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Abstract The support vector regression (SVR) is a supervised machine learning
technique that has been successfully employed to forecast financial volatility. As the
SVR is a kernel-based technique, the choice of the kernel has a great impact on its
forecasting accuracy. Empirical results show that SVRs with hybrid kernels tend to
beat single-kernel models in terms of forecasting accuracy. Nevertheless, no appli-
cation of hybrid kernel SVR to financial volatility forecasting has been performed
in previous researches. Given that the empirical evidence shows that the stock mar-
ket oscillates between several possible regimes, in which the overall distribution of
returns it is a mixture of normals, we attempt to find the optimal number of mix-
ture of Gaussian kernels that improve the one-period-ahead volatility forecasting of
SVR based on GARCH(1,1). The forecast performance of a mixture of one, two,
three and four Gaussian kernels are evaluated on the daily returns of Nikkei and
Ibovespa indexes and compared with SVR–GARCHwithMorlet wavelet kernel, stan-
dard GARCH, Glosten–Jagannathan–Runkle (GJR) and nonlinear EGARCH models
with normal, student-t, skew-student-t and generalized error distribution (GED) inno-
vations by using mean absolute error (MAE), root mean squared error (RMSE) and
robust Diebold–Mariano test. The results of the out-of-sample forecasts suggest that
the SVR–GARCH with a mixture of Gaussian kernels can improve the volatility fore-
casts and capture the regime-switching behavior.
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1 Introduction

Financial time series prediction is important and challeging tak in empirical finance.
The data geration process of these series are complex because of its chaotic, noisy, non-
stacionary and nonlinear nature (Cao and Tay 2001). Thus, the use of support vector
regression (SVR) in financial forecasting has been proposed in the literature, because
it do not establish hypotheses about the distribution of data, is a pure data-driven
technique, is very flexible, has excellent forecasting accuracy, and show theoretical
and empirical superior results than artificial neural networks and traditional statistical
methods (Sapankevych and Sankar 2009; Cavalcante et al. 2016). Moreover, the SVR
is a machine learning technique based on the statistical learning theory that implement
the Structural Risk Minimization Principle, which results in better generalization per-
formance (Cao and Tay 2003).

Volatility is a measure of the degree of flutuaction of financial return and is a
proxy for risk, thus is a key variable in risk management, asset pricing and portfolio
selection (Brownlees and Gallo 2009). Linear and nonlinear parametric generalized
autoregressive conditional heteroscedasticity (GARCH) models make assumptions
about the functional form of the data generating process and the error distribution.
Besides, empirical studies provide evidence that GARCH has low forecasting perfor-
mance (Jorion 1995; Brailsford and Faff 1996;Mcmillan and Speight 2000; Choudhry
and Wu 2008). Therefore, modifications have been proposed to improve its forecasts
accuracy such as: changes in specification and model estimation, the use of different
proxies for volatility, changes in evaluation metrics of forecast (Chen et al. 2010).
To overcome these limitations, volatility forecasting models based on SVR have been
proposed in the literature, because it able to capture non-linear caractheristics of finan-
cial time series such as volatility clustering, leptokurtosis and leverage effect, without
any assumptions about the data distribution properties. As shown by Fernando et al.
(2003), Chen et al. (2010), Li (2014) and Santamaría-Bonfil et al. (2015), SVR shows
superior results on volatility forecasting compared with GARCH models, due to its
ability to capture the dynamic and nonlinear behavior of financial time series.

The volatility of financial asset returns change over time due to the capital market
behavior. Empirical evidence shows that there are oscillation between several regimes
in the financial market, in which the overall distribution of returns is a mixture of
normals (Levy and Kaplanski 2015). In general, researches report the existence of two
regimes (one with high and the other with low volatility) for the distribution of stock
returns in the equity market. However, the markets can have more than two states (Bae
et al. 2014). Then, it is necessary a mixture of more than two normal distributions to
model the regime-switching behavior (Guidolin 2011). As the SVR is a kernel-based
methodology, its forecasting performance is greatly dependent upon the selection of
kernel function. To improve the SVR learning and generalization ability and take
advantage of different kernel functions, it is possible to construct hybrid kernels via
linear or non-linear combination of kernels (Huang et al. 2014). Empirical evidence
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shows that the hybrid kernel has superior empirical results on forecasting accuracy
than the SVR with a single-kernel (Huang et al. 2014). However, to the best of our
knowledge, no research on volatility forecasting via SVR used a hybrid kernel. In this
context, the main purpose of this article is to use a mixture of Gaussian kernels in
the SVR based on GARCH (1,1) (heretofore SVR–GARCH) in order to improve the
prediction accuracy and model: (i) market regimes and (ii) financial returns stylized
characteristics such as high curtosis, heavy tails and volatility clustering.

The forecasting accuracy of SVR–GARCH with a linear combination of one, two,
three and four Gaussian kernels in one-period-ahead volatility forecasting is compared
with the SVR–GARCH with Morlet wavelet kernel, GARCH, EGARCH, GJR. For
each GARCH models four different distributions for the innovations are considered:
the Normal, the Student’s t, the skewed Student’s t and the GED. in terms of two
evaluationmetrics ofmean absolute error (MAE) and rootmean squared error (RMSE).

The remainder of this paper is organized as follows. Section 2 provides a brief
explanation of the Support Vector Machine (SVM) for regression. Section 3 explains
the use of mixture of Gaussian kernels in the SVR–GARCH. Section 4 describes the
empirical modeling. Section 5 shows the empirical results of the proposed model on
daily financial returns of Nikkei 225 and Ibovespa indexes. Section 6 provides the
concluding remarks of this paper.

2 Support vector regression

The support vector machine (SVM) is a machine learning algorithm based on the
statistical learning theory developed by Vapnik and Chervonenkis (1974). SVM for
linear and non-linear regressions is called support vector regression (SVR) (Smola and
Schölkopf 2004). The non-linear SVR can be written as follows: given a set of training
data (x1, y1), . . . , (xn, yn), where xi ∈ X ⊆ R is the input vector and yi ∈ Y ⊆ R

being the output scalar. The goal of SVR is to find a function f (x) that approximate the
output escalar yi less than a forecast error. To achieve this goal, the SVR nonlinearly
maps the input vector space (Rn) into a higher dimension feature space (F), where
the non-linear relations of the input space are aproximated by a linear regression in
the feature space Vapnik (1995):

f (x) = wTφ(x) + b, with φ : Rn → F , w ∈ F (1)

where w and b are the regression parameter vectors and φ(.) is the nonlinear map-
ping function, which projects the input vector into a higher dimension feature space,
where the linear regression is defined. Vapnik (1995) introduced the ε-insensitive loss
function (Lε) to measure the difference between the actual and predicted values. The
goal of ε-SVR is to find a function that has at least ε deviation from yi . The vector w

and constant b can be found by minimizing the following regularized function R(C)

(Vapnik 1995):

Minimize : R(C) = 1

2
‖w‖2 + C

n

n∑

i=1

(Lε( f (yi , f (xi )); (2)
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where:

Lε(y, f (x)) =
{

|yi − f (xi )| − ε, if |yi − f (xi )| > ε

0, otherwise
, ε ≥ 0 (3)

is the ε-insensitive loss function (Lε). Only the observations on or outside the ε-
insensitive zone will serve as the support vectors to construct the decision fucntion
( f (x)). To indicate the errors outside the ε-insensitive zone, slack variables ((ξi , ξ∗

i ),
i = 1, 2, . . . , n) are introduced (Smola andSchölkopf 2004). Then, the primal problem
of SVR is given by:

Minimize : 1
2
‖w‖2 + C

n∑

i=1

(ξi + ξ∗
i ), (4)

subject to

⎧
⎪⎨

⎪⎩

y − wTφ(x) − b ≤ ε + ξi ,

wTφ(x) + b − y ≤ ε + ξ∗
i ,

ξi , ξ
∗
i ≥ 0

The convex quadratic programming and the linear restrictions of the primal problem
above assure that the SVR will always achieve the optimal global solution. The term
1

2
‖w‖2 characterizes the model complexity. The parameter C denotes the trade-off

between the function complexity and training error
∑n

i=1(ξi + ξ∗
i ) (Sermpinis et al.

2014). If the value C is large, the algorithm will overfit the data and will have lower
generalization hability. The parameter ε controls the width of the ε-insensitive zone:
the higher ε is, less support vectors are selected (Cherkassky and Ma 2004). The
parameters C and ε are the SVR meta-parameters and, in general, are determined by
cross-validation (Haykin 1998). In order to solve equation 4, it is possible to use the
Lagrangian multipliers (αi e α∗

i ) and the Karush–Kuhn–Tucker conditions (Karush
(1939); Kuhn and Tucker (1951)), transforming the problem in its dual form (Vapnik
1995):

Maximize : L = −1

2

n∑

i=1

(αi − α∗
i )(α

∗
j − α j )〈 φ(xi ), φ(x)〉

+
n∑

i=1

yi (αi − α∗
i ) − ε

n∑

i=1

(αi + α∗
i ) (5)

subject to

⎧
⎪⎨

⎪⎩

∑n
i=1(α

∗
i − αi ) = 0,

0 ≤ αi ≤ C, i = 1, . . . , n

0 ≤ α∗
i ≤ C, i = 1, . . . , n

The Lagrange multipliers are calculated, then we find the support vector in expan-
sion: w = ∑n

i=1(α
∗
i − αi )φ(xi ). From the solution of the dual problem, the ε-SVR

function can be written as (Vapnik 1995):

123



Volatility forecasting via SVR–GARCH 183

f (x) =
n∑

i=1

(αi − α∗
i )〈φ(xi ), φ(x)〉 + b (6)

where 〈φ(xi ), φ(x)〉 is the dot product in the feature spaceF . To avoid the complexity
of computing φ(.), we can substitute the dot product by a kernel function:

f (x) =
n∑

i=1

(αi − α∗
i )K (xi , x) + b∗ (7)

The kernel function K (x, x ′) = 〈φ(x), φ(x ′)〉 is critical to the forecasting per-
formance of the SVR. Any function that satisfies the (Mercer 1909) theorem is an
admissible kernel. So far there is no analytical method for choosing the most appro-
priate kernel for a given problem (Sangeetha and Kalpana 2010). Before estimating w

and b with SVR, it is necessary to choose the regularized parameter C , loss function
parameter ε and the parameters of the chosen kernel (Sermpinis et al. 2014).

3 SVR–GARCH with a mixture of Gaussian kernels

In empirical finance, the normal distribution is the most convenient distributional
assumption of asset returns (Wirjanto and Xu 2009). Nevertheless, empirical studies
show that the distribution of returns depart from the normal distribution shape due to
their substancial leptokurtosis (fat tails) and skewness (assymetry) (Wang and Taaffe
2015). Besides, the stock market oscillates between regimes (or states) (Tu 2010).
Then, to explain these facts, it is more appropriate to use a mixture of two or more
normal distributions (Wang and Taaffe 2015), because they are more flexible and can
model complex phenomena (Marron and Wand 1992; McLachlan and Peel 2004).

Conditional volatilitymodels such as theAutoregressiveConditionalHeteroscedas-
ticity (ARCH) (Engle 1982) and Generalized ARCH (GARCH) (Bollerslev 1986) can
capture volatility clustering and time-varying volatility. However, empirical evidence
shows that these models with Gaussian or heavier distribution innovations can not
model the full extent of skewness and kurtosis (Wirjanto and Xu 2009). Since any
continuous distribution can be well approximated by a finite mixture of normal distri-
butions, the use of mixtures of normals in GARCH innovations have been proposed
by Bai et al. (2003), Haas et al. (2004), Marcucci (2005), Alexander and Lazar (2006),
Wirjanto and Xu (2009).

Given that financial returns are subject to regime-switching behavior between k
states, even if the distribution of financial returns of each regime is normal, the overall
distribution, given the probability of each state, is not normal. In fact, it is a mixture
of k normal distributions (Levy and Kaplanski 2015). One way to accomodate this
situation in the context of volatility forecasting via SVR is to use amixture of Gaussian
kernels. Themixture of normal distributions can capture extreme events, high curtosis,
heavy tails of financial returns and approximate arbitraly any continuous probability
distribution (McLachlan and Peel 2004; Wang and Taaffe 2015). In this context, we
attempt to find the optimal number of mixtures of Gaussian kernels for the SVR–
GARCHmodel.Wewill test a linear combination of one, two, three and four Gaussian
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Table 1 Kernel choice in volatility forecasting

References Journal Model name Kernel

Fernando et al. (2003) Quantitative finance GARCH–SVR linear Not applicable

Gavrishchaka and Ganguli
(2003)

Neurocomputing SVR–GARCH Gaussian

Gavrishchaka and Banerjee
(2006)

Computational
management science

SVR–GARCH Gaussian

Tang et al. (2009b) Expert systems with
applications

WSVM Gaussian and wavelet

Tang et al. (2009a) Neural Computing and
applications

SWSVM Gaussian and Spline
wavelet

Chen et al. (2010) Journal of forecasting SVM–GARCH Linear, polynomial e
Gaussian

Wang et al. (2011) Neural Computing and
Applications

SVM–MSM Gaussian

Ou and Wang (2013) International Arab journal
of information
technology

SVRCGA Gaussian

Li (2014) Journal of forecasting SVM for APARCH Gaussian and wavelet

Santamaría-Bonfil et al.
(2015)

Computational economics SVR–GARCH Linear, polynomial and
Gaussian

kernels in SVR based onGARCH(1,1), which can capturemarket regimes and perhaps
show better out-of-sample forecasting results than the SVR–GARCH with a single-
kernel.

To verify which are the most used kernels in volatility forecasting via SVR, we
conduct a search from 2000 to 2016 through each of the following publishers online
search engines: Elsevier, Wiley Online Library, IEEE Xplore Digital Library, SCO-
PUS, ISI Web of Knowledge, Sciencedirect, Google Scholar and ProQuest Journals.
We use the same query for every search engine:

(“support vector machine” OR ”support vector regression”) AND (“financial
time series forecasting” OR“volatility forecasting” OR “volatility” )

Then, we select papers about volatility forecasting via SVR published in peer-
reviewed journalswith an impact factor.We found that the ten selected research articles
used only a single-kernel and that the Gaussian is the most widely used kernel function
(Table 1):

The kernel functionmaps non-linear observations of input data into a higher dimen-
sional feature space, inwhich the data is linearly separable (Vapnik 1995). In this paper,
we use a linear combination of k = 1, 2, 3, 4 Gaussian kernels:
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Kmix (x, x
′) =

K∑

k=1

ρk × Kk(x, x
′), ρk ≥ 0 and

K∑

k=1

ρk = 1 (8)

where ρ is the weighting coefficient and K (x, x ′)k = exp
(−γ ‖ x − x ′‖2) . Following

Huang et al. (2014) the optimal ρ is obtained by a grid search with the search step
length 0.1.

Empirical research show that wavelet kernels have superior volatility forecasting
results than the Gaussian kernel (Tang et al. 2009b, a; Li 2014). Then, we also use the
Morlet wavelet kernel in the SVR–GARCH (Zhang et al. 2004):

k(x, x ′) =
N∏

i=1

(
cos

(
1.75 × (

xi − x ′
i

a
)
))

exp
(−‖ xi − x ′

i‖2
2a2

)
, x, x ′ ∈ R

N (9)

4 Empirical modelling

4.1 Parametric volatility models

Let Pt be asset price at time t . Then, the return of asset in time t is given by:

rt = log

(
Pt
Pt−1

)
(10)

The GARCH can capture volatility clustering and persistence. The GARCH(1,1)
is specified as follows:

rt = ut + at (11)

at = √
ht zt , zt ∼ i.i.d(0, 1) (12)

ht = α0 + α1a
2
t−1 + β1ht−1 (13)

where α0 > 0 and α1, β1 ≥ 0. One of the drawbacks of the standard GARCH is that
negative and positive shocks have the same impact in the volatility forecasts (Franses
and van Dijk 1996). Glosten et al. (1993) introduced the GJR model to capture the
asymmetric response of volatility to shocks. The GJR(1,1) is defined as:

ht = α0 + α1a
2
t−1 + β1ht−1 + γ S−

t−1a
2
t−1, (14)

where

S−
t−1 =

{
1, se at−1 < 0

0, otherwise
(15)

where α0 > 0 and α1, β1 ≥ 0, α1+γ ≥ 0. The exponential generalized autoregressive
conditional heteroscedasticity (EGARCH) (Nelson 1991) can model the the skewness
of financial returns and ensure that the variance is always postive. The EGARCH(1,1)
is written as the following:
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ln(ht ) = α0 + β1 ln
(
ht−1

)
+ α1

[ |at−1|√
ht−1

− 2√
π

]
− γ

( |at−1|√
ht−1

)
(16)

where γ is the assymetric response parameter. If this parameter is positive, a negative
return generates more volatility than positive returns. In order to model the fat-tails
of the empirical distribution of financial returns, the errors zt can follow a Student’s t,
skewed Student’s t or Generalized Error Distribution (GED) distributions (Marcucci
2005):

1. A random variable X that follows a Student’s t distribution has the following
probability density function (pdf) (Casella and Berger 2001):

f (x) = 
(ν+1
2 )√

νπ 
(ν
2 )

(
1 + x2

ν

)(− ν+1
2 )

(17)

where ν is the degree of freedom parameter and 
(.) is the Gamma function.
2. Generalized error distribution (GED): a random variable X that follows a GED

distribution with zero mean and unit variance has the following pdf Tsay (2010):

f (x) = νexp[− ( 1
2

) |(x/λ)|ν]
λ2(ν+1/ν)
(1/ν)

, 0 < ν ≤ ∞ (18)

where:

λ =
[
2−(2/ν)
 (1/ν)


(3/v)

]1/2

(19)

where the parameter ν denotes the thickness-of-tail. When 0 < ν < 2, GED has
thicker tails than the normal distribution.

3. The skewed Student’s t-distribution can model the asymmetric effects and excess
of kurtosis, the pdf takes the following form Fernandez and Steel (1998):

f (x |ι, ν) = 2

ι + 1/ι
[g(ι(sx + m)|ν)I(−∞,0)(x + m/s)] (20)

+ 2

ι + 1/ι
[g((sx + m)/ι|ν)I(0,+∞)(x + m/s)], (21)

where g(./ν) is a Student’s t-distribution with ν degress of freedom,

m = 
 ((ν + 1) /2)
√

ν − 2√
π
 (ν/2)

(ι − 1/ι), (22)

s =
√

(ι2 + 1/ι2 − 1) − m2 (23)

where ι is the assymetric parameter.
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4.2 SVR based on GARCH

In order to forecast volatility, we have to define the inputs and outputs of the SVR
decision function. Previous studies showed that theGARCH(1,1) is sufficient tomodel
financial volatility (Poon and Granger 2003; Hansen and Lunde 2005). Thus, in this
work the conditional variance is modeled by a GARCH (1,1), while the conditional
mean is modeled by an AR (1) process (Franses and van Dijk 1996). Then, to forecast
volatility, we use a SVR based on GARCH (1,1) (heretofore SVR–GARCH). The
output variable is ht and the input vector is: xt = [a2t−1, ht−1]. The SVR–GARCH is
given by the following structure:

rt = f (rt−1) + at (24)

where f is the decision function estimated by SVR for the mean equation. We get the
squared residuals from the conditional mean estimation of the SVR–GARCH, then
we estimate the conditional variance equation given by:

h̃t = g(h̃t−1, a
2
t−1) (25)

where g is the decision function estimated by SVR, a2t it is the squared residuals
and h̃ is the volatility proxy. In the mean equation, we use a single Gaussian kernel
(K (x, x ′) = exp

(−γ ‖ x − x ′‖2)), because it is a common choice in financial time
series forecasting via SVR (Sapankevych and Sankar 2009). In the volatility equation
of SVR–GARCH, we use a linear combination of one, two, three and four Gaussian
kernels given by Eq. 8.

As volatility is not directly observable, is necessary the use of proxy. As in Brooks
(2001), Brooks and Persand (2003), Chen et al. (2010) we use the following proxy:

h̃t = (rt − r̄)2 (26)

where rt are the financial returns and r̄ it is the mean of returns. Any volatility proxy is
an imperfect estimator of the true conditional variance (Patton 2011). Perhaps the use
of another proxy may alter the results presented here. However, this issue is beyond
the scope of this paper.

Before applying the SVR–GARCH for volatility prediction, we use the validation
procedure (also known as holdout method) based on grid search and sensitivy analysis
to select the kernel parameter γ (for Gaussian kernel), the regularized parameter C
and loss function parameter ε (Stone 1974; Kohavi 1995; Arlot and Celisse 2010). We
divide the database into three mutually exclusive sets: training, validation and testing
(Shalev-shwartz and Ben-david 2014). The training set is used to estimate model
parameters, then the performance of various values of the parameters are evaluated in
the validation set. Following Cao and Tay (2001) and Chen et al. (2010), we make a
sensitivity analysis to assess the effects of variation of parameters C , ε, γ in the MAE
of volatility forecasting in the validation set. Therefore, wemake a grid search for each
parameter, keeping the others fixed. For the variation of each of the parameters, we
make the forecasting in the validation set and then calculate the MAE. We choose the
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parameters that has the smallest value ofMAE. Finally, we evaluate the SVR–GARCH
generalization performance in the test set. In this paper, the whole data are divided
into three subsets: the first 50% composes the training set, the next 20% composes the
validation set and the last, 30%, is reserved for the test set.

We use theMAE and the RMSE to evaluate the prediction performance. The RMSE
is given by:

RMSE =
√√√√1

n

n∑

t=1

ε2t (27)

MAEmeasures themagnitude of overall error and is given by the following equation
(Hyndman and Koehler 2006):

MAE = 1

n

n∑

t=1

|yt − ŷt | (28)

where yt denote the observation at time t and ŷt denote the forecast of yt . The model
which produces the smallest values ofMAE and RMSE is judged to be the best model.
MAE is a randomvariable andwe have to use a statistical procedure to determine if one
model shows superior predictive performance over another model. We use the two-
sided (Diebold and Mariano 1995) (DM) test to compare the forecast performance of
two competing models. Then, the DM test statistic is based on the difference of MAE
loss function and it has the following null and alternative hypothesis:

H0 : MAE1 − MAE0 = 0 versus H1 : MAE1 − MAE0 �= 0

where MAE0 is the MAE of the competing model and MAE1 is the MAE of the
proposed model. Thus, if the null hypothesis is rejected , there is evidence that some
model is superior to the other. Moreover, according to Chen et al. (2010), the Diebold–
Mariano(DM) statistic in a robust form for a time series with volatility σt is given by:

DM = 1√
n

1√
Ŝ2

T−1∑

t=T1

(|σ 2
t+1 − σ̂ 2

1,t+1| − |σ 2
t+1 − σ̂ 2

0,t+1|) ∼ N (0, 1) (29)

where σ̂ 2
0,t+1 is the volatility estimated by the competing model, σ̂ 2

1,t+1 is the volatility

estimated by the proposed model and Ŝ2 denotes the co(variance) matrix estimated
by the Newey and West (1987) procedure. Negative (positive) values of DM statistic
indicates that the proposed model performs better (worse) than the competing model.

5 Empirical results

In this section,we apply the SVR–GARCHwith a linear combination of one, two, three
and four Gaussian kernels to volatility forecast and compare its performance to three
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Table 2 Descriptive statistics
for daily returns

Nikkei Ibovespa
Statistics return return

Observations 1422 2000

Mean 0.00032 −0.00021

Median 0.0006 0.0000

Skewness −0.5757 0.0825

Kurtosis 4.9158 6.5769

Std. dev. 0.0139 0.0239

Minimum −0.1115 −0.1210

Maximum 0.0743 0.1368

Table 3 Goodness of fit for
Nikkei returns

Model LL AIC BIC

GARCH-N 2878 −5.7709 −5.7512

GARCH-t 2889 −5.7915 −5.7669

GARCH-skewed-t 2891 −5.4224 −5.3999

GARCH–GED 2886 −5.7859 −5.7613

EGARCH-N 2880 −5.7732 −5.7486

EGARCH-t 2894 −5.7997 −5.7702

EGARCH-skewed-t 2891 −5.4224 −5.3999

EGARCH–GED 2890 −5.7908 −5.7612

GJR-N 2881 −5.7749 −5.7503

GJR-t 2893 −5.7973 −5.7678

GJR-skewed-t 2895 −5.7987 −5.7642

GJR–GED 2890 −5.7903 −5.7608

other parametric volatility models, specifically, the GARCH, EGARCH and GJR. The
first dataset consists of the Nikkei 225 daily closing price fromMay 1, 2010 to January
28, 2016 for a total of 1422 observations all obtained from Yahoo Finance and then
transformed into log return as in 10. The second dataset consists of the daily closing
price of the Bovespa index for the period December 22, 2007 to January 04, 2016.
The first half of the whole data are used as the training data, 20% are reserved for the
validation set and the remainingdata, 30%, as test set. Table 2 shows the summaryof the
descriptive statistics for the Nikkei 225 and Ibovespa along the whole sample period.

The returns are characterized by excess kurtosis and deviate from normal distri-
bution. Table 3 and Table 4 show the parameter estimates for the GARCH (1,1),
EGARCH (1,1) and GJR (1,1) models for the Nikkei and Ibovespa returns. For each
model four different distributions for the innovations are considered: the Normal, the
Student’s t,the skewed Student’s t and the GED (Generalized Error Distribution). The
Nikkei and Ibovespa series best fit to the GJR with skewed Student’s t innovation,
according to highest value of Log likelihood (LL) and smallest value of AIC and BIC.

Then, we select the parameters C , ε and the kernel parameters for the conditional
mean and volatility equation via cross-validation. For the mean equation, we use a
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Table 4 Goodness of fit for
Ibovespa returns

Model LL AIC BIC

GARCH-N 3787 −5.4037 −5.3887

GARCH-t 3800 −5.421 −5.4023

GARCH-skewed-t 3802 −5.4224 −5.3999

GARCH–GED 3800 −5.4213 −5.4026

EGARCH-N 3808 −5.4323 −5.4135

EGARCH-t 3816 −5.4427 −5.4202

EGARCH-skewed-t 3819 −5.4454 −5.4192

EGARCH–GED 3816 −5.4425 −5.4201

GJR-N 3813 −5.4401 −5.4213

GJR-t 3819 −5.4478 −5.4253

GJR-skewed-t 3822 −5.4503 −5.4261

GJR–GED 3820 −5.4483 −5.4258

Gaussian kernel and for the volatility equation we use a linear combination of one,
two three and four Gaussian kernels. The first 711 observations of Nikkei returns series
are used for training, from 712 to 996 for validation and from 997 to 1422 for the test
set. We use the training set to estimate the function f of the mean equation and g of
the volatility equation of SVR–GARCH. In this section, we only report the parameter
selection for the SVR–GARCH with a linear combination of two Gaussian kernels.
The parameter selection for the SVR–GARCH with one, two, three Gaussian kernels
and Morlet kernel is similar and not reported here to save space. For the same reason,
we do not report the results for the Ibovespa returns.

First, we estimate the conditional mean equation in the training set:

rt = f (rt−1) for i ∈ (2, . . . , 711) (30)

For the selection of optimal parameters , we use a grid search for each parameter,
while keeping the others fixed. For the variation of each parameter, we make a forecast
in the validation set in order to minimize the following expression:

MAE = 1

284

996∑

t=712

|rt − f (rt−1)| (31)

For the sensitive analysis of C , we fix ε = 0, 0001, γ = 1, 25 and parameter C
takes values in the range [0, 10]. The value of C = 0.004 leads to the best validation
performance. Epsilon varies in the range [0, 5], with γ = 1, 25, C = 0, 025. The
validating MAE attains the minima when ε = 0.2205. Parameter γ takes value in
the range [0, 10], with C = 0.004 and ε = 0.2205. The value of γ = 0.9 results in
the best validation performance. Thus, the best parameters of SVR–GARCH for the
conditional mean returns are: C = 0.004, ε = 0.2205 and γ = 0.9 (Table 5):

Therefore, we estimate the conditional mean equation by using the SVR–GARCH
with the best parameters for the conditional mean until the 996 observation to obtain
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Table 5 Sensitivity analysis of
SVR in conditional mean
estimation

Parameter Range Optimal value Smallest MAE

C [0,10] 0.004 0.01217182

ε [0,5] 0.2205 0.01216

γ [0,10] 0.9 0.01216106

Table 6 Sensitivity analysis of
SVR in conditional variance
estimation

Parameter Range Optimal value Smallest MAE

C [0,10] 5.184 0.0002154

ε [0,0.1] 0.05929 0.0002146

γ1 [0,1] 0.9801 0.0002115

γ2 [0,1] 0.01 0.0002102

ρ [0,1] 0.37 0.0002067

the residuals at in the following way:

at = rt − f (rt ) for i ∈ (2, . . . , 996) (32)

Then we estimate the volatility equation of SVR–GARCH(1,1):

h̃t = g(h̃t−1, a
2
t−1) for i ∈ (2, . . . , 711) (33)

where a2t is the squared residuals. The volatility proxy h̃t is calculated until the 996
observation and the parameter selection is made in order to minimize the following
expression:

MAE = 1

284

996∑

t=712

|h̃t − g(h̃t−1, a
2
t−1)| (34)

For the sensitive analysis ofC , we fix ε = 0.0001, γ1 = 0.01, γ2 = 0.07, ρ = 0.25
and parameter C takes values in the range [0, 10]. The validating MAE attains the
minima when C = 0, 625. As in the mean equation , we do the same procedure for
the others parameters (Table 6).

Thus, the appropriate parameters of SVR–GARCH for the conditional variance are
C = 5.184, ε = 0.05929, γ1 = 0.9801, γ2 = 0.01 and ρ = 0.37.

5.1 Volatility forecasting evaluation

With the SVR–GARCH optimal parameters (C , ε and kernel parameters), we make
the one-period-ahed volatility forecasts in the test set (i.e. out-of-sample). After each
forecast, we calculate the forrecast errors and repeat the forecasting process for the
next period. Table 7 report the values of MAE and RMSE obtained from different
models for the Nikkei and Ibovespa returns.
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Table 7 Out-of-sample evaluation of one-period-ahead volatility forecasts

NIKKEI 225 IBOVESPA

Model MAE RMSE MAE RMSE

SVR–GARCH 1 0.000205 0.000450 0.0003958 0.000666

SVR–GARCH 2 0.0002071 0.0004746 0.0003620 0.0005665

SVR–GARCH 3 0.0001691 0.0004114 0.0003594 0.0005587

SVR–GARCH 4 0.0001717 0.0004100 0.0003988 0.0006786

SVR–GARCH–Morlet 0.000184 0.0004059 0.0003901 0.0006536

GARCH-N 0.01264 0.01316 0.01465 0.01499

GARCH-t 0.01255 0.01295 0.01463 0.01495

GARCH-skewed-t 0.01251 0.01292 0.0146 0.01493

GARCH-GED 0.01261 0.01307 0.01463 0.01496

EGARCH-N 0.01232 0.01281 0.01468 0.0152

EGARCH-t 0.01232 0.01274 0.01467 0.0152

EGARCH-skewed-t 0.01229 0.0127 0.01469 0.01523

EGARCH–GED 0.01234 0.01278 0.03379 0.0152

GJR-N 0.0127 0.01315 0.01417 0.01463

GJR-t 0.01267 0.01303 0.01417 0.01461

GJR-Skewed-t 0.01263 0.01299 0.01418 0.01464

GJR–GED 0.01271 0.01311 0.01418 0.01463

Note: SVR–GARCH 1, 2, 3, 4, denote Support Vector Regression based on GARCH with one, two, three
and four Gaussian Kernels, respectively

For the Nikkei 225 series, the SVR–GARCH with a mixture of three Gaussian
kernels achieve smallest value of MAE. But, the SVR–GARCH with Morlet wavelet
kernel achieve the smallest value of RMSE. According to MAE and RMSE measures
in Table 7, the SVR–GARCH with a linear combination of four Gaussian kernels is
the best one for the Ibovespa series. To compare the predictive power of two models
we use the two-sided Diebold–Mariano test given by the following null and alternative
hypotheses for the Nikkei returns:

H0 : 1

426

∣∣∣h̃t − ĥ1,t
∣∣∣ −

∣∣∣h̃t − ĥ0,t
∣∣∣ = 0 versus

H1 : 1

426

∣∣∣h̃t − ĥ1,t
∣∣∣ −

∣∣∣h̃t − ĥ0,t
∣∣∣ �= 0, (35)

where h̃t is the volatility proxy, ĥ0,t is the volatility estimated by the proposed
model and ĥ1,t is the volatility estimated by the competing model. Moreover, the DM
test statistic is given by Chen et al. (2010):

DM = 1√
426

1√
Ŝ2

1422∑

t=996

∣∣∣h̃t − ĥ1,t
∣∣∣ −

∣∣∣h̃t − ĥ0,t
∣∣∣ ∼ N (0, 1) (36)
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Table 8 Diebold–Mariano test
(benchmark: SVR–GARCH 4,
one-step-ahead)

Note: † indicate the DM
statistics for which one fail to
reject the null hypothesis of
equal predictive accuracy. * and
** represent the DM statistics
for which one can reject the null
hypothesis at 5 and 1%
respectively

Model DM Statistics

SVR–GARCH 1 −0.98†

SVR–GARCH 2 −1.5†

SVR–GARCH 3 −2.3*

SVR–GARCH–Morlet 0.18†

GARCH-N −30 **

GARCH-t −35 **

GARCH-skewed-t −34 **

GARCH–GED −32 **

EGARCH-N −33 **

EGARCH-t −35 **

EGARCH-skewed-t −35 **

EGARCH-GED −34 **

GJR-N −33 **

GJR-t −37 **

GJR-skewed-t −37 **

GJR–GED −35 **

Table 9 Diebold–Mariano test
(benchmark: SVR–GARCH 3,
one-step-ahead)

Note: † indicate the DM
statistics for which one fail to
reject the null hypothesis of
equal predictive accuracy. * and
** represent the DM statistics
for which one can reject the null
hypothesis at 5 and 1%
respectively

Model DM Statistics

SVR–GARCH 1 −5.2**

SVR–GARCH 2 −5.5**

SVR–GARCH 4 −5**

SVR–GARCH–Morlet −4.8**

GARCH-N −51**

GARCH-t −52**

GARCH-skewed-t −52**

GARCH–GED −52**

EGARCH-N −42**

EGARCH-t −42**

EGARCH-skewed-t −42**

EGARCH–GED −42**

GJR-N −44**

GJR-t −44**

GJR-skewed-t −44**

GJR–GED −44**

Tables 8 and 9 report the DM statistics and p-values of the Diebold–Mariano test for
the difference of MAE loss function for the Nikkei 225 and Ibovespa daily returns,
respectively:

123



194 P. C. S. Bezerra, P. H. M. Albuquerque

For the Nikkei 225 and Ibovespa series, it is evident that all SVR–GARCH models
significantly outperform every GARCH model at any usual confidence level. For the
Nikkei 225 series, except for SVR–GARCH with Morlet wavelet kernel, the sign
of the DM statistic is always negative, implying that the benchmark’s loss is lower
than the loss implied by the competing models. However, we cannot reject the null
hypothesis for the SVR–GARCH with Morlet wavelet kernel and with one and two
Gaussian kernels, which means that these models have equal forecasting ability. For
the other models we always reject the null hypothesis of equal forecast accuracy at
any usual confidence level. For the Ibovespa series, the sign of the DM statistic for the
SVR–GARCH with a linear combination of three kernels is always negative and we
always reject the null hypothesis of equal forecast accuracy.

6 Concluding remarks

The main contributions of this paper is to use a mixture of one, two, three and four
Gaussian kernels in the SVR based on GARCH(1,1) to take into account the exis-
tence of market regimes. We compare these models with SVR–GARCH with Morlet
wavelet kernel,GARCH,EGARCHandGJRmodels in terms of their ability to forecast
volatility by using MAE, RMSE and Diebold–Mariano test. All GARCH models are
estimated assuming Gaussian, Student’s t, sweked Student’s t and GED innovations.
To determine the SVR optimal parameters we use used the validation technique (hold-
out method) based on grid-search and sensitivity analysis. Nikkei 225 and Ibovespa
daily returns were used as the dataset. The empirical results indicate that the mixture
of Gaussian kernels can improve the SVR–GARCH one-period-ahead volatility fore-
casts. In sum, the mixture of normal distributions can model the overall distribution of
financial returns when markets display regime behaviour and also better approximate
nonlinear characteristics of financial returns such as heavy tails, volatility clustering
and time-varying skewness.
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