
Comput Manag Sci (2017) 14:135–160
DOI 10.1007/s10287-016-0263-4

ORIGINAL PAPER

Optimal pension fund composition for an Italian private
pension plan sponsor

Sebastiano Vitali1 · Vittorio Moriggia1 ·
Miloš Kopa2

Received: 30 October 2015 / Accepted: 18 August 2016 / Published online: 27 August 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract We address the problem of a private pension plan sponsor who has to find
the best pension funds for its members. Starting from a descriptive analysis of the
pension plan members we identify a set of representative subscribers. Then, the opti-
mal allocation for each representative will become a pension fund of the pension plan.
For each representative, we propose a multistage stochastic program (MSP) which
includes a multi-criteria objective function. The optimal choice is the portfolio alloca-
tion that minimizes the average value at risk deviation of the final wealth and satisfies
a wealth target in the final stage and other constraints regarding pension plan regu-
lations. Stochasticity arises from the investor’s salary process and from asset returns.
Numerical results show the optimal dynamic portfolios with respect to the investor’s
preferences and then the best pension funds the sponsor might offer.
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1 Introduction

The pension system has become more and more complex and structured all over
Europe in the last decades. Because of the financial and social crisis, several countries
implemented strong reforms in the state welfare system in order to reduce the pension
costs on the state budget balance. Furthermore, they encouraged the establishment of
private pension facilities (see OECD 2013, pp. 18–25). In general, a private pension
fund is an investment fund which periodically receives contributions from a private
investor and then provides an annuity during the retirement. In order to manage a
pension fund several asset and liability management (ALM) structures have been
deeply explored in the last years. Milestone models, among others, are: the Russell-
Yasuda Kasai Model (see Cariño et al. 1994, 1998b; Cariño and Ziemba 1998a), the
InnoALM model for multistage managing of a pension fund (see Geyer and Ziemba
2008, Ziemba 2006), and the CALM model for long-term pension fund planning
(see Consigli and Dempster 1998b, a). More recently, Mulvey et al. 2006 suggests a
multiperiodmodel to increase the understanding of the risks and rewards in a long-term
horizon framework for pension plans and other long-term investors (see also Mulvey
et al. 2007, 2008). An innovative formulation of the ALM problem is proposed in
Consigli et al. (2011), Consigli and di Tria (2012) and in Consigli and Moriggia
(2014).

Clearly, each country required an adjustment of a general model in order to con-
sider the specificity of the country’s regulations. Some models have been built starting
from the country’s pension system. Høyland and Wallace (2001) analyse the Norwe-
gian regulations; Dupačová and Polívka (2009) focus on the Czech Republic public’s
scheme; Hilli et al. (2007) study the case of a Finnish pension company; Kouwenberg
(2001), Bovenberg and Knaap (2005), Streutker et al. (2007), Haneveld et al. 2010b
and Haneveld et al. (2010a) explore the Dutch system; Dondi et al. (2007) analyse
the Swiss setting; in Fabozzi et al. (2005) there is a comparison between 28 defined
benefit pension funds of the Netherlands, Switzerland, the United Kingdom, and the
United States.

The main function of a pension plan is to provide a reasonable and sure annuity to
the subscribers, i.e. to guarantee an integration of the public retirement pension so that
the total income before and after retirement does not differ substantially. Typically,
a pension plan is composed of pension funds which are sufficiently different from
each other that the investors can choose the optimal pension investment from well
diversified strategies. Often, such pension funds are issued following some standard
investment allocations: guaranteed capital, low risk profile, high yield investment, etc.
The competition between private pension plan providers is becoming stronger and
stronger. They would all like to offer suitable and reliable pension plans for their
contributors. This aim cannot be pursued by huge providers whose offer is somehow
standard, while for small and medium pension plan sponsors it is simpler to proceed
with a rigorous analysis of the subscribers and then to customize the pension plan
investment strategies according to the actual contributors’ needs.
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We deal with a real-life problem of a medium-size Italian bank that wants to issue
a pension plan specifically for its employees. For this reason, the bank wishes to
identify the optimal allocation for its pension funds in order to match its employees’
features and, of course, comply with the Italian regulations and laws. Indeed, some
methodological adjustments adopted in this paper have been requested by the bank and
several constraints have been designed according to specific requirements included in
the already existing pension fund rules (seeOECD2013, pp. 284–288). For instance, in
Italy second-pillar pension funds are strongly encouraged and the employer contributes
proportionally to the subscriber’s payment. Further, the second-pillar pension funds
start paying the annuities when the employee receives the public pension. To define
the optimal pension plan strategies, the bank has to alter its usual point of view:
instead of optimizing the asset allocation in an ALM perspective, the sponsor wants
to find a solution to the individual asset allocation problem of its employees. Given a
strategic optimal composition designed for the individual, the pension fund manager
will define an ALM model accordingly. The individual asset allocation problem was
first investigated inMerton (1969, 1971), introducing the concept of consumption and
optimal investment through a dynamic programming approach in order to maximize
the utility of a private investor over a fixed time horizon. Richard (1975) introduces
the concept of lifetime uncertainty, labor and insured wealth as further elements to
take into account. Geyer et al. (2009) extends Richard’s model by using a multistage
stochastic programming approach. Berger and Mulvey (1998) proposes a tool named
Home Account Advisor, a multistage model which optimizes the investor’s financial
objective considering investments, savings and borrowing simultaneously.

Wepropose a two-stepmodel. Thefirst step is tomake a precise statistical analysis of
the data concerning the plan’s subscribers to identify a set of representative members.
The second step is to formulate and implement a multistage stochastic program (MSP)
in order to define the optimal investment allocation for each representative member.
Lastly, the optimal investment portfolio for each representative will define the strategic
allocation of each pension fund. Wemust remark that, among the actual pension funds
composing the whole pension plan of the bank, there is no life-cycle pension fund, see
Gomes et al. (2008). Moreover, the bank does not want to issue such pension fund.
However, getting closer to retirement, each subscriber can personally switch from one
pension fund to another. Thus, the optimal investment portfolios have to consider this
hidden need too.

This paper is structured as follows. The statistical analysis of the first step is pre-
sented in Sect. 2. The second step, analysed in Sect. 3, explores the formulation of the
MSP. In Sect. 4, numerical results provide optimal dynamic portfolios with respect to
investors’ preferences. The paper’s conclusions are in Sect. 6.

2 Population analysis

2.1 Statistical description of the population

The population analysis consists in a statistical description of 5577 employees of the
bank. They belong to an homogeneous population and are the active population of
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the pension plan. The focus of the study is twofold: to give the pension plan provider
a complete and rigorous view of the actual participants and to investigate their main
characteristics in order to have a reliable starting point for the later clusterization. The
considered members’ features are:

– age and remaining working life
– accumulated wealth
– average annual contribution
– choice of percentage of the salary to contribute
– attitude to diversification
– switching behavior.

The age analysis uses as input data the year in which eachmember started to contribute
to the plan. For the considered population the result shows a uniform distribution in the
last decades. The analysis highlights a huge variety in the accumulated wealth, from
the younger employees with almost no wealth to the top managerial positions, which
create a heavy right tail. The mean value is EUR 70,000, the standard deviation is
EUR 46,000. To better analyse the accumulation process, we introduce a contribution
ratio given by the accumulated wealth divided by the number of years spent in the
plan. The contribution ratio distribution is highly concentrated between EUR 3000
and EUR 6000 per year.

A particular focus is placed on the diversification choice. Up to now, the plan
has been composed of seven pension funds, and we analyse the number of posi-
tions opened for each strategy and for each member. The first analysis investigates
the preferred pension funds, the second shows the individual inclination to invest
simultaneously in more than one fund, i.e. to adopt for the pension savings per-
spective the same diversification strategies that are usually performed for investment
portfolios.

The option of switching between the strategies is not widely used. Only 4% of
the pension plan population moved their accumulated wealth at least once. In those
cases, the switch occurs typically from risky pension funds to low risk ones. This
switching behavior is consonant with the fact that there is no life-cycle pension
fund, so the contributors try to implement a life-cycle investment on their own. We
would expect a higher occurrence of switching events. They are limited probably
because the actual pension fund investment strategies are not suitable for satisfying
this need.

We observe a strong correlation between features of the switch and the attitude to
diversification.Theparticipantswho require a switch experience adiversifiedportfolio.
Generally,we candistinguish betweenmemberswith static and concentrated portfolios
and members implementing dynamic and diversified strategies.

The study of the choice of strategy also displays the attitudes towards risk of the
members of the pension plan. The strategies with the lowest risk constitute the main
investment. A few contributors switch to riskier position for two reasons: the perspec-
tive of a long investment window if they are young members, or a natural aptitude
for risk which leads the contributors to invest their savings so as to seek an extra gain
during periods of high volatility in the markets.
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2.2 Cluster analysis

The aim of the cluster analysis is to extract a set of representative participants from
the whole population. For each of them, we propose an optimal portfolio allocation
considering the investor’s features and the stochastic environment. The pension plan
sponsorwants to offer the best pension funds to the active population. Once the optimal
portfolios are obtained (one for each representative), they will be proposed to the
pension plan provider (the bank) in order to create similar pension funds. Clearly,
the cardinality of the set of representative member will coincide with the number of
pension funds. Therefore, the provider must decide on the number of clusters, taking
into account its suitability for the members and its manageability for the pension fund
manager.

Thanks to the results of the previous section, we start the cluster analysis having
three elements as the main characterizing features: the accumulated wealth, the port-
folio risk level, and the remaining working years. All three variables are normalized
for better comparability. The portfolio risk level is measured by the bank with a value
on a scale from 1 (very low risk) to 10 (very high risk).

In order to create the cluster sets, we adopt the k-means Lloyd’s algorithm using the
cityblock distance, which measures the distance between two elements xi , x j having
p attributes by d(xi , x j ) = ∑p

k=1 |xki − xkj |, i.e. each centroid is the component-wise
median of the points in that cluster, see Lloyd (1982) and Kaufman and Rousseeuw
(2009). As already mentioned, the number of clusters is the provider’s decision. This
choice should consider the representativeness of the clusters. In our case, due to the
costs of management, the bank wants to reduce the number of pension funds (from the
current 7) to at most 5. This request is quantitatively justified by the scree-plot shown
in Fig. 1, which captures the gain in term of reliability for an increasing number of
clusters.

The scree-plot only shows that a minimal reasonable number of clusters is three.
Table 1 shows the results assuming, in turn, three, four, and five clusters.

Fig. 1 Cluster analysis scree-plot
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Table 1 Centroid features for
choice of the number of clusters

Wealth (EUR) Risk profile Years to
retirement

Three clusters

Rep. 1 105,000 1 13

Rep. 2 43,000 1 28

Rep. 3 41,000 7 32

Four clusters

Rep. 1 104,000 1 13

Rep. 2 43,000 1 27

Rep. 3 66,000 3 28

Rep. 4 38,000 10 33

Five clusters

Rep. 1 132,000 1 9

Rep. 2 78,500 1 17

Rep. 3 66,800 3 28

Rep. 4 35,000 1 31

Rep. 5 38,000 10 33

To compare different choices of the number of clusters, Rousseeuw (1987) proposes
the silhouette analysis. The silhouette value s(xi ) describes how each point i is similar
to the points in its own cluster. It is defined as

s(xi ) = m(xi ) − a(xi )

max[m(xi ), a(xi )]

where a(xi ) is the average distance from the i th point to the points in the same cluster
andm(xi ) is the minimum average distance from the i th point to the points in different
clusters, see Kaufman and Rousseeuw (2009). As distance measure we adopt the
cityblock distance, to be consonant with the used k-mean algorithm employed. A
negative silhouette value for some elements of the population suggests an inefficient
choice of the number of clusters. The silhouette analysis yields Figs. 2, 3 and 4 for
three, four and five clusters, respectively.

According to the silhouette approach, to precisely quantify the quality of a choice
of the number of clusters, de Amorim and Hennig (2015) suggests using the silhouette
index defined as 1/N

∑N
i=1 s(xi ). A higher silhouette index implies a better choice.

In all the provided computations, the clustering input values were first normalized
by dividing each series by its average. We tested two other normalization techniques.
The first divides each series by its median, the second subtracts from each series its
minimum and then divides by the difference between its maximum and its minimum.
The silhouette indexes associated to each clustering choice and to each normalization
technique are presented in Table 2. Both the mean-normalization and the median-
normalization produce comparable results, identifying four clusters as the best choice.
The minmax-normalization identifies three clusters as the best choice. In order to stay
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Fig. 2 Silhouette of the three-cluster case

Fig. 3 Silhouette of the four-cluster case

Fig. 4 Silhouette of the five-cluster case

closer to the pension fund provider’s expectations and to produce a richer analysis, we
adopt the results for the four clusters obtainedwith themean-normalization. Therefore,
all the provided figures, as well as the table for the centroids, were produced after the
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Table 2 Silhouette index for
each choice of number of
clusters and each normalization
type

Number of clusters Silhouette index

Mean
normalization

Median
nomalization

MinMax
nomalization

Three clusters 0.4818 0.4622 0.4744

Four clusters 0.5145 0.5234 0.3901

Five clusters 0.4946 0.5030 0.3572

Fig. 5 Cluster analysis. Four-cluster case

mean-normalization. Figure 5 represents the data normalizedby themean and clustered
into four clusters. The x-axis represents the wealth, the y-axis the remaining working
years, and the z-axis the risk profile.

3 The optimal policies for the pension plans

The individual investment problem has been thoroughly studied in the last decades.
The main feature of this class of models is to consider jointly all variables which char-
acterize the investor’s investment, i.e. the salary process, consumption, borrowings,
etc. See, for example, Consiglio et al. (2004, 2007), Consigli (2007) and Medova
et al. (2008). Moreover, much research has focused on the individual investment in a
pension perspective framework.

Given the representative employees defined in Sect. 2.2, the optimal strategy for
each pension fund will coincide with the optimal portfolio allocation of each repre-
sentative investor. Therefore, a model to describe the pension problem for a private
investor is needed. The aim of this procedure is to define the optimal asset allocation
for an employee in a retirement perspective. We deal with two main features: a long
term horizon with a fixed and given sequence of portfolio rebalancing stages, and
an uncertain environment regarding the asset returns and the evolution of the salary.
These elements lead naturally to a Multistage Stochastic approach (see Dupačová
et al. 2002). The considered framework is a defined contribution pension fund. The
distinction between defined contribution and defined benefit, especially in terms of
the securities included, is described and analysed in Consiglio et al. (2015). Several
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asset classes are involved in a pension fund portfolio. Nevertheless, the most suit-
able in terms of a risk/reward profile are government and corporate bonds, see Lozza
et al. (2013) and Abaffy et al. (2007). The robustness of a model can be measured by
analysing its sensitivity as proposed in Bertocchi et al. (2000a, b).

We assume that the decision times correspond to all the stages except the last one, in
whichwe just compute the accumulated final wealth. The stochasticity arises from two
sources: the asset returns and the salary process. The investment universe is composed
of n assets, which are the benchmarks that the fund manager is able to replicate. The
first asset is a guaranteed capital investment with a risk free return. The risk free rate,
rt , is modeled in (1) assuming it follows the Vasicek process as proposed in Vašiček
(1977). There are far more complex models of the interest rate, but Vasicek’s allows
for negative interest rates, which are nowadays a common circumstance. The asset
return processes, RR

t = (Rt,1, . . . , Rt,n)
′, are modeled in (2) as Geometric Brownian

motions. The stochasticity of the salary is crucial in the definition of a consistent model
for a private investor’s optimal allocation. Based on the approach proposed in Cairns
et al. (2006), in (3) we assume that the salary process, Yt , is correlated with the riskiest
assets and with the risk free dynamics.

drt = α(β − rt )dt + νdWr
t , ∀t (1)

dRt = μRt dt + �dWR
t , ∀t (2)

dYt = ωYtdt + σr dW
r
t + σ RdWR

t , ∀t (3)

whereWr
t is theWiener process for theVasicekmodel andα,β and ν are its parameters,

WR
t = (Wt,1, . . . ,Wt,n)

′ is the vector of the Wiener processes for the risky returns,
μ = (μ1, . . . , μn)

′ is the mean return vector for the risky assets, � is the variance-
covariance matrix of the risky assets, ω is the growth rate of the salary, σr expresses
the relation between the salary and the asset dynamics, and σ R that between express
the relation between the salary and the risk free process and the asset dynamics.

The stochasticity is represented by a discrete scenario tree composed of S paths
and characterized by a regular branching.

We define the non-negative decision variables ci,t,s , r
+
i,t,s and r−

i,t,s , where i =
1, . . . , n represents the assets, t = t0, . . . , T the stages and s = 1, . . . , S the scenarios.
Thus, ci,t,s expresses the level of contribution we want to invest in the asset i at the
stage t in scenario s; the rebalancing variables r+

i,t,s and r
−
i,t,s allow redistributing the

accumulated wealth between the chosen assets, quantifying how much we buy and
how much we sell of each asset at the beginning of each stage, i.e. before adding
the contribution. We write ρi,t,s for the asset return processes found by solving and
applying (1) and (2), and ρsal

t,s for the salary growth rate process given by (3).
Lastly, we can list the set of constraints in order to express the regulatory bounds

and the cash balance conditions.

Salary process Fixing the initial level salt0,s equal to the actual salary of the employee,
we can easily describe the salary process.

salt,s = salt−1,s · (1 + ρsal
t,s ), ∀t > t0,∀s (4)
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Maximum contribution level At each stage, the employee does not want to invest
more than a certain maximum percentage of the employee’s salary. Therefore, we
introduce the parameter propensity-to-save denoted by λ and a coefficient e which
represents a percentage supplementary contribution added by the employer.Moreover,
the time structure of the problem defines the stages every 	t years, but in real life the
contribution is added yearly (sometimes also monthly) to the pension plan. Therefore,
assuming that the growth rate of the salary is constant over each period and equal to the
discount rate, and assuming that the contribution is paid at the beginning of each year,
we compute the actual value of a growing annuity paying one euro for 	t years by
simply multiplying by 	t . Thus, the constraint describing the maximum contribution
level assumes the form

n∑

i=1

ci,t,s ≤ salt,s · λ · (1 + e) · 	t, ∀t,∀s (5)

Portfolio balanceWedefine the set of constraints that describes the portfolio allocation,
the rebalancing decisions and the wealth account. For this purpose, we introduce the
holding variable hi,t,s which represents the amount we hold in each asset, and the total
wealth variable wt,s . Moreover, we define the initial portfolio vector hi,0 in case the
investor already has a position in the pension plan and the initial cash parameter w0
if the investor wants to add an amount of money, i.e. shift something from another
pension plan and/or make an initial extra contribution.

hi,t0,s = hi,0 + r+
i,t0,s

− r−
i,t0,s

+ ci,t0,s, ∀i,∀s (6)

n∑

i=1

r+
i,t0,s

=
n∑

i=1

r−
i,t0,s

+ w0, ∀s (7)

r−
i,t0,s

≤ hi,0, ∀i,∀s (8)

n∑

i=1

r−
i,t0,s

≤ θ

n∑

i=1

hi,0, ∀s (9)

hi,t,s = hi,t−1,s · (1 + ρi,t,s) + r+
i,t,s − r−

i,t,s + ci,t,s, ∀i, t0 < t < T,∀s (10)

n∑

i=1

r+
i,t,s =

n∑

i=1

r−
i,t,s, t0 < t < T,∀s (11)

r−
i,t,s ≤ hi,t−1,s · (1 + ρi,t,s), ∀i, t0 < t < T,∀s (12)

n∑

i=1

r−
i,t,s ≤ θ · wt,s, t0 < t < T,∀s (13)

wt,s =
n∑

i=1

(
hi,t−1,s · (1 + ρi,t,s)

)
, t > t0,∀s (14)

123



Optimal pension fund composition for. . . 145

Equation (6) defines the holding in the first stage for each asset to be equal to the initial
portfolio allocation hi,0 plus r

+
i,t0,s

and r−
i,t0,s

, which are the buying and selling of the
initial portfolio and the buying and selling of the initial wealth, plus the first period
contribution ci,t0,s . The initial portfolio re-allocation is defined using Eqs. (7)–(9). In
particular, Eq. (7) defines the buying as the re-allocation of the initial portfolio plus
the allocation of the initial wealth. For the next stages, Eq. (10) defines the holding as
the capitalization of the previous holding for each asset plus the re-allocation of the
accumulated wealth and plus the contribution. The portfolio re-allocation follows Eqs.
(11), (12) and (13). Equations (9) and (13) express the turnover constraints through
the parameter θ which states that it is not possible to sell more than a fixed percentage
θ of the portfolio. Lastly, Eq. (14) computes the accumulated wealth in each stage and
for each scenario.We build the target constraints and the objective function in terms of
this wealth variable. Moreover, we include a risk exposure constraint. This constraint,
and specifically its linear formulation, has been explicitly required by the bank and
assigns to each asset a risk coefficient φi and then sets a risk level � that the portfolio
cannot exceed on average. This threshold level is extracted from the risk/reward profile
of the subscriber.

n∑

i=1

hi,t,s · φi ≤ � ·
n∑

i=1

hi,t,s, ∀t,∀s (15)

Since we use a stochastic tree structure, see Dupačová et al. (2009), we include the
set of all the non-anticipativity constraints on the decision variables to ensure that
the decision variables depend only on the past values of the stochastic processes.
Therefore, we include the set of non-anticipativity constraints

ci,t,ṡ = ci,t,s̃, ∀i,∀t (16)

r+
i,t,ṡ = r+

i,t,s̃, ∀i,∀t (17)

r−
i,t,ṡ = r−

i,t,s̃, ∀i,∀t (18)

for each pair of scenarios ṡ and s̃ which have shared the same history up to stage t .
As suggested in Kilianová and Pflug (2009), we define the multicriteria objec-

tive function including two wealth targets and the Average Value at Risk Deviation
(AV@RD) as the risk measure, where AV@RD(x) = E(x)− AV@R(x). We adopt
the ε-constrained approach

min
S∑

s=1

(
wT,s · ps

) − a + 1

α

S∑

s=1

(zs · ps) (19)

s.t. −a + wT,s + zs ≥ 0, zs ≥ 0,∀s (20)
S∑

s=1

wT,s · ps ≥ �T (21)

(5)—(15) (22)
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In (19) we minimize the AV@RD at last stage, i.e. the final wealth, for the given
confidence level α. According to Rockafellar and Uryasev (2000, 2002), the discrete
definition of the AV@RD needs the inequality (20) in order to define jointly the
variables a and zs . The wealth target (21) requires that the average accumulated wealth
at the final stage be greater than or equal to a fixed amount �T . In order to compute
this value, the definition of a benchmark wealth wb

t,s is needed. We suppose that we
have a benchmark portfolio with returns ρb

t,s which invests uniformly (see DeMiguel
et al. 2009) only in those assets which singly satisfy the risk exposure constraint,
i.e. I = {i |φi ≤ �}, then ρb

t,s = 1/|I | ∑i∈I ρi,t,s, ∀t, ∀s. Then, assuming that the
contribution touches the bound in (5), i.e.

Cb
t,s = salt,s · λ · (1 + e) · 	t, ∀t, ∀s (23)

and starting from the initial wealth, i.e. wb
t0,s = ∑n

i=1 hi,0 + w0, ∀s, the evolution of
the benchmark wealth is

hbt0,s = wb
t0,s + Cb

t0,s, ∀s (24)

hbt,s = hbt−1,s · (1 + ρb
t,s) + Cb

t0,s, t > t0,∀s (25)

wb
t,s = hbt−1,s · (1 + ρb

t,s), t > t0,∀s. (26)

Then, the value of the target becomes

�T = E[wb
T,s] (27)

The AV@RD minimization is a general formulation and has been implemented
in order to have a general model that the bank could use to test the sensitivity to dif-
ferent settings. However, since (21) already pushes the average wealth to a relatively
high target for our particular setting, such a formulation could be replaced with the
maximization of the AV@R. Moreover, since we have asset return scenarios gener-
ated from a multi-variate normal distribution, the typical variance minimization must
also produce almost the same results. We propose the minimization of the AV@RD
because it is more general, in case the bank were to decide to test the sensitivity with
respect to different types of target wealth or in case the bank were to adopt scenarios
generated from a non-symmetric distribution. With the current settings, we ran tests
adopting alternatively one of the three formulations, producing no significant differ-
ence in the solutions. We also highlight that the variance minimization would lead to
a quadratic problem, while the AV@RD minimization gives a linear programming
problem.

Using an Intel(R) Xeon(R) 2.40 GHz with 8.00 GB RAM virtual machine running
Windows 8.1, we analysed the computational complexity for 6-stage problems with
various branchings and numbers of scenarios. The results are summarized in Table 3.
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Table 4 Vasicek model estimation on the Euribor series

Whole period from 1 Jan
1999 to 13 Mar 2015

Pre-crisis period from 1 Jan
1999 to 31 Dec 2008

Post-crisis period from 1
Jan 2009 to 13 Mar 2015

α 0.066 0.065 1.634

β 0 0.025 0.003

ν 0.003 0.004 0.002

4 Settings and results

Theproposedmodel has been applied to the four representativemembers definedby the
cluster analysis in order to identify the four optimal pension funds that should be issued
by the sponsor of the pension plan. Let us assume that the pension fundmanager is able
to replicate six different securities (assets) which compose the investment universe we
deal with. Each pension fund is a combination of these assets, which are: a guaranteed
capital security, two low risk, one medium risk and two high risk assets. For the risk
free asset, we analysed the historical series of the Euribor 3-months from 1 Jan 1999
to 1 Sep 2015. We performed a maximum likelihood estimation for all the parameters
and we obtained the results reported in Table 4 according to three different estimation
periods. In particular, we split the whole Euribor historical data into a pre-crisis period
and a post-crisis period.

The estimations made for the post-crisis period and for the whole period produce
a very low value of the parameter β. Since an equilibrium interest rate equal to 2.5%
seemsmore reasonable for a long-termhorizon problem, in (1)we adopt the parameters
of the Vasicek model estimated for the pre-crisis period.

We artificially create a universe of risky assets to cover a larger number of pro-
files. For that reason, we assume that their dynamics, as described in (2), follow a
multivariate normal distribution characterized by the following statistics.

μ =

⎡

⎢
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⎢
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Here, μ is the vector of mean returns of the risky asset in (2) and � is the
variance-covariance matrix given by the product of the vector of the volatilities
with the correlation matrix. Moreover, the risk coefficients associated to each asset
are

φi = [0 1 2 3 7 8]
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The salary process in (3) is characterized by the parameters

ω = 1.0% σ r = 0.5 σ R =

⎡

⎢
⎢
⎢
⎢
⎣

0
0
0.9
0.9
0.9

⎤

⎥
⎥
⎥
⎥
⎦

In (5) the propensity-to-save parameter λ is 7%, while the employer contribution e is
50%. In (13) the turnover coefficient θ is 20%.Moreover, we left the solver free to find
the best here-and-now solution by setting to zero the initial portfolio, i.e. hi,0 = 0 ∀i ,
and accumulating thewholewealth as an extra initial contributionw0. The initial salary
is fixed for each representative participant to EUR 15,000, i.e. salt0,s = 15,000. This
choice is driven by the evidence for a highly dishomogeneous salary level among the
cluster elements, thus, we adopt as a fixed initial salary the average net salary of the
whole population. In the multicriteria objective function (19), the average value at risk
deviation (AV@RD) is computed considering the confidence level α = 5%.

We propose different time lengths between stages depending on the representative
member we are going to consider, and with the same tree branching 50–20–10–5–2,
i.e. 100,000 scenarios. In all the figures, the white asset represents the guaranteed
capital security. Then, going from the dark green to the dark red, each color represents
a specific asset in a rising scale of risk/reward profile.

The first one is characterized by an initial wealth of EUR 104,000, w0 = 104,000,
by a very low risk profile, � = 1, and by 13 remaining working years. We assume
the time length between the 6 stages as follows: 1, 2, 2, 3 and 5 years. The dynamic
optimal allocation evolution is depicted in Fig. 6. In particular, for each stage we show
the average allocation over all the nodes of that stage. The evolution of the wealth
through the stages (in terms of the average over the nodes belonging to each stage) is
presented in Fig. 7. Figure 8 describes the distribution of the final wealth and its basic
statistics for the first representative member.

The here-and-now allocation is predominantly focused on the less risky assets. The
riskiest asset is always present in a very small portion. The strategy moves to a safer
portfolio, increasing the investment in the guaranteed capital asset, which is less than
15% in the here-and-now solution but almost 50% in the last decisional stage. The
evolution of the wealth is consonant with the allocation. We observe a slight growth,
mainly due to the contribution and residually to the financial gains. A relatively short
time horizon does not allow for a remarkable rebalance through the stages.

Thank to the choice of a safe allocation, the optimal solution achieves a great
reduction in the risk profile of the solution. The standard deviation is 30% lower than
for the benchmark, and the distribution is highly concentrated on the target value. The
mean and the median are very close to the value of AV@R, highlighting the quality
of the solution with respect to the benchmark portfolio.

The second representative member is characterized by an initial wealth of EUR
43,000, w0 = 43,000, by a very low risk profile, � = 1, and by 27 remaining
working years. We put the time lengths between the 6 stages as 1, 2, 5, 8 and 11 years.
The dynamic optimal allocation evolution is depicted in Fig. 9. The evolution of the
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Fig. 6 First representative member: evolution of the allocation

Fig. 7 First representative member: evolution of the wealth

wealth is presented in Fig. 10. Figure 11 describes the distribution of the final wealth
and its basic statistics for the second representative member.

The allocation is slightly more aggressive than the first representative here-and-
now allocation with only 4% invested in the risk free asset. The strategy moves to an
even safer position in the last stage, with more than 40% in the risk free asset. The
wealth process has great growth, induced mainly by the long-term horizon and then
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Opt Ptflio Bnchmk Ptflio

mean 146,397 146,397
median 145,510 146,258
st. dev. 4097 5946
V@R0.05 142,920 136,857
AV@R0.05 140,630 134,575
kurtosis 4.84 3.01
skewness 0.96 0.13

Fig. 8 Final wealth distribution and related statistics for the first representative member

Fig. 9 Second representative member: evolution of the allocation

by the contribution. The financial gains are quite low because of the very low risk
allocation.

The final wealth is again very concentrated around the mean value. The reduction
of the risk in terms of both standard deviation and AV@R is remarkable. As for the
first representative, the whole dynamic is in line the very low risk/reward profile of
the investor and this allows the optimal solution to achieve the target and to reduce
effectively the objective function, i.e. the AV@RD. The V@R and AV@R are 7%
higher than for the benchmark.

The third representative member is characterized by an initial wealth of EUR
66,000, w0 = 66,000, by a medium risk profile, � = 3, and by 28 remaining working
years. We define the lengths between the 6 stages as follows: 1, 2, 5, 8 and 12 years.
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Fig. 10 Second representative member: evolution of the wealth

Opt Ptflio Bnchmk Ptflio

mean 118,576 118,576
median 116,710 118,383
st. dev. 3800 6452
V@R0.05 116,440 108,329
AV@R0.05 114,090 105,966
kurtosis 14.85 3.05
skewness 2.34 0.19

Fig. 11 Final wealth distribution and related statistics for the second representative member

The dynamic optimal allocation evolution is depicted in Fig. 12. The evolution of the
wealth is presented in Fig. 13. Figure 14 describes the distribution of the final wealth
and its basic statistics for the third representative member. In the here-and-now solu-
tion, only the four riskiest assets are included. The most used asset is still a low risk
one, but the allocation includes the riskiest assets at almost 20%. Then, getting close
to the end horizon, the portfolio moves to the two less risky assets and reduces the
portion invested in the two more risky ones. The evolution of the wealth profits from
both the long-term horizon and the quite aggressive allocation. The contributions are
substantial and also the financial gains.
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Fig. 12 Third representative member: evolution of the allocation

Fig. 13 Third representative member: evolution of the wealth

The final wealth of the third representative highlights a higher riskiness than the first
two representatives. The standard deviation is almost 4 times that of the previous two
representatives and the AV@RD is larger too. Nevertheless, the solution is aligned
with the risk/reward profile of the investor, who reaches the wealth targets over the
stages and still obtains a low risk final performance. The standard deviation is almost
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Opt Ptflio Bnchmk Ptflio

mean 192,566 192,566
median 185,010 188,974
st. dev. 15965 28994
V@R0.05 184,420 152,102
AV@R0.05 177,260 144,769
kurtosis 26.27 4.33
skewness 3.52 0.82

Fig. 14 Final wealth distribution and related statistics for the third representative member

Fig. 15 Fourth representative member: evolution of the allocation

half that of the benchmark and the V@R and the AV@R are the 20% higher than for
the benchmark.

The fourth representative member is characterized by an initial wealth of EUR
38,000, w0 = 38,000, by a high risk profile, � = 10, and by 33 remaining working
years. We assume that the time lengths between the six stages are 1, 2, 6, 10 and 14
years. The dynamic optimal allocation evolution is depicted in Fig. 15. The evolution
of the wealth is presented in Fig. 16. Figure 17 describes the distribution of the final
wealth and its basic statistics for the fourth representative member. The here-and-now
allocation of the fourth representative is extremely risky. Almost 50% is invested in
the riskiest assets. The guaranteed capital asset is introduced from the fourth stage and
its portion increases in the last decisional stage, reaching only 10%. On the other hand,
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Fig. 16 Fourth representative member: evolution of the wealth

Opt Ptflio Bnchmk Ptflio

mean 233,531 233,531
median 219,280 221,217
st. dev. 59877 70839
V@R0.05 177,300 143,513
AV@R0.05 164,330 130,578
kurtosis 13.85 6.03
skewness 2.24 1.27

Fig. 17 Final wealth distribution and related statistics for the fourth representative member

as for the other representatives, the allocation reduces the risk profile by increasing the
investment in the two low risk assets. The wealth process has a huge financial return
accompanied by a high contribution. The investment in the riskiest asset is constant
as a percentage allocation, but increases in monetary terms.

The final wealth distribution of the fourth representative, like the previous ones, is
very concentrated on the mean value. The standard deviation is 18% lower than that
for the benchmark, while the V@R and the AV@R are more than 20% higher. There-
fore, the optimal solution guarantees achieving a less risky result than the benchmark
portfolio and produces a high final wealth satisfying the targets and in accordance with
the investor’s risk/reward profile.
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Table 5 Sensitivity analysis with respect to the turnover parameter

θ = 0.10 θ = 0.15 θ = 0.20 θ = 0.25 θ = 0.30

Wealth statistics

Mean 233,531 233,531 233,531 233,531 233,531

Median 218,154 216,612 219,280 217,672 217,408

St. dev. 62,166 62,426 59,877 58,226 56,284

V@R0.05 174,191 176,882 177,300 183,853 186,785

AV@R0.05 162,054 163,497 164,330 168,786 170,652

Kurtosis 9.93 10.31 13.85 13.88 14.58

Skewness 1.81 1.96 2.24 2.34 2.53

H&N allocation

Guaranteed capital 0% 0% 0% 0% 0%

Low risk 1 0% 0% 0% 0% 0%

Low risk 2 69.5% 63.5% 52.9% 51.7% 48.4%

Medium risk 2.6% 4.3% 1.2% 2.6% 2.7%

High risk 1 7.5% 10.1% 20.1% 20.4% 19.8%

High risk 2 20.5% 22.0% 25.8% 25.4% 29.0%

5 Parameter sensitivity analysis

Since the propensity-to-save λ and the employer contribution e affect both the optimal
portfolio and the benchmark portfolio in the same way, see Eqs. (5) and (23), the
optimal dynamic solution is not sensitive to these parameters. Further research could
consider the adoption of an alternative and unlinked benchmark to test such sensitivity.

Given the setting of the fourth representative, whose risk profile allows awide diver-
sification, we tested the sensitivity of the optimal solution to the turnover parameter
θ and to the years-to-retirement. Tables 5 and 6 show the here-and-now solutions and
final wealth statistics for a set of turnover values and stage lengths. A higher turnover
coefficient implies amore flexiblemodel, i.e. a portfolio which canmore easily change
its composition through the stages. Then, such flexibility results in a riskier here-and-
now allocation, which is consonant with a strategy which seeks wealth in the first
stages and moves to a safer position to reduce the risk at the end horizon. As remarked
by the final wealth statistics, despite the riskier here-and-now allocation, a more flexi-
ble portfolio can more efficiently reduce the risk and squeeze the left tail. Conversely,
a higher turnover induces a jumping strategy along the stages. For all the proposed
turnover coefficients the average final wealth corresponds to the benchmark portfolio
average final wealth.

A change in the end horizon, i.e. in the structure of the lengths of the stages, shows
a reasonably corresponding behavior of the solution. A short time horizon does not
allowadynamic strategy to effectively reduce the risk. Thus, the here-and-nowsolution
must already be less risky than in the case of a longer horizon, that is, a longer horizon
permits a more aggressive initial strategy. The final wealth statistics reflect both the
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Table 6 Sensitivity analysis with respect to the years-to-retirement structure

Years-to-retirement 23 28 33 38 43
Stage lengths 1–2–4–6–10 1–2–5–8–12 1–2–6–10–14 1–2–7–12–16 1–2–8–14–18

Wealth statistics

Mean 143,420 183,313 233,531 293,801 369,613

Median 137,631 175,880 219,280 270,854 328,110

St. dev. 26,067 36,558 59,877 85,225 13,0511

V@R0.05 116,900 145,651 177,300 224,530 281,594

AV@R0.05 110,692 136,174 164,330 203,611 248,560

Kurtosis 5.53 9.80 13.85 14.61 20.36

Skewness 1.32 1.64 2.24 2.45 3.14

H&N allocation

Guaranteed capital 0% 0% 0% 0% 0%

Low risk 1 0% 0% 0% 0% 0%

Low risk 2 76.4% 66.3% 52.9% 48.4% 34.3%

Medium risk 0% 4.1% 1.2% 6.0% 5.5%

High risk 1 13.0% 11.9% 20.1% 13.2% 14.4%

High risk 2 10.6% 17.8% 25.8% 32.3% 45.8%

riskiness of the strategy and the time horizon, highlighting higher AV@RD, higher
wealth, and larger dispersion for longer term strategies.

6 Conclusion

In conclusion, nowadays, a quantitative approach is strongly recommended not only
to manage a single pension fund in an ALM perspective, but also to define the optimal
pension funds offered by pension plan sponsors. We propose a two-step approach to
address and solve this problem, considering the case in which the pension fund is
issued for a homogeneous group of people. In the first step, we use a cluster analysis
in order to analyse the population and identify a set of representative members. Then,
for each representative, the optimal here-and-now allocation (the first stage decision of
a multistage stochastic problem) in a dynamic pension perspective strategy is found.
Each of these optimal here-and-now allocations describes a pension fund that the
pension provider should issue.

For the analysed population, having 4 representatives was found to be optimal. The
corresponding 4 here-and-now solutions, one for each representative, are reported in
Table 7.

The percentage allocation is similar for funds A and B. Both invest a high percent-
age in the two lower risk assets (93.9 and 98.0% respectively) and only a residual
percentage in the medium risk asset. Fund C moves to a more balanced allocation by
investing 79.7% in a lower risk asset and 20.3% in the three most risky assets. The
most aggressive pension fund is D which allocates more than 45% in the two riskiest
assets. Analysing the wealth evolutions, it is clear that young representative members
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Table 7 Summary of the allocations of the pension funds

Fund A (%) Fund B (%) Fund C (%) Fund D (%)

Guaranteed capital 12.3 4.0 0 0

Low risk 1 81.6 94.0 0 0

Low risk 2 0 0 79.7 52.9

Medium risk 6.1 2.0 1.4 1.2

High risk 1 0 0 14.8 20.1

High risk 2 0 0 4.1 25.8

can afford more risky positions and achieve higher returns than older investors. The
main driver of the allocation is still the risk/reward profile of the investor no matter if
he/she is young or old. Consequently, the final wealth distribution reflects the portfolio
risk attitude.

The number of pension funds equals the number of clusters. Clearly, the pension
plan provider has to decide whether the proposed pension funds are sufficiently differ-
ent from each other, in order to justify the implementation of all of them. The correct
balance between the pension plan sponsor’s effort and the members’ satisfaction is
hard to attain, but the proposed method may provide many hints. In the case of our
data, a simple cluster analysis suggests considering four representatives. However, the
optimal allocations show that maybe three funds are enough. The final decision about
the number of funds is up to the sponsor. Anyway, we can conclude that either three
or four pension funds should be issued.
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Dupačová J, Hurt J, Štěpán J (2002) Stochastic modeling in economics and finance. Applied optimization.
Springer, Berlin
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