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Abstract It is well known that the quantile regression model used as an asset alloca-
tion tool minimizes the portfolio extreme risk whenever the attention is placed on the
lower quantiles of the response variable. By considering the entire conditional distri-
bution of the dependent variable, we show that it is possible to obtain further benefits
by optimizing different risk and performance indicators. In particular, we introduce
a risk-adjusted profitability measure, useful in evaluating financial portfolios from
a ‘cautiously optimistic’ perspective, as the reward contribution is net of the most
favorable outcomes. Moreover, as we consider large portfolios, we also cope with the
dimensionality issue by introducing an �1-norm penalty on the assets’ weights.

Keywords Quantile regression · �1-Norm penalty · Asset allocation

1 Introduction

Starting from the seminal contribution by Markowitz (1952) with the mean–variance
portfolio theory, portfolio estimation and asset selectionhave received increasing atten-
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tion from both a practitioner and an academic viewpoint. In the financial industry, asset
allocation and security selection play central roles in designing portfolio strategies for
both private and institutional investors. In contrast, academia focuses on developing
the Markowitz approach over different research lines—linking it to market equilib-
rium, as done by Sharpe (1964), Lintner (1965a, b) and Mossin (1966); modifying
the objective function both when it is set as a utility function and when it takes the
form of a performance measure (Alexander and Baptista 2002; Farinelli et al. 2008)
and developing tools to estimate and forecast the Markowitz model inputs, with great
emphasis on return and risk.

Among the various methodological advancements, we focus on those associated
with variations of the objective function or, more generally, those based on alternative
representations of the asset allocation problem. Some of the various asset allocation
approaches proposed in the last decades share a common feature: they have a compan-
ion representation in the form of regression models where the coefficients correspond
or are linked to the assets’ weights in a portfolio. Two examples are given by estimating
efficient portfolio weights by means of linear regression of a constant on asset excess
returns (Britten-Jones 1999) and estimating the global minimum variance portfolio
weights using the solution of a specific regression model; see e.g. Fan et al. (2012).

In the previously cited cases, portfolio variance plays a fundamental role in risk
quantification. However, even if we agree regarding the relevance of variance (or
volatility) for risk measurement andmanagement, the financial literature now includes
a large number of other indicators that might be more appropriate. For example, for
an investor whose preferences or attitudes regarding risk are summarized by utility
functionswhere extreme risk is present, volatilitymight be replaced by tail expectation.
Moving away from the least squares estimation, although remaining confined within
the regression models, it is possible to optimize non-standard objective functions. The
leading example is given by Bassett et al. (2004), who proposed a pessimistic asset
allocation strategy relying on the quantile regression method introduced by Koenker
and Bassett (1978).

Bassett et al. (2004) start from the linear regression model, the solution to which
provides the global minimum variance portfolio weights. The authors next show that
estimating a low quantile, denoted as the α-quantile (typically α = {0.01, 0.05, 0.1}),
of the response variable using the quantile regression method minimizes a measure
of the portfolio extreme risk—the so-called α-risk (Bassett et al. 2004). Therefore, a
change in the estimation approach allows moving from the global minimum variance
portfolio to the minimum α-risk portfolio. Variants of the α-risk are known under
a variety of names, such as ‘expected shortfall’ (Acerbi and Tasche 2002), ‘condi-
tional value-at-risk’ (Rockafellar andUryasev 2000), and ‘tail conditional expectation’
(Artzner et al. 1999). Consequently, the pessimistic asset allocation strategy of Bas-
sett et al. (2004) corresponds to an extreme risk minimization approach. The work by
Bassett et al. (2004) also represents the starting point of our contributions. Building
on quantile regression methods, we introduce innovative asset allocation strategies
coherent with the maximization of a risk-adjusted performance measure. Moreover,
we combine quantile regressionwith regularizationmethods, such as the least absolute
shrinkage and selection operator (LASSO) (Tibshirani 1996), to cope with the prob-
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lematic issues arising from the large portfolios’ dimensionality and the increasing
estimation errors.

Our contributions provide an answer to specific research questions, with a poten-
tial application in the financial industry. The first research question originates from a
limitation of the pessimistic asset allocation approach of Bassett et al. (2004), which
is a risk minimization-driven strategy. Is it possible to maintain the focus on the α-risk
and at the same time maximize a performance measure, thus also taking into account
rewards?Our first contribution consists of showing that quantile regressionmodels can
be used not only to build financial portfolios with minimum extreme risk, as already
detailed in the literature, but also to optimize other risk and performance measures by
exploiting the information contained in all the support of the response variable con-
ditional distribution. We first note that under reasonable assumptions, at the median
level, the quantile regression solution corresponds to the minimization of the mean
absolute deviation of portfolio returns. We then show that at high quantile levels the
quantile regression solution provides portfolio weights with an outstanding perfor-
mance in terms of profitability and risk-adjusted returns. Such a solution corresponds
to the maximization of a specific reward measure—the conditional expected return
net of the most favorable outcomes. As a by-product, we introduce a risk-adjusted
ratio that, to our knowledge, has not yet been investigated in the literature. Notably,
it quantifies the magnitude of all the negative returns balanced by a subset of posi-
tive results, net of the most favorable ones. This method translates into a so-called
‘cautiously optimistic’ asset allocation that explicitly accounts for markets’ rebounds.
In fact, in 55% of the cases in our dataset, the extreme positive outcomes (i.e. the
assets’ returns exceeding their respective 90% in-sample percentiles) are preceded by
the negative ones on average (see Fig. 1a).1 Furthermore, the markets’ rebounds are
frequent in periods of high volatility and crises; indeed, on average, the percentage of
the extreme positive returns preceded by extreme negative returns (the ones lower than
their 10% in-sample percentiles) is equal to 20% (Fig. 1b).2 This evidence suggests
that the extreme positive returns are not completely imputable to economic overper-
formance but rather to the bouncing back of the market. In other words, abnormal
positive returns could be assumed to be reactions to high volatilities in crisis periods,
rather than the outperformance of effective stocks. However, the evidence of negative
rebounds, where we take into account the extreme negative outcomes (the returns
lower than their 10% percentiles) preceded by positive or extreme positive returns, is
slightly weaker.3 In addition, it is important to highlight that including the potential
extreme negative outcomes in the optimization problem and simultaneously exclud-
ing the extreme positive ones emphasizes the prudential spirit of the asset allocation
strategy we propose.

1 The details about the dataset and the in-sample analysis set-up are given in Sect. 3.
2 In the case of the Standard & Poor’s 500 index, we checked that the medians of the percentages of the
extreme positive returns preceded by negative or extreme negative returns are very similar—56 and 19%,
respectively.
3 On average, in 50% (16%) of the cases, the extreme negative outcomes are preceded by positive (extreme
positive) ones.

123



4 G. Bonaccolto et al.

S&P 500 CONSTITUENTS

(a)

0 100 200 300 400 500

P
R

O
P

O
R

TI
O

N
 (%

) O
F 

E
X

TR
E

M
E

 P
O

S
IT

IV
E

R
E

TU
R

N
S

 P
R

E
C

E
D

E
D

 B
Y

 N
E

G
A

TI
V

E
 R

E
TU

R
N

S

35

40

45

50

55

60

65

70
1st AND 3rd QUARTILES
MEDIAN

S&P 500 CONSTITUENTS

(b)
P

R
O

P
O

R
TI

O
N

 (%
) O

F 
E

X
TR

E
M

E
 P

O
S

IT
IV

E
 R

E
TU

R
N

S
 

P
R

E
C

E
D

E
D

 B
Y

 E
X

TR
E

M
E

 N
E

G
A

TI
V

E
 R

E
TU

R
N

S

5

10

15

20

25

30

35

40
1st AND 3rd QUARTILES
MEDIAN

0 100 200 300 400 500

Fig. 1 Results for the constituents of the Standard & Poor’s 500 index continuously available fromNovem-
ber 4, 2004 to November 21, 2014; see Sect. 3 for further details. Panels (a) and (b) display the proportion
(%) of the extreme positive outcomes (that is the assets’ returns greater than their 90% percentiles) pre-
ceded by negative returns (a), or extreme negative returns, that is the assets’ returns lower than their 10%
percentiles (b). We report in panels (a)–(b) the median and the first and the third quartiles over the rolled
subsamples. The stocks are ordered according to the magnitude of their respective medians

Much of thework in the financial literature also highlights the unsatisfactory out-of-
sample performance of the mean–variance approach introduced byMarkowitz (1952).
One of the most important reasons underlying this phenomenon refers to the estima-
tion of the expected returns, which implies serious problems in terms of estimation
errors; see, e.g. Brodie (1993) and Chopra and Ziemba (1993). Given that the markets’
rebounds contribute to the instability of the expected returns’ estimates, the idea of
isolating their effect, as pointed out in our work, could be very useful in obtaining port-
folios more robust to estimation errors. In general, given the impact of the estimation
errors in the expected returns, the minimum variance portfolio has attracted significant
attention, because it relies just on the estimation of the variance–covariance matrix
(Brodie 1993; Chopra and Ziemba 1993). Similarly, our approach does not require the
estimation of the stocks’ expected returns. Therefore, the strategy we propose could
be useful for risk-seeking investors who compose financial portfolios in a context
characterized by uncertainty and whose preferences do not depend just on risk but
also on profitability, although in a robust and cautiously optimistic way.

The second research question stems from empirical evidence and practitioners’
needs. Financial portfolios are frequently built after picking the desired assets from
a large universe. In maintaining a cautiously optimistic asset allocation strategy, we
face a clear trade-off; on one hand, a large portfolio offers diversification benefits,
but on the other hand the number of parameters to estimate with the quantile regres-
sion approach quickly increases as the portfolio dimension grows. As a result, the
accumulation of estimation errors becomes a problem that must be addressed. There-
fore, the question is whether we can control the estimation errors by maintaining the
focus on the cautiously optimistic asset allocation approach. Our solution consists
of imposing a penalty on the �1-norm of the quantile regression coefficients along
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the line of the LASSO introduced by Tibshirani (1996) in a standard least squares
regression framework. Recent studies show that applications of the LASSO to the
mean–variance portfolio framework provide benefits in terms of the sparsity of the
portfolio (indirectly associated with diversification/concentration and turnover) and
good out-of-sample properties; see e.g. Brodie et al. (2009), DeMiguel et al. (2009),
Fan et al. (2012), Yen and Yen (2014) and Fastrich et al. (2015). Gotoh and Takeda
(2011) point out the better performance of both the norm-constrained value-at-risk
minimization and the robust portfolio optimization in index tracking, reporting empir-
ical results with the �2-norm. In the statistical literature, the �1-norm became a widely
used tool not only in linear regression but also for quantile regression models (see, e.g.
Koenker 2005; Belloni and Chernozhukov 2011; Li and Zhu 2008) while applications
in asset allocation are still scarce. Härdle et al. (2014) used the penalized quantile
regression as an asset selection tool in the index tracking framework to determine the
assets to include in the portfolio; the assets’ weights are then estimated by optimiz-
ing as an objective function the Cornish–Fisher value-at-risk (CF–VaR). In contrast,
in the approach we introduce, the penalized quantile regression model automatically
selects and estimates the relevant assets’ weights in a single step. To the best of our
knowledge, such an approach has never been investigated in the literature.

We evaluate the proposed ‘cautiously optimistic’ approach using extensive empir-
ical analysis in which we compare the performance of the asset allocation strategies
built from the quantile regression models at different quantile levels. In contrast to
Bassett et al. (2004), we use both simulated and real-world data. Moreover, we anal-
yse both the in-sample and the out-of-sample performances by implementing a rolling
window procedure. Finally, we focus on portfolios with a large cross-sectional dimen-
sion, including almost 500 assets, which is not common in the literature being limited
to just a few recent contributions (e.g. Aït-Sahalia and Xiu 2015; Fan et al. 2016).
The in-sample results for both real-world and simulated data show that each strategy
performs consistently according to expectations, optimizing their respective objective
functions—the α-risk, the mean absolute deviation and the upper tail-based reward
measures. Indeed, the quantile regression applied at low probability levels outperforms
the other strategies in terms of extreme risk. Least squares andmedian regressionmod-
els turn out to be the best strategies in terms of volatility, as the former minimizes the
portfolio variance and the latter minimizes the mean absolute deviation of portfolios’
returns. It transpires that the quantile regression at the high probability levels provides
the best results in terms of profitability and risk-adjusted return. The out-of-sample
results show that the quantile regression models maintain their in-sample properties
but only at high probability levels.4 Finally, we highlight the critical importance of reg-
ularizing the quantile regression problem to improve the out-of-sample performance
of portfolios characterized by a large cross-sectional dimension.

The work is structured as follows. In Sect. 2, we introduce the quantile regression
model behind our ‘cautiously optimistic’ approach. In Sect. 3, we describe the empiri-

4 Even though this result might be interesting from a practitioner’s viewpoint, it is quite surprising from
a methodological perspective. We studied this phenomenon, providing an explanation associated with the
role of the model intercept and residuals.
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cal set-up. In Sect. 4, we discuss the main empirical findings and in Sect. 5 we provide
the conclusion.

2 Asset allocation based on quantile regression

2.1 Portfolio performance as a function of quantile levels

Several asset allocation strategies estimate portfolio weights by optimizing a function
typically taking the form of a utility, a risk or a performance measure or a combination
of these. A subset of these asset allocation approaches has a companion representa-
tion in the form of a regression model where the estimated coefficients correspond
to the portfolio weights. The leading example is the global minimum variance port-
folio (GMVP), the composition of which is the solution to the ordinary least squares
regression model.

In the case of a financial portfolio consisting of n stocks, let R = [R1, . . . , Rn] be
the row vector of the assets’ returns5 with covariance matrix V[R] = ΣΣΣ , and let the
row vector of weights be denoted by w = [w1, . . . , wn]; given the (1× n) unit vector
1, we impose the so-called budget constraint, that is 1w′ = 1. The portfolio return
is then Rp = Rw′, but, as suggested by Fan et al. (2012), for example, we can also
use a companion representation to directly include the budget constraint in the linear
model. First, we set R∗

i = Rn − Ri for i = 1, . . . , n − 1 and then use these deviations
to compute the portfolio return, which becomes Rp = Rn −w1R∗

1 −· · ·−wn−1R∗
n−1,

where the nth asset weight ensures the weights sum to 1. It is then possible to show
that the minimization of the portfolio variance can be expressed as follows:

min
w∈Rn

wΣΣΣw′ = min
(w−n ,ξ)∈Rn

E
[
Rw′ − ξ

]2

= min
(w−n ,ξ)∈Rn

E
[
Rn − w1R

∗
1 − · · · − wn−1R

∗
n−1 − ξ

]2
, (1)

where ξ is the intercept of the linear regression model, w−n denotes the weights’
vector excluding wn , with wn = 1 − ∑n−1

i=1 wi to satisfy the budget constraint.
In Eq. (1), the portfolio variance, wΣΣΣw′, is rewritten as E[Rn − w1R∗

1 − · · · −
wn−1R∗

n−1 − ξ ]2. The latter corresponds to the variance of the errors for the linear
regression of asset n returns, Rn , with respect to R∗

i . Therefore, it is possible to mini-
mizewΣΣΣw′ byminimizing the sumof squared errors of a linear regressionmodel, with
response variable Rn and covariates R∗

1 , . . . , R
∗
n−1. Thus, estimating the coefficients

w1, . . . , wn−1, along with the intercept ξ , is equivalent to finding the GMVP weights
(Fan et al. 2012).6

Moving away from the least squares regression framework, the portfolio com-
position could be determined by optimizing alternative performance measures. For
instance, Bassett et al. (2004) proposed a pessimistic asset allocation strategy that

5 To simplify the notation, we suppress the dependence of returns on time.
6 In setting Model (1), we follow Fan et al. (2012) and set the response variable to the nth asset returns,
Rn .
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relies on quantile regression to minimize a risk measure, the so-called α-risk. The
latter equals:

�να (Rp) = −
∫ 1

0
F−1
Rp

(ϑ)dν(ϑ) = −α−1
∫ α

0
F−1
Rp

(ϑ)dϑ, (2)

where FRp (rp) denotes the distribution function of Rp evaluated at rp, whereas ϑ is
the quantile index such that ϑ ∈ U , with U ⊂ (0, 1).

The α-risk is a coherent measure of risk according to the definition of Artzner et al.
(1999). Many variants of �να (Rp) have been discussed in the financial literature using
a variety of names—expected shortfall (Acerbi and Tasche 2002), conditional value-
at-risk (Rockafellar and Uryasev 2000) and tail conditional expectation (Artzner et al.
1999).7 Notably, (2) might be taken as the target risk measure for portfolio allocation;
see e.g. Basak and Shapiro (2001), Krokhmal et al. (2002), Ciliberti et al. (2007)
and Mansini et al. (2007). In such a case, �να (Rp) can be minimized by resorting to
the quantile regression method, as suggested by Bassett et al. (2004), in a framework
similar to the estimation of theGMVPweights in (1), where Rn is the response variable
and R∗

1 , . . . , R
∗
n−1 are the covariates. Within a quantile regression framework, the

conditional ϑ th quantile of Rn is estimated by minimizing the expected value of the
asymmetric loss function:

ρϑ(ε) = ε [ϑ − I (ε < 0)] , (3)

where ε = Rn − ξ(ϑ)−w1(ϑ)R∗
1 −· · ·−wn−1(ϑ)R∗

n−1, ξ(ϑ) is the model intercept,
and I (·) denotes the indicator function taking the value of 1 if the condition in (·) is
satisfied and 0 otherwise.

The estimated ϑ th conditional quantile of Rn is equal to ξ̂ (ϑ) + ŵ1(ϑ)R∗
1 + · · · +

ŵn−1(ϑ)R∗
n−1, where

[
ξ̂ (ϑ), ŵ1(ϑ), . . . , ŵn−1(ϑ)

]
is the coefficients’ vector mini-

mizing (3) at a specific quantile level ϑ . In the case in which ϑ = α, it can be shown
that:

min
(ξ(α),w−n(α))∈Rn

E[ρα(ε)] = α
(
μp + �να (Rp)

)
, (4)

where w−n(α) = [w1(α), . . . , wn−1(α)], μp = E[Rp] and �να (Rp), as in (2).
Let rn,t and r∗

i,t be, respectively, the observed values of Rn and R∗
i for i = 1, . . . , n−

1 at time t . Then, from (4), the quantile regression model

min
(ξ(α),w−n(α))∈Rn

T∑

t=1

ρα

(
rn,t − w1(α)r∗

1,t − · · · − wn−1(α)r∗
n−1,t − ξ(α)

)
(5)

s.t. μp = c

7 Although �να (Rp) could be denominated in different ways, throughout the paper we refer to (2) as the
α-risk.
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allows minimizing the empirical α-risk of a financial portfolio, with the constraints
that the expected portfolio return is equal to a target c and that the sum of the assets’
weights is equal to 1.8

Similar to Model (1),
[
ŵ1(α), . . . , ŵn−1(α)

]
, the estimated coefficients’ vector of

the covariates R∗
1 , . . . , R

∗
n−1 in the quantile regression model, is then the weights’

vector of R1, . . . , Rn−1 for the portfolio with minimum α-risk; the weight of the
nth asset is equal to wn(α) = 1 − ∑n−1

i=1 wi (α), given the budget constraint. In this
formulation, the portfolio weights do not change if we choose another asset as the
numeraire. As the constraintμp = c in (5) requires the estimation of expected returns,
which is known to be a challenging task due to large estimation errors (see e.g. Brodie
1993; Chopra and Ziemba 1993), we hereby choose to focus on:

min
(ξ(α),w−n(α))∈Rn

T∑

t=1

ρα

(
rn,t − w1(α)r∗

1,t − · · · − wn−1(α)r∗
n−1,t − ξ(α)

)
, (6)

which is theminimization of the portfolioα-risk, subject only to the budget constraint.9

As the portfolio performance does not depend just on extreme risk but also on the
occurrence of returns over their entire density support, we introduce an approach that
emphasizes a novel risk-adjusted indicator. The main idea stems from observing that
(2) can be associated with profitability and no longer only with extreme risk if we
replace α with a high quantile level ψ , which is associated with the right tail of the
rn,t distribution in the minimization problem (6), for example ψ = {0.9, 0.95, 0.99}.
In this way, the α-risk in (2) translates into the following quantity:

Ψ1(Rp, ψ) = −ψ−1
∫ ψ

0
F−1
Rp

(ϑ)dϑ. (7)

Given that −Ψ1(Rp, ψ) = E[Rp|Rp ≤ F−1
Rp

(ψ)], the quantile regression model
applied at ψ allows one to minimize Ψ1(Rp, ψ) and, consequently, to maximize the
conditional portfolio expected return. The agent would then employ a cautiously opti-
mistic allocation strategy by minimizing Ψ1(Rp, ψ), in the sense that such a choice
leads to the maximization of the portfolio expected return net of the most favorable
outcomes, as the interval (ψ, 1] is not included in the objective function. In this way,
for instance, it is possible to attenuate the effects of the markets’ rebounds. Moreover,
as limψ→1 −Ψ1(Rp, ψ) = ∫ ψ

0 F−1
Rp

(ϑ)dϑ , it is possible to obtain benefits in terms of

8 Notice that the constraint μp = c in (5) could be expressed as [0, (μ1 − μn), (μ2 − μn), . . . , (μn−1 −
μn)]×[ξ(α), w1(α), w2(α), . . . , wn−1(α)]′ = c−μn , given the budget constraint, whereμ1, μ2, . . . , μn
are the expected returns of the n stocks included into the portfolio.
9 We checked that the inclusion of the constraint μp = c, as in Model (5), implies negative effects in
terms of out-of-sample performance (the details about the out-of-sample analysis are given in Sect. 3). We
estimated the expected returns of the n stocks included in the portfolio by means of their respective sample
means, whereas we set c equal to several target values. Furthermore, we observed that the larger c along
the efficient frontier, the worse are the out-of-sample results, consistent with the findings in Brodie (1993)
and Chopra and Ziemba (1993). The results obtained by including the constraintμp = c are available upon
request.
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the unconditional portfolio expected return, given that we maximize a quantity that
approximates E[Rp]. Note that the minimization of Ψ1(Rp, ψ) (or the maximization
of the conditional portfolio expected return) does not require providing explicit esti-
mates of the expected returns of the stocks included in the portfolio, which implies
serious problems in terms of estimation errors.

Given Ψ1(Rp, ψ), we go further and introduce a new performance indicator by
decomposing the integral in Eq. (7). In particular, let ϑ̄ be the value of ϑ such that

F−1
Rp

(ϑ̄) = 0, where the integral
∫ ϑ̄

0 F−1
Rp

(ϑ)dϑ reaches its lowest value; for instance,

ϑ̄ = 0.5when the distribution is symmetric at 0.Given ϑ̄ < ψ < 1, (7) is then equal to:

Ψ1(Rp, ψ) = −ψ−1
∫ ψ

0
F−1
Rp

(ϑ)dϑ

= −ψ−1

[∫ ϑ̄

0
F−1
Rp

(ϑ)dϑ +
∫ ψ

ϑ̄

F−1
Rp

(ϑ)dϑ

]

, (8)

where
∫ ϑ̄

0 F−1
Rp

(ϑ)dϑ is computed from negative realizations and quantifies their mag-

nitude. In contrast,
∫ ψ

ϑ̄
F−1
Rp

(ϑ)dϑ quantifies the magnitude of a part of the positive
outcomes, excluding the most favorable ones, given that the area beyondψ is not con-
sidered. The quantile regressionmodel, applied at theψ th level, minimizesΨ1(Rp, ψ)

and thus−ς = −
(∫ ϑ̄

0 F−1
Rp

(ϑ)dϑ + ∫ ψ

ϑ̄
F−1
Rp

(ϑ)dϑ
)
.When fRp (rp) is characterized

by a null or a negative skewness, ς is negative, whereas ς could be positive in the case
of positive skewness. In the first case, ς could be seen as a net loss. In contrast, in
the latter case, ς is a net profit. Therefore, the quantile regression model leads to the
minimization of a loss (ς < 0) or to the maximization of a profit (ς > 0), as in (8) ς is
multiplied by the constant −ψ−1 < 0. In other words, the quantile regression model
minimizes |ς | if ς < 0 or maximizes |ς |, if ς > 0, with benefits in terms of the ratio:

Ψ2(Rp, ψ) =
∫ ψ

ϑ̄
F−1
Rp

(ϑ)dϑ
∣∣∣
∫ ϑ̄

0 F−1
Rp

(ϑ)dϑ

∣∣∣
. (9)

Therefore, the ratio Ψ2(Rp, ψ) is a risk-adjusted measure because it quantifies the
magnitude of all the negative outcomes balanced by a part of the positive results,
net of the most favorable ones. Although high Ψ2(Rp, ψ) values correspond to low
Ψ1(Rp, ψ) levels, when different strategies are compared, there are no guarantees that
the strategy that minimizes Ψ1(Rp, ψ) is the one that maximizes Ψ2(Rp, ψ). In other

words, the ranking of different strategies built on the sum between
∫ ψ

ϑ̄
F−1
Rp

(ϑ)dϑ

and
∫ ϑ̄

0 F−1
Rp

(ϑ)dϑ may not coincide with the ranking built on the basis of their ratio.

For example, suppose that for a certain strategy A,
∫ ϑ̄

0 F−1
Rp

(ϑ)dϑ = −34.04 and
∫ ψ

ϑ̄
F−1
Rp

(ϑ)dϑ = 8.13. In contrast, strategy B returns
∫ ϑ̄

0 F−1
Rp

(ϑ)dϑ = −33.74 and
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10 G. Bonaccolto et al.

∫ ψ

ϑ̄
F−1
Rp

(ϑ)dϑ = 7.95. B is better in terms of Ψ1(Rp, ψ), but A outperforms B in
terms of Ψ2(Rp, ψ).

We stress that while (7) relates to tail-based risk measures and is not a proper
absolute performance measure (see Caporin et al. 2014), indicator (9) is novel. It is
interesting to note that Ψ2(Rp, ψ) is related both to the Omega measure proposed
by Keating and Shadwick (2002) and to the modified Rachev ratio (Ortobelli et al.
2005). Nevertheless, there are some important differences between these quantities.
First, Ψ2(Rp, ψ) differs from Omega because the latter compares the entire regions
associated with negative and positive outcomes. In contrast, (9) is more restrictive
because its numerator takes into account just part of the positive outcomes, as long
as ψ < 1. In the case of the Rachev ratio, the difference arises from the fact that
it compares the extreme outcomes associated with the distribution tails, thus fully
neglecting the impact of the central part of the portfolio returns distribution.

In the empirical application, we use the non-parametric estimator proposed byChen
(2008) to estimate both the α-risk and Ψ1(Rp, ψ). In fact, both quantities have the
same expression, as we note by comparing Eqs. (2) and (7). They differ just in the
quantile level at which they are computed, given thatψ > α. In the case ofΨ1(Rp, ψ),
the non-parametric estimator introduced by Chen (2008) reads as follows:

Ψ̂1(rp, ψ) = −
∑T

t=1 rp,t I
(
rp,t ≤ Q̂ψ(rp)

)

∑T
t=1 I

(
rp,t ≤ Q̂ψ(rp)

) . (10)

where rp,t denotes the portfolio return observed at t, Q̂ψ(rp)denotes the estimatedψ th
quantile of the portfolio returns (by means of quantile regression), I (·) is the indicator
function taking the value of 1 if the condition in (·) is true and 0 otherwise. Replacing
ψ with α gives the estimator of the α-risk. Notably, the asymptotic variance of the
estimator proposed by Chen (2008) is a negative function of ϑ ; therefore the estimate
of the α-risk is subject to a higher volatility with respect to Ψ̂1(rp, ψ). Similarly, we
compute the sample counterpart of Ψ2(Rp, ψ) as follows:

Ψ̂2(rp, ψ) =
∑T

t=1 rp,t I
(
0 ≤ rp,t ≤ Q̂ψ(rp)

)
∣∣∣
∑T

t=1 rp,t I
(
rp,t < 0

)∣∣∣
. (11)

The α-risk focuses on lower quantiles, while Ψ1(Rp, ψ) and Ψ2(Rp, ψ) point at
upper quantiles. However, resorting to quantile regression also allows dealing with the
central ϑ values. If we focus on the median regression and assume that the portfolio
expected return E[Rp] and the median regression intercept ξ(ϑ = 0.5) are both equal
to zero, it is possible to verify that the median regression allows minimizing a specific
risk volatility measure, the mean absolute deviation (MAD) of Konno and Yamazaki
(1991). To summarize, the quantile regression model allows reaching different pur-
poses. First, we should choose a low probability level, α, when we want to minimize
the extreme risk, quantified by the α-risk. Second, when the attention is focused on
volatilityminimization, quantified byMAD,we should usemedian regression. Finally,
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with a high probability levelψ weminimizeΨ1(Rp, ψ), with positive effects in terms
of Ψ2(Rp, ψ).

As a preliminary exercise, we verify these properties using simulated data, com-
paring quantile-based portfolio allocation approaches based on the minimization of
Eq. (5) with an OLS regression model (i.e. the global minimum variance allocation).
Our simulation exercise considers several simulated datasets reproducing important
features of the financial returns series, such as the existence of mutual dependence
and the presence of asymmetry and leptokurtosis in the underlying distributions (Cont
2001).We simulate data from amultifactormodel as suggested by Fan et al. (2012) and
also from themultivariate skew-t (Azzalini 2014) and themultivariate normal distribu-
tions, the parameters of which are calibrated on real data. Moreover, we also generate
data from a block resampling technique using the xy-pairmethod (Kocherginsky 2003;
Davino et al. 2014) on the Standard & Poor’s 100 (S&P100) index constituents returns
described in Sect. 3. Our expectations are validated by the simulated exercise, given
that the OLS (or GMVP) approach minimizes the portfolio variance, while optimizing
with respect to the 10% quantile minimizes the α-risk. The median optimization min-
imizes the mean absolute deviation. The minimization at the 90% quantile optimizes
both Ψ̂1(rp, 0.9) and Ψ̂2(rp, 0.9). “Appendix A” reports the simulation results.

2.2 �1-Norm penalized quantile regression

Selecting assets from a large pool and building large portfolios should allow taking
advantage of the diversification benefits. Nevertheless, Statman (1987) and recently
Fan et al. (2012), among others, show that the inclusion of additional assets in the
portfolio involves relevant benefits but only up to a certain number of assets.Moreover,
the number of parameters to estimate increases as the portfolio dimensionality grows.
As a result, the consequent accumulation of estimation errors becomes a problem that
must be addressed. For, instance, Kourtis et al. (2012) defined the estimation error
as the price to pay for diversification. Furthermore, when large portfolios are built
using regression models, as shown in Sect. 2.1, the assets’ returns are typically highly
correlated. The estimated portfolios’ weights are then poorly determined and exhibit
high variance.

We propose here a further extension to the quantile regression model described in
Sect. 2.1 that allows to optimally select the desired assets from a large pool and to better
deal with the estimation errors.10 Our solution builds on regularization techniques
widely applied in the recent financial literature; see, for example, Hastie et al. (2009),
DeMiguel et al. (2009), Gotoh and Takeda (2011), Fan et al. (2012), Fastrich et al.
(2015), Yen and Yen (2014), Ando and Bai (2015), Xing et al. (2014) and Tian et al.
(2015). Among all the possible methods, we make use of the �1-norm penalty, useful
in the context of variable selection, with which we penalize the absolute size of the
regression coefficients. In the last 10 years, it has become a widely used tool not only

10 Typical issues concerning the standard quantile regression method are also discussed in Fitzenberger
and Winker (2007).
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in linear regression, but also in quantile regression models; see, for example, Koenker
(2005), Belloni and Chernozhukov (2011) and Li and Zhu (2008).

As for financial portfolio selection, Härdle et al. (2014) used the �1-norm penalty
in a quantile regression model where the response variable is a core asset, represented
by the Standard & Poor’s 500 (S&P500) index, whereas the covariates are hedging
satellites, that is, a set of hedge funds. After setting the quantile levels according to a
precise scheme, the aim is to buy the hedge funds the coefficients of which, estimated
using the penalized quantile regression model, are different from zero. Therefore, in
the work by Härdle et al. (2014) the penalized quantile regression is used as a security
selection tool in an index tracking framework. In a second step, by placing the focus
on the downside risk, Härdle et al. (2014) determine the optimal weights of the funds
previously selected by optimizing the objective function given by the CF–VaR.

In contrast, we use a penalized quantile regression model that allows solving in just
one step both the asset selection and the weight estimation problems. The response
and the covariates are determined from the assets included in the portfolio, without
considering external variables (such as market indexes) with the aim of optimizing
different performance measures according to different ϑ levels.

In particular, given 1 ≤ k ≤ n, we introduce the following model:

argmin
(w−k (ϑ),ξ(ϑ))∈Rn

T∑

t=1

ρϑ

⎛

⎝rk,t −
∑

j �=k

w j (ϑ)r∗
j,t − ξ(ϑ)

⎞

⎠ + λ
∑

j �=k

|w j (ϑ)|, (12)

where the parameters (ξ(ϑ),w−k(ϑ)) depend on the probability level ϑ,w−k(ϑ) is
the weights’ vector that does not includewk , that is, the weight of the kth asset selected
in (12) as numeraire and λ is the tuning parameter.

The larger the λ, the smaller the number of portfolio constituents. Therefore, by
penalizing the sum of the absolute coefficients’ values, that is, �1-norm, some of the
weights are set to zero, depending on the value of λ, with benefits in terms of smaller
monitoring and transaction costs due to the smaller portfolio size.

Clearly, an important issue is the choice of the optimalλ value,which determines the
portfolio size. Here, we follow the approach proposed by Belloni and Chernozhukov
(2011), which is state-of-art in the statistical literature. They considered the problem
of dealing with a large number of explanatory variables with respect to the sample
size T , where only at most s ≤ n regressors have a non-null impact on each condi-
tional quantile of the response variable. In this context, where the ordinary quantile
regression estimates are not consistent, they showed that by penalizing the �1-norm of
the regressors coefficients the estimates are uniformly consistent over the compact set
U ⊂ (0, 1). To determine the optimalλ value, they proposed a data-drivenmethodwith
optimal asymptotic properties. This method takes into account the correlation among
the variables involved in the model and leads to different optimal λ values according to
the ϑ level. The penalization parameter is built using the following random variable:

Λ = T sup
ϑ∈U

max
j �=k

∣∣
∣∣∣
1

T

T∑

t=1

[
r∗
j,t (ϑ − 1{et≤ϑ})
σ̂ j

√
ϑ(1 − ϑ)

]∣∣
∣∣∣
, (13)
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where e1, . . . , eT are i.i.d. uniform (0, 1) random variables independently distributed
from the covariates r∗ and σ̂ 2

j = T−1 ∑T
t=1(r

∗
j,t )

2. As recommended in Belloni and
Chernozhukov (2011), we simulate the Λ values by running 100,000 iterations. The
optimal tuning parameter is then computed as:

λ∗ = τ
√

ϑ(1 − ϑ)

T
, (14)

where τ = 2Q̂0.9(Λ|r∗), with Q̂0.9(Λ|r∗) being the 90th percentile of Λ conditional
on the explanatory variables’ values. Section 4 reports the empirical results derived
from selecting the optimal λ in Eq. (14). In particular, λ∗ is computed for different ϑ
levels from the full sample data and is kept fixed across the subsamples determined
by the rolling window procedure.11 Next, for each rolled window, λ∗ is used in the
minimization problem given in (12) to estimate the optimal assets’ weights w j for
j �= k.

3 Empirical set-up

The empirical analysis is performed on the daily returns of the constituents of the
S&P100 and the S&P500 indexes, respectively. In particular, we focus on the con-
stituents belonging continuously to the baskets of the two indexes from November
4, 2004 to November 21, 2014; in the first dataset (S&P100) we deal with 94 assets,
whereas in the second one (S&P500) we have 452 stocks.12 The set of stocks we
considered excludes 6 assets from S&P100 and 48 assets from S&P500, due to poor
performances of the companies, mergers and acquisitions (M&A) or institutions that
more recently entered the market. As a result, we have a form of survivorship bias.
Nevertheless, our analyses never compare the performances of the indexes to those of
the allocation strategies. Therefore, our results do not suffer from any bias associated
with the absence of adherence to the index basket, as the competitive asset allocation
strategies are consistently applied over the same investment universe. A descriptive
analysis of the data is given in “Appendix C”.

The empirical analysis relies on a rolling window scheme to analyse the out-of-
sample performance. Iteratively, the original assets’ returns time series with dimension
(T × n) are divided in subsamples with window size ws. The first subsample includes
the daily returns from the first to the wsth day. The second subsample is obtained
by removing the oldest observations and including those of the (ws + 1)th day. The
procedure goes on until the (T − 1)th day is reached. In the empirical analysis, we
make use of two different window sizes, that is, ws = {500, 1000}, to check how
the portfolio performance changes according to the portfolio dimensionality and the
sample size.

For each window, we estimate the portfolio weights, denoted by ŵt for t =
ws, . . . , T − 1, by means of a given asset allocation strategy. Let rt−ws+1,t be the

11 See Sect. 3 for the details about the rolling window scheme.
12 The data are recovered from Thomson Reuters Datastream.
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(ws × n) matrix the rows of which contain the assets’ returns vectors recorded in
the period between t − ws + 1 and t . The portfolio returns are then computed both
in-sample and out-of-sample. In the first case, for each rolled subsample, we multiply
each row of rt−ws+1,t by ŵt , obtaining ws in-sample portfolio returns, from which we
can compute the performance indicators described below. Overall, from all the T −ws
submatrices rt−ws+1,t , we obtain T − ws values of each performance indicator.

Unlike the in-sample analysis, where we assess the estimated performance indi-
cators, the aim of the out-of-sample analysis is to check whether the expectations
find confirmation in the actual outcomes, leading to profitable investment strategies.
Therefore, the out-of-sample performance plays a critical role, given that it quanti-
fies the actual impacts on the wealth when assuming that investors daily revise their
portfolios. In particular, for t = ws, . . . , T − 1, ŵt is multiplied by rt+1, that is, the
assets’ returns vector observed at t + 1, to obtain the out-of-sample portfolio returns.
In this way, for each asset allocation strategy, we obtain one series of out-of-sample
portfolio returns, that is, a vector with length T − ws, from which we compute the
performance indicators described below.

We assess and compare the performance of the competitive strategies using several
indicators to provide information about profitability, risk and turnover. Some of the
performancemeasures, namelyα-risk,Ψ1(Rp, ψ), Ψ2(Rp, ψ) andMADhave already
been introduced in Sect. 2.1. In addition, those statistics are accompanied by other
portfolio indicators typically used in financial studies that although not optimized by
the proposed quantile regression method are considered for completeness. The first
one is the Sharpe ratio, defined as the ratio between the sample mean (r̄ p) and standard
deviation (σ̂p) of the portfolio returns, assuming that the risk-free rate is equal to zero.
As stated above, in the in-sample case, r̄ p and σ̂p are computed for each of the rolled
subsamples rt−ws+1,t for t = ws, . . . , T −1. Consequently, we obtain T −ws Sharpe
ratios. In contrast, in the out-of-sample case, we have one portfolio return for each
window, obtaining overall a single vector of portfolio returns with length equal to
T −ws, from which we compute the Sharpe ratio just once. In the empirical analysis,
we also test whether the Sharpe ratios generated using the competitive strategies are
statistically different by means of the test proposed by Ledoit and Wolf (2008). In
addition to theα-risk,we also consider the value-at-risk, computed as the 0.1th quantile
and taken with the negative sign, of the portfolio returns. Finally, we assess the impact
of the trading fees on the portfolio rebalancing activity through the turnover, computed
as Turn = 1

T−ws

∑T
t=ws+1

∑n
j=1

∣
∣ŵ j,t − ŵ j,t−1

∣
∣, where ŵ j,t is the weight of the j th

asset determined by an asset allocation strategy at day t . The higher the turnover, the
larger the impact of the costs arising from the rebalancing activity.

4 Out-of-sample results

The first aspect we analyse refers to the impact of the �1-norm penalty on the portfolio
weights. For the quantile regression model, we estimate the optimal tuning parameter
λ according to the method proposed by Belloni and Chernozhukov (2011). For each
quantile level, we compute λ∗, as defined in (14), using the full sample data, for
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both S&P100 and S&P500.13 After implementing the rolling window procedure, we
compute the number of active and short positions for each rolled sample, the average
values of which are denoted by n̄a and n̄s , respectively. The asset allocation strategy
built using Model (12), which explicitly incorporates the �1-norm penalty, is denoted
as PQR(ϑ), whereas the strategy built using the non-penalized quantile regression
is denoted as QR(ϑ) for ϑ ∈ (0, 1). We also consider the standard least squares
regression in (1) with the �1 constraint and denote it as LASSO. For LASSO, λ∗ is
calibrated to obtain comparable results in terms of n̄a to those generated using the
quantile regression model at ϑ = 0.5. For simplicity, we show in Table 1 the λ∗ values
and the average number of active and short positions over the rolled windows just for
PQR(0.1),PQR(0.5),PQR(0.9) and LASSO.14

We note that λ∗ changes according to the ϑ levels, reaching relatively higher values
at the center of the ϑ domain. This leads to the attenuation of the quantile regression
approach tendency for an increase of active positions around the median, as shown
in Table 1. Moreover, we analyse the evolution over time of the portfolio weights
estimated using both the ordinary least squares and the quantile regression approaches.
We check that the weights become more stable with the �1-norm penalty and that the
effect is clearer with ws = 1000. This result is due to the fact that the �1-norm
penalty shrinks the portfolio dimensionality that, accompanied by a larger window
size, reduces the impact of the estimation errors.

Finally,we analyse and compare the performance of the strategiesmentioned above,
including as a competitor the portfolio with minimum variance subject to the no
short-selling constraint (MVNSS). Indeed, MVNSS could be considered as a special
case of LASSO, as, in such a case, the �1-norm is just the sum of the constrained
weights that is equal to 1 given the budget constraint. The properties of MVNSS and
its remarkable performance were first analysed by Jagannathan and Ma (2003) and
then linked to LASSO by Fan et al. (2012). Moreover, we accompany the measures of
central importance in the present work, being directly linked to quantile regression (i.e.
α-risk, MAD, Ψ̂1(Rp, ψ) and Ψ̂2(Rp, ψ), described in Sect. 2.1), with other portfolio
indicators.15 We refer to the mean portfolio return, the portfolio standard deviation,
the Sharpe ratio, the value-at-risk and the turnover (see Sect. 3).

The in-sample results are consistent with the expectations.16 In fact, at low quantile
levels, QR(ϑ) minimizes the extreme risk, quantified by the α-risk and the value-
at-risk. At ϑ = 0.5, the median regression minimizes the mean absolute deviation.

13 λ∗ depends on Λ, defined in (13), which in turn is simulated by running 100,000 itera-
tions. Estimating the values of λ∗ for each sample determined using the rolling window procedure
would have been computationally expensive, especially when considering 9 quantile levels (ϑ =
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}), 2 datasets (S&P100 and S&P500) and 2 window sizes (ws =
{500, 1000}). We estimate λ∗ based on the full sample data.
14 In the present work, we apply a threshold to the assets’ weights, such that a position is defined as
active if |ŵ j,t | > 0.005; similarly, a position is defined as short if ŵ j,t < −0.005, for j = 1, . . . , n and
t = ws + 1, . . . , T − 1.
15 We set α = 0.1 and ψ = 0.9 in our empirical analysis.
16 We just mention here the main in-sample evidences for the sake of space. The results arising from the
S&P500 dataset, by setting ws = 1000 in the rolling window procedure, are given in “Appendix B”. The
results obtained in the other cases are qualitatively similar and are available upon request.
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Table 1 The impact of the �1-norm penalty on active and short positions

λ∗ (S&P100) λ∗ (S&P500)

PQR(0.1) 0.3644 0.6964

PQR(0.5) 0.6073 0.1608

PQR(0.9) 0.3644 0.6964

LASSO 0.0004 0.0004

n̄a (S&P100) n̄a (S&P500)

ws = 500 ws = 1000 ws = 500 ws = 1000

PQR(0.1) 24 43 32 74

PQR(0.5) 29 44 42 77

PQR(0.9) 27 41 36 71

LASSO 28 45 42 77

n̄s (S&P100) n̄s (S&P500)

ws = 500 ws = 1000 ws = 500 ws = 1000

PQR(0.1) 6 19 8 26

PQR(0.5) 8 17 10 28

PQR(0.9) 7 15 7 23

LASSO 9 20 12 32

The table reports the optimal shrinkage parameters (λ∗) and the average numbers of active (n̄a ) and short
(n̄s ) positions over the rolled samples for the ordinary least squares (LASSO) and the quantile regression
(PQR(ϑ)) models, regularized through the �1-norm penalty, using different datasets and window sizes

Finally, at high quantile levels, QR(ϑ) is the best strategy in terms of Ψ̂1(rp, 0.9)
and Ψ̂2(rp, 0.9). As for the complementary performance indicators, the ordinary least
squaresmethodminimizes the portfolio standard deviation, as expected, as its objective
function is given by the portfolio variance. Interestingly, the inclusion of the �1-norm
penalty implies significant benefits in terms of the average portfolio return and the
Sharpe ratio for both the least squares and the quantile regression models.

In the out-of-sample analysis, we compare the strategies arising from the quantile
regression model, with and without �1-norm penalty, built on 9 quantile levels, namely
ϑ = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. The results obtained from the rolling
window procedure with ws = 1000 are displayed in Figs. 2, 3, 4 and 5; similar results
apply for ws = 500.17

Figures 2d and 3d show that the quantile regression model applied at low quantile
levels is no longer the best strategy in terms of extreme risk, being dominated by
the ordinary least squares subject to the �1-norm penalty (LASSO). Nevertheless, it is
important to highlight that the �1-norm penalty turns out to be very effective, given
that it reduces the exposure of the quantile regression model to the α-risk and the gap
with the ordinary least squares method. Similar considerations apply for the value-

17 The results are available upon request.
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Fig. 2 Out-of-sample results generated by the strategies built using the ordinary least squares (with
(LASSO) and without (OLS) �1-norm penalty) and the quantile regression (with (PQR(ϑ)) and without
(QR(ϑ)) �1-norm penalty) models and the portfolio with minimum variance subject to the no short-
selling constraint (MVNSS). The quantile regression model is estimated for 9 quantile levels, that is,
ϑ = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. The strategies are applied on the returns series of the Stan-
dard & Poor’s 100 index constituents, and the rolling analysis is carried out with a window size of 1000
observations. In the subfigures, from (a)–(d), we respectively consider the following measures: standard
deviation of portfolio returns (%), mean absolute deviation (%), value-at-risk (%) and α-risk (%) at the
level of 10%

at-risk (Figs. 2c, 3c); in contrast to the expectations and the in-sample performance,
the quantile regression model works better at central ϑ levels. The quantile regression
modelworks better in terms ofmean absolute deviation at centralϑ values, as expected;
nevertheless, it is outperformed by the ordinary least squares model, which records
the lowest MAD.

It is important to note that the �1-norm penalty reduces theMADof all the strategies
(Figs. 2b, 3b). The quantile regression model applied at high ϑ values dominates
all the other strategies in terms of both Ψ̂1(rp, 0.9) and Ψ̂2(rp, 0.9); see Figs. 4a, b
and 5a, b. The impact of the �1-norm penalty is evident when the ratio between the
sample size and the portfolio dimensionality is not sufficiently large (Fig. 5a, b); in this
case, the inclusion of the �1-norm penalty regularizes and makes clear the decreasing
(increasing) trend of Ψ̂1(rp, 0.9) (Ψ̂2(rp, 0.9)) over the entire set of ϑ .

When considering the complementary performance measures, the ordinary least
squaresmodel including the �1-norm penalty dominates in terms of standard deviation,
consistent with the expectations. The quantile regression method applied at high ϑ

levels provides the highest mean return and Sharpe ratio, and the effect of the �1-norm
penalty is evident in the case of the S&P500 index constituents (Figs. 4c, d, 5c, d).
Interestingly, the Sharpe ratio and Ψ̂2(rp, 0.9) follow a similar trend over ϑ for both
QR(ϑ) and PQR(ϑ).

We also checked whether the differences between the Sharpe ratios are statistically
significant, and for this purpose we implemented the test introduced by Ledoit and
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Fig. 3 Out-of-sample results generated by the strategies built using the ordinary least squares (with
(LASSO) and without (OLS) �1-norm penalty) and the quantile regression (with (PQR(ϑ)) and without
(QR(ϑ)) �1-norm penalty) models and the portfolio with minimum variance subject to the no short-
selling constraint (MVNSS). The quantile regression model is estimated for 9 quantile levels, that is,
ϑ = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. The strategies are applied on the returns series of the Stan-
dard & Poor’s 500 index constituents, and the rolling analysis is carried out with a window size of 1000
observations. In the subfigures, from (a)–(d), we respectively consider the following measures: standard
deviation of portfolio returns (%), mean absolute deviation (%), value-at-risk (%) and α-risk (%) at the
level of 10%

Wolf (2008). Notably, the null hypothesis of the test is that the difference between the
Sharpe ratios of two competitive strategies is not statistically significant. We report
the p values of the test in Table 2. It is possible to see that the quantile regression
model including the �1-norm penalty and applied at ϑ = 0.9 (PQR(0.9)) records the
highest number of rejections of the null hypothesis, further supporting its capability
of outperforming the other strategies.

Without regularizations, large portfolios are affected by relevant variability in the
portfolios’ weights, with negative effects in terms of trading fees. In this context, the
inclusion of the �1-norm penalty could be useful because it allows obtaining sparse
portfolios, stabilizing the portfolios’ weights over time. This phenomenon is con-
firmed in our results. In fact, we observe in Fig. 6 that the inclusion of the �1-norm
penalty causes a sharp drop in the turnover for all the considered strategies. The quan-
tile regression model sensibly benefits from regularization, as the excessive turnover
recorded for QR(ϑ) vanishes.

To summarize the out-of-sample results, the �1-norm penalty regularizes the port-
folio weights, with noticeable positive effects on turnover. Moreover, it leads to clear
improvements in both the portfolio risk and profitability when dealing with large port-
folios. In general, the ordinary least squares model turns out to be the best strategy in
terms of risk, given that it implies the lowest levels of volatility and extreme risk.

The quantile regression applied at low ϑ values does not minimize the out-of-
sample α-risk, contrary to the expectations and the good in-sample performance. The
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Fig. 4 Out-of-sample results generated by the strategies built using the ordinary least squares (with
(LASSO) and without (OLS) �1-norm penalty) and from the quantile regression (with (PQR(ϑ)) and
without (QR(ϑ)) �1-norm penalty) models and the portfolio with minimum variance subject to the no
short-selling constraint (MVNSS). The quantile regression model is estimated for 9 quantile levels, that
is, ϑ = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. The strategies are applied on the returns series of the
Standard & Poor’s 100 index constituents, and the rolling analysis is carried out with a window size of 1000
observations. In the subfigures, from (a)–(d), we respectively consider the following measures: Ψ̂1(rp, ψ)

(%) and Ψ̂2(rp, ψ) at ψ = 0.9, mean return (%) and Sharpe ratio (%). Figure 4d is accompanied by Table
2, where we report the p values of the test proposed by Ledoit and Wolf (2008) to assess the statistical
significance of the differences among the Sharpe ratios generated by the competitive strategies

same conclusions hold for the median regression, which does not minimize the out-
of-sample mean absolute deviation. In contrast, at high quantile levels, the quantile
regression model is consistent with the expectations, providing the best performance
in terms of Ψ̂1(rp, 0.9), Ψ̂2(rp, 0.9) and Sharpe ratio. We also analyse the trend over
time of the wealth generated by the competitive strategies when investing an initial
amount equal to $100. We check that the quantile regression model applied at high
ϑ levels dominates the other strategies for the highest levels of wealth and that the
benefits of the �1-norm penalty are clear in the case of the S&P500 dataset.

The different behaviour between the in-sample and the out-of-sample framework
of the quantile regression model at different quantile levels represents an interesting
research issue. In “Appendix D” we give a possible explanation of this phenomenon,
considering the role of the models’ intercepts and residuals.

The empirical analysis discussed so far applies to data recorded from November 4,
2004 to November 21, 2014. Those years are characterized by special events, namely
the subprime crisis, which originated in the United States and was marked by the
Lehman Brothers default in September 2008, and the sovereign debt crisis, which hit
the Eurozone some years later. Those events had a deep impact on financial markets,
and it is therefore important to check whether they affect the performance of the
considered asset allocation strategies. Moreover, in this way, we can analyse on one
hand whether and how the performance of the strategies depends on the state of the
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Fig. 5 Out-of-sample results generated by the strategies built using the ordinary least squares (with
(LASSO) and without (OLS) �1-norm penalty) and from the quantile regression (with (PQR(ϑ)) and
without (QR(ϑ)) �1-norm penalty) models and the portfolio with minimum variance subject to the no
short-selling constraint (MVNSS). The quantile regression model is estimated for 9 quantile levels, that
is, ϑ = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. The strategies are applied on the returns series of the
Standard & Poor’s 500 index constituents, and the rolling analysis is carried out with a window size of 1000
observations. In the subfigures, from (a)–(d), we respectively consider the following measures: Ψ̂1(rp, ψ)

(%) and Ψ̂2(rp, ψ) at ψ = 0.9, mean return (%) and Sharpe ratio (%). Figure 4d is accompanied by Table
2, where we report the p values of the test proposed by Ledoit and Wolf (2008) to assess the statistical
significance of the differences among the Sharpe ratios generated by the competitive strategies

market—the state characterized by financial turmoil and the state of relative calm. On
the other hand, we can take into account the effects of the markets’ rebounds, which
typically occur during crisis periods. For this purpose, we divided the series of the
out-of-sample portfolios returns into two subperiods. When the window size is equal
to 1000, the first subperiod goes from July 31, 2008 to October 31, 2011, whereas it
covers the days between October 31, 2006 and October 31, 2010 at ws = 500. We
can associate this subperiod with the state of financial turmoil, given the proximity
to the above-mentioned crises. The second subperiod includes the remaining days
until November 21, 2014. As expected, the strategies record a better out-of-sample
performance in the second subperiod compared to the first one, as we can see, for
instance, from Table 3, where we report the results obtained from the S&P500 dataset,
applying the rolling procedure with a window size of 1000 observations.18 Similar
to the analysis of the entire sample, in the first subperiod LASSO records the best
performance in terms of risk, evaluated bymeans of standard deviation, mean absolute
deviation, value-at-risk and α-risk. In contrast, in the second subperiod, PQR(0.5)
dominates the other strategies in terms of risk. PQR(0.9) is the best strategy in terms
of Ψ̂1(rp, 0.9), Ψ̂2(rp, 0.9), mean return, Sharpe ratio and final wealth.

18 The results obtained in the other cases are available upon request.
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Fig. 6 Turnover of the strategies built from the ordinary least squares (with (LASSO) and without (OLS)
�1-norm penalty) and from the quantile regression (with (PQR(ϑ)) and without (QR(ϑ)) �1-norm penalty)
models and the portfolio with minimum variance subject to the no short-selling constraint. The strategies
are applied on the returns series of the Standard & Poor’s 100 (Subplot (a)) and 500 (Subplot (b)) indices
constituents. The rolling analysis is carried out with window size of 1000 observations

5 Concluding remarks

By considering a quantile regression-based asset allocation model, we introduce a
‘cautiously optimistic’ approach that aims to optimize a novel performance measure
clearly related to specific portfolio return distribution quantiles.Moreover, to copewith
the potentially large cross-sectional dimension of the portfolios and at the same time
control for estimation error, we combine quantile regression and regularization based
on the �1-norm penalty to estimate portfolio weights. Our empirical evidence, based
both on simulations and real data examples, highlights the features and the benefits of
our methodological contributions. The new provided tools are of potential interest in
several areas, including performance evaluation and the quantitative development of
asset allocation strategies.

A critical point concerns the high turnover some strategies exhibit. Even if the inclu-
sion of the �1-norm penalty significantly reduces the number of active weights, the
turnover from the portfolio rebalancing could be further controlled by incorporating
new penalty functions into the optimization problem; we point out this possible solu-
tion for future research. Our agenda also includes other penalty functions in addition
to the �1-norm, such as the non-convex ones, that also have a direct interpretation as
measures of portfolio diversification (e.g. �q -normwith 0 ≤ q ≤ 1). They have already
proven useful in the standard least squares regression to identify investment strategies
with better out-of-sample portfolio performance, while promoting more sparsity than
the �1-norm penalty; see, for example, Fastrich et al. (2015). Testing them in a quan-
tile regression framework would then allow a more robust optimal allocation. In our
future research we will consider alternative linear (and even non-linear) constraints
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on portfolio weights within our allocation strategy, to be consistent with the specific
regulatory rules. Finally, we aim at developing a method to simultaneously choose the
optimal quantile level and the optimal intensity of the penalty.
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Appendix

A Simulation analysis

Bassett et al. (2004) applied the model in (5) using the simulated returns of 4 assets,
showing its better performance in terms of extreme risk with respect to the classic
Markowitz (1952) portfolio. Nevertheless, in the real world, investors trade financial
portfolios consisting of many more assets, primarily to achieve a satisfactory diver-
sification level and to better deal with the risk-return trade-off (Markowitz 1952). To
further prove the relevance of quantile regression approaches for portfolio allocation,
we consider a simulation exercise for portfolios containing 94 assets.19

We repeat the simulation exercise according to the different simulated datasets.
First, we simulate the data from the three-factor model, using the method proposed by
Fan et al. (2012). For this purpose, we make use of the Fama–French 3 factors built
by Kenneth R. French,20 whereas the parameters are calibrated to the S&P100 index
constituents described in Sect. 3. Second, we simulate the data from the multivariate
skew-t distribution (Azzalini 2014), the parameters of which are calibrated to the
S&P100 index constituents to reproduce the peculiar features of the financial time
series, especially in terms of kurtosis and skewness. Third, from the constituents of
the S&P100 index, we build random samples using the block resampling technique
(the block size is set equal to 5). In addition, we make use of the xy-pair method
(Kocherginsky 2003; Davino et al. 2014) to keep the dependence structure among the
considered stocks in each of the resampled blocks. Finally, we simulate the data from
the multivariate normal distribution, the parameters of which are calibrated from the
S&P100 index constituents.

For each of the approaches described above, we simulated 10,000 samples with size
equal to (500 × 94), comparing 4 strategies—the standard as in (1), denoted as OLS,

19 The portfolios dimensionality comes from the fact that we simulated returns from a distribution where
the covariance matrix and the mean vector are estimated using real data. We refer here to the constituents of
the Standard & Poor’s 100 index on November 21, 2014, the time series of which are continuously available
from November 4, 2004 to November 21, 2014. See Sect. 3 for further details on the dataset.
20 The data are available at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
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Fig. 7 In-sample results using simulated data. We use the Fama-French 3 factors (http://mba.tuck.
dartmouth.edu/pages/faculty/ken.french/data_library.html) built by Kenneth R. French to simulate the
three-factor model, as in Fan et al. (2012), whereas the parameters are calibrated to the Standard & Poor’s
100 index constituents described in Sect. 3. The analysis is based on 10,000 simulated samples with size
equal to (500×94). The subfigures, from (a)–(e), respectively report the boxplots of the following statistics:
variance (%), mean absolute deviation (%), α-risk at α = 0.1 (%), Ψ̂1(rp, ψ) atψ = 0.9 (%) and Ψ̂2(rp, ψ)

at ψ = 0.9. A, B and C denote the strategies built from quantile regression models applied at probabilities
levels of 0.1, 0.5 and 0.9, respectively, whereas D refers to the ordinary least squares regression model

and the ones arising from the quantile regression models applied at three probability
levels, that is, ϑ = {0.1, 0.5, 0.9}, denoted respectively as QR(0.1), QR(0.5) and
QR(0.9). The portfolios weights determined using the 4 strategies are estimated from
each of the 10,000 simulated samples, and the portfolios’ returns are computed in-
sample.21 Thus, for each strategy and for each sample, we obtain 500 portfolio returns
from which we compute the following statistics: variance, mean absolute deviation,
α-risk (with α = 0.1), Ψ̂1(Rp, ψ) and Ψ̂2(Rp, ψ), at ψ = 0.9. In Fig. 7, we display
the results obtained using the method proposed by Fan et al. (2012).22

As expected,OLS andQR(0.5) provide the best results in terms of portfolio volatil-
ity, as the former minimizes the portfolio variance (Fig. 7a) and the latter minimizes
the portfolio MAD (Fig. 7b). QR(0.1) minimizes the α-risk at α = 0.1 (Fig. 7c); in
contrast, QR(0.9) is the best strategy in terms of profitability. Indeed, as it is possi-
ble to see from Fig. 7d, e, it outperforms the other three strategies in terms of both
Ψ̂1(rp, 0.9) and Ψ̂2(rp, 0.9).

B In-sample analysis

See Table 4.

21 See Sect. 3 for further details about the in-sample analysis.
22 The results obtained using the other approaches are qualitatively similar and are available upon request.
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C Data description

The average returns of the S&P500 index constituents are close to zero, being symmet-
rically distributed around the median (0.055%); their maximum and minimum values
are equal to 0.242 and −0.044%, respectively. The distribution of the standard devi-
ations is centered at the median value of 2.137% and ranges from 1.013 to 5.329%,
with the presence of a few particularly volatile companies associated with the extreme
right-tailed values. The kurtosis index distribution is right-skewed, with extremely
large values at the right tail. The median is equal to 12.379, whereas the minimum and
the maximum are equal, respectively, to 5.948 and 72.867, indicating that the returns’
distributions are affected by heavy tails, as expected (see Cont 2001 for stylized facts
of financial returns).

The skewness index is symmetrically distributed around the median value of 0.209.
It ranges from−3.088 to 2.640, with the presence of some extreme values in both tails;
therefore, the returns have leptokurtic and asymmetric distributions. The distribution
of the 10th percentile of the returns’ series is affected by a slight negative asymmetry,
centered at the median of −2.044%, with the minimum and the maximum equal to
−3.703 and−1.004%, respectively. Finally, we focus on the distribution of the wealth
we obtain on November 21, 2014 from the single assets, after investing $100 in each
of them on November 4, 2004. The final wealth distribution, right-skewed, is affected
by relevant extreme values in its right tail. It ranges from $2.42 to $7757.07, with
a median value of $221.65; therefore, on average, we record an increase in stocks’
values.

D The role of the intercept and the residuals

We observed that, in the out-of-sample performance, some strategies built using quan-
tile regression models at different quantiles levels kept their in-sample properties,
whereas other ones failed in that regard. It is important to study the reason underlying
this phenomenon, and in the following we provide one explanation associated with the
model intercept. Given the numeraire Rk, 1 ≤ k ≤ n and the covariates R∗

j , j �= k, for
simplicity we denote the residual term associated with the quantile regression model
at the level ϑ as ε(ϑ). In the rolling window procedure, the estimated parameters
change over time, having their own variability. To take into account their dependence
on time, we denote the coefficients estimated in t as (̂ξt (ϑ), ŵ−k,t (ϑ)), using the data
recorded in the interval [t −ws + 1; t] for t = ws, . . . , T − 1. The out-of-sample ϑ th
quantile of Rk , computed in t + 1, depends on both the estimates obtained in t and the
realizations of R in t + 1, being equal to ξ̂t (ϑ) + ∑

j �=k ŵ j,t (ϑ)r∗
j,t+1. Therefore, the

corresponding out-of-sample residual is computed as:

εt+1(ϑ) = rk,t+1 −
⎡

⎣ξ̂t (ϑ) +
∑

j �=k

ŵ j,t (ϑ)r∗
j,t+1

⎤

⎦ . (15)
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Table 5 Analysis of the intercepts of the quantile regression models

Strategy S&P100 S&P500

Mean SD Mean SD

ϑ = 0.1

QR(0.1); ws = 500 −0.6403 0.1943 −0.0699 0.0569

PQR(0.1); ws = 500 −0.7212 0.2045 −0.6910 0.1360

QR(0.1); ws = 1000 −0.7482 0.0943 −0.3515 0.0371

PQR(0.1); ws = 1000 −0.7464 0.0913 −0.6571 0.0754

ϑ = 0.5

QR(0.5); ws = 500 0.0456 0.0196 0.0026 0.0474

PQR(0.5); ws = 500 0.0601 0.0194 0.0636 0.0220

QR(0.5); ws = 1000 0.0474 0.0171 0.0166 0.0156

PQR(0.5); ws = 1000 0.0583 0.0120 0.0512 0.0096

ϑ = 0.9

QR(0.9); ws = 500 0.6680 0.1583 0.0733 0.0520

PQR(0.9); ws = 500 0.7551 0.1204 0.7832 0.1251

QR(0.9); ws = 1000 0.7963 0.0769 0.3780 0.0409

PQR(0.9); ws = 1000 0.7908 0.0553 0.7142 0.0626

The table reports the average values (%) and the standard deviations (%) of the intercepts estimated for the
quantile regression models with (PQR(ϑ)) and without (QR(ϑ)) �1-norm penalty for ϑ = {0.1, 0.5, 0.9}.
The rolling window procedure is applied at ws = {500, 1000}. Datasets: S&P100 and S&P500

Given that the portfolio return under the budget constraint canbewritten as Rp(ϑ) =
Rk − ∑

j �=k w j (ϑ)R∗
j , from the (15) we obtain:

rp,t+1(ϑ) = εt+1(ϑ) + ξ̂t (ϑ). (16)

From (16) we can see that the out-of-sample portfolio return depends on two
components—the intercept and the residual. When all the regressors are equal to
zero, the estimated intercept corresponds to the estimated quantile of the response
variable, and, in general, we should expect that ξ̂t (ϑ) is a positive function of ϑ . This
phenomenon is particularly accentuated when the so-called location-shift hypothesis
holds, that is, when the slopes of the quantile regression models are constant across ϑ

so that the estimated quantiles change according to the intercept levels. Consequently,
at high/low ϑ values, we should expect that the intercept term is a positive/negative
component of the portfolio return in (16). In contrast, at high/low ϑ values, the mag-
nitude of the positive residuals is lower/greater than the magnitude of the negative
ones; therefore, we should expect that εt (ϑ) is a negative/positive component of the
portfolio return in (16).

Given the opposite behaviour of εt+1(ϑ) and ξ̂t (ϑ) over ϑ , it is useful to study their
distributions to understand the different out-of-sample performances of the strategies
built from the quantile regression models. For simplicity, we compare the results
obtained using three quantile levels, that is, ϑ = {0.1, 0.5, 0.9}.
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Table 6 Analysis of the out-of-sample residuals distributions

Model S&P100 S&P500

Mean (%) SD (%) Mean (%) SD (%)

ϑ = 0.1

QR(0.1); ws = 500 0.6487 0.9493 0.1455 1.8449

PQR(0.1); ws = 500 0.7407 0.8417 0.7225 0.8339

QR(0.1); ws = 1000 0.7561 0.8217 0.3637 0.8721

PQR(0.1); ws = 1000 0.7594 0.7637 0.6892 0.7317

ϑ = 0.5

QR(0.5); ws = 500 −0.0249 0.8152 0.0480 1.7475

PQR(0.5); ws = 500 −0.0405 0.8169 −0.0280 0.7822

QR(0.5); ws = 1000 −0.0215 0.7670 0.0069 0.7867

PQR(0.5); ws = 1000 −0.0290 0.7668 −0.0137 0.7143

ϑ = 0.9

QR(0.9); ws = 500 −0.6348 0.9144 −0.0281 1.8113

PQR(0.9); ws = 500 −0.7250 0.8540 −0.7398 0.8932

QR(0.9); ws = 1000 −0.7578 0.8146 −0.3529 0.8446

PQR(0.9); ws = 1000 −0.7517 0.7877 −0.6612 0.7631

The table reports the average values (%) and the standard deviations (%) of the out-of-sample residuals
arising from the quantile regression models with (PQR(ϑ)) and without (QR(ϑ)) �1-norm penalty, for
ϑ = {0.1, 0.5, 0.9}. The rolling window procedure is applied at ws = {500, 1000}. Datasets: S&P100 and
S&P500

We start by analysing the intercepts’ distributions, reporting in Table 5 the mean
and the standard deviation of ξ̂t (ϑ) when t = ws, . . . , T − 1.

We checked that, as expected, the support of the ξ̂ (ϑ) distribution moves to the
right as ϑ increases. As a result, from the second and the fourth columns of Table 5 it
is possible to see that, on average, ξ̂t (ϑ) is a positive component of the out-of-sample
portfolio return generated from the quantile regression model at ϑ = 0.9. We have the
opposite result at ϑ = 0.1, whereas at the median level the intercept takes, on average,
values close to zero. We can see from the third and the fifth columns of Table 5 that, at
the median level, the intercept distribution is characterized by the lowest dispersion,
consistent with the fact that the median regression implies, among all the quantile
regression models, the lowest out-of-sample portfolio volatility. In all the cases, the
largest window size of 1000 observations reduces the intercepts’ dispersions, mainly
at ϑ = {0.1, 0.9}.

Having analysed the impact of the intercept, we now study the behaviour of the
out-of-sample residuals.

In contrast to the intercept case, the residuals’ supports move to the right as ϑ

decreases, as expected. Consequently, as it is possible to see from the second and the
fourth columns of Table 6, the residuals are, on average, negative/positive components
of the portfolios’ returns in (16) at high/low ϑ levels. In comparing Tables 5 and 6, it
is important to notice that the residuals’ distributions have larger volatilities compared
to those of the intercepts.
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To summarize, if we build an asset allocation strategy using a quantile regres-
sion model with high/low ϑ levels, we can obtain benefits/losses in terms of
positive/negative intercept values. In contrast, with low/high ϑ levels, we derive
benefits/losses from the residuals. The opposite effects are, on average, balanced.
Nevertheless, the intercepts’ distributions have a lower dispersion with respect to the
residuals’ distributions. Therefore, at high ϑ values, we obtain benefits from a com-
ponent (the intercept) characterized by greater stability; however, we are penalized by
a second component (the residuals) that are more volatile. In contrast, when we use
quantile regressions models at low quantile levels, the benefits of positive residuals
are more volatile than the losses of negative intercepts. The more stable benefits char-
acterizing the strategies built using the quantile regression models at high ϑ levels
support their better out-of-sample performance.
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