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Abstract We examine a new optimization problem formulated in the tropical math-
ematics setting as a further extension of certain known problems. The problem is to
minimize a nonlinear objective function, which is defined on vectors over an idem-
potent semifield by using multiplicative conjugate transposition, subject to inequality
constraints. As compared to the known problems, the new one has a more general
objective function and additional constraints. We provide a complete solution in an
explicit form to the problem by using an approach that introduces an auxiliary variable
to represent the values of the objective function, and then reduces the initial problem to
a parametrized vector inequality. The minimum of the objective function is evaluated
by applying the existence conditions for the solution of this inequality. A complete
solution to the problem is given by solving the parametrized inequality, provided the
parameter is set to the minimum value. As a consequence, we obtain solutions to new
special cases of the general problem. To illustrate the application of the results, we
solve a real-world problem drawn from time-constrained project scheduling, and offer
a representative numerical example.

Keywords Tropical mathematics · Idempotent semifield · Constrained optimization ·
Complete solution · Time-constrained project scheduling

1 Introduction

Tropical optimization problems constitute an important research and application
domain of tropical mathematics. As an applied mathematical discipline that concen-
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92 N. Krivulin

trates on the theory and methods of semirings with idempotent addition, tropical
(idempotent) mathematics dates back to the works of Pandit (1961), Cuninghame-
Green (1962), Hoffman (1963), Vorob’ev (1963) and Romanovskiı̆ (1964), at least
two of which (Cuninghame-Green 1962; Hoffman 1963) have been motivated and
illustrated by optimization problems.

Many subsequent publications that contributed to the development of tropical
mathematics, including the monographs by Cuninghame-Green (1979), Zimmermann
(1981), Kolokoltsov and Maslov (1997), Gondran and Minoux (2008), Butkovič
(2010) and Maclagan and Sturmfels (2015), and a number of contributed papers,
were concerned with optimization problems, most of which have been drawn from
real-world applications in operations research and management science.

Multidimensional tropical optimization problems are generally formulated in the
tropical mathematics setting to minimize or maximize linear and nonlinear functions
defined on vectors over idempotent semifields (semiringswithmultiplicative inverses).
The problems may include constraints given by linear and nonlinear equalities and
inequalities. Many of the problems that come from real-world applications and, at the
same time, admit solutions in the framework of tropical mathematics have nonlinear
objective functions defined through multiplicative conjugate transposition of vectors
(see, e.g., an overview in Krivulin 2015b).

There are problems with objective functions that involve the tropical algebraic
product x−Ax, where A is a given square matrix, x is the unknown vector, and
x− is the multiplicative conjugate transpose of x. These functions appear in vari-
ous applications in operations research and management science, including problems
in project (machine) scheduling (Cuninghame-Green 1962, 1979; Superville 1978;
Krivulin 2015a, c, d), location analysis (Zimmermann 1992; Hudec and Zimmermann
1993; Krivulin 2011), and decisionmaking (Elsner and van denDriessche 2004, 2010;
Gursoy et al. 2013), to name only a few.

The problem of minimizing the product in question was examined in early works
(Cuninghame-Green 1962; Engel and Schneider 1975; Superville 1978) by using con-
ventional mathematical techniques. It was shown that the minimum in the problem is
equal to the tropical spectral radius of the matrix A, and attained at the correspond-
ing tropical eigenvectors of this matrix. Later, the problem was formulated in the
framework of tropical mathematics in Cuninghame-Green (1979), where a complete
solution was proposed by reducing to a linear programming problem. Solutions based
on tropical mathematics were derived in Elsner and van den Driessche (2004) and
Elsner and van den Driessche (2010). The results of Elsner and van den Driessche
(2010) included an implicit description of a complete solution in the form of a vector
inequality, and provided a computational procedure to solve the inequality. Finally,
complete solutions in terms of tropical mathematics to both the problem and its gen-
eralizations, which have objective functions of an extended form as well as additional
constraints, were given in Krivulin (2014, 2015a, b).

In this paper,we consider a new rather general optimizationproblem,which includes
known problems as special cases. We provide a complete solution in an explicit form
on the basis of the approach developed in Krivulin (2014, 2015a, b), which introduces
an additional variable to represent the values of the objective function, and then reduces
the initial problem to a parametrized vector inequality. The minimum of the objective
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function is evaluated by using the solution existence conditions for the inequality. A
complete solution to the problem is given by the solutions of the parametrized inequal-
ity, provided the parameter is set to the minimum value. We discuss the computational
complexity of the result to show that the solution can be obtained in polynomial time.
As a consequence, we propose solutions to new special cases of the general problem.

We apply the results obtained to derive a new complete solution of a real-world
problem that was drawn from project scheduling (see, e.g. Demeulemeester and Her-
roelen 2002; Neumann et al. 2003; T’kindt and Billaut 2006, for further details on
optimal scheduling), and also served to motivate the study. We consider a project that
consists of activities operating in parallel under temporal constraints in various forms,
including release dates and time windows. For each activity, the flow-time is defined
to be the time interval between its initiation and completion. The objective is to find
an optimal schedule that minimizes the maximum flow time over all activities. This
problem is an extended version of that in Krivulin (2015a), where a less complicated
system of temporal constraints is considered. To illustrate the solution obtained for the
problem, and the computational technique implemented by the solution, we present a
representative numerical example.

Note that the problem under examination can be formulated as a linear program, and
then solved by one of the known solution techniques of linear programming. However,
these techniques usually take the form of iterative algorithms, and do not generally
guarantee an explicit closed-form solution. Unlike the algorithmic approaches, the
proposed solution provides direct results in a compact vector form suitable for further
analysis and practical use. Considering, in addition, that the new solution can be
calculated in polynomial time, it can certainly serve as a helpful complement and
supplement to existing solutions.

The paper is organized as follows. Section 2 includes definitions and notation to
be used in the subsequent sections. In Section 3, we present some preliminary results,
including a binomial identity for matrices and the solution to linear inequalities. The
main result is provided in Sect. 4, where we first offer examples of known optimization
problems, then formulate and solve a new general problem, discuss the computational
complexity of the solution, andfinally, give solutions to new special cases of the general
problem. Section 5 contains an application of the results in project scheduling, and
concludes with a numerical example.

2 Basic definitions, notation and observations

We start with a short introduction in the context of tropical (idempotent) algebra
to offer a unified and self-contained framework for the formulation and solution of
tropical optimization problems in the rest of the paper. Below, we follow the notation
and results in Krivulin (2014, 2015a, b), which form a useful basis for the analysis and
solution of the problems under study in a systematic manner and in a compact closed
form. Further details on tropical mathematics at both introductory and advanced levels
can be found in Baccelli et al. (1993), Kolokoltsov and Maslov (1997), Golan (2003),
Heidergott et al. (2006), Gondran and Minoux (2008), Butkovič (2010) and Maclagan
and Sturmfels (2015).
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94 N. Krivulin

2.1 Idempotent semifield

An idempotent semifield is an algebraic structure (X,⊕,⊗,0,1), where X is a non-
empty set, ⊕ and ⊗ are binary operations, called addition and multiplication, 0 and
1 are distinct elements in X, called zero and one, such that (X,⊕,0) is an idem-
potent commutative monoid, (X\{0},⊗,1) is an Abelian group, and multiplication
distributes over addition.

The semifield has idempotent addition,which implies that x⊕x = x for each x ∈ X,
and invertible multiplication, which allows each nonzero x to have its multiplicative
inverse x−1 such that x ⊗ x−1 = 1.

Idempotent addition induces a partial order on X such that x ≤ y if and only if
x ⊕ y = y. It follows from this definition that x ≤ x ⊕ y and y ≤ x ⊕ y. Furthermore,
both operations⊕ and⊗ are monotone, which implies that the inequality x ≤ y yields
x ⊕ z ≤ y⊕ z and x ⊗ z ≤ y⊗ z for all z. The inversion is antitone, which means that
the inequality x ≤ y results in x−1 ≥ y−1 for nonzero x and y. Finally, the inequality
x ⊕ y ≤ z is equivalent to the two inequalities x ≤ z and y ≤ z.

It is assumed that the partial order can be extended to a linear one to take the
semifield as linearly ordered. The relation symbols and the optimization objectives
are considered below in terms of this order.

Integer powers are routinely used as shorthand for iterated multiplication such that
x0 = 1 and xm = xm−1 ⊗ x for all x ∈ X and integer m ≥ 1. Moreover, it is
assumed that the equation xm = a has a solution for any a ∈ X and positive integerm,
which extends the power notation to rational exponents, and thus makes the semifield
algebraically complete (radicable). In the expressions that follow, the multiplication
sign ⊗ is omitted for brevity.

Examples of the semifield include Rmax,+ = (R ∪ {−∞},max,+,−∞, 0) and
Rmin,× = (R+ ∪ {+∞},min,×,+∞, 1), where R is the set of real numbers and
R+ = {x > 0|x ∈ R}, to list only a few.

The semifield Rmax,+ is equipped with addition and multiplication defined, respec-
tively, as max and +. Furthermore, the number −∞ is taken as zero, and 0 is as one.
Each x ∈ R has the inverse x−1, which corresponds to the opposite number −x in the
usual notation. The power x y exists for any x, y ∈ R and coincides with the ordinary
arithmetic product xy. The order defined by idempotent addition is consistent with the
conventional total order on R.

In Rmin,×, we have ⊕ = min, ⊗ = ×, 0 = +∞ and 1 = 1. The inversion and
exponentiation notations have the usual meaning. The relation ≤ defines an order that
is opposite to the standard linear order on R.

2.2 Matrices and vectors

The set of matrices of m rows and n columns over X is denoted Xm×n . A matrix with
all entries equal to 0 is the zero matrix denoted by 0. A matrix is row- (column-)
regular, if it has no zero rows (columns).

Matrix addition and multiplication, and scalar multiplication follow the usual rules
with the scalar operations ⊕ and ⊗ in place of the ordinary addition and multiplica-
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tion. The above inequalities, which represent properties of the scalar operations, are
extended entry-wise to matrix inequalities.

For any matrix A ∈ Xm×n , its transpose is the matrix AT ∈ Xn×m .
The square matrices of order n form the set denoted by Xn×n . A square matrix

having 1 along the diagonal and 0 elsewhere is the identity matrix denoted by I .
For any square matrix A, the nonnegative integer power is defined as A0 = I and
Am = AAm−1 for all integers m ≥ 1.

The trace of a matrix A = (ai j ) ∈ Xn×n is given by

trA = a11 ⊕ · · · ⊕ ann =
n⊕

i=1

aii .

The trace possesses the usual properties given by the equalities

tr(A ⊕ B) = trA ⊕ trB, tr(AB) = tr(BA), tr(x A) = x trA,

which are valid for any matrices A, B ∈ Xn×n and scalar x ∈ X.
A matrix with only one column (row) is a column (row) vector. In what follows,

all vectors are column vectors unless otherwise indicated. The set of column vectors
of order n is denoted Xn .

A vector is regular if it has only nonzero elements. Let x ∈ Xn be a regular vector
and A ∈ Xn×n be a row-regular matrix. Then, the result of the multiplication Ax is a
regular vector. If the matrix A is column-regular, then the row vector xT A is regular
as well.

For any nonzero vector x ∈ Xn , its multiplicative conjugate transpose is the row
vector x− = (x−

i ), where x−
i = x−1

i if xi 	= 0, and x−
i = 0 otherwise.

The conjugate transposition exhibits some significant properties to be used later.
Specifically, if x and y are regular vectors of the same order, then the inequality x ≤ y
implies x− ≥ y− and vice versa. Furthermore, for any nonzero vector x, the equality
x−x = 1 holds. Finally, if the vector x is regular, then the matrix inequality xx− ≥ I
is also valid.

A scalar λ ∈ X is an eigenvalue of a matrix A ∈ Xn×n , if there exists a nonzero
vector x ∈ Xn such that Ax = λx. The maximum eigenvalue is referred to as the
spectral radius of A, and given by Cuninghame-Green (1962), Vorob’ev (1963) and
Romanovskiı̆ (1964)

λ = trA ⊕ · · · ⊕ tr1/n(An) =
n⊕

m=1

tr1/m(Am).

3 Preliminary results

We now offer some auxiliary results to be used in the subsequent analysis of optimiza-
tion problems. We start with binomial identities for square matrices, and then describe
solutions to linear vector inequalities.
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96 N. Krivulin

The inequalities are examined using somewhat different techniques and notation
by many authors, including Vorob’ev (1963), Cuninghame-Green (1979), Zimmer-
mann (1981), Baccelli et al. (1993) and Gondran and Minoux (2008). Below, we offer
solutions given in a compact vector form that provides a natural basis for solving the
optimization problems in a straightforward and concise manner.

3.1 Binomial identities

Let A and B be square matrices of the same order, and m be a positive integer. Then,
the following binomial identity clearly holds:

(A ⊕ B)m =
m⊕

k=1

⊕

i0+i1+···+ik=m−k

Bi0(ABi1 ABi2 · · · ABik ) ⊕ Bm .

As an extension of this identity, we derive the following results. First, after sum-
mation over all m and rearrangement of the output to collect terms of like number of
cofactors A, we obtain the matrix equality

m⊕

k=1

(A ⊕ B)k =
m⊕

k=1

⊕

0≤i0+i1+···+ik≤m−k

Bi0(ABi1 · · · ABik ) ⊕
m⊕

k=1

Bk . (1)

Furthermore, by applying the trace and by using its properties, we rewrite (1) in
the form of the scalar equality

m⊕

k=1

tr(A ⊕ B)k =
m⊕

k=1

⊕

0≤i1+···+ik≤m−k

tr(ABi1 · · · ABik ) ⊕
m⊕

k=1

trBk . (2)

Both identities (1) and (2) are used below to expandmatrix expressions in evaluating
the minimum of the objective function.

3.2 Linear inequalities

Suppose that, given a matrix A ∈ Xm×n and a regular vector d ∈ Xm , the problem is
to find all vectors x ∈ Xn that satisfy the inequality

Ax ≤ d. (3)

A complete direct solution to the problem under fairly general conditions can be
found in the following form (see, e.g. Krivulin 2015a).

Lemma 1 For any column-regular matrix A and regular vector d, all solutions to (3)
are given by

x ≤ (d−A)−.

123



Solution to tropical optimization problems… 97

Furthermore, we consider the problem: given a matrix A ∈ Xn×n and a vector
b ∈ Xn , find all regular vectors x ∈ Xn that solve the inequality

Ax ⊕ b ≤ x. (4)

To describe a solution to inequality (4) in a compact form, we introduce a function
that maps each matrix A ∈ Xn×n onto the scalar

Tr(A) = trA ⊕ · · · ⊕ trAn,

and use the asterate operator (the Kleene star), which takes A to the matrix

A∗ = I ⊕ A ⊕ · · · ⊕ An−1.

Presented below is a complete solution proposed in Krivulin (2015b).

Theorem 1 For any matrix A and vector b, the following statements hold:

1. If Tr(A) ≤ 1, then all regular solutions to inequality (4) are given by x = A∗u,
where u is a regular vector such that u ≥ b.

2. If Tr(A) > 1, then there is no regular solution.

To conclude this section, we present a solution to a system that combines inequality
(4) with an upper bound on the vector x in the form

Ax ⊕ b ≤ x,

x ≤ d.
(5)

By application of both Lemma 1 and Theorem 1, we arrive at the next solution,
which is also a direct consequence of the result obtained in Krivulin (2014) for a
slightly more general system.

Lemma 2 For any matrix A, vector b and regular vector d, we denote � = Tr(A) ⊕
d−A∗b. Then, the following statements hold:

1. If � ≤ 1, then all regular solutions to system (5) are given by x = A∗u, where u
is a regular vector such that b ≤ u ≤ (d−A∗)−.

2. If � > 1, then there is no regular solution.

4 Solution to optimization problems

In this section, we consider optimization problems involving the function x−Ax,
where A is a given matrix, and x is the unknown vector. The unconstrained minimiza-
tion of this function is examined by different methods in various application contexts
(Cuninghame-Green 1962; Engel and Schneider 1975; Superville 1978; Cuninghame-
Green 1979; Elsner and van den Driessche 2004, 2010). Complete solutions to some
constrained problems are proposed in Krivulin (2014, 2015a, b)
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98 N. Krivulin

We present examples of both unconstrained and constrained problems, and then for-
mulate and solve a new general constrained optimization problem. As a consequence,
we offer solutions for some new special cases of the general problem.

The results are given in the context of an arbitrary idempotent semifield in a common
form, which can be readily interpreted in terms of particular semifields. Specifically,
for the semifieldRmax,+, we replace⊕ bymax and⊗ by+, and use the relation symbol
≤ in the usual sense. In the framework of Rmin,×, we put ⊕ = min and ⊗ = ×, and
understand the symbol≤ to indicate the order, which is opposite to the standard linear
order on R.

4.1 Examples of optimization problems

We start with an unconstrained problem that has the objective function written in a
basic form. Given a matrix A ∈ Xn×n , consider the problem to find regular vectors
x ∈ Xn that

minimize x−Ax, (6)

A solution to the problem can be provided by several ways (see, e.g. Krivulin 2014,
2015a, b), and takes the following form.

Lemma 3 Let A be a matrix with spectral radius λ > 0. Then, the minimum value in
problem (6) is equal to λ, and all regular solutions are given by

x = (λ−1A)∗u, u ∈ Xn .

Some extensions of problem (6) were examined in Krivulin (2014), Krivulin
(2015a, b), where more general forms of the objective function are considered and/or
further inequality constraints are added. Specifically, a problemwith an extended func-
tion is solved in Krivulin (2015a). Given a matrix A ∈ Xn×n , vectors p, q ∈ Xn , and
a scalar r ∈ X, the problem is to obtain regular x ∈ Xn that

minimize x−Ax ⊕ x− p ⊕ q−x ⊕ r. (7)

A complete direct solution to the problem is as follows.

Theorem 2 Let A be a matrix with spectral radius λ > 0, and q be a regular vector.
Then, the minimum value in problem (7) is equal to

μ = λ ⊕
n−1⊕

m=0

(q−Am p)1/(m+2) ⊕ r,

and all regular solutions are given by

x = (μ−1A)∗u, μ−1 p ≤ u ≤ μ(q−(μ−1A)∗)−.
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Suppose now that, given matrices A, B ∈ Xn×n , and a vector g ∈ Xn , we need to
find regular solutions x ∈ Xn to the problem

minimize x−Ax,

subject to Bx ⊕ g ≤ x.
(8)

The next complete solution to the problem is provided in Krivulin (2015b).

Theorem 3 Let A be a matrix with spectral radius λ > 0, and B a matrix with
Tr(B) ≤ 1. Then, the minimum value in problem (8) is equal to

μ = λ ⊕
n−1⊕

k=1

⊕

1≤i1+···+ik≤n−k

tr1/k(ABi1 · · · ABik ),

and all regular solutions are given by

x = (μ−1A ⊕ B)∗u, u ≥ g.

Below, we offer a solution to a new problem that combine the objective function in
(7) with the extended set of constraints in (5).

4.2 New constrained optimization problem

This section includes a complete solution to a constrained problem, which presents an
extended version of the problems considered above.We follow the approach developed
in Krivulin (2014, 2015a, b) to introduce an additional variable, which represents
the minimum value of the objective function, and then to reduce the problem to an
inequality, where the new variable plays the role of a parameter.

Suppose that, given matrices A, B ∈ Xn×n , vectors p, q, g, h ∈ Xn , and a scalar
r ∈ X, the problem is to find regular vectors x ∈ Xn that

minimize x−Ax ⊕ x− p ⊕ q−x ⊕ r,
subject to Bx ⊕ g ≤ x,

x ≤ h.

(9)

We start with some general remarks and useful notation. It immediately follows
from Lemma 2 that the inequality constraints in (9) have regular solutions if and only
if the condition Tr(B) ⊕ h−B∗g ≤ 1 holds, which is itself equivalent to the two
conditions Tr(B) ≤ 1 and h−B∗g ≤ 1.

Clearly, the constraints can be rearranged to provide another representation of the
problem in the form

minimize x−Ax ⊕ x− p ⊕ q−x ⊕ r,
subject to Bx ≤ x,

g ≤ x ≤ h.

(10)
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100 N. Krivulin

To describe the solution in a compact form, we introduce an auxiliary notation for
large matrix sums. First, we define the matrices S0 = I and

Sk =
⊕

0≤i1+···+ik≤n−k

ABi1 · · · ABik , k = 1, . . . , n; (11)

and note that they satisfy the inequality Sk ≥ Ak .
For a different type of sums, we introduce the notation T0 = B∗ and

T k =
⊕

0≤i0+i1+···+ik≤n−k−1

Bi0(ABi1 · · · ABik ), k = 1, . . . , n − 1. (12)

It is easy to see that the matrices are related by the equality Sk+1 = AT k , which
is valid for all k = 0, 1, . . . , n − 1. Finally, note that, under the condition B = 0, the
matrices reduce to Sk = Ak and T k = Ak .

We are now in a position to offer a complete solution to problem (9).

Theorem 4 Let A be a matrix with spectral radius λ, and B be a matrix such that
Tr(B) ≤ 1. Let p and g be vectors, q and h be regular vectors, and r be a scalar
such that h−B∗g ≤ 1 and λ ⊕ (q− p)1/2 ⊕ r > 0.

Then, the minimum value in problem (9) is equal to

θ =
n⊕

k=1

tr1/k(Sk) ⊕
n−1⊕

k=1

(h−T k g)1/k

⊕
n−1⊕

k=0

(q−T k g ⊕ h−T k p)1/(k+1) ⊕
n−1⊕

k=0

(q−T k p)1/(k+2) ⊕ r,

and all regular solutions are given by

x = (θ−1A ⊕ B)∗u,

where u is any regular vector that satisfies the conditions

θ−1 p ⊕ g ≤ u ≤ ((θ−1q− ⊕ h−)(θ−1A ⊕ B)∗)−.

Proof We introduce a parameter to represent the minimum value of the objective
function, and then reduce the problem to solving a parametrized system of linear
inequalities. The necessary and sufficient conditions for the system to have regular
solutions serve to evaluate the parameter, whereas the general solution of the system
is taken as a complete solution to the initial optimization problem.

Denote by θ the minimum of the objective function over all regular vectors x. Then,
all regular solutions to problem (9) are determined by the system
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x−Ax ⊕ x− p ⊕ q−x ⊕ r ≤ θ, (13)

Bx ⊕ g ≤ x,

x ≤ h.

The first inequality at (13) is equivalent to the four inequalities

x−Ax ≤ θ, x− p ≤ θ, q−x ≤ θ, r ≤ θ. (14)

We use these inequalities to derive a lower bound for θ and verify that θ 	= 0. The
first inequality at (14) and Lemma 3 imply that θ ≥ x−Ax ≥ λ. From the next two
inequalities and a property of the conjugate transposition, we derive θ2 ≥ q−xx− p ≥
q− p, which gives θ ≥ (q− p)1/2. Since θ ≥ r as well, we finally obtain a lower bound
for θ in the form

θ ≥ λ ⊕ (q− p)1/2 ⊕ r, (15)

where the right-hand side is nonzero by the conditions of the theorem.
We can now multiply the first two inequalities at (14) by θ−1, and then apply

Lemma 3 to the first three. As a result, we have the inequalities

θ−1Ax ≤ x, θ−1 p ≤ x, x ≤ θq.

As the next step, we combine these inequalities with those in the system at (13).
Specifically, the first two inequalities together with Bx ⊕ g ≤ x give the inequality
(θ−1A ⊕ B)x ⊕ θ−1 p ⊕ g ≤ x.

In addition, we take the inequalities x ≤ θq and x ≤ h, and put them into the
forms x− ≥ θ−1q− and x− ≥ h−. The last two inequalities are combined into one,
which is then rewritten to give x ≤ (θ−1q− ⊕ h−)−.

By coupling the obtained inequalities, we represent system (13) as

(θ−1A ⊕ B)x ⊕ θ−1 p ⊕ g ≤ x,

x ≤ (θ−1q− ⊕ h−)−.
(16)

Considering that system (16) has the form of (5), we can apply Lemma 2 to examine
this system. By the lemma, the necessary and sufficient condition for (16) to have
regular solutions takes the form

Tr(θ−1A ⊕ B) ⊕ (θ−1q− ⊕ h−)(θ−1A ⊕ B)∗(θ−1 p ⊕ g) ≤ 1.

To solve this inequality with respect to the parameter θ , we put it in a more conve-
nient form by expanding the left-hand side in powers of θ .

As a starting point, we examine the matrix asterate

(θ−1A ⊕ B)∗ =
n−1⊕

k=0

(θ−1A ⊕ B)k = I ⊕
n−1⊕

k=1

(θ−1A ⊕ B)k .
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102 N. Krivulin

After application of (1) to the second term, we rearrange the expression to collect
terms with the same power of θ , and then use (12) to write

(θ−1A ⊕ B)∗ =
n−1⊕

k=1

⊕

0≤i0+i1+···+ik≤n−k−1

θ−kBi0(ABi1 · · · ABik ) ⊕
n−1⊕

k=0

Bk

=
n−1⊕

k=1

θ−kT k ⊕ T0 =
n−1⊕

k=0

θ−kT k .

By using (2), (11), (12) and properties of the trace function, we also have

Tr(θ−1A ⊕ B) =
n⊕

k=1

tr(θ−1A ⊕ B)k

=
n⊕

k=1

⊕

0≤i1+···+ik≤n−k

θ−k tr(ABi1 · · · ABik ) ⊕
n⊕

k=1

tr(Bk)

=
n⊕

k=1

θ−k tr(Sk) ⊕ Tr(B).

Substitution of these results into the condition for regular solutions yields

n⊕

k=1

θ−k tr(Sk) ⊕
n−1⊕

k=0

θ−k(θ−1q− ⊕ h−)T k(θ
−1 p ⊕ g) ⊕ Tr(B) ≤ 1.

Since Tr(B) ≤ 1 by the conditions of the theorem, the term Tr(B) does not affect
the solution of the inequality, and hence can be omitted. The remaining inequality is
equivalent to the system of inequalities

θ−k tr(Sk) ≤ 1, k = 1, . . . , n;
θ−k(θ−1q− ⊕ h−)T k(θ

−1 p ⊕ g) ≤ 1, k = 0, 1, . . . , n − 1;

which can be further split into the system

θ−k tr(Sk) ≤ 1, k = 1, . . . , n;
θ−kh−T k g ≤ 1,

θ−k−1(q−T k g ⊕ h−T k p) ≤ 1,

θ−k−2q−T k p ≤ 1, k = 0, 1, . . . , n − 1.

Note that h−T0g = h−B∗g ≤ 1 by the conditions of the theorem, and thus the
second inequality in the system is valid at k = 0 for all θ > 0.
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By solving the inequalities, we have

θ ≥ tr1/k(Sk), k = 1, . . . , n;
θ ≥ (h−T k g)1/k, k = 1, . . . , n − 1;
θ ≥ (q−T k g ⊕ h−T k p)1/(k+1),

θ ≥ (q−T k p)1/(k+2), k = 0, 1, . . . , n − 1.

The obtained solutions can be combined into one equivalent inequality

θ ≥
n⊕

k=1

tr1/k(Sk) ⊕
n−1⊕

k=1

(h−T k g)1/k

⊕
n−1⊕

k=0

(q−T k g ⊕ h−T k p)1/(k+1) ⊕
n−1⊕

k=0

(q−T k p)1/(k+2).

We have to couple the lower bound given by (15) with that defined by the last
inequality. It is not difficult to verify that the right-hand side of this inequality already
takes account of the terms λ and (q− p)1/2 presented in (15). Indeed, considering that
Sk ≥ Ak , we have

n⊕

k=1

tr1/k(Sk) ≥
n⊕

k=1

tr1/k(Ak) = λ.

Moreover, since T0 = B∗ ≥ I , it is easy to see that

n−1⊕

k=0

(q−T k p)1/(k+2) ≥ (q−T0 p)1/2 ≥ (q− p)1/2.

By combining all lower bounds obtained for θ , we arrive at the inequality

θ ≥
n⊕

k=1

tr1/k(Sk) ⊕
n−1⊕

k=1

(h−T k g)1/k

⊕
n−1⊕

k=0

(q−T k g ⊕ h−T k p)1/(k+1) ⊕
n−1⊕

k=0

(q−T k p)1/(k+2) ⊕ r.

Since θ is assumed to be the minimal value of the objective function, this inequality
must hold as an equality, which yields the desired minimum.

Finally, we take the minimum value of θ , and then apply Lemma 2 to obtain all
solutions of the system at (16) in the form

x = (θ−1A ⊕ B)∗u, θ−1 p ⊕ g ≤ u ≤ ((θ−1q− ⊕ h−)(θ−1A ⊕ B)∗)−.
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Because the solution obtained is also a complete solution of the initial optimization
problem, this ends the proof of the theorem. ��

We conclude this section with a brief discussion of the computational complexity
of the solution obtained to see that it is polynomial in the dimension n. Indeed, this
complexity is determined by the complexity of computing the minimum value θ , as
the other components of the solution are given by a finite number of matrix and vector
operations, and thus obviously take no more than polynomial time.

Furthermore, it directly follows from the expression for θ that, if the evaluation of
the matrix sequences S1, . . . , Sn and T0, . . . , T n−1 has polynomial complexity, then
so has that of θ . Considering that Sk+1 = AT k for all k = 0, . . . , n − 1, we need to
verify that T k can be obtained in polynomial time.

To describe a polynomial scheme of calculating T k , we first write

T k =
n−k−1⊕

l=1

Qkl , Qkl =
⊕

i0+i1+···+ik=l
Bi0(ABi1 · · · ABik ),

where Qkl is the sum of all matrix products that are comprised of k factors equal to
A and l factors equal to B, with Qk0 = Ak , Q0l = Bl and Q00 = I . In this case, the
evaluation of the matrices T0, . . . , T n−1 reduces to computing the matrices Qkl for
all k = 0, . . . , n − 1 and l = 0, . . . , n − k − 1.

Furthermore, we note that the recurrent relation Qkl = AQk−1,l ⊕ BQk,l−1 holds
for all k, l = 1, 2, . . . It is clear that this relation offers a natural way to obtain
successively allmatrices Qkl , using twomatrixmultiplications andonematrix addition
per matrix. Since the overall number of matrices involved in computation is 1 + 2 +
· · · + (n − 1) = n(n − 1)/2, the computation of all matrices T k requires polynomial
time, and thus the entire solution has polynomial complexity.

4.3 Some special cases

As direct consequences of the result obtained, we now find solutions to special cases
of problems (9) and (10) with reduced sets of constraints. To begin with, eliminate the
first constraint in (10) and consider the problem

minimize x−Ax ⊕ x− p ⊕ q−x ⊕ r,
subject to g ≤ x ≤ h.

(17)

Clearly, the solution to this problem can be derived from that of (10) by setting
B = 0. Under this condition, we have Sk = Ak and T k = Ak , whereas the solution
is described as follows.

Corollary 1 Let A be a matrix with spectral radius λ. Let p and g be vectors, q and
h be regular vectors, and r be a scalar such that h−g ≤ 1 and λ⊕ (q− p)1/2 ⊕r > 0.
Then, the minimum value in problem (17) is equal to
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θ = λ ⊕
n−1⊕

k=1

(h−Ak g)1/k ⊕
n−1⊕

k=0

(q−Ak g ⊕ h−Ak p)1/(k+1)

⊕
n−1⊕

k=0

(q−Ak p)1/(k+2) ⊕ r,

and all regular solutions are given by

x = (θ−1A)∗u, θ−1 p ⊕ g ≤ u ≤ ((θ−1q− ⊕ h−)(θ−1A)∗)−.

Furthermore, we consider another special case of (10), which takes the form

minimize x−Ax ⊕ x− p ⊕ q−x ⊕ r,
subject to Bx ≤ x.

(18)

After slight modification of the proof of Theorem 4, we arrive at the next result,
which can also be obtained directly by putting g = 0 and h− = 0T in the solution of
problem (10).

Corollary 2 Let A be a matrix with spectral radius λ, and B be a matrix such that
Tr(B) ≤ 1. Let p be a vector, q be a regular vector, and r be a scalar such that
λ ⊕ (q− p)1/2 ⊕ r > 0. Then, the minimum value in problem (18) is equal to

θ =
n⊕

k=1

tr1/k(Sk) ⊕
n−1⊕

k=0

(q−T k p)1/(k+2) ⊕ r,

and all regular solutions are given by

x = (θ−1A ⊕ B)∗u, θ−1 p ≤ u ≤ θ(q−(θ−1A ⊕ B)∗)−.

Finally, note that eliminating both inequality constraints in (9) leads to the same
solution as that provided by Theorem 2.

5 Application to project scheduling

We now apply the result obtained to solve an example problem, which is drawn
from project scheduling (Demeulemeester and Herroelen 2002; Neumann et al. 2003;
T’kindt and Billaut 2006) and serves to motivate and illustrate the study.

Consider a project consisting of a set of activities that are performed in parallel
under various temporal constraints given by precedence relationships, release times
and time windows. The precedence relationships are defined for each pair of activities
and include the start–finish constraints on the minimum allowed time lag between the
initiation of one activity and completion of another, and the start–start constraints on
the minimum lag between the initiations of the activities. Once an activity starts, it
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continues to its completion, and no interruption is allowed. The activities are completed
as soon as possible under the start–finish constraints.

The release time constraints take the form of release dates and release deadlines to
specify that the activities cannot be initiated, respectively, before and after prescribed
times. The time windows are given by lower and upper boundaries, and determine the
minimum time slots preallocated to each activity. The activities have to occupy their
time windows entirely. If the initiation time of an activity falls to the right of the lower
boundary of its window, this time is adjusted by shifting to this boundary. In a similar
way, the completion time is set to the upper boundary if it appears to the left of this
boundary.

Each activity in the project has its flow-time defined as the duration of the interval
between the adjusted initiation and completion times. A schedule is optimal if it
minimizes the maximum flow-times over all activities. The problem of interest is to
find the initiation and completion times of the activities to provide an optimal schedule
subject to the temporal constraints described above.

5.1 Representation and solution of scheduling problem

Suppose a project involves n activities. For each activity i = 1, . . . , n, let xi be the
initiation and yi the completion time. We denote the minimum possible time lags
between the initiation of activity j = 1, . . . , n and the completion of i by ai j , and
between the initiations of j and i by bi j . If a time lag is not specified for a pair of
activities, we set it to −∞.

The start–finish constraints yield the equalities

yi = max(ai1 + x1, . . . , ain + xn), i = 1, . . . , n;

whereas the start–start constraints lead to the inequalities

xi ≥ max(bi1 + x1, . . . , bin + xn), i = 1, . . . , n.

Let gi and hi be, respectively, the possible earliest and latest initiation times. The
release date and release deadline constraints are given by the inequalities

gi ≤ xi ≤ hi , i = 1, . . . , n.

Then, we denote the lower and upper boundaries of the minimum time window
for activity i by qi and pi , respectively. Let si be the adjusted initiation time and ti
the adjusted completion time of the activity. Since the time window must be fully
occupied, we have

si = min(xi , qi ) = −max(−xi ,−qi ), ti = max(yi , pi ), i = 1, . . . , n.

Finally, the maximum flow-time over all activities is given by

max(t1 − s1, . . . , tn − sn).
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We are now in a position to represent the optimal scheduling problem of interest as
that of finding xi , yi , si and ti for all i = 1, . . . , n to

minimize max1≤i≤n(ti − si ),
subject to si = −max(−xi ,−qi ), ti = max(yi , pi ),

yi = max1≤ j≤n(ai j + x j ), xi ≥ max1≤ j≤n(bi j + x j ),
gi ≤ xi ≤ hi , i = 1, . . . , n.

It is not difficult to see that this problem can be represented and solved within the
framework of linear programming, which generally offers algorithmic solutions rather
than a direct complete solution in an explicit form.

To obtain a direct solution, we place the problem in the context of tropical mathe-
matics. Considering that the problem is formulated only in terms of the operations of
maximum, ordinary addition, and additive inversion, we can rewrite it in the setting
of the semifield Rmax,+ as follows:

minimize
⊕n

i=1 s
−1
i ti ,

subject to si = (x−1
i ⊕ q−1

i )−1, ti = yi ⊕ pi ,
yi = ⊕n

j=1 ai j x j , xi ≥ ⊕n
j=1 bi j x j ,

gi ≤ xi ≤ hi , i = 1, . . . , n.

Furthermore, we put the problem into a compact vector form. We introduce the
matrix-vector notation

A = (ai j ), B = (bi j ), x = (xi ), y = (yi ), g = (gi ), h = (hi ),

and write the start–finish, start–start and release time constraints as

y = Ax, x ≥ Bx, g ≤ x ≤ h.

To take into account the time window boundaries and adjusted times, we use the
vector notation

s = (si ), t = (ti ), p = (pi ), q = (qi ).

The vectors of adjusted initiation and completion times take the form

s = (x− ⊕ q−)−, t = y ⊕ p.

The optimal scheduling problem to minimize the maximum flow-time subject to
the temporal constraints under consideration now becomes

minimize s− t,
subject to s− = x− ⊕ q−, t = y ⊕ p,

Ax = y, Bx ≤ x,

g ≤ x ≤ h.

(19)
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Note that, in the context of scheduling problems, it is natural to consider the matrix
A as column-regular matrix, and the vectors p, q and h as regular.

A complete solution to the problem is given by the next result.

Theorem 5 Let Abea column-regularmatrix, and B beamatrix such thatTr(B) ≤ 1.
Let p, q and h be regular vectors and g be a vector such that h−B∗g ≤ 1. Then, the
minimum flow-time in problem (19) is equal to

θ =
n⊕

k=1

tr1/k(Sk) ⊕
n−1⊕

k=1

(h−T k g)1/k ⊕
n⊕

k=1

(q−Sk g)1/k

⊕
n−1⊕

k=0

(h−T k p)1/(k+1) ⊕
n⊕

k=0

(q−Sk p)1/(k+1), (20)

and the vectors of initiation and completion times are given by

x = (θ−1A ⊕ B)∗u, y = A(θ−1A ⊕ B)∗u, (21)

s = (((θ−1A ⊕ B)∗u)− ⊕ q−)−, t = A(θ−1A ⊕ B)∗u ⊕ p, (22)

where u is any vector that satisfies the conditions

θ−1 p ⊕ g ≤ u ≤ ((θ−1q−A ⊕ h−)(θ−1A ⊕ B)∗)−. (23)

Proof First, we eliminate the vectors s and t from problem (19) by representing the
objective function as

s− t = (x− ⊕ q−)( y ⊕ p) = x− y ⊕ q− y ⊕ x− p ⊕ q− p.

Furthermore, we substitute y = Ax to reduce (19) to the problem

minimize x−Ax ⊕ q−Ax ⊕ x− p ⊕ q− p,
subject to Bx ≤ x,

g ≤ x ≤ h,

which has the form of (10), where q− is replaced by q−A and r by q− p.
To apply Theorem 4, we note that, under the given conditions, the conditions of the

theorem are satisfied as well. Specifically, since both vectors p and q are regular, we
have r = q− p > 0, and thus provide the last condition of Theorem 4.

Next, we refine the expression for θ by applying the identity AT k = Sk+1, which
is valid for all k = 0, . . . , n − 1.

After some rearrangement of sums, we arrive at (20). Both the representation for
x at (21) and the condition on u at (23) are directly obtained from Theorem 4. The
other expressions in (21) and (22) are immediate consequences. ��

As before, the solutions to special cases without constraints are readily derived from
the general solution offered by Theorem 5. Specifically, we eliminate the boundary
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constraint g ≤ x ≤ h by setting g = 0 and h− = 0T , and/or the linear inequality
constraint with matrix in the form Bx ≤ x by setting B = 0, which further yields the
substitutions Sk = Ak and T k = Ak .

5.2 Numerical example

To provide a clear illustration of the above result and of the computational technique,
we solve in detail a simple low-dimensional problem. Even though the example under
consideration is somewhat artificial, it well demonstrates the applicability of the solu-
tion to real-world problems of higher dimension.

Let us examine a project that involves n = 3 activities under constraints given by
the matrices

A =
⎛

⎝
4 0 −∞
2 3 1
1 1 3

⎞

⎠ , B =
⎛

⎝
−∞ −1 1

0 −∞ 2
−1 −∞ −∞

⎞

⎠ ,

and by the vectors

p =
⎛

⎝
4
4
5

⎞

⎠ , q =
⎛

⎝
3
2
1

⎞

⎠ , g =
⎛

⎝
0
0
1

⎞

⎠ , h =
⎛

⎝
2
3
3

⎞

⎠ .

We start with the verification of the existence conditions for regular solutions in
Theorem 5. First note that the matrix A is obviously column-regular. In what follows,
we need the powers of the matrix A, which have the form

A2 =
⎛

⎝
8 4 1
6 6 4
5 4 6

⎞

⎠ , A3 =
⎛

⎝
12 8 5
10 9 7
9 7 9

⎞

⎠ .

Then, we take the matrix B and calculate

B2 =
⎛

⎝
0 −∞ 1
1 −1 1

−∞ −2 0

⎞

⎠ , B3 =
⎛

⎝
0 −1 1
0 0 2

−1 −∞ 0

⎞

⎠ , Tr(B) = 0.

Furthermore, we successively obtain

B∗ =
⎛

⎝
0 −1 1
1 0 2

−1 −2 0

⎞

⎠ , h−B∗ = (−2 −3 −1
)
, h−B∗g = 0.

Since Tr(B) = h−B∗g = 0, where 0 = 1, we conclude that the conditions of
Theorem 5 are fulfilled, and thus the problem under study has regular solutions.
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As the next step,wefind theminimumvalue θ by application of (20). The evaluation
of θ involves the matrices

S0 = I, S1 = A ⊕ AB ⊕ AB2, S2 = A2 ⊕ ABA ⊕ A2B, S3 = A3,

T0 = B∗, T1 = A ⊕ AB ⊕ BA, T2 = A2.

To obtain S1, S2 and T1, we calculate the matrices

AB =
⎛

⎝
0 3 5
3 1 5
2 0 3

⎞

⎠ , BA =
⎛

⎝
2 2 4
4 3 5
3 −1 −∞

⎞

⎠ ,

and then the matrices

AB2 =
⎛

⎝
4 −1 5
4 2 4
2 1 3

⎞

⎠ , ABA =
⎛

⎝
6 6 8
7 6 8
6 4 6

⎞

⎠ , A2B =
⎛

⎝
4 7 9
6 5 8
5 4 6

⎞

⎠ .

After substitution of these matrices, we have

S1 =
⎛

⎝
4 3 5
4 3 5
2 1 3

⎞

⎠ , S2 =
⎛

⎝
8 7 9
7 6 8
6 4 6

⎞

⎠ , T1 =
⎛

⎝
4 3 5
4 3 5
3 1 3

⎞

⎠ .

Based on the results obtained, we calculate the sum

3⊕

k=1

tr1/k(Sk) = 4.

To evaluate the remaining sums, we first find the vectors

h−T0 = (−2 −3 −1 ), h−T1 = (2 1 3 ), h−T2 = (6 3 3 ),

and then obtain

h−T1g = 4, h−T2g = 6, h−T0 p = 4, h−T1 p = 8, h−T2 p = 10.

With these results, we get another two sums

2⊕

k=1

(h−T k g)1/k =
2⊕

k=0

(h−T k p)1/(k+1) = 4.
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Furthermore, we obtain the vectors

q−S0 = (−3 −2 −1 ), q−S1 = (2 1 3 ),

q−S2 = (5 4 6 ), q−S3 = (9 7 8 ),

and then calculate

q−S1g = 4, q−S2g = 7, q−S3g = 9,

q−S0 p = 4, q−S1 p = 8, q−S2 p = 11, q−S3 p = 13.

Finally, we use the above results to find the last two sums

3⊕

k=1

(q−Sk g)1/k =
3⊕

k=0

(q−Sk p)1/(k+1) = 4.

By combining all sums according to (20), we have

θ = 4.

To describe the solution set defined by (21) and (23), we first obtain

θ−1q−A = (−3 −3 −2 ), θ−1q−A ⊕ h− = (−2 −3 −2 ).

We calculate the matrices

θ−1A ⊕ B =
⎛

⎝
0 −1 1
0 −1 2

−1 −3 −1

⎞

⎠ , (θ−1A ⊕ B)2 =
⎛

⎝
0 −1 1
1 −1 1

−1 −2 0

⎞

⎠ ,

and then find

(θ−1A ⊕ B)∗ =
⎛

⎝
0 −1 1
1 0 2

−1 −2 0

⎞

⎠ .

With (21), all solutions x = (x1, x2, x3)T to the problem are given by

x = (θ−1A ⊕ B)∗u, u1 ≤ u ≤ u2,

where the bounds for the vector u = (u1, u2, u3)T in (23) are defined as

u1 = θ−1 p ⊕ g =
⎛

⎝
0
0
1

⎞

⎠ , u2 = ((θ−1q−A ⊕ h−)(θ−1A ⊕ B)∗)−1 =
⎛

⎝
2
3
1

⎞

⎠ .
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Note that the columns in the matrix (θ−1A⊕ B)∗ are equal up to constant factors,
and therefore, this matrix can be represented as

⎛

⎝
0 −1 1
1 0 2

−1 −2 0

⎞

⎠ =
⎛

⎝
1
2
0

⎞

⎠ (−1 −2 0
)
.

We introduce a new scalar variable

v = (−1 −2 0
)
u,

and rewrite the solution in the form

x =
⎛

⎝
1
2
0

⎞

⎠ v, v1 ≤ v ≤ v2,

where the lower and upper bounds on v are given by

v1 = (−1 −2 0
)
u1 = 1, v2 = (−1 −2 0

)
u2 = 1.

Since both bounds coincide, we have the single vector of initiation time

x =
⎛

⎝
2
3
1

⎞

⎠ .

Finally, using formulas (21) and (22) gives the vector of completion time and the
vectors of adjusted initiation and completion times

y =
⎛

⎝
6
6
4

⎞

⎠ , s =
⎛

⎝
2
2
1

⎞

⎠ , t =
⎛

⎝
6
6
5

⎞

⎠ .
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