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Abstract In this paper, we propose a bootstrap resampling methodology to obtain
the confidence intervals for efficient portfolios weights and the sample characteristics
of the mean-variance efficient frontier. We provide an estimate of efficient portfo-
lios, compute the confidence region of the efficient frontier and get the prediction
densities of the future efficient portfolio returns without distributional assumptions
on returns. An extensive simulation study evaluates the finite-sample performance of
these bootstrap intervals and stresses the advantages of such approach. Interestingly,
the methodology can be easily modified to make inferences that incorporate our mod-
elling of returns in the predictive efficient frontier estimation with or without additional
managerial restrictions.

Keywords Asset allocation - Efficient frontier - Portfolio analysis - Mean-variance
portfolios - Resampling methods - Sharpe ratio optimal portfolio - Interval estimation

1 Introduction

The mean-variance analysis derived by Markowitz (1952) is a milestone in modern
finance theory for optimal portfolio construction, asset allocation and investment diver-
sification. According to his theory, the investor selects his optimal portfolio depending
on his risk aversion level on the Markowitz efficient frontier, i.e. the set of efficient
portfolios with minimum risk for a given level of the average portfolio return. Two
mean-variance efficient portfolios play an important role in asset allocation: the global
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minimum variance portfolio, i.e. the efficient portfolio that corresponds to the fully
risk-averse investor and the Sharpe ratio optimal portfolio, i.e. the portfolio which
corresponds to the tangency point between the efficient frontier and a line drawn from
the origin in case of no riskless asset or when the portfolio analyses is based on excess
returns.

However the success of the efficient frontier as a conceptual framework, the prac-
tical implementation leads to unworthy optimal portfolios (e.g., Jobson and Korkie
1981; Michaud 1989) due to the uncertainty about the expected returns, variabilities
and correlations among returns and estimation errors. In practice, the parameters of
the efficient frontier are unknown and thus researchers, replacing the parameters by
sample mean and covariance matrix, solve the sample approximation problem instead.
This first source of estimation errors is analyzed by Xu and Zhang (2012), Bai et al.
(2008) and Leung et al. (2012). Xu and Zhang (2012) show that under some mild
conditions the optimal solution of the sample mean-variance problem converges to its
true counterpart at an exponential rate and Bai et al. (2008) and Leung et al. (2012)
measure the overprediction problem for plug-in allocation when the sample size ratio
is large and propose a method to improve optimal portfolio estimation. The second and
third source of estimation errors are statistical and refer to the econometric analysis of
the weights and characteristics of the optimal portfolios in- and out-of-sample respec-
tively. The second, i.e. the finite sample distributional properties of the sample efficient
frontier are studied by Okhrin and Schmid (2006), Bodnar and Schmid (2009, 2011)
and Knight and Satchell (2010) among others. Okhrin and Schmid (2006), Bodnar and
Schmid (2009, 2011) and Knight and Satchell (2010) prove several distributional prop-
erties of the global minimum variance portfolio weights, the estimated portfolio return
and variance, and other summary measures of optimal investment for benchmarked
portfolios respectively assuming normally distributed returns, whereas Bodnar and
Schmid (2008a) and Bodnar and Zabolotskyy (2010) derive a test for the weights and
asymptotic distributions of weights and sample characteristics of this optimal portfolio
in elliptical and conditionally heteroscedastic elliptical models respectively. However,
despite the important role of the Sharpe ratio optimal portfolio in asset allocation and
asset pricing tests (e.g., MacKinley and Pastor 2000), the literature fails in the attempt
to provide a formal procedure to construct tests and confidence intervals for the Sharpe
ratio portfolio weights and its characteristics. Britten-Jones (1999) presents a popular
test for testing hypothesis about the weights of the Sharpe ratio portfolio implemented
using the standard OLS regression procedures but does not provide its confidence
intervals. Related to the finite distributional properties of Sharpe ratio weights and
characteristics, Okhrin and Schmid (2006) show that all moments higher or equal to 1
of the Sharpe ratio portfolio weights do not exist concluding (page 247) that “the use of
the common estimator leads to untreatable results”, and Bodnar and Schmid (2008b)
prove that neither the first moment of the tangency portfolio return estimate nor the
one of variance estimate exist. Finally, despite its key role in portfolio management,
the third source of estimation errors has rarely been studied by academics. Focus-
ing on the out-of-sample performance characteristics of optimal portfolios, Michaud
(1998) proposes and Michaud and Michaud (2008) among others develop a group of
Resampled Efficient™techniques to compute the optimal portfolio and define trading
and monitoring rules. The pros and cons of Michaud’ approach have been studied in
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several papers see such as Scherer (2002), Markowitz and Usmen (2003), Harvey et al.
(2010) and Becker et al. (2010).

In this paper we propose a bootstrap resampling methodology to estimate the den-
sities and the required confidence intervals of weights and characteristics for any
mean-variance efficient portfolio (e.g. the global minimum variance and Sharpe ratio
portfolios), the sample efficient frontier, the confidence region of the efficient frontier
in the mean-variance space and the prediction densities of the future optimal port-
folio returns without distributional assumptions on the asset returns. Our proposal
has several advantages over the classical mean-variance estimation and Resampled
Efficient™techniques. First of all, our procedure is based on a statistical model so
the optimal (in-sample) portfolios incorporate investor’s knowledge about which is
the most accurate financial model of returns. Moreover, it can be easily modified to
focus on out-of-sample efficient portfolios and construct predictive intervals for their
weights and sample characteristics from the predictive series of returns. Therefore,
the second and third source of estimation errors could be measured and controlled.
Second, the optimal portfolios are obtained by solving a sample mean-variance prob-
lem that could be subject, as in many cases of practical interest, to a budget constraint
(sum of the proportions of invested wealth equal to one), no short-selling (non-negative
proportions of invested wealth), trading costs and other linear constraints. Finally, the
method is very easy to implement and it helps to describe multivariate features of
optimal portfolio returns that would be missed by the standard marginal normal pro-
cedures. Moreover, it does not rely on distributional assumptions and incorporate the
variability due to parameter estimation in the bootstrap predictive intervals.

To illustrate the properties and limits of this alternative approach, we implement
an extensive simulation study to compare the finite sample behavior of the bootstrap
intervals with the empirical and the alternative classical ones. In addition, we apply
the procedure to construct the confidence region for an international efficient frontier.
It is shown that the proposed bootstrap methodology provides bootstrap confidence
intervals that perform as well as the classical ones (see Okhrin and Schmid 2006;
Bodnar and Schmid 2009) and marginal intervals based on multivariate estimation
that outperform the mentioned classical confidence intervals. Moreover, it also pro-
vides confidence intervals for the mean-variance efficient portfolios (e.g. Sharpe ratio
portfolio) other than the global minimum variance one, i.e. it has success in which the
classical distribution theory fails.

The rest of the paper is organized as follows. Section 2 outlines the proposed
bootstrap resampling procedure. Its finite sample behavior is analyzed in Sect. 3,
which reports the results of an extensive Monte Carlo simulation study. Section 4
illustrates the method with real financial data and Sect. 5 concludes the paper with a
summary.

2 Bootstrap portfolio optimization
In this section, we describe the bootstrap procedure to obtain the densities and con-
fidence intervals for the weights and characteristics of any mean-variance efficient

portfolio, the global minimum variance (GMV) and Sharpe ratio (SR) optimal portfo-
lios, and the slope coefficient of the sample efficient frontier. We consider an investor
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who holds a portfolio consisting of k assets and denote by x; = (X1, ..., X)L, i=1,
..., n a sample of the assets returns. Let us consider, to emulate the lake of modelling
on returns in current mean-variance literature and comparative purposes and without
lack of generality, the simplest model of returns

Xi=pn+u; (D

where u; is a sequence of zero-mean independent k-vector variables with common
distribution function Fy. So, let also assume that the second moment of u, X, exists
and p and X are unknown parameters. Freedman (1981) provided the theoretical
support for bootstrap replication in the regression models and Pascual et al. (2004) for
bootstrap strategy to obtain prediction intervals for autoregressive integrated moving
average processes, thus this one between other more suitable regression models or
ARIMA processes for developing the following mean-variance analysis application.

For the sample approximation of the expected quadratic utility criterion, the
expected utility (EU) portfolio weights, wgy, are chosen to maximize w'fl. —
(a/2)w Tw subject to 1'w = 1. Where 1 denotes the k-vector of ones, « > 0 describes
the risk aversion of the investor, and i and 3 are the usual sample estimates of W and
X

- . 1

> xi— )i — 1) ©)
i=1

Thus, the EU and GMV portfolio weights (o — 00) are given by

a1 -1

1 i 1
WEU = ——— +a Rt and womy = — T 3)
1ty 1 'Y 1

the sample mean (Rgmy) and variance (Vgmy) of GMV portfolio are given by

o1
15 i 1

Remv = ——— and Vomv = ———, “)
1Y 1 1> 1

and the sample efficient frontier in the mean-variance space (see Merton 1972) is the
upper part of the parabola given by

(R —Rgyy)? = S(V — Vomy) with S = 'R )
. sligm
where the quantity S denotes the slope coefficientand R = ¥ . z uy

In case of no riskless asset or when the portfolio analyses is based on excess returns
the tangency portfolio (tangency point between the efficient frontier and a line drawn
from the origin) coincides with the Sharpe ratio optimal portfolio i.e. the solution of

the problem of maximizing w'jl /v wiEw subject to 1'w = 1. Thus, the weights and

@ Springer



Bootstrap estimation of the efficient frontier 545

characteristics of SR portfolio are given by

A1, el el
) pE o p pE op

WsR = ———, Rsr=—F—— and Vg = ———— (6)
1 i 1'Y [ 1'x p)?

Our proposal to obtain bootstrap replicates of the weights and characteristics of the
GMV and SR portfolios and the slope coefficient is as follows.

Step 1. Compute the residuals of (1) G; = x; — jL and let F, be the empirical
distribution function of the residuals.
Step 2. Generate the bootstrap series by the following equation

=i+ ™

where G, i=1,...,nare random draws from F,,.

Step 3. Calculate " and 3" for the bootstrap series (x;"), and compute the GMV
and SR portfolio weights, WGMV and wsr™*, by expressions (3) and (6), and the
characteristics of these optimal portfolios and the slope coefficient, REMV, VEMV,
Rgg, Vg and S*, by expressions (4), (5) and (6).

Step 4. Obtain a bootstrap future value of asset returns, X ; by the equation

A .
Xpp1 = A7 +a5, ®)
where ﬁ: 4 is a random draw from Fy,.

Step 5. Repeat the last four steps B times to obtain a set of B replicates for w*,
R&mvs Vamys ST and xp 5.

From these B independent draws of the joint distribution of WE}MV, w‘SR, Romv,
Viomvs Rsr, Vsr and S the 100(1 — o) % marginal confidence interval of each variable

is given by
5.0 = (04 () 05 (- 2)

where Q = G}, and G;(h) = #(z*® < h)/B,z*® ¢ {(Wemvy Wegppd = 1+ K,
Rémv: Vamys S5 Rgg, Vg ) is the Monte Carlo estimates of each marginal distribu-
tion function and #() denotes the cardinal function.

In addition, to get “resistant” estimates to the most extreme portfolio observations
(outliers) of the efficient portfolios and the 100(1 — )% confidence region of the

efficient frontier, we suggest apply the minimum volume ellipsoid (MVE) method
introduced by Rousseeuw (1985) on the vector (Ré(Mb)V, Vg(f,l)v, *(b) ,VVr *(b)

b=1,..., B of draws of the joint distribution of the mean-variance characterlstlcs of the
GMYV and SR portfolios (i.e., the characteristics which define the efficient frontier).
The MVE method examines minimum subsamples of approximately 50 % of the obser-
vations to find, using the Mahalanobis distance, the subset that minimizes the volume

of the covariance matrix associated to the subsample. The MVE estimate is the center
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and the covariance of this minimum subsample and it is commonly used to compute
the Mahalanobis distance of the sample observations and thus identify outliers. This
multivariate procedure provides an easy procedure for getting a resistant estimation to
outliers and monitoring the whole efficient frontier as follows: (i) compute the MVE

t
from (Ré(Mb)V, Vg(f,l)v, R;g’ ), V. ;g’ )) ,b=1,..., B; (ii) calculate the Mahalanobis

distance of the bootstrap sample; (iii) define the MVE estimate of efficient portfolios
#(bm) *Om) - wom) L *om)

*(bm) \ ¢
as(w*<bm>ch)‘,(w*<bm>SR>t,((RGMV, WVomv: ST R VVsr )withbm

the bootstrap observation associated to the minimum of the Mahalanobis distances;
and (iv) compute the 100(1 — a) % MVE region of the efficient frontier and the mar-
ginal MVE intervals as the region/interval delimited by the minimum and maximum
value of the observations with Mahalanobis distances fewer than 100(1 —a) % quantile
of Mahalanobis distances.

Finally, given the draws of x;; , ; and the bootstrap estimate of the efficient portfolio
weights, w*(bm), predictive estimate (from the median), confidence interval and p-
value of the predictive efficient portfolio returns could be similarly computed from
the draws of p = (w*(bm))‘x:H.

To conclude, it is worthy of notice that this methodology is derived from the sim-
plest model of returns and can be easily extend, changing equations (1), (7) and (8), to
introduce a more elaborated suitable econometric model for predicting returns. Fur-
thermore, this in-sample procedure is, bootstrapping (by the equation (8)) a future
sample of asset returns, the starting point of a statistical out-sample procedure that
estimate and test the efficient frontier from the predictive distribution of returns.

3 Finite sample properties

The finite sample performance of the confidence intervals built by the bootstrap and
classical procedures is now analyzed by means of Monte Carlo experiments. We gener-
ate the series of two base populations of k = 11 assets with normal and bivariate mixture
of normal return distributions. The first one because it is the assumed distribution in
classical results, the second one because a bivariate mixture of normal distribution is a
flexible distributional assumption (under certain regularity conditions, any probability
density can be estimated as a mixture of normal distributions; see e.g. Ghosal and van
der Vaart 2001) to reflect the distribution of returns when the sample contains mixed
data from contraction and expansion phases of market cycle. The parameters mean
w and covariance matrix ¥ of the normal and the parameters (g, X0, po. #1, X1)"
of the bivariate mixture of normal populations respectively, where po represents the
probability of contraction period, have been chosen to resemble the parameters esti-
mated in a real series of financial monthly excess returns (we make use of monthly
data from Kenneth R. French Data Library for the excess total returns in dollar cur-
rency of 11 developed countries: Australia, Belgium, Canada, France, Germany, Italy,
Japan, United Kingdom, United States (US), Spain and Switzerland from January 1977
to December 2006). For the base bivariate mixture of normal population we choose
po = 0.18; additionally, we simulate one more bivariate mixture normal population
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of k = 16 assets with equal po = 0.18 and two more of k = 11 assets with a lower
(po = 0.07) and a higher (pg = 0.40) probability of recession data.

An important point to consider is the sample size because it is related to the first
source of estimation errors and also the proportion of recession data in the sample, the
higher the more likely the heterogeneity in database. We use a sample size of n = 2500
observations to guarantee the convergence of the solution of the sample mean-variance
problem to its true counterpart so in real world we can expect a relatively high pg.
To determine this sample size, we generate 1000 Monte Carlo samples of sizes 500,
1000, 2000, 3000, 5000 and 7500 for each population, calculate the maximum distance
between the weights of exact and sample GMV and SR portfolios, and draw in Fig. 1
median and 95 % confidence interval for each sample size and population. This graph
shows the convergence of the sample solution, though the differences are clearly higher
for SR portfolios, from a sample size of n = 2500 for all the populations excepting the
SR portfolio case for the mixture of normal population with pg = 0.40 (convergence
achieved at n > 5000). Moreover, the differences are clearly higher in magnitude for
the SR portfolios as yet the convergence is achieved. Table 1 reports the probability
that these differences will be less than 10 % for GMV portfolios and 25 % for SR
portfolios. Notice that for a sample size of n = 2500 this probability will be greater
than 99.2 % for every GMV portfolio.

We compute the marginal 99, 95 and 90 % confidence intervals. For each popu-
lation, we generate 1000 Monte Carlo samples of size 2500, compute the statistics
and obtain the empirical, classical and bootstrap confidence intervals and the marginal
MVE interval at 99, 95 and 90 %. For each Monte-Carlo sample, classical confidence
intervals are computed using Okhrin and Schmid (2006) and Bodnar and Schmid
(2009)’s papers. Bootstrap confidence and MVE intervals are constructed following
the proposed method based on B =499, 999, 2999, 3999 and 4999 replicates. For each
Monte-Carlo sample, the coverage, left and right tails of each classical and bootstrap
interval are computed from the proportion of replicate observations of statistic lying
in, out to the left and out to the right. Then, we compute for each interval the average
and standard error of the interval length, the coverage, and the average proportion of
observations lying out to the left (below) and to the right (above) through all Monte
Carlo samples. Finally, classical and bootstrap intervals are compared in terms of these
summary statistics for each simulated population.

The results about the classical and bootstrap confidence intervals and the marginal
MVE intervals are summarized in three tables. Tables 2 and 3 report the summary
statistics: average of coverage, standard error of the coverage and average of the
proportion of observations below/above of the minimum, average and maximum of
GMV and SR portfolio weights at the 95 % confidence intervals (classical and bootstrap
with B =499, 999 and 2499 replications) and marginal 95 % MVE intervals (B = 999
replications), and the same summary statistics plus the average and standard error of
the interval lengths for the sample mean, standard deviations of returns and value-at-
risk (VaR) of GMV and SR portfolios, the slope (S) and the Sharpe ratio (IR) at the
marginal 95 % confidence intervals (classical and bootstrap with B = 499, 999 and
2499 replications) and marginal 95 % MVE intervals (B = 999 replications) when the
simulated returns are normal (Table 2) and bivariate mixture of normal with pp = 0.18
(Table 3). In addition, Table 4 shows the summary statistics of the minimum, average
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A Maximum distance between weights for GMV portfolios

GMV Portfolio Weights Differences
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Fig. 1 Maximum distance between the weights of exact and sample portfolios
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Table 1 Convergence in probability of the solution of the sample mean-variance problem

Sample  Normal  Mixture Mixture Mixture Mixture
size (k=11,pp =0.18) (k=16,py =0.18) (k=11,pg = 0.40) (k=11, pg = 0.07)

Panel A: Probability that the maximum distance between GMV portfolio weights differences will be less
than 10 %

50 0.10 0.20 0.00 0.00 0.20
100 2.50 2.10 0.30 1.20 1.90
150 8.10 6.00 1.50 3.60 6.90
200 14.00 13.50 5.40 9.30 18.30
300 40.30 32.70 18.50 25.00 35.50
500 68.20 61.20 49.50 57.70 67.00
750 87.80 84.20 74.10 79.90 87.20
1000 94.90 93.40 87.50 89.60 94.30
2000 99.90 99.70 99.20 99.30 99.70
3000  100.00 99.70 100.00 99.90 100.00
3500  100.00 100.00 99.80 100.00 100.00
4000  100.00 99.90 100.00 100.00 100.00
5000  100.00 100.00 100.00 100.00 100.00
7500  100.00 100.00 100.00 100.00 100.00

Panel B: Probability that the maximum distance between SR portfolio weights differences will be less than
25%

50 0.00 0.00 0.00 0.00 0.00
100 0.30 0.00 0.00 0.00 0.00
150 0.20 0.30 0.10 0.10 0.40
200 0.10 0.10 0.00 0.00 0.30
300 1.40 0.20 0.00 0.00 1.30
500 2.50 0.40 0.20 0.00 5.30
750 8.50 2.00 0.40 0.00 12.70
1000 12.70 3.20 0.80 0.00 21.80
2000 48.00 19.40 6.70 0.10 60.30
3000 69.10 37.90 21.10 0.00 77.90
3500 77.10 49.20 27.10 0.10 85.10
4000 82.20 53.00 32.00 0.00 89.50
5000 89.70 69.00 46.00 0.10 95.50
7500 97.60 84.50 72.70 1.30 99.20

(S) and the Sharpe ratio (IR) at the marginal 99 % confidence intervals (classical and
bootstrap with B = 999 replications) and marginal 99 % MVE intervals (B = 999
replications) for all the simulated populations.

The bootstrap and classical confidence intervals have a similar marginal perfor-
mance for all the statistics of interest in the two base populations. The bootstrap and
classical confidence intervals of GMV and SR weights, and sample mean and standard
deviations of GMV portfolio returns are unbiased in the two base populations. More-
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556 B. Font

over, the performance of the bootstrap confidence intervals is never worse than the
classical approach and it is achieved with a low number of replications (the coverage
data increase with the number of simulations but with a very slow rate in the normal
and mixture of normal populations). In addition, our bootstrap procedure obtains 95 %
confidence intervals for weights and characteristics of both GMV and SR portfolios
with a similar degree of accuracy. However, the simulation study also reveals that the
degree of accuracy in the confidence interval estimation is not enough good, neither
for the classical confidence intervals nor for the bootstrap ones. Not surprisingly, both
classical and bootstrap confidence intervals have similar acceptable accuracy when
the simulated returns are normal with average coverages for a 95 % nominal coverage
in the range from 79 to 85 %. But, the similar accuracy reduces to a range from 51 to
82 % for the 95 % nominal coverage when the distribution of returns is the bivariate
mixture of normal with pg = 18. Moreover, the bootstrap and classical intervals of
GMV and SR weights, and sample mean and standard deviations of GMV portfolio
returns are unbiased in the two base populations. Whereas, bootstrap and classical
intervals of slope coefficient and bootstrap intervals of sample mean, standard devi-
ations and Sharpe ratio of GMV portfolio returns are rather (mainly right) biased
one-side intervals (see the average of observations lying out to the left and to the right
of the interval) in the two base populations.

Next, it is interesting to note that the distributional features of the efficient frontier
that might not line up with the axis when taking marginal might be in the background of
this poor degree of accuracy of classical and bootstrap confidence intervals, especially
when the normal hypothesis fails. Figure 2 plots the empirical, classical and bootstrap
(for a particular sample and replicate) densities of US GMYV portfolio weight, the
empirical and bootstrap densities of US SR portfolio weight densities and the scatter-
plot with 95 % confidence ellipse of the empirical and bootstrap bivariate distributions
of GMV and SR portfolio mean returns. Notice that whereas the classical and bootstrap
densities of US GMV portfolio weight for the normal returns population are quite close
to the empirical density for the normal population, both densities fail in capture the
bimodality of the empirical density of GMV portfolio weight for the bivariate mixture
of normal returns population. However, it is rather clear that both the empirical and
bootstrap bivariate densities of GMV and SR portfolio mean returns are closer than
the univariate US GMV and SR portfolio weights counterparts in the two base popu-
lations. Consequently, we can expect some improvement over the marginal bootstrap
intervals due to the multivariate approach (proposed in this paper) to the estimation
problem. Effectively, the average coverage of marginal MVE intervals is larger and
closer to the nominal value than for classical and bootstrap confidence intervals in the
two base populations. The marginal MVE intervals increase the degree of accuracy of
confidence intervals with average coverages for a 95 % nominal coverage in the range
from 93.3 to >95 % when the simulated returns are normal and from 60.7 to >95%
when the distribution of returns is the bivariate mixture of normal with pg = 18.

Results reported in Table 4 do not change the general picture. Classical and bootstrap
intervals increase the degree of accuracy with average coverages for a 99 % nominal
coverage in the range from 90 to 94 %, moreover marginal MVE intervals outperform
them with coverages from 95.9 to 97.8 % respectively in the normal population. The
degree of accuracy of confidence intervals when the distribution of returns is the

@ Springer
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A Densities for the normal returns population

Density

0.8

0.6

—— Bootstrap US GMV portfolio weight density ;
Classical US GMV portfolio weight density 3
— Empirical US GMV portfolio weight density
Bootstrap US SR portfolio weight density (Bootstrap GMV portfolio mean return, Bootstrap SR portfolio mean return)
Empirical US SR portfolio weight density = (Empirical GMV portfolio mean return,Empirical SR portfolio mean return)

B Densities for the bivariate mixture of normal returns population
(k=11,p0=0.18)

16 3.0
49 25
12
2.0
> 10
=
7] 1
2 s °
[
0 6 1.0
41 0.5
“] (‘
0.0
0 T T T T T T T
0.8 0.4 0.0 0.4 0.8 1.2 16 2.0 2.4
—— Bootstrap US GMV portfolio weight density —— T = T )
Classical US GMV portfolio weight density 2 3 4 5 6 7 8
—— Empirical US GMV portfolio weight density

Bootstrap US SR portfolio weight density (Bootstrap GMV portfolio mean return,Bootstrap SR portfolio mean return)
Empirical US SR portfolio weight density = (Empirical GMV portfolio mean return,Empirical SR portfolio mean retum)

Fig. 2 Densities of the estimator for the US weights and the mean returns of the GMV and SR portfolios

bivariate mixture of normal with pg = 0.18 is slightly higher than when the distribution
of returns is the bivariate mixture of normal with pg = 0.40 and slightly lower than
when the distribution of returns is the bivariate mixture of normal with pg = 0.07. The
moderate increase of number of assets (from 11 to 16 assets) when the distribution
of returns is the bivariate mixture of normal with pg = 0.18 does not change the
performance results. The marginal MVE intervals outperform the confidence intervals
in terms of average coverage for all the simulated populations. The performance results
of bootstrap intervals (not all of them included here but available from the author)
were checked for B =499, 999, 2999, 3999 and 4999 replicates for all the simulated
populations with the conclusion that the coverage data for all intervals increase with
the number of replicates at a negligible pace.

4 Empirical illustration

We illustrate empirically the use of the suggested bootstrap procedure with a real data
set of monthly excess total returns (2457 observations) in dollar currency yielded from
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Bootstrap estimation of the efficient frontier 563

the daily Morgan Stanley Capital International (MSCI) prices indices of eleven devel-
oped countries: Australia, Belgium, Canada, France, Germany, Italy, Japan, United
Kingdom (UK), United States (US), Spain and Switzerland from January 1997 to
December 2006. Data were downloaded from Thompson Database and the excess
returns were calculated subtracting the one-month T-bill rate provided by Interna-
tional Financial Statistics (IFS).

We use the bootstrap procedures developed in Sect. 2 to (i) draw 999 boot-
strap replicates of the joint distribution of wgy,» Wsr's Romv, Vomv, Rsr, Vsr,
S, x%¥ 41 ; (ii) calculate the marginal 95% confidence intervals for WGMVj> WSR;»
i=1,...,k Rgomv, V'V, GMV, Rsr, JV. sr and S; (iii) obtain the MVE from the vec-
tor RED, . Ve, R JVa)t . b = 1,..., 999; (iii) get the MVE estimate of
efficient frontier; (iv) compute the 95 % MVE region for efficient frontier, the 95 %
MVE region for (Rsg, VVgr)! and the marginal 95 % MVE intervals for wgmvij,
WwsRjs j = L,..., k, Rgmv, \/VGMV, Rsr, \/VSR and S; and (v) calculate the predic-
tive estimate and 95 % confidence interval for the predictive GMV and SR portfolio
returns. Table 5 shows all these estimates and 95 % confidence intervals and regions
for a US investor; Fig. 3 displays the bootstrap efficient frontier shape, the 95 % MVE
region, the 95 % MVE region for (Rsr, +/Vsr)" and the estimated composition map;
and Fig. 4 draws the bootstrap predictive GMV and SR portfolio return distributions.
In addition, the estimates and 95 % marginal MVE intervals for the weights and char-
acteristics of GMV and SR portfolios are calculated over a rolling window of ten years
with (81) lags of a month up to September 2013 to analyse the portfolio weights and
mean portfolio returns stability over time. Figure 5 plots the estimates and 95 % MVE
region of the major GMV and SR portfolio weights and the sample mean of GMV and
SR portfolio returns over the time for the extended sample.

The estimates of GMV portfolio weights contain several extreme positions such as
the long positions of 48.73 and 32.10 % in the UK and US markets respectively and
the short position of 32.30 % in the German market, but it is a diversified portfolio with
only three weights (Canada, France and Switzerland indices) not significant at the 5 %
level. The GMV portfolio has a positive, and significant at 5 % level, estimated monthly
return of 0.29 % with a risk of 3.94 %, and a higher but no significant at 5% level
predictive return of 0.62 %. These optimal positions remain with slight readjustment
for several months (up to June 2008). By and large, the UK and US GMYV portfolio
weights are significant (at the 5 % level) and positive, and the German GMYV portfolio
weight is significant (at the 5 % level) and negative in all the period. The estimated
monthly GMV portfolio return also evolves over the time adjusting to the market cycle
as follows, significant (at the 5 % level) and positive up to August 2006, significant
(at the 5 % level) and negative from December 2008 to October 2010 and significant
(at the 5 % level) and positive from June 2012.

In the tangency point between the efficient frontier and a line drawn from the
origin (see Fig. 3), i.e. the SR portfolio the optimal position is yet more extreme with
significant (at 5 % level) positions such as the long positions of 200.44 and 132.86 %
in the Switzerland and Canada markets respectively and the short positions of 286.4,
114.03 and 84.73 % in the UK, Germany and Japan markets. But some of them are
not significant at 5 %, such as the long position of 119.93 % in the Spain market and
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A Predictive GMV portfolio density = B Predictive SR portfolio density
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Fig. 4 Densities of the predictive portfolio returns

surprisingly the short position of 37.9 % in the US market. These results are due to
the large sampling error of the estimates as we can easily appreciate from the length
of the marginal 95 % MVE interval. The average length of weights is of 382.77 %
that is, assuming the normal approach, a standard error of more than 97.64 % and six
weights of them are not significant at 5 % level as follows Australia, Belgium, France,
Italy and the US and Spain indices. The SR portfolio has a positive and significant
at 5 % level, estimated monthly return of 3.31 % with a risk of 13.36 %, and a lesser
no significant predictive return of 3.2 %. Moreover, these positions in the markets and
returns are changing in time with special large sampling errors when the uncertainty
about economic situation increases, i.e. from September 2006 to November 2008 and
from November 2010 to May 2012.

Interestingly, the marginal 95 % MVE interval applied for reducing the influence
that outliers exert, correct the marginal 95 % confidence interval (included in Table
5 for comparative purposes) along the lines suggested in the simulation study i.e.,
increasing the length of interval and correcting bias.

It is worthy of notice that our bootstrap procedure produces the 95 % bootstrap
predictive interval and density of returns so it gives a statistical measure (based on the
model) of the out-sample performance of the GMV and SR portfolio and how risky
the inversion could be. In this case, the probability of a predictive return less or equal
to zero is 43.44 % for the GMV portfolio and 38.44 % for the SR portfolio.

Other interesting features of our procedure are that the estimated frontier lies inside
the 95 % confidence region, the composition map includes all assets and there is a
smooth transition from one risk level to another, and the estimated SR portfolio is a
mean-variance efficient portfolio, that is, it is in the estimated frontier line.

5 Conclusions

In summary, the bootstrap resampling methodology proposed in this paper provides
a new and easy of implement procedure that allows a more appropriate multivariate
approach to the estimation problem of the sample mean-variance efficient frontier
with interesting statistical features. Applying this methodology we can calculate mar-
ginal confidence intervals of weights and characteristics for any efficient portfolio of
the sample efficient frontier, compute the confidence region of the efficient frontier

@ Springer
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in the mean-variance space and obtain the prediction densities of the future opti-
mal portfolio returns of any mean-variance efficient portfolio without distributional
assumptions on returns. Moreover, the finite-sample performance of the marginal boot-
strap intervals (i.e., when the parameters are treated separately) equals or outperforms
the performance of classical ones derived under normal assumption. Furthermore, this
methodology is based on a statistical model and it can be extend to get the predictive
optimal portfolio and make inferences over it.
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