints, in a closed form, ready
for practical implementation and immediate computation. As illustrations, numerical
solutions of example problems and their graphical representation are given. We con-
clude with an application of the results to optimal location of the central monitoring
facility in an indoor video surveillance system in a multi-floor building environment.
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1 Introduction

Tropical (idempotent) mathematics, originated in the middle of the last century as the
theory and applications of semirings with idempotent addition, finds use in a variety
of fields, from operations research to algebraic geometry. The significant advances,
achieved in the area of tropical mathematics in the last decades, are reported in several
monographs, including recent ones by Golan (2003), Heidergott et al. (2006), McE-
neaney (2006), Itenberg et al. (2007), Gondran andMinoux (2008), andMaclagan and
Sturmfels (2015), and in a wide range of research papers.

Optimization problems that are formulated and solved in terms of tropical mathe-
matics are a matter of concern for tropical optimization, which presents an important
research domain, with the focus on new solutions to old and fresh problems in opera-
tions research and management science. Applications of tropical optimization include
real-world problems in project scheduling, location analysis, transportation networks,
discrete event dynamic systems, decision making, and in other fields.

Location problems constitute one of the classical areas in optimization, which dates
back to the XVII century. A variety of approaches and techniques exists to solve loca-
tion problems in different settings, including methods of mathematical programming,
and of discrete, combinatorial and graph optimization (see, e.g., Sule 2001; Klamroth
2002; Farahani and Hekmatfar 2009; Eiselt and Marianov 2011; Laporte et al. 2015,
for the current state of the art in the area).

There are certain location problems that have solutions obtained in the framework
of tropical optimization. Specifically, a solution in terms of tropical mathematics is
proposed by Cuninghame-Green (1991, 1994) to one-dimensional minimax loca-
tion problems defined on graphs. Furthermore, several constrained minimax location
problems are examined by Zimmermann (1992a, b), Hudec and Zimmermann (1993,
1999), and Tharwat and Zimmermann (2010) in the context of the theory of max-
separable functions, which is closely related to the tropical mathematics approach.
Finally, methods of tropical optimization are applied to solve unconstrained and con-
strained minimax single-facility location problems with Chebyshev and rectilinear
distances (Krivulin 2011a, b, 2012; Krivulin and Zimmermann 2013; Krivulin 2014;
Krivulin and Plotnikov 2015).

The aim of this paper is twofold: first, to develop new applications of tropical
optimization by solving new location problems, and second, to offer new closed-
form solutions to rather general problems that are of interest to location analysis.
We consider a constrained minimax single-facility location problem with addends on
the plane with rectilinear distance, which can be referred to as a constrained Rawls
location problem or a constrained messenger boy problem. The solution commences
with the representation of the problem, first formulated in a standard form, in terms
of tropical mathematics as a constrained optimization problem. We use a transforma-
tion technique, which can act as a template to handle optimization problems in other
application areas, and hence is of independent interest. To solve the constrained opti-
mization problem, we apply methods and results of tropical optimization (Krivulin
2014, 2015a, b, 2017), which provide direct, explicit solutions of the problem and of
its special cases with reduced sets of constraints. We further develop the methods to
extend the solution of the unconstrained problem provided by Krivulin (2011b), and
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Krivulin and Plotnikov (2015) to the constrained problems of interest. The results are
obtained in a closed form, ready for immediate computation, and can serve to comple-
ment and supplement known solutions of the location problems under examination.
To illustrate application of the results, we describe a direct solution to the problem of
optimal location of the central monitoring facility in an indoor closed-circuit television
(CCTV) video surveillance system in a multi-floor building environment.

The rest of the paper is organized as follows. We begin with Sect. 2, where the
location problem of interest is formulated in a standard way. Section 3 includes an
overview of the definitions and notation of idempotent algebra to be used in the sub-
sequent sections. In Sect. 4, we consider several tropical optimization problems and
describe their solutions. Section 5 offers the main result of the paper. First, we repre-
sent the location problem under consideration as a constrained tropical optimization
problem, and then solve this optimization problem using the results of the previous
section. As a consequence, solutions are obtained to some special cases of the problem
with reduced sets of constraints. We use the results given in terms of tropical math-
ematics to derive solutions of the location problems in the standard form. In Sect. 6,
we present numerical examples and offer graphical illustrations. We conclude with
an application to an optimal location problem, arising in the deployment of an indoor
CCTV video surveillance system, in Sect. 7, and make some final observations and
comments in Sect. 8.

2 Constrained minimax rectilinear single-facility location problem

We start with a brief outline of the optimization problem, which is drawn from location
analysis to motivate the present study. A comprehensive overview of various location
problems, their solutions and application examples is provided by a series of surveys
published at different times, including Francis et al. (1983), Brandeau andChiu (1989),
ReVelle and Eiselt (2005), Brimberg and Wesolowsky (2009), and Chhajed et al.
(2013). Further details can be found in monographs and collections of studies, such as
recent books by Sule (2001), Klamroth (2002), Farahani and Hekmatfar (2009), Eiselt
and Marianov (2011), and Laporte et al. (2015).

We consider a quite general problem to locate a new point (a facility center) on
the plane to minimize the maximum of rectilinear distances to given points (demand
centers), each of which can be modified by adding a constant called the addend. The
optimal location is subject to constraints that impose upper bounds on distances from
each given point to the new point, and define a strip-shaped feasible location region.

The rectilinear metric (also known as the rectangular, Manhattan, right-angle, city-
block, taxicab or L1 metric) arises in location analysis in various applied contexts.
Examples include locating a public or commercial facility in an urban area with a
grid of rectangular streets, an industrial facility within a plant or warehouse with a
system of perpendicular transport aisles, and an electronic component on an integrated
circuit with orthogonal mesh of wires. The addends can represent an additional cost
or distance required to reach each demand point, such as vertical distance when the
rectilinear metric is defined on the horizontal plane.
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496 N. Krivulin

Constrained minimax location problems appear in a range of application areas
from urban planning to industrial and electrical engineering. A typical example is the
optimal location of emergency service facilities (hospitals, police and fire stations,
emergency shelters) in urban design, under constraints on the travel distances pre-
scribed by emergency service standards and rules set by federal, state or municipal
agencies. Since the minimax objectives in locating public facilities can well be inter-
preted in the framework of the theory of justice of John Rawls, these problems are
frequently referred to as the Rawls location problems (Hansen et al. 1981; Hansen
and Thisse 1981). In addition, minimax single-facility location problems with and
without addends are sometimes called the messenger boy problems and the delivery
boy problems, respectively (Elzinga and Hearn 1972).

We now represent the location problem under study in a formal way. First note that
the rectilinear distance between vectors a = (a1, a2)T and b = (b1, b2)T in the real
plane R2 is calculated as

ρ(a, b) = |a1 − b1| + |a2 − b2|.

Suppose there is a set of m ≥ 1 given points, denoted by r j = (r1 j , r2 j )T ∈ R2

for all j = 1, . . . ,m. Let w j ∈ R be the addend, associated with point j , and d j ∈ R,
where d j ≥ 0, be the upper bound on the distance to point j . Let s, t ∈ R, where
s ≤ t , be the left and right boundary of the vertical strip, representing the feasible
location area.

Then, the problem of interest, which can be referred to as the constrained minimax
rectilinear single-facility location problem with addends, is formulated to find points
x = (x1, x2)T ∈ R2 that

minimize max1≤ j≤m(ρ(x, r j ) + w j ),

subject to ρ(x, r j ) ≤ d j , j = 1, . . . ,m;
s ≤ x1 ≤ t.

After rewriting the rectilinear distance ρ in coordinate form, the problem becomes

minimize max1≤ j≤m(|x1 − r1 j | + |x2 − r2 j | + w j ),

subject to |x1 − r1 j | + |x2 − r2 j | ≤ d j , j = 1, . . . ,m;
s ≤ x1 ≤ t.

Consider the constraints in the problem. For each j = 1, . . . ,m, the inequality
|x1 − r1 j | + |x2 − r2 j | ≤ d j defines on the plane a square rotated by 45◦ around its
center at the point r j = (r1 j , r2 j )T , which is often called the diamond. The common
area of all inequalities, if it exists, takes the form of a rectangle tilted 45◦ to the axes.
The feasible location region is the intersection of this rectangle with the strip area
given by the inequality s ≤ x1 ≤ t , provided that the intersection is not empty.

Both special cases and extensions of the rectilinear single-facility location prob-
lem are thoroughly examined in the literature. For some unconstrained versions of
the problem, direct solutions are obtained in a closed form, whereas, in other cases,
the problems have solutions given by iterative computational algorithms, which find
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a solution, if it exists, or indicate that there are no solutions. Specifically, the uncon-
strained problem is considered without addends in Francis (1972), Elzinga and Hearn
(1972), and with addends in Elzinga and Hearn (1972), where closed-form solutions
are derived based on geometric arguments.

An algorithmic solution is proposed by Dearing (1972) for a weighted extension of
the problem, in which the distances appear in the objective function with non-negative
weights, and for a weighted multi-facility problem. Aweighted multi-facility problem
without constraints is solved by means of linear programming computational schemes
in Wesolowsky (1972), and Elzinga and Hearn (1973), whereas the constrained prob-
lem is by a network flow algorithm in Dearing and Francis (1974). An interactive
computer graphical technique is developed in Brady and Rosenthal (1980) to solve
single-facility location problems with non-convex feasible regions.

An algebraic approach, which uses results of tropical optimization, is applied in
Krivulin (2011b), and Krivulin and Plotnikov (2015) to the problem under considera-
tion when all constraints are removed. The approach offers a direct, explicit solution
based on a straightforward algebraic technique, rather than on geometric considera-
tions in the classical works (Francis 1972; Elzinga and Hearn 1972).

Below, we further develop the algebraic approach to extend methods of tropical
optimization to the constrained location problem with rectilinear distance. Based on
this approach, we derive closed-form solutions for the location problem of interest,
as well as for its special cases with reduced sets of constraints. To the best of our
knowledge, no direct solutions to the location problem have been previously reported.

To handle the problem, we first transform it into a tropical optimization problem
examined in Krivulin (2014) in the context of constrained location with Chebyshev
distances (L∞ metric) to exploit the complete solution derived therein. Note that, from
the geometrical point of view, the location problems on the plane with rectilinear and
Chebyshev distances are known to convert into each other by rotation of the coordinate
axes (see, e.g. Farahani and Hekmatfar 2009), which can serve as additional intuition
and evidence in support of the algebraic technique proposed for the transformation.
Next, we further develop and refine obtained results to provide complete solutions of
the location problems of interest, which are then represented both in terms of tropical
mathematics and in the conventional form.

To conclude this section, we observe that it is not difficult to represent the problem
under study as a linear program, and then to solve it using methods and computational
techniques of linear programming.However, thesemethods normally offer algorithmic
solutions, and do not guarantee a direct solution in a closed form.

3 Preliminary algebraic definitions and notation

We now present a concise overview of the definitions and notation of idempotent alge-
bra from Krivulin (2014, 2015a, b, 2017), which provide the basis for the description
of the tropical optimization problems and their solutions in the next section, and for the
use of these solutions to attack location problems in the subsequent sections. Further
details on tropical mathematics are available in various introductory and advanced
texts, including Golan (2003), Heidergott et al. (2006), McEneaney (2006), Itenberg
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et al. (2007), Gondran and Minoux (2008), and Maclagan and Sturmfels (2015) to
name only a few recent publications.

3.1 Idempotent semifield

Let X be a non-empty set that is closed under two associative and commutative opera-
tions, addition ⊕ and multiplication ⊗, and equipped with two distinct elements, zero
0 and one 1, which are neutral with respect to addition and multiplication. Addition
is idempotent, which indicates that the equality x ⊕ x = x holds for each x ∈ X.
Multiplication is distributive over addition, and invertible, which provides each x 	= 0
with an inverse x−1 such that x ⊗ x−1 = 1. Under these assumptions, the algebraic
system (X,0,1,⊕,⊗) is frequently called the idempotent semifield.

Idempotent addition provides a partial order on X to define x ≤ y if and only if
x ⊕ y = y. It follows from the definition of the order relation that the operations in the
semifield have the following properties. First, the inequality x ⊕ y ≤ z is equivalent to
the two inequalities x ≤ z and y ≤ z for any x, y, z ∈ X. Furthermore, both addition
and multiplication are isotone, which implies that the inequality x ≤ y results in the
inequalities x ⊕ z ≤ y ⊕ z and x ⊗ z ≤ y ⊗ z. Finally, inversion is antitone, which
means that x ≤ y yields x−1 ≥ y−1, provided that x 	= 0 and y 	= 0. In addition, the
set X is assumed totally ordered by a linear order relation that is consistent with the
partial order associated with addition.

As usual, the multiplication sign ⊗ is omitted below to safe writing. The integer
power notation serves to signify iterated products, defined as x0 = 1, x p = xx p−1,
x−p = (x−1)p and 0p = 0 for all x 	= 0 and integer p > 0. The power notation is
assumed extendable to allow rational and real exponents.

A representative example of the idempotent semifield under consideration is the
real semifield Rmax,+ = (R ∪ {−∞},−∞, 0,max,+), where addition is defined as
the operation of taking the maximum and multiplication is as the arithmetic addition,
whereas the zero is given by −∞ and the one is by 0. For each x ∈ R, there exists the
inverse x−1, which coincides with −x in conventional algebra. The power x y acts as
the arithmetic product xy defined for any x, y ∈ R. The partial order, which is given
by addition, conforms to the standard linear order defined on R. Finally, the obvious
equality min(x, y) = −max(−x,−y) yields min(x, y) = (x−1 ⊕ y−1)−1 for all
x, y ∈ R.

As another example, consider the semifieldRmin,× =(R+∪{+∞},+∞, 1,min,×),
where R+ is the set of positive reals. This semifield has ⊕ = min, ⊗ = ×, 0 = +∞
and 1 = 1. Both inversion and exponentiation have standard interpretation. The partial
order induced by idempotent addition is opposite to the natural order on R.

3.2 Vector and matrix algebra

The scalar addition ⊕ and multiplication ⊗ defined on X are routinely extended to
vector and matrix operations. The set of matrices withm rows and n columns overX is
denoted Xm×n . Addition and multiplication of matrices, and multiplication by scalars
follow the standard rules. For any matrices A = (ai j ) ∈ Xm×n , B = (bi j ) ∈ Xm×n
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and C = (ci j ) ∈ Xn×l , and a scalar x ∈ X, the matrix operations are defined by the
entry-wise formulae

{A ⊕ B}i j = ai j ⊕ bi j , {AC}i j =
n⊕

k=1

aikck j , {x A}i j = xai j .

The partial order relation and its associated properties of the operations in X extend
entry-wise to the matrix operations.

Consider square matrices of order n, which form the set Xn×n . A matrix whose
diagonal entries are all equal to 1, and off-diagonal entries are to 0 is the identity
matrix denoted by I . The power notation is defined as A0 = I , Ap = AAp−1 for any
square matrix A and integer p > 0 to indicate repeated multiplication.

The trace of a matrix A = (ai j ) ∈ Xn×n is calculated as trA = a11 ⊕ · · · ⊕ ann .
The traces of matrix powers from 1 to n combine together to define the scalar

Tr(A) = trA ⊕ · · · ⊕ trAn .

Provided that Tr(A) ≤ 1, the asterate operator (also known as the Kleene star)
maps the matrix A to the matrix

A∗ = I ⊕ A ⊕ · · · ⊕ An−1.

Any matrix that consists of one row (column) specifies a row (column) vector. All
vectors below are assumed column vectors unless otherwise specified. The set of all
column vectors with n elements over X is denoted Xn .

A vector with all elements equal to 0 is the zero vector. Any vector without zero
elements is called regular. For any vectors a = (ai ) and b = (bi ) in Xn , and a scalar
x ∈ X, the vector addition and scalar multiplication are given by

{a ⊕ b}i = ai ⊕ bi , {xa}i = xai .

For any nonzero vector a = (ai ) ∈ Xn , the multiplicative conjugate transpose is a
row vector a− = (a−

i ) that has elements a−
i = a−1

i if ai 	= 0, and a−
i = 0 otherwise.

The conjugate transposition is antitone in the sense that, if regular vectors a and b
satisfy the element-wise inequality a ≤ b, then a− ≥ b−. In addition, the transposition
has the following properties. For any nonzero vector a, the equality a−a = 1 holds.
If the vector a is regular, then the entry-wise inequality aa− ≥ I is also valid.

4 Tropical optimization problems

In this section, we use idempotent algebra to formulate optimization problems and
to describe their solutions. The problems find applications in various fields, includ-
ing location analysis. Specifically, such problems occur in solving unconstrained
and constrained single-facility location problems in the multidimensional space with
Chebyshev distance (Krivulin 2012, 2014; Krivulin and Zimmermann 2013).
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In the succeeding sections, we extend the solutions presented here to constrained
single-facility location problems defined on the plane with rectilinear metric.

We start with a general constrained optimization problem formulated in terms of
an arbitrary idempotent semifield. Suppose that, given vectors p, q, g, h ∈ Xn , and a
matrix B ∈ Xn×n , the problem is to find all regular vectors x ∈ Xn that

minimize x− p ⊕ q−x,

subject to Bx ≤ x,

g ≤ x ≤ h.

(1)

The solution of the problem, given in Krivulin (2014), involves the introduction
of a parameter to represent the minimum value of the objective function. Then, the
problem reduces to solving a parametrized system of linear inequalities. The existence
conditions of regular solutions for the system serve to evaluate the parameter, whereas
the solution of the system is taken as a complete solution to the initial optimization
problem. The results obtained take the form of the following statement.

Theorem 1 Let B be a matrix with Tr(B) ≤ 1, p be a nonzero vector, q and h be
regular vectors, and g be a vector such that h−B∗g ≤ 1.

Then, the minimum value in problem (1) is equal to

θ = (q−B∗ p)1/2 ⊕ h−B∗ p ⊕ q−B∗g, (2)

and all regular solutions of the problem are given by

x = B∗u,

where u is any regular vector such that

g ⊕ θ−1 p ≤ u ≤ ((h− ⊕ θ−1q−)B∗)−. (3)

The conditions of the theorem have the following meaning. The requirement of a
regular vector h is a necessary condition that allows regular solutions of the inequality
g ≤ x ≤ h. The condition Tr(B) ≤ 1 is necessary and sufficient to have a set of
regular solutions to the inequality Bx ≤ x, whereas h−B∗g ≤ 1 is for a non-empty
intersection of this solution set with the set defined by the constraints g ≤ x ≤ h.

The assumptions of a non-zero vector p and a regular vector q are sufficient to keep
the minimum value θ > 0, which allows the inverse θ−1 to exist. These two assump-
tions can be replaced by a list of weaker conditions, which is, however, insufficient
for application to the location problems under consideration.

Consider two consequences of the theorem, which solve problem (1) when one
of the inequality constraints is eliminated. First, we exclude the double inequality to
write the problem

minimize x− p ⊕ q−x,

subject to Bx ≤ x.
(4)
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The general solution, which is offered by Theorem 1, takes the form of the next
result (see, also Krivulin 2012).

Corollary 1 Let B be a matrix with Tr(B) ≤ 1, p be a non-zero vector, and q be a
regular vector. Then, the minimum value in problem (4) is equal to

θ = (q−B∗ p)1/2,

and all regular solutions are given by

x = B∗u, θ−1 p ≤ u ≤ θ(q−B∗)−.

Furthermore, we consider another special case of the constrained problem at (1),
formulated to

minimize x− p ⊕ q−x,

subject to g ≤ x ≤ h.
(5)

A solution goes as follows (see, also Krivulin and Zimmermann 2013).

Corollary 2 Let p be a non-zero vector, q and h be regular vectors, and g be a vector
such that g ≤ h. Then, the minimum value in problem (5) is equal to

θ = (q− p)1/2 ⊕ h− p ⊕ q−g,

and all regular solutions of the problem are given by the condition

g ⊕ θ−1 p ≤ x ≤ (h− ⊕ θ−1q−)−.

Finally, we present a solution to the unconstrained problem (Krivulin 2012)

minimize x− p ⊕ q−x. (6)

Corollary 3 Let p be a non-zero vector, and q be a regular vector. Then, the minimum
value in problem (6) is equal to

θ = (q− p)1/2,

and all regular solutions are given by

θ−1 p ≤ x ≤ θq.

Below we show how to apply the results of tropical optimization in this section to
solve the constrained rectilinear single-facility location problem under study.
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5 Transformation and solution of location problem

We are now in a position to turn back to the location problem formulated above. The
solution beginswith the representation of the problem in terms of tropicalmathematics.
We apply a useful transformation technique, which can serve as a template to handle
other optimization problems, and hence is of independent interest. Furthermore, we
derive, in the framework of tropical optimization, a direct solution to the problem in the
general setting, and then present solutions to special cases of the problem, where some
or all of constraints are removed. The section concludes with direct representation of
the solutions in terms of the conventional algebra.

5.1 Representation in terms of tropical optimization

We start with the general constrained location problem, which is formulated to find
all vectors x = (x1, x2)T ∈ R2 that

minimize max1≤ j≤m(ρ(x, r j ) + w j ),

subject to ρ(x, r j ) ≤ d j , j = 1, . . . ,m;
s ≤ x1 ≤ t;

(7)

where r j = (r1 j , r2 j )T ∈ R2 are given vectors and d j , w j ∈ R with d j ≥ 0 are given
numbers for all j = 1, . . . ,m, and s, t ∈ R are given numbers such that s ≤ t .

To solve problem (7), we represent it in terms of the semifieldRmax,+ with the max-
imum in the role of addition and the arithmetic addition in the role of multiplication.
Clearly, the context of location analysis guarantees the regularity, in terms of Rmax,+,
of all vectors involved in the problem setting.

First, we note that the rectilinear distance between two vectors a = (a1, a2)T and
b = (b1, b2)T in terms of the operations in the semifield Rmax,+ takes the form

ρ(a, b) = (a−1
1 b1 ⊕ b−1

1 a1)(a
−1
2 b2 ⊕ b−1

2 a2).

Consider the distance between the points x and r j for each j = 1, . . . ,m. An
application of the above formula and simple algebra give

ρ(x, r j ) = r1 j r2 j x
−1
1 x−1

2 ⊕ r−1
1 j r2 j x1x

−1
2 ⊕ r1 j r

−1
2 j x

−1
1 x2 ⊕ r−1

1 j r
−1
2 j x1x2.

To represent this distance in a compact vector form, we introduce the vectors y =
(y1, y2)T and c j = (c1 j , c2 j )T for all j = 1, . . . ,m, with elements

y1 = x1x2, c1 j = r1 j r2 j ,

y2 = x−1
1 x2, c2 j = r−1

1 j r2 j .
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It is not difficult to see that the elements of the vector x are uniquely determined
by those of y through the equalities

x1 = y1/21 y−1/2
2 , x2 = y1/21 y1/22 .

Note that the above relations between x1, x2 and y1, y2 directly correspond to the
obvious linear transformations, which are associated in the conventional arithmetic
with the interchange between Chebyshev and rectilinear distances.

With the new vector notation, the distance between x and r j becomes

ρ(x, r j ) = y−c j ⊕ c−j y.

We are now in a position to rewrite the objective function in problem (7) by using
vectors p = (p1, p2)T and q = (q1, q2)T as follows:

m⊕

j=1

w j ( y−c j ⊕ c−j y) = y− p ⊕ q− y,

where the right-hand side is obtained by regrouping terms and substitution

p =
m⊕

j=1

w j c j , q− =
m⊕

j=1

w j c
−
j .

Furthermore, we examine the inequality constraints in (7). The constraints, which
involve the distance between vectors, take the form of the inequalities

y−c j ⊕ c−j y ≤ d j , j = 1, . . . ,m.

Note that each inequality is equivalent to the pair of inequalities y−c j ≤ d j and
c−j y ≤ d j . Consider the first inequality y−c j ≤ d j and verify, using the properties
of conjugate transposition, that it is equivalent to the inequality c j ≤ d j y. Indeed,
multiplication of the former inequality by y from the left gives c j ≤ y y−c j ≤ d j y,
whereas the left multiplication of the latter inequality by y− results in the former one.
The inequality c−j y ≤ d j is equivalent to y ≤ d j c j by similar arguments.

Then, after slight rearrangement of the inequalities obtained, we represent the
inequality constraints under consideration in the alternative form

d−1
j c j ≤ y, y− ≥ d−1

j c−j , j = 1, . . . ,m.

These inequalities combine to produce the two equivalent inequalities

m⊕

j=1

d−1
j c j ≤ y, y− ≥

m⊕

j=1

d−1
j c−j .
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Finally, we replace the last inequalities by the one double inequality

g ≤ y ≤ h,

where we use the vector notation g = (g1, g2)T and h = (h1, h2)T , defined by

g =
m⊕

j=1

d−1
j c j , h− =

m⊕

j=1

d−1
j c−j .

It remains to represent, in terms of the new vector y, the last inequality constraint

s ≤ x1 ≤ t.

We rewrite the left and right inequalities as s2x−1
1 ≤ x1 and t−2x1 ≤ x−1

1 , or
equivalently, as the inequalities s2x−1

1 x2 ≤ x1x2 and t−2x1x2 ≤ x−1
1 x2.

After substitution y1 = x1x2 and y2 = x−1
1 x2, we have the inequalities s2y2 ≤ y1

and t−2y1 ≤ y2. In vector form, these inequalities are given by

B y ≤ y,

where the matrix B is defined, using the notation 0 = −∞, as follows:

B =
(

0 s2

t−2 0

)
.

Finally, location problem (7) reduces to the tropical optimization problem

minimize y− p ⊕ q− y,
subject to B y ≤ y,

g ≤ y ≤ h,

(8)

which coincides with that of (1), where the unknown vector x is replaced by y.

5.2 Derivation of direct solution

We now apply Theorem 1 to derive a direct solution to problem (8). To describe the
results, we need to calculate the matrices

B∗ = I ⊕ B =
(

1 s2

t−2 1

)
, B2 =

(
s2t−2 0
0 s2t−2

)
= s2t−2 I .
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The description also involves a direct representation for the elements of the vectors
p = (p1, p2)T , q = (q1, q2)T , g = (g1, g2)T and h = (h1, h2)T , given by

pi =
m⊕

j=1

w j ci j , q−
i =

m⊕

j=1

w j c
−1
i j , gi =

m⊕

j=1

d−1
j ci j , h−

i =
m⊕

j=1

d−1
j c−1

i j , (9)

where i = 1, 2, and c1 j = r1 j r2 j and c2 j = r−1
1 j r2 j for all j = 1, . . . ,m.

We start with calculating, as intermediate results, the row vectors

q−B∗ = (
q−1
1 ⊕ t−2q−1

2 , s2q−1
1 ⊕ q−1

2

)
,

h−B∗ = (
h−1
1 ⊕ t−2h−1

2 , s2h−1
1 ⊕ h−1

2

)
.

To represent the existence conditions imposed and the minimum value provided by
the theorem, we find

q−B∗ p = q−1
1 p1 ⊕ t−2q−1

2 p1 ⊕ s2q−1
1 p2 ⊕ q−1

2 p2,

q−B∗g = q−1
1 g1 ⊕ t−2q−1

2 g1 ⊕ s2q−1
1 g2 ⊕ q−1

2 g2,

h−B∗ p = h−1
1 p1 ⊕ t−2h−1

2 p1 ⊕ s2h−1
1 p2 ⊕ h−1

2 p2,

h−B∗g = h−1
1 g1 ⊕ t−2h−1

2 g1 ⊕ s2h−1
1 g2 ⊕ h−1

2 g2.

According to Theorem 1, the conditions for problem (8) to have solutions are
specified by the inequalities

Tr(B) ≤ 1, h−B∗g ≤ 1.

Since Tr(B) = trB ⊕ trB2 = s2t−2 ≤ 1 if s ≤ t , the first inequality is obviously
valid. The second condition takes the form of the inequality

h−1
1 g1 ⊕ t−2h−1

2 g1 ⊕ s2h−1
1 g2 ⊕ h−1

2 g2 ≤ 1. (10)

An application of (2) to write the minimum value of the objective function yields

θ = (q−1
1 p1 ⊕ t−2q−1

2 p1 ⊕ s2q−1
1 p2 ⊕ q−1

2 p2)
1/2

⊕h−1
1 p1 ⊕ t−2h−1

2 p1 ⊕ s2h−1
1 p2 ⊕ h−1

2 p2

⊕q−1
1 g1 ⊕ t−2q−1

2 g1 ⊕ s2q−1
1 g2 ⊕ q−1

2 g2. (11)

We now describe the solution set of vectors y = (y1, y2)T . It follows from Theo-
rem 1 that problem (8) has the solution

y = B∗u,

where the intermediate vector u = (u1, u2)T satisfies the condition at (3).
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First, we represent the above vector equality in scalar form as

y1 = u1 ⊕ s2u2, y2 = t−2u1 ⊕ u2. (12)

To describe the set of admissible vectors u, we take the double inequality at (3) to
consider the corresponding scalar inequalities

g1 ⊕ θ−1 p1 ≤ u1 ≤ (h−1
1 ⊕ θ−1q−1

1 ⊕ t−2h−1
2 ⊕ θ−1t−2q−1

2 )−1,

g2 ⊕ θ−1 p2 ≤ u2 ≤ (s2h−1
1 ⊕ θ−1s2q−1

1 ⊕ h−1
2 ⊕ θ−1q−1

2 )−1.

It is not difficult to verify that at least one of these inequalities holds as an equality.
To see this, we can substitute for θ each term on the right-hand side of (11). Consider,
for instance, the case that θ = q−1/2

1 p1/21 . Under this assumption, we have

p1/21 q1/21 = θ−1 p1 ≤ g1 ⊕ θ−1 p1

≤ (h−1
1 ⊕ θ−1q−1

1 ⊕ t−2h−1
2 ⊕ θ−1t−2q−1

2 )−1 ≤ θq1 = p1/21 q1/21 ,

which means that both left and right parts of the first inequality coincide, and thus this
inequality reduces to an equality. The other cases are examined in the same way.

Taking into account that one of the above inequalities acts as an equality, we rewrite
them in the one-parametrized form

u1 = (g1 ⊕ θ−1 p1)
1−α(h−1

1 ⊕ θ−1q−1
1 ⊕ t−2h−1

2 ⊕ θ−1t−2q−1
2 )−α,

u2 = (g2 ⊕ θ−1 p2)
1−α(s2h−1

1 ⊕ θ−1s2q−1
1 ⊕ h−1

2 ⊕ θ−1q−1
2 )−α,

(13)

where α is a real parameter such that 0 ≤ α ≤ 1.
Finally, note that the solution of the initial problem (7) in terms of the vector

x = (x1, x2)T can be calculated from the elements of the vector y as follows:

x1 = y1/21 y−1/2
2 , x2 = y1/21 y1/22 . (14)

5.3 Direct solutions to location problems

In this subsection, we turn back to the conventional notation and summarize the result
obtained to provide direct, explicit solutions of the general location problem and of
its special cases. Consider the general problem formulated in the scalar form

minimize max1≤ j≤m(|x1 − r1 j | + |x2 − r2 j | + w j ),

subject to |x1 − r1 j | + |x2 − r2 j | ≤ d j , j = 1, . . . ,m;
s ≤ x1 ≤ t.

(15)

After translating the formulae at (9), (10), (11), (12), (13) and (14) back into the
language of conventional algebra, with eliminating both y1 and y2, the results of the
previous subsection are summarized as follows.
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Theorem 2 Define the notation

p1 = max1≤ j≤m(w j + r1 j + r2 j ), p2 = max1≤ j≤m(w j − r1 j + r2 j ),
q1 = min1≤ j≤m(−w j + r1 j + r2 j ), q2 = min1≤ j≤m(−w j − r1 j + r2 j ),
g1 = max1≤ j≤m(−d j + r1 j + r2 j ), g2 = max1≤ j≤m(−d j − r1 j + r2 j ),
h1 = min1≤ j≤m(d j + r1 j + r2 j ), h2 = min1≤ j≤m(d j − r1 j + r2 j ),

(16)

and suppose that

max(g1 − h1, g1 − h2 − 2t, g2 − h1 + 2s, g2 − h2) ≤ 0. (17)

Then, the minimum value in problem (15) is equal to

θ = max((p1 − q1)/2, (p1 − q2)/2 − t, (p2 − q1)/2 + s, (p2 − q2)/2,

p1 − h1, p1 − h2 − 2t, p2 − h1 + 2s, p2 − h2,

g1 − q1, g1 − q2 − 2t, g2 − q1 + 2s, g2 − q2), (18)

and all solutions are given by

x1 = max(u1, u2 + 2s)/2 − max(u1 − 2t, u2)/2,

x2 = max(u1, u2 + 2s)/2 + max(u1 − 2t, u2)/2,
(19)

where

u1 = (1 − α)max(g1, p1 − θ) + αmin(h1, q1 + θ, h2 + 2t, q2 + 2t + θ),

u2 = (1 − α)max(g2, p2 − θ) + αmin(h1 − 2s, q1 − 2s + θ, h2, q2 + θ)

for all real α such that 0 ≤ α ≤ 1.

As a consequence of the theorem, which also takes into account Corollaries 1,
2 and 3, we present solutions to special cases of the problem with reduced sets of
constraints and without constraints. Consider the problem, which has only the upper-
bound distance constraints. In ordinary notation, the problem is defined as follows:

minimize max1≤ j≤m(|x1 − r1 j | + |x2 − r2 j | + w j ),

subject to |x1 − r1 j | + |x2 − r2 j | ≤ d j , j = 1, . . . ,m.
(20)

The next statement offers a direct, explicit solution to the problem.

Corollary 4 Under the notation of Theorem 2, suppose that

max(g1 − h1, g2 − h2) ≤ 0.

Then, the minimum value in problem (20) is equal to

θ = max((p1 − q1)/2, (p2 − q2)/2, p1 − h1, p2 − h2, g1 − q1, g2 − q2),
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and all solutions are given by

x1 = (u1 − u2)/2, x2 = (u1 + u2)/2,

where

ui = (1 − α)max(gi , pi − θ) + αmin(hi , qi + θ), i = 1, 2,

for all real α such that 0 ≤ α ≤ 1.

Furthermore, we examine the problem with the boundary constraints in the form

minimize max1≤ j≤m(|x1 − r1 j | + |x2 − r2 j | + w j ),

subject to s ≤ x1 ≤ t.
(21)

Corollary 5 Under the notation of Theorem 2, the minimum value in problem (21) is
equal to

θ = max(p1 − q1, p1 − q2 − 2t, p2 − q1 + 2s, p2 − q2)/2,

and all solutions are given by

x1 = max(u1, u2 + 2s)/2 − max(u1 − 2t, u2)/2,

x2 = max(u1, u2 + 2s)/2 + max(u1 − 2t, u2)/2,

where

u1 = (1 − α)(p1 − θ) + α(min(q1, q2 + 2t) + θ),

u2 = (1 − α)(p2 − θ) + α(min(q1 − 2s, q2) + θ)

for all real α such that 0 ≤ α ≤ 1.

Finally, we consider the unconstrained problem

minimize max
1≤ j≤m

(|x1 − r1 j | + |x2 − r2 j | + w j ). (22)

A solution to the problem is described as follows.

Corollary 6 Under the notation of Theorem 2, the minimum value in problem (22) is
equal to

θ = max(p1 − q1, p2 − q2)/2,

and all solutions are given by

x1 = (u1 − u2)/2, x2 = (u1 + u2)/2,
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where

ui = (1 − α)(pi − θ) + α(qi + θ), i = 1, 2,

for all real α such that 0 ≤ α ≤ 1.

Note that, after elimination of the intermediate variables u1 and u2, the solution to
the unconstrained problem becomes

x1 = (1 − α)(p1 − p2)/2 + α(q1 − q2)/2

x2 = (2α − 1)θ + (1 − α)(p1 + p2)/2 + α(q1 + q2)/2,

which agrees with that derived by geometric (Elzinga and Hearn 1972; Francis 1972)
and algebraic (Krivulin 2011b; Krivulin and Plotnikov 2015) techniques.

6 Numerical examples and graphical illustrations

We illustrate the results obtained with small artificial examples of optimal location of a
facilitywith respect tom = 3givenpoints. Thepurposeof the illustration is to provide a
clear demonstration of the computational technique used, and a transparent graphical
representation of the solutions offered. Although the problems under consideration
involve only three given points, the examples show strong evidence of the applicability
of the method to solve efficiently real-world problems of large scale.

Consider the problemof locating a newpoint on the plane tominimize themaximum
of distances from this point to three given points defined as

r1 =
(
1
2

)
, r2 =

(
5
9

)
, r3 =

(
7
5

)
.

The values of addends corresponding to these points are assumed to be

w1 = 2, w2 = 1, w3 = 1,

whereas the upper bounds on the distances are to be

d1 = 7, d2 = 5, d3 = 5.

Finally, the left and right boundary of the feasible location region are given by

s = 4, t = 8.
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To describe the solutions to the problem under various constraints, we first calculate
the numbers

p1 = max
1≤ j≤3

(w j + r1 j + r2 j ) = 15, p2 = max
1≤ j≤3

(w j − r1 j + r2 j ) = 5,

q1 = min
1≤ j≤3

(−w j + r1 j + r2 j ) = 1, q2 = min
1≤ j≤3

(−w j − r1 j + r2 j ) = −3,

g1 = max
1≤ j≤3

(−d j + r1 j + r2 j ) = 9, g2 = max
1≤ j≤3

(−d j − r1 j + r2 j ) = −1,

h1 = min
1≤ j≤3

(d j + r1 j + r2 j ) = 10, h2 = min
1≤ j≤3

(d j − r1 j + r2 j ) = 3.

We start with problem (22) without constraints. According to Corollary 6, we find
the minimum

θ = max(p1 − q1, p2 − q2)/2 = 7.

Next, we calculate the intermediate variables

u1 = (1 − α)(p1 − θ) + α(q1 + θ) = 8,

u2 = (1 − α)(p2 − θ) + α(q2 + θ) = 6α − 2,

and finally obtain the solution in the parametrized form

x1 = (u1 − u2)/2 = 5 − 3α, x2 = (u1 + u2)/2 = 3 + 3α,

where α is any real number such that 0 ≤ α ≤ 1.
Substitutions α = 0 and α = 1 give two points

x′ =
(
5
3

)
, x′′ =

(
2
6

)
,

which define the ends of the line segment representing the solutions.
The solution to the unconstrained problem is illustrated in Fig. 1 (left). The illus-

tration shows the given points r1, r2 and r3, indicated by filled circles. For each point
r j , the four open circles placed distance w j > 0 from the filled circle designate artifi-
cial points to account for the addends. The representation of the solution involves the
minimal 45◦-tilted rectangle enclosing all artificial points. The solution set is given by
the thick line segment, which goes through the centers of the long sides between two
horizontal lines drawn through the bottom-left and top-right vertices of the rectangle.

Suppose now that the boundary constraints s ≤ x1 ≤ t are imposed, where s = 4
and t = 8. To solve the problem under these constraints, we apply Corollary 5.

First, we find that the minimum in the problem

θ = max(p1 − q1, p1 − q2 − 2t, p2 − q1 + 2s, p2 − q2)/2 = 7

remains the same value as for the unconstrained problem examined above.
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Fig. 1 Unconstrained solution (left) and solution under boundary constraints (right)

Furthermore, we calculate the intermediates

u1 = (1 − α)(p1 − θ) + α(min(q1, q2 + 2t) + θ) = 8,

u2 = (1 − α)(p2 − θ) + α(min(q1 − 2s, q2) + θ) = −2 + 2α,

and then obtain the solution given by

x1 = max(u1, u2 + 2s)/2 − max(u1 − 2t, u2)/2 = 5 − α,

x2 = max(u1, u2 + 2s)/2 + max(u1 − 2t, u2)/2 = 3 + α.

The solution set forms a line segment with the extreme points, which answer α = 0
and α = 1 to be

x′ =
(
5
3

)
, x′′ =

(
4
4

)
.

The solution is shown in Fig. 1 (right), where the feasible region is represented as
the strip area between two vertical lines at x1 = s and x1 = t .

Consider the problem, in which the upper-bounds d j on the distances between the
new and given points are used instead of boundary constraints examined above. To
apply Corollary 4, we verify the condition

max(g1 − h1, g2 − h2) = −1 ≤ 0.

It follows from the corollary that the minimum in the problem now becomes

θ = max((p1 − q1)/2, (p2 − q2)/2, p1 − h1, p2 − h2, g1 − q1, g2 − q2) = 8.
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Fig. 2 Solutions under upper-bound distance constraints (left), and under both boundary and upper-bound
distance constraints (right)

Furthermore, we calculate

u1 = (1 − α)max(g1, p1 − θ) + αmin(h1, q1 + θ) = 9,

u2 = (1 − α)max(g2, p2 − θ) + αmin(h2, q2 + θ) = −1 + 4α.

The solution is written as

x1 = (u1 − u2)/2 = 5 − 2α, x2 = (u1 + u2)/2 = 4 + 2α,

and constitutes a line segment having the ends at the points

x′ =
(
5
4

)
, x′′ =

(
3
6

)
.

A graphical illustration of the solution is provided in Fig. 2 (left). The plot demon-
strates the feasible location area as the intersection of turned squares drawn for each
point r j to have the distance from the vertices of the square to the point equal to
d j . A thick line segment that coincides with the lower long side of the small turned
rectangle, which represents the feasible area, shows the solution.

We conclude this section with the solution to the general location problem, which
combines both boundary and upper-bound distance constraints. By following the solu-
tion offered by Theorem 2, we begin with the validation of the condition

max(g1 − h1, g1 − h2 − 2t, g2 − h1 + 2s, g2 − h2) = −10 ≤ 0.
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The evaluation of the minimum value yields

θ = max((p1 − q1)/2, (p1 − q2)/2 − t, (p2 − q1)/2 + s, (p2 − q2)/2,

p1 − h1, p1 − h2 − 2t, p2 − h1 + 2s, p2 − h2,

g1 − q1, g1 − q2 − 2t, g2 − q1 + 2s, g2 − q2) = 8.

After calculation of the intermediate expressions

u1 = (1 − α)max(g1, p1 − θ) + αmin(h1, q1 + θ, h2 + 2t, q2 + 2t + θ) = 9,

u2 = (1 − α)max(g2, p2 − θ) + αmin(h1 − 2s, q1 − 2s + θ, h2, q2 + θ) = −1 + 2α,

we obtain the solution given by

x1 = max(u1, u2 + 2s)/2 − max(u1 − 2t, u2)/2,= 5 − α,

x2 = max(u1, u2 + 2s)/2 + max(u1 − 2t, u2)/2 = 4 + α.

The solution to the problem is depicted in Fig. 2 (right) by the thick line segment
between the points

x′ =
(
5
4

)
, x′′ =

(
4
5

)
,

which correspond to setting α = 0 and α = 1.

7 Application to CCTV monitoring facility location

In this section, we present an application to a real-world problem that arises in the
deployment of CCTV video surveillance systems in the indoor environment, including
office, industrial, commercial, educational, social, health-care and other buildings.

A typical CCTV system is composed of three major components (Cieszynski 2004;
Cohen et al. 2009; SPAWAR Systems Center Atlantic 2013): imaging sensors (video
cameras) generating an input video stream, a transmission system to transmit video
signal data, and a central video monitoring/processing facility. The design and deploy-
ment of CCTV systems in the indoor environment give rise to a range of location
problems. Specifically, the problems of camera placement consist in finding optimal
locations of cameras in a surveillance zone under various operational objectives and
constraints, such as to maximize the coverage area subject to a fixed number of avail-
able cameras (see, e.g., overviews in Zhao et al. 2013; Liu et al. 2016). Below, we
examine a different problem with the assumption that the placement of cameras in a
CCTV system is already fixed and the problem is to determine the optimal location of
the central monitoring facility to reduce losses in the wired transmission network of
the system under some technological constraints.

We consider the CCTV video surveillance system, which is set up in a multi-floor
building that is composed by rectangular shapes, with rectangular rooms and corridors
at each floor, as illustrated by the scheme in Fig. 3. The intra-building conduit system
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x1

x2

(r1 j,r2 j)

wj

s

t

Fig. 3 Location of CCTV monitoring facility in multi-floor building environment

consists of vertical riser shafts, horizontal cable trays, ladder racks and other facilities
to provide full connectivity between any points in the building through the paths, which
are parallel or perpendicular to the walls and to the ceiling. Rooms on all floors are
equippedwith surveillance camerasmounted at upper corners, where twowalls and the
ceilingmeet at a right angle. To transmit video data, every camera is directly connected
by a coaxial cable using intra-building cable runs to a central control viewing room,
located in a dedicated area on the ground floor, which accommodates monitoring, data
storage and video analytics facilities. In the scheme in Fig. 3, the feasible location
region is surrounded by hatched border.
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The use of coaxial wires imposes constraints on themaximumcable distance, which
ranges, depending on the gauge of the cable, from several tens to a few hundreds of
metres (Cohen et al. 2009; SPAWAR Systems Center Atlantic 2013). Another critical
issue is the increasing attenuation (loss) of video signal as the transmission distance
and frequency increase, which makes it difficult to handle video data, especially when
transmitting high-quality video. Since the length of the wire between each camera and
the control room depends on where the room is located, the attenuation is reduced
by appropriate room location. Considering that the signal attenuation is measured
proportional to the transmission distance, the attenuation can be identified with the
distance to formulate the following minimax problem.

For a given placement of m surveillance cameras in a multi-floor building envi-
ronment, we need to find the optimal location of the central monitoring facility (the
control room) in a feasible area on the ground floor to minimize the maximum atten-
uation in the wired transmission network subject to maximum distance constraints on
the wires between cameras and the facility. As it is easy to see, the problem takes the
form of (15) and, therefore, has the direct solution provided by Theorem 2.

The procedure offered by the theorem involves simple straightforward calculations
using the horizontal coordinates (r1 j , r2 j ) and the vertical height w j of all cameras
j = 1, . . . ,m. Given a common distance constraint d on thewire length, the individual
constraint for camera j is calculated as d j = d − w j . The most computationally
intensive part of the procedure is the evaluation of the intermediate variables pi , qi ,
gi and hi for i = 1, 2 according to (16), which takes at most linear time with respect
to the number of cameras. The condition (17) is verified to ensure that the distance
bounds d j and the location bounds s and t can be simultaneously satisfied to provide
non-empty feasible location region. The procedure completes with the evaluation of
the optimal distance θ using (18) and the derivation of parametrized representation
for the coordinates (x1, x2) of the optimal location zone in the form of (19).

Solutions to the central monitoring facility location problem are then obtained by
plotting the optimal location area, which typically takes the form of a line segment
(depicted in Fig. 3 by a thick dashed line), on the ground floor map to determine an
appropriate place to deploy the facility and to develop the transmission network.

8 Conclusions

In this paper, we used tropical mathematics to derive new solutions to constrained
minimax single-facility location problems with addends on the plane with rectilin-
ear distance. Tropical mathematics, which deals with the theory and application of
algebraic systems with idempotent addition, offers a useful problem formulation and
solution framework to provide direct, explicit solutions to a range of classical and
novel problems in operations research, management science and other fields.

To handle the location problems under study, we have formulated these problems
in the tropical mathematics setting, and then solved them by applying recent results
in tropical optimization. In contrast to the known solution approaches that are mainly
based on numerical iterative algorithms, including linear programming and graph
optimization, the solutions obtained are given in a simple closed form, which is ready
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for both further analysis by analytical techniques and straightforward computation
with no more than a linear computational cost. As the solution method for the location
problems, we have proposed an explicit computational technique that involves easy
direct computations, and may help to augment and supersede known approaches when
indirect algorithmic solutions are less preferred or even impossible.

Future researchwill focus on the solution of the problemwith additional constraints
to define amore general feasible location area on the plane. Extensions of the approach
to solve other minimax location problems, including rectilinear problems in three-
dimensional space and multi-facility location problems, are also of interest.
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