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Abstract Robust optimization (RO) is a distribution-freeworst-case solutionmethod-
ology designed for uncertain maximization problems via a max-min approach
considering a bounded uncertainty set. It yields a feasible solution over this set with
a guaranteed worst-case value. As opposed to a previous conception that RO is con-
servative based on optimal value analysis, we argue that in practice the uncertain
parameters rarely take simultaneously the values of the worst-case scenario, and thus
introduce a new performance measure based on simulated average values. To this end,
we apply the adjustable RO (AARC) to a single new product multi-period production
planning problem under an uncertain and bounded demand so as to maximize the total
profit. The demand for the product is assumed to follow a typical life-cycle pattern,
whose length is typically hard to anticipate. We suggest a novel approach to predict
the production plan’s profitable cycle length, already at the outset of the planning
horizon. The AARC is an offline method that is employed online and adjusted to past
realizations of the demand by a linear decision rule (LDR). We compare it to an alter-
native offline method, aiming at maximum expected profit, applying the same LDR.
Although the AARC maximizes the profit against a worst-case demand scenario, our
empirical results show that the average performance of both methods is very similar.
Further, AARC consistently guarantees a worst profit over the entire uncertainty set,
and its model’s size is considerably smaller and thus exhibit superior performance.
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1 Introduction

RO is a large-scale distribution-free worst-case solution methodology designed for
uncertain maximization problems via a max-min approach. The resulting solution is
feasible for all uncertain realization within a user predefined uncertainty set, and its
value is a guaranteed lower bound on the objective function value over this set. The
fact that a RO solution corresponds to a worst possible realization of the uncertain
parameters leads one to claim it is conservative, in particular when compared with
the nominal (NOM) solution in which the uncertain parameters are replaced by their
nominal values. The gap between the NOM and RO values was referred to as the
price of robustness (POR) in Bertsimas and Sim (2004). However, comparing the two
methods based on POR is meaningless, since in reality neither the worst-case, nor the
nominal case of the parameters will necessarily occur. Our empirical study show that
for the production planning problem studied here, the average POR (APOR) indicates
that the RO solution is actually less conservative than expected.

This paper calls into question the way RO is to be compared with other methods
dealing with uncertainty by examining empirically whether its performance is actually
conservative as claimed, and by suggesting a new appropriate comparison measure
with regard to other methods such as Monte Carlo simulation based approach (MC)
and stochastic programming (SPR).

The fundamental difficulties in comparing RO to the aforementioned methods are
threefold. First, the granularity level of the data supplied by the user differs greatly
amongst various methods. For instance, SPR require the user to supply the probability
distributions of the uncertain parameters, whereas RO calls for a much cruder descrip-
tion of the uncertain data in the form of an “uncertainty set”, i.e, a bounded set in which
the uncertain parameters potentially reside. Second, RO guarantees a solution that is
immunized against infeasibility whereas other methods do not necessarily ensure that.
In the case of a non-feasible solution, a comparison based on the optimal objective
function values is meaningless, unless the user can estimate accurately the cost of
regaining feasibility. Third, RO is performed offline in the sense that the optimization
is carried out at the outset of the planning horizon, and thus is not compatible with
onlinemethodswhere the optimization is reactivated in each stage of the planning hori-
zon. The offline nature of RO allows the decision maker to analyze different aspects
already at the planning stage, i.e., at the outset of the planning horizon, whereas an
online method does not support it.

An additional important criterion is the tractability of the various methods. For
comparison, SPR can be solved only in special cases, in particular, when the uncertain
parameters take a finite number of values. However, its computational complexity
grows severely with the number of periods.

Specifically, we assess empirically the performance of the RO methodology as
applied to a prevalent single-product multi-period production planning problem in
which the inventories are managed periodically over a finite horizon in order to max-
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imize the total profit. The demand for the product is uncertain and is only known to
fall within a user-defined interval uncertainty set which is assumed to follow a typical
life-cycle pattern. We employ a suitable comparison based on a simulation study as
indicated previously. Further, to avoid comparing RO with not necessarily feasible
methods, our model has all the uncertainty in the objective function.

We apply the adjustable version of RO to such a production planning problem. This
method assumes the decisions, which can be delayed in time, are adjustable to revealed
data from the past. To impose tractability, these decisions are restricted to depend
affinely on the past data (LDR), and hence this method is called affinely adjustable
robust counterpart (AARC). In effect, the AARC solution is obtained offline at the
outset of the planning horizon, whereas the adjustable decisions are made at each
period according to the revealed data by plugging it into the affine offline function
determined by the AARC solution.

The offline nature of the AARC scheme makes it possible to answer important
strategic questions at theplanning stageof the production process.One such question is
how to estimate the length of the period inwhich the production is profitable (compared
with the best alternative). In Sect. 6, we show a novel approach that determines both
the number of periods, in which running the production system is profitable, and a
robust production plan utilizing the AARC method.

We test the performance of the AARC for a production system with and without
fixed costs. The fixed cost case calls for solving an adjustable robust counterpart prob-
lem of an uncertainmixed integer linear problem (MILP). For a polyhedral uncertainty
set the corresponding AARC problem is itself a MILP, which is still manageable. We
show that although the integer variables are treated as non-adjustable, they are essen-
tially adjustable due to the adjustability of the production quantities and their binding
constraints.

In our simulation study we compare the average performance of the AARC to
an adjustable offline alternative method employing the same LDR, namely a hybrid
Monte Carlo simulation based approach and robust optimization with LDR (MCL-
RO). It is essentially a Monte Carlo method which utilizes the robust optimization for
feasibility purposes and apply it to part of the constraints. This method’s objective is
to maximize the expected profit over an offline generated demand sample. Since we
consider here a production planning problem of a new product such a sample is not
available. For the purpose of comparison the expected profit was evaluated based on
a sample generated out of the uncertainty set using a uniform distribution.

Our simulation results show that the average performance of the AARC is very
similar to the MCL-RO. Thus, the return from these methods is basically the same
on average, but the risk of employing each varies. AARC consistently guarantees
worst-case profit for every realization within the uncertainty set, whereas, in general,
such guaranteed worst profit cannot be assessed for the MCL-RO method. Moreover,
the computational cost of each method highly depends on the corresponding model
size. Size-wise, both models have the same number of decision variables, yet their
number of constraints differ greatly in favor of the AARC method, which has O

(
T 2

)

constraints, whereas the MCL-RO model has O(T 2 + N T ) where the sample size N
typically satisfy N >> T , e.g., creating an event tree with m possible demand values
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at every time period t = 1, . . . , T require N = mT , and thus results in exponential in
T number of constraints. These observations further suggest that the AARC exhibit
superior performance compared with the MCL-RO method.

Moreover, our computational study shows that the AARC achieves average profits
that are extremely close to the perfect hindsight (PH) profit, i.e., the objective value
that would have been obtained if it was possible to know apriori the exact values of
the demand quantities for the entire horizon.

In summary, this paper makes the following contributions:

– It proposes a novel approach for assessing the profitability of a production plan
with regard to an alternative investment, which simultaneously yields a profitable
horizon length and determines a robust production plan.

– The AARCmethod inherently guarantees a worst-case profit, whereas, in general,
such guaranteed worst profit cannot be assessed for the MCL-RO method. Thus,
the risk employing AARC is lower.

– The AARC’s computational cost is also lower compared with MCL-RO due to its
smallest model size.

– It includes an experimental evaluation which shows that:
– The average performance of AARC and MCL-RO is very similar although the
AARC maximizes the profit against a worst-case demand scenario, whereas
the MCL-RO aim at maximum expected profit. Therefore, the return gained
by applying AARC is similar.

– The average profit of AARC is nearly optimal for the perfect-hindsight (PH)
problem as it is 93 % and 99 % of the PH average profit on the worst and best
cases, respectively.

The rest of the paper continues as follows. Section 2 discusses the related work.
In Sect. 3 we give our problem formulation, and investigate its corresponding robust
formulations, which are presented in Sect. 4. Section 5 describes the simulation study
results for the basic model with linear costs, and in Sect. 6 we suggest a novel approach
to estimate a profitable horizon length at the outset of the planning horizon. Section 7
shows the RO formulation and simulation study results for the setting where fixed
costs are present.

2 Literature review

A central issue in production planning is the determination of a production policy
that would maximize the profit by producing the right quantities at the right time, thus
satisfying the demandwithout holding excess inventory or creating unnecessary short-
ages. Many real-world production planning problems involve a single product over a
finite horizon where decisions are made in discrete periods under demand uncertainty.

The classical research in this field began in the early 50’s assuming that the demand
distribution is fully known. The minimum expected cost was found for two kinds of
settings: (1) linear costswhere all the costs are attributed to specific quantities, (2) fixed
cost in which setup costs are present. Moreover, two types of models were considered
a single period and a multi-period. The rather simple form of the optimal ordering
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policies was obtained using dynamic programming (DP) and is shown in Arrow et al.
(1951), Dvoretzky et al. (1952), Scarf (1960, 1963) and Veinott (1966).

This pioneering research assumes that the demand distribution is known, however in
practice the information about the formof the probability distribution that characterizes
the behavior of the actual demand is very limited. Subsequent research exploited a
worst-case scenario approach assuming that the demand probability distribution is
unknown but some of its moments are known (Scarf 1958; Gallego and Moon 1993;
Gallego et al. 2001), or that it is bounded within a given closed interval (Kasugai and
Kasegai 1960), or is given by a “black box” (Levi et al 2007).

Both DP and SPR call for a full knowledge of the uncertain parameters, namely
their probability distribution. Unfortunately, this kind of information is rarely available
in practice and may at times be misleading due to errors in forecasting or estimation.
Further, in a multi-period setting, as in the problem studied here, both methods are
typically intractable (Zipkin 2000; Shapiro et al. 2009).

To overcome the SPR intractability an approximation, namely the known sample
average approximation (SAA), was introduced (Shapiro et al. 2009). The SAA is a
Monte Carlo simulation based approach with the basic idea of generating a random
sample and approximate its expected value function by the corresponding sample
average function.

The difficulties associated with DP and SPR led researchers to look for a tractable
method designed for distribution-free large-scale problems, such as the ROmethodol-
ogy. RO, as introduced inBen-Tal andNemirovski (2002), uses amin–max approach to
solve uncertain minimization problems where the uncertain parameters reside within a
known deterministic uncertainty set. This approach guarantees that the solution is fea-
sible for any realization of the parameters within the uncertainty set. ROwas originally
designed to deal with static problems where all decisions should be made at the outset
of the horizon, before the uncertain data is revealed, namely the RC method. Never-
theless, in most real-world problems, some decisions can depend on past realizations
of the uncertain data. Recognizing the need to address such dynamic environments
RO was extended into the AARC method (Ben-Tal et al. 2004). In the AARC the
dependence of the adjustable decision variables on observed data is restricted to be
linear to achieve tractability.

Both methods were applied to the field of operations management. In particular,
there are papers studying a very similar problem to the onewe consider here. Bertsimas
and Sim (2004) compared its RC and nominal models on the basis of their optimal
solutions, and stated the notion of the price of robustness (POR).

Ben-Tal et al. (2005) employed the AARC method to a similar problem. They
showed numerically, that the optimal values of the min–max and the AARC can often
be identical.

Bertsimas and Thiele (2006) follow the same line of research as in Bertsimas and
Sim (2004), and further provide a closed form of the optimal base-stock policy.

See and Sim (2010) use a descriptive statistics of the uncertain parameter, partic-
ularly, the knowledge of some of its moments, to construct its uncertainty set. They
show that a piece-wise linear decision rule improves upon the static and linear decision
rules. In this paper we show empirically that employing the simpler linear decision
rule already delivers very good performance in our model.
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Goh and Hall (2013) also assumes a known support, mean and deviation. In this
paper, theROmethodology is applied to a projectmanagement problem, and compared
with a Monte Carlo (MC) simulation method (SAA). As opposed to our work they
apply an offline version of the MC method without assuming LDR, which inherently
gives the AARC method, which is executed online, an advantage. They explore the
effect of the distribution that the samples are taken from both for the MC method and
the uncertain parameters, and conclude that the MC method is sensitive, whereas the
AARC method is stable.

Bertsimas et al. (2010) examined a very similar problem, associated with a box
shaped uncertainty set, and prove a base-stock form for the optimal policy. In the
case where the linear decision rule accounts for all the available data so far (full-
disturbance), they show that the AARC method is optimal for the min–max problem.

Iancu and Trichakis (2014) studied the set of robust solutions of a linear program,
associated with a polyhedral uncertainty set. They defined a subset of the former set,
that Pareto dominates the other points within the set, and showed how to obtain such
Pareto robust (PRO) solutions. Their experimental results indicate that a PRO solution
performs better than a non-PRO one. Therefore, in our simulation results we show the
average performance for PRO solutions when possible.

Other RO applications to various fields, such as multi-period portfolio selection,
binary classification via linear discriminants, and many more are reviewed in Bertsi-
mas et al. (2011).

All of the above problems, assume a finite and fixed planning horizon length.
However, the length of the horizon of a product that follows a life-cycle pattern, which
we study here, is typically uncertain as well. In the sub-field of perishable inventory
control, that treats both horizon length and demand as random, there are results only
for the case where successive orders outdate in the same sequence that they are stocked
(Nahmias 1982). Chan et al. (2004) surveyed the topic of coordination of inventory
control and pricing strategies with random demand. The research in this field examines
both finite and infinite horizon problems, yet it does not discuss the determination of its
length. Another field of research studies the forecast horizon; see for example (Bes and
Sethi 1988). However, it defines the forecast horizon as the finite number of periods,
such that a future forecast does not affect the initial decisions. In this work we suggest
a novel approach to predict the profitable horizon length of a product with regard to
an alternative investment, already in the planning stage.

3 A multi-period production planning problem: the basic model

We consider a single-product multi-period production planning problem in which the
inventories are managed periodically over a finite horizon of T periods. Additionally,
we assume that the product is new to the market, and thus no previous data is available
for it. At the beginning of each period t , the decision maker has an inventory level that
equals the inventory size at the end of the previous period It−1, and she produces a
quantity qt at a unit cost ct . The actual demand dt is then realized, and the supplied
goods are sold at a unit selling price mt . The unsatisfied demand is supplied in later
periods at the same unit selling price mt , except for the last period T . The decision
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maker’s status at the beginning of the planning horizon is given by the initial inventory
I0. Holding and shortage costs are incurred for each unit of surplus at a cost ht , and for
each unit of shortage at a cost pt , respectively. Any surplus left at the end of period T
is salvaged at a unit salvage value s. The decision maker objective is to determine the
production quantity in each period t = 1, 2, . . . , T so as to maximize the total profit
over the entire planning horizon.

The inventory level It at the end of each period t = 1, . . . , T is given by the
following balance equation:

It = It−1 + qt − dt .

Lettingq := (q1, . . . , qT )be the production quantity trajectory, andd := (d1, . . . , dT )

the demand trajectory, using thebalance equation recursivelyweobtain, for eachperiod
t :

It = It (q, d) = I0 +
t∑

i=1

(qi − di ). (1)

Denote the surplus and shortage inventory levels by I +
t = I +

t (q, d)=max {0, It (q, d)}
and I −

t = I −
t (q, d) = max {0,−It (q, d)}, respectively. The objective function is then

F(q, d) =
T∑

t=1

[
mt dt − ct qt − p̄t I −

t (q, d) − h̄t I +
t (q, d)

]
(2)

where
p̄t =

{
pt if t < T
pt + mt if t = T

(3)

and
h̄t =

{
ht if t < T
ht − s if t = T

(4)

For known demands d1, d2, . . . , dT , the optimization problem is

F∗(d) = max
q≥0

F(q, d) (5)

It is assumed that the demand trajectory follows a typical life-cycle pattern. Such a
pattern depicts the demand curve for some product from the first time it was introduced
into themarket until it is discontinued. Schematically, the product life-cycle pattern can
be approximated by a bell-shaped curvewhich is divided into four sequential stages: (a)
introduction—where the product demand is low due to reduced customer awareness,
(b) growth—where the customers recognize and accept the product, and hence the
demand rate starts to increase, but in time the rate drops as more competitors enter the
industry and the market becomes more saturated, (c) maturity—where demand rate
reaches a plateau, (d) retirement—where most of the market has already purchased
the product and abandons the product for its newer substitutes (Rink and Swan 1979).

However, the actual demand d is uncertain and is only known to residewithin a user-
defined interval uncertainty set which has an upper and lower level demand trajectories
d̄ and d. The demand then changes around a central (nominal) trajectory d̂ within d
and d̄ . For example, let d̂t = −0.17+ 0.25t + 1.23t2 − 0.18t3 + 0.004t4 + 0.0002t5
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Fig. 1 Demand uncertainty set corresponding to ρ = 30 %

be the t-th component of such nominal trajectory, the coefficients of which have been
selected to fit a typical life-cycle (see Fig. 1).We define the uncertainty level ρ to be the
relative deviation from the nominal trajectory d̂ as follows: dt = d̂t (1 + ρtζt ) where
|ζt | ≤ 1, (t = 1, . . . , T ). The upper level demand trajectory is then d̄t := (1 + ρt )d̂t ,
and the lower level demand trajectory is then d̄t := (1−ρt )d̂t . The demand uncertainty
set is given by:

Ubox ={d ∈ R
T : d ≤d ≤ d̄} (

d<d̄
)
. (6)

Or equivalently

Ubox ={d ∈ R
T : ∃ζ ∈ R

T , ‖ζ‖∞ ≤ 1, dt = d̂t (1+ρtζt ) , t =1, . . . , T } (ρt>0) .

(7)
where the vector d̂ is the expected (nominal) demand shown graphically in Fig. 1.

The robust counterpart of problem (5) is of the form maxq≥0 mind∈Ubox F (q, d).
Note that this formulation is generally intractable, since for all t both −I −

t and −I +
t

are concave in d, and thus the inner minimization problem is concave. It is well known
that an optimal solution of such problem is a vertex of its feasible set, which is in this
case, the uncertainty set Ubox . Since Ubox has 2T vertices and is exponential in T this
problem is generally intractable. Therefore, we consider here a linear program (LP),
which is an equivalent deterministic formulation to problem (5), and has a tractable
robust counterpart with regard to Ubox . This problem is very similar to a prevalent
model in the literature (Bertsimas andSim2004;Bertsimas andThiele 2006;Bertsimas
et al. 2010), and reads as follows:

max
q,y

F (q, y, d)

s.t.

yt ≥ h̄t

(

I0 +
t∑

i=1

(qi − di )

)

∀t = 1, . . . , T

yt ≥ − p̄t

(

I0 +
t∑

i=1

(qi − di )

)

∀t = 1, . . . , T

q ≥ 0 (8)
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where y is an auxiliary trajectory, which represents an upper bound on the inventory
cost, with t-th component yt , and the objective function is given by:

F (q, y, d) =
T∑

t=1

[mt dt − ct qt − yt ] (9)

Since both the first 2T constraints of problem (8) and its objective function are linear
in d, the uncertain parameter, its robust counterpart is tractable with regard to Ubox .
However, the “adversary” (the one that chooses d) is free to choose different values for
each of these constraints separably, leading to a conservative RC compared with prob-
lem (5). Thus the robust formulation of problem (8) can be considered as a tractable
relaxation of the corresponding formulation of (5).

4 Robust formulations

In this section we present the ROmethodology formulations for the basic multi-period
production planning problem under demand uncertainty Ubox .

4.1 Affinely adjustable robust counterpart formulation (AARC)

RO was originally designed to deal with static problems where all decision variables
need to be decided at the beginning of the horizon, before the uncertain data is revealed.
This static version of RO is named robust counterpart (RC). However, in practice, it
is not always necessarily to decide on a policy for the entire planning horizon at the
beginning of the horizon. Instead, it is possible to make a decision at the beginning of
each period, based on realized data from the past. Thus, the decision on the production
quantity qt , can be delayed to the beginning of period t , and adjusted based on the
revealed demands form the past d1, d2, . . . , dt−1. Since the auxiliary variables yt

∀t = 1, . . . , T also depend on the demand, they are also treated as adjustable variables.
It is important to highlight thatBertsimas et al. (2010) proved that theAARCmethod

associatedwith a box-shaped uncertainty set, as we consider here, provides the optimal
solution for the worst-case problem, which does not assume a LDR. Therefore it is
the best worst-case method available.

The AARC assumes that the dependence of the adjustable decision variables qt and
yt ∀t = 1, . . . , T on the past demand is given by the following linear decision rules
(LDR):

qt = α0
t +

t−1∑

r=1

αr
t dr ∀t = 1, . . . , T (10)

yt = β0
t +

t−1∑

r=1

βr
t dr ∀t = 1, . . . , T (11)
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The problem solved by the AARC model is then:

F∗
AARC = max

α,β
min

d∈Ubox
F (q (α, d) , y (β, d) , d)

s.t.

(i) yt (β, d) ≥ h̄t

(
I0 +

∑t

i=1
(qi (α, d) − di )

)
∀d ∈ Ubox , ∀t = 1, . . . , T

(ii) yt (β, d) ≥ − p̄t

(
I0 +

∑t

i=1
(qi (α, d) − di )

)
∀d ∈ Ubox , ∀t = 1, . . . , T

(iii) q (α, d) ≥ 0 ∀d ∈ Ubox (12)

where F(q, y, d) is the objective function in problem (8) given by (9), and the t-th
component of y(β, d) and q(α, d) are given by (10) and (11), respectively. Notice that
this problem (12) is a traditional (nonadjustable) RC problem where the coefficients
αr

t and βr
t ∀t = 0, . . . , T ∀r = 1, . . . , t − 1 in the LDRs become the actual decision

variables. Also note, that each of the continuum of constraints in (i), (ii) and (iii),
is reducible to a single inequality. For example, constraint (iii) for some arbitrary
t ∈ {1, . . . , T } reads:

α0
t +

t−1∑

r=1

αr
t dr ≥ 0 ∀d ∈ Ubox

substituting dr with its implicit formulation (7) it holds that:

α0
t +

t−1∑

r=1

αr
t

(
d̂r + d̂rρrζr

)
≥ 0 ∀ ‖ζ‖∞ ≤ 1 (13)

which is equivalent to:

α0
t +

t−1∑

r=1

αr
t d̂r + {min}

−1≤ζr ≤1 r=1,...,t−1

t−1∑

r=1

αr
t d̂rρrζr ≥ 0

the solution to this optimization problem yields:

α0
t +

t−1∑

r=1

αr
t d̂r −

t−1∑

r=1

∣∣∣αr
t d̂rρr

∣∣∣ ≥ 0 (14)

Note that constraint (13) is reduced to a single conic quadratic inequality if ‖ζ‖∞ in
the uncertainty definition (7) is replaced with ‖ζ‖2.

Constraint (14) can be further formed as a linear inequality system of additional

2 (t − 1) constraints by replacing the
∣∣∣αr

t d̂rρr

∣∣∣ terms with additional t −1 nonnegative

variables wr and requiring −wr ≤ αr
t d̂rρr ≤ wr . Thus, formulating the AARC

problem (12) as a LP calls for additional 2(t − 1) constraints, and additional t − 1
decision variables per each continuum constraint. So finally the AARC model (12)
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reduces to a LP with O(T 2) decision variables and O(T 2) constraints, and thus its
number of constraints is quadratic in T .

Solving the AARC offline (before period t = 1), we obtain the optimal coefficients
vectors α∗, β∗. Then, going online, at the beginning of each period t , the optimal
production for the period is calculated by the LDR

q∗
t = (α0

t )∗ +
t−1∑

r=1

(αr
t )

∗dr , t = 1, . . . , T,

where d1, d2, . . . , dt−1 are the revealed values of the demand in the periods preceding
period t .

4.2 Pareto affinely adjustable robust counterpart formulation (PAARC)

Iancu and Trichakis (2014) showed that a Pareto robust (PRO) solution performs better
in practice than a robust solution, thus in what follows we will assess the performance
of the Pareto version of the AARC method (PAARC) when possible. Typically, there
are many PRO solutions, each corresponds to a different realization in the relative
interior of the uncertainty set. To choose one solution among the set of robustly optimal
solutions, that performswell on averagewe followed the two stageprocedure suggested
by Ruiter et al. (2014). First, solve the AARC problem (12) and obtain F∗

AARC , the
guaranteed worst profit. Second, replace the objective function by the profit obtained
by the nominal demand d̂, and add a constraint that the worst-case profit is at least as
the value of F∗

AARC as follows:

F∗
P AARC = max

ᾱ,β̄
F

(
q

(
ᾱ, d̂

)
, y

(
β̄, d̂

)
, d̂

)

s.t.

F
(
q (ᾱ, d) , y

(
β̄, d

)
, d

) ≥ F∗
AARC ∀d ∈ Ubox

constraints (i), (ii) and (ii) (15)

Of course, the worst profit guaranteed by the PAARC method is identical to the cor-
responding AARC, that is, mind∈Ubox F

(
q (ᾱ, d) , y

(
β̄, d

)
, d

) = F∗
AARC . Following

the same reasoning as we made in Sect. 4.1 this model’s number of constraints size,
as well as the decision variables size, is also quadratic in T .

Note that all the properties of the AARC solution can also be easily verified for the
PAARC solution, and hence for coherence purposes we will use AARC onwards.

5 Assessing the average performance of the AARC method

The value F∗
AARC obtained by the optimal solution of problem (12), is only a guar-

anteed value of the objective function, i.e., no matter what the actual value of the
demand trajectory will be realized, as long as it is in the uncertainty set Ubox , the
resulting objective function (profit) will be at least F∗

AARC . Now, since in reality, it is
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not expected that all the demands d1, d2, . . . , dT will take simultaneously the worst
possible values, the actual value of the objective function could be, in fact, much better
than F∗

AARC as long as the demand trajectory is within the uncertainty set. Therefore,
it is more reasonable to assess the performance of the AARCmethod based on average
performance compared with alternative methods.

To this end we simulate l sets of k demand trajectories d1, d2, . . . , dk (each d j is
a T dimensional vector), where each set corresponds to a different distribution. We
then compute, for each studied method, the average profit associated with its optimal
solution qmethod regarding a sample set and one of the v cost sets considered as follows:

APmethod = 1

k

k∑

j=1

F
(

qmethod
(

d j
)

, d j
)

(16)

whereF(q, d) is the objective function of problem (5), defined in (2). Note that when
both qmethod and a demand realization d j are known, and satisfy qmethod

(
d j

) ≥ 0
the corresponding inventory level trajectory can be calculated using (1), and thus the
appropriate profit can be evaluated by F(q, d) instead of F(q, y, d). For example,
AP P AARC = 1

k

∑k
j=1 F

(
q

(
ᾱ∗, d j

)
, d j

)
where ᾱ∗ is the vector of optimal LDR

coefficients in problem (15) since q (ᾱ∗, d) ≥ 0 ∀d ∈ Ubox . Bear in mind, that the
AARCmethod is purposed to prevent the worst-case scenario, and thus is not expected
to have superior averageprofit over the simulations.Nonetheless, our simulation results
show that it yields quite good average profit.

5.1 Comparing AARC with alternative methods

A natural benchmark for assessing the average performance of the AARC method is
the PH value, computed as follows: for each simulated demand trajectory d j ( j =
1, . . . , k) let q j be the optimal solution of problem (8) with d = d j . That is, the
objective value that would have been obtained if it was possible to know apriori the
exact values of the demand quantities for the entire horizon. Clearly this method,
which assumes perfect information, cannot be implemented in a real-world problem,
like the one considered here. The average simulated profit of the PH solution is always
higher than the corresponding AARC. However, if the difference is small, the average
performance of the AARC method can be considered as “good” while at the same
time optimal for the worst-case by the result of Bertsimas et al. (2010).

If the difference between the PH average profit and the average performance of the
AARC method is big, it does not necessary imply that AARC does not exhibit good
average performance. Indeed, even the optimal method (whatever it is) for solving
problem (8) under uncertain demand d such that d ∈ Ubox can result in average profit
far from the PH average. The merit in adopting the AARC solution should then be
assessed by comparing it to an alternative method.

Such an alternative hybrid “semi-robust” approach is the MCL-RO, which max-
imizes the expected profit over an offline generated demand sample distributed
uniformly out of Ubox , with N trajectories of dimension T , while utilizing RO to
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ensure feasibility. It assumes a LDR for the decision variables q and y of the form
(10) and (11), replacing α and β, with γ and δ, respectively. Thus the MCL-ROmodel
is given by:

F∗
MC L−RO = max

γ,δ

1

N

N∑

n=1

F
(
q

(
γ, dn)

, y
(
δ, dn)

, dn)

s.t.

yt (γ, dn) ≥ h̄t

(
I0 +

∑t

i=1
(qi

(
δ, dn) − dn

i )
)

∀n = 1, . . . , N , ∀t = 1, . . . , T

yt (γ, dn) ≥ − p̄t

(
I0 +

∑t

i=1
(qi

(
δ, dn) −dn

i )
)

∀n = 1, . . . , N , ∀t =1, . . . , T

q (γ, d) ≥ 0 ∀d ∈ Ubox (17)

Note that formulating problem (17) as a LP, according to Sect. 4.1, results in a
model with O(T 2) decision variables as the AARC method does, whereas it has
greater number of constraints, namely, O(T 2 + N T ). Furthermore, if one wants to
take into consideration m possible demands at each period then the total number of
scenarios to be considered is N = mT . In this case the number of constraints of the
MCL-RO model grows exponentially with T .

Since the MCL-ROmodel’s respective objective is maximizing the expected profit,
it is likely to achieve a good average profit. However, in general, since the optimal
y (δ, d) is not necessarily feasible over the entire uncertainty set, this method does not
necessarily yield a lower bound on the profit as the AARC method does as explained
next.

For any method robust or non-robust the worst possible profit, that can occur when
the entire uncertainty set is considered, denoted by W Pmethod, is evaluated given its
solution qmethod and ymethod by:

W Pmethod = min
d∈Ubox

F
(
qmethod (d) , ymethod (d) , d

)
(18)

Note that a robust method already yields this worst-case profit as its optimal objective
function value. Such a worst profit can not be assessed by solving the optimiza-
tion problem mind∈Ubox F (q, d), since it is generally intractable, as explained in
Sect. 3.

However, in general solving problem (18) with regard to a MCL-RO policy
q MC L−RO does not necessarily yield a valid worst profit due to possibly incorrect
values of what is supposed to be the upper bound on the inventory cost y (γ, d). Such
incorrect bound can arouse when an optimal solution to problem (18), that is, a worst-
case demand scenario does not belong to the N sized sample used in the MCL-RO
model. Consequently, this model’s first 2N T constraint does not necessarily hold, and
thus y (γ, d) is not necessarily an upper bound on the inventory costs. Accordingly,
the corresponding objective value, that is, the worst profit, is invalid.

Table 1 presents the average profit of the PAARC,MCL-RO and PHmethods along
with the corresponding standard deviation. This is done for each combination of v = 3
cost sets C1, C2, and C3, and l = 3 demand simulation’s sets D1,D2, and D3 each
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Table 1 Simulations results for Ubox (ρ = 14 %)—average profit (std)

Applied method D1 D2 D3 Worst profit
β (2, 5) β (1, 1) β (5, 2)

PH 92.98 (1.43) 98.53 (2.79) 104.43 (1.59) –

C1

PAARC 91.33 (1.56) 97.32 (2.99) 103.80 (1.71) 82.37

MCL-RO 91.47 (1.56) 97.18 (2.92) 103.46 (1.55) 82.63

C2

PAARC 88.61 (1.93) 94.92 (3.21) 102.16 (1.48) 77.56

MCL-RO 88.87 (1.93) 94.80 (3.08) 101.53 (1.36) 77.84

C3

PAARC 86.80 (2.45) 90.82(2.74) 96.09 (0.57) 68.97

MCL-RO 86.27 (2.62) 90.66(2.83) 95.78 (0.60) 67.05

with k = 100 trajectories of dimension T = 12 (see Appendix), where N the number
of generated scenarios for the MCL-RO method is 100. In general, the average profit
of all studied methods is the highest for demand set D3, and the lowest for demand set
D1.

Table 1 also includes the predicted worst possible profit. Such worst profit asso-
ciated with the uncertainty set Ubox and T = 12 can be obtained by solving
mind∈Ubox F

(
qmethod(d), d

)
via enumeration of its reasonable sized 2T vertices.

Recall that it requires only ᾱ, or γ for the PAARC or MCL-RO methods, respec-
tively. The Table shows that these worst profits are very similar, yet the models’ size
differ in favor of the PAARC method.

The very first row of Table 1 shows the PH method performance. This method
achieve the ultimate profit over the simulations as mentioned before. Since we used
a starting inventory level of zero in our simulations the PH policy always pro-
duces exactly the demand and thus the holding and shortage costs are not relevant
to its average profit calculation. Since these are the only parameters that differ-
entiate among the v = 3 cost sets, the PH average profit is identical for them
all.

The first and last records in each sub-table shows the average simulated perfor-
mance of the PAARC (15) and the MCL-RO methods (17), respectively. As expected,
average-wise, the MCL-RO has a good performance, but it is very similar to the
PAARC corresponding performance. A paired t-test with a level of significant of 95 %
exploring the difference between these methods’ means, shows that they are signif-
icantly different, where 7 out of 9 combinations of cost and demand sets results in
favor of the PAARC method. Furthermore, the average difference between the appro-
priate confidence intervals over all tested sets is very small (0.15) compared with the
profit values, and the maximal difference is only 0.743. These measures suggest that,
essentially, the average profits of these two methods are similar.

In order to strengthen the experimental results of average performance similarity of
the AARC and MCL-RO methods, we consider the AARC problem (12) with regard
to the following uncertainty set
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Table 2 Simulations results for Uellip (ρ = 14%)—average profit (std)

Applied method D1 D2 D3 Worst profit
β (2, 5) β (1, 1) β (5, 2)

PH 95.37 (0.43) 98.73 (1.19) 0.28 (0.39) –

C1

AARC 93.94 (0.34) 95.56 (0.95) 97.72 (0.31) 92.34

MCL-RO 94.46 (0.46) 98.04 (1.22) 99.66 (0.39) –

C2

AARC 92.24 (0.48) 95.69 (1.30) 97.17 (0.41) 88.56

MCL-RO 92.93 (0.53) 96.95 (1.33) 98.81 (0.54) –

C3

AARC 93.38 (0.73) 94.65 (0.79) 95.67 (0.03) 80.81

MCL-RO 91.65 (0.63) 94.86 (1.27) 95.74 (0.66) –

Uellip ={d ∈ R
T : ∃ζ ∈ R

T , ‖ζ‖2≤1, dt = d̂t (1+ρtζt ) , t =1, . . . , T } (ρt>0) .

(19)
where the vector d̂ is the expected (nominal) demand shown graphically in Fig. 1. Note
that the AARC problem associated with this uncertainty set (19) is not necessarily the
optimal policy for the max-min problem. The corresponding MCL-ROmaximizes the
expected profit over an offline generated demand sample distributed uniformly out of
Uellip, with N = 100 trajectories of dimension T . Table 2 shows the corresponding
data as Table 1 for the Uellip uncertainty set. Clearly, the average performance of the
AARC and MCL-RO methods is very similar.

For uncertainty level p = 14 % the MCL-RO worst profit associated with the
uncertainty set Uellip is invalid with respect to all cost sets considered.

The simulations results show that the AARCmethod has very similar average profit
to the MCL-RO method, implying that in practice there is no price to be paid here to
achieve robust solutions. Furthermore, these methods differ in their model’s size such
that the number of constraints of the PAARC method is O

(
T 2

)
, whereas the corre-

sponding number for the MCL-RO method is O(T 2 + N T ). Moreover, the AARC
guarantees a worst-case profit, whereas in general the MCL-RO method does not.
Therefore, according to our simulation results theAARCmethod exhibits superior per-
formance suggesting that there might actually be a price to be paid for non-robustness.

6 Prediction of a profitable interval within the planning horizon

Production planning problems have two distinct stages: planning and execution (oper-
ation). The latter refers to decisions made during the planning horizon, whereas the
former refers to the point in time just before the first period. Consequently, in the
planning stage the information available are forecasts of the product life-cycle length,
which determines the planning horizon length T , and an uncertainty set associated
with the demand values in each of the future periods.
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In the planning stage, the decision maker can allocate the limited resources at his
disposal among different potential investments plans. The decision to embark on a
specific production plan depends on its profitability compared to the best alternative
investment. The AARC method provides such guaranteed periodical profits, as long
as the uncertainties (demands) reside in his chosen uncertainty set. We note that an
online policy does not provide such vital information.

We introduce a new strategy to assess the profitability of a production plan that
supply an appropriate robust policy. The profitable horizon length is obtained by
jointly optimizing the production trajectory and the length of the profitable planning
horizon.

The followingmodel (Eqs. (21)–(35)) optimizes simultaneously the profitable hori-
zon length T ∗ of a product compared with an alternative investment, having periodic
profit Δt ∀t = 1, . . . , T , along with a corresponding production plan. This is done by
using a binary decision variable zt with

zt =
{
1 if the product is profitable at period t
0 otherwise

Furthermore, constraint (29) below implies that the T -vector z will consist of a
sequence of ones followed by a sequence of zeros. Thus, the profitable horizon length
T ∗ is T ∗ = max {t : zt = 1}.

The objective function (21) consists of the cumulative following terms: income
from sales, production and inventory costs, as well as the one time end of horizon
effect. All of these terms accounts only for the profitable horizon as will be explained
next.

By the definition of the binary decision variable zt , the cumulative income from
sales

∑T
t=1 mt dt zt is taken into account in the objective function only at the profitable

horizon.
The cumulative production cost

∑T
t=1 ct qt (α, d) refers only to the profitable hori-

zon due to constraints (27) and (28). Defining M as a big number it holds that qt (α, d)

will be zero when the production is non-profitable. The cumulative inventory cost∑T
t=1 yt (β, d) is incurred only at the profitable horizon due to constraints (25) and

(26), and takes the appropriate values due to constraints (23) and (24).
Recall that by definition, the end of horizon effect at the last period T is included

in both the holding h̄ (4) and shortage p̄ (3) costs. Namely, if the inventory at the end
of period T is positive a unit salvage value s < mT is gained, whereas a negative
inventory stands for undelivered goods that should be fined at a unit price mT . In order
to account for the end of horizon effect when the profitable horizon length is shorter
than the original horizon one T ∗ < T a one time income cend

T ∗ (γ, d) is incurred due
to constraints (32) and (33), and takes the correct values due to constraints (34) and
(35). Note that since the decision variables cend

t (γ, d) ∀t = 1, . . . , T depend on the
demand, they are also treated as adjustable variables satisfying the following LDR

cend
t (γ, d) = γ 0

t +
t−1∑

r=1

γ r
t dr ∀t = 1, . . . , T (20)
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Also note that constraint (22) requires that the cumulative profit of the product is
higher than the corresponding alternative investment.

max
q(α,d),y(α,d),z

min
d∈Ubox

T∑

t=1

[
mt dt zt − ct qt (α, d)

− yt (β, d) + cend
t (γ, d)

]
(21)

s.t.

T∑

t=1

[
mt dt zt − ct qt (α, d)

− yt (β, d) − cend
t (γ, d)

]
≥

T∑

t=1

Δt zt ∀d ∈ Ubox (22)

yt (β, d) ≥ h̄t

⎛

⎝I0 +
t∑

i=1

(qi (α, d) − di )

⎞

⎠

− M (1 − zt ) ∀d ∈ Ubox ∀t = 1, . . . , T (23)

yt (β, d) ≥ − p̄t

⎛

⎝I0 +
t∑

i=1

(qi (α, d) − di )

⎞

⎠

− M (1 − zt ) ∀d ∈ Ubox ∀t = 1, . . . , T (24)

yt (β, d) ≤ Mzt ∀d ∈ Ubox ∀t = 1, . . . , T (25)

yt (β, d) ≥ −Mzt ∀d ∈ Ubox ∀t = 1, . . . , T (26)

qt (α, d) ≥ 0 ∀d ∈ Ubox ∀t = 1, . . . , T (27)

qt (α, d) ≤ Mzt ∀d ∈ Ubox ∀t = 1, . . . , T (28)

zt ≤ zt−1 ∀t = 1, . . . , T (29)

zt ∈ {0, 1} ∀t = 1, . . . , T (30)

cend
T (γ, d) = 0 ∀d ∈ Ubox (31)

cend
t−1 (γ, d) ≤ M

(
zt−1 − zt

) ∀d ∈ Ubox ∀t = 2, . . . , T (32)

cend
t−1 (γ, d) ≥ −M

(
zt−1 − zt

) ∀d ∈ Ubox ∀t = 2, . . . , T (33)

cend
t−1 (γ, d) ≤ s

⎛

⎝I0 +
t−1∑

i=1

(qi (α, d) − di )

⎞

⎠

+ M
(
1 − (

zt−1 − zt
)) ∀d ∈ Ubox ∀t = 2, . . . , T (34)

cend
t−1 (γ, d) ≤ mt−1

⎛

⎝I0 +
t−1∑

i=1

(qi (α, d) − di )

⎞

⎠

+ M
(
1 − (

zt−1 − zt
)) ∀d ∈ Ubox ∀t = 2, . . . , T (35)

An AARC solution determine the LDR’s coefficients, which are feasible for every
realization of the demand within the uncertainty set Ubox and achieve a guaranteed
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Fig. 2 Estimated profitable horizon length for uncertainty levels ρ = 14 % (left) and 20 % (right)

total profit value. This guaranteed value, calculated via (18) for the AARC method, is
essentially a lower bound on the profit. Comparing its corresponding cumulative profit
with the best available investment determines the points in time when the product first
becomes profitable and unprofitable. The same can be easily done for the PAARC
method.

Figure 2 shows (for cost set C2) the cumulative profit of the optimal PAARC
solution for uncertainty levels ρ = 14 % and ρ = 20 %, and that of an alternative
investment yielding an expected profit of Δt = 6 ∀t = 1, . . . , T . By comparing the
cumulative profit of the PAARC method and the alternative investment, it is seen that
when ρ = 14 % the product plan is profitable from period 3 onwards. For ρ = 20 %
the the product plan is profitable from period 5 until period 11.

We note that a profitable horizon length can also be obtained by exhaustive search
over the T different feasible candidates. It can be done by comparing the AARC
objective value, i.e., the product’s cumulative profit of at most T linear programs to
the corresponding cumulative alternative investment’s profit starting the comparison
of the cumulative profits from t = T towards t = 1 and stop when the alternative
investment’s profit is higher.

7 A problem with fixed cost

In this section we formulate the multi-period production planning problem under
demand uncertainty with an additional fixed production cost such as machine set
up costs, maintenance costs, order handling costs etc. The deterministic formulation
of this problem is a mixed integer linear programming (MILP) including T binary
decision variables zt for each period in the planning horizon t = 1, . . . , T , where zt

indicates whether there is a production in period t . The deterministic formulation is
given by:
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max
q,y,z

Ffixed (q, y, z, d)

s.t.

yt ≥ h̄t

(
I0 +

∑t

i=1
(qi − di )

)
∀t = 1, . . . , T

yt ≥ − p̄t

(
I0 +

∑t

i=1
(qi − di )

)
∀t = 1, . . . , T

q ≥ 0

qt ≤ Mzt ∀t = 1, . . . , T

zt ∈ {0, 1} ∀t = 1, . . . , T (36)

where Ffixed(q, y, z, d) is the objective function in problem (8) given by (9), minus
the term

∑T
t=1 bt zt , where bt is the fixed production cost for period t . This type of

MILP can be solved by standard solvers.
In order to formulate the AARC version of this problem (36), we use “partial

adjustability”, that is, the binary variables given by zt ’s are treated as non-adjustable
while the production quantities qt ’s are treated as adjustable. This AARC formulation
associated with Ubox is obtained by substituting the LDRs (10) and (11) in problem
(36) as we did in (12). The problem solved by the AARC method is then

F∗
fixed AARC = max

α,β,z
min

d∈Ubox
F (q (α, d) , y (β, d) , z, d)

s.t.

(i) yt (β, d) ≥ h̄t

(
I0 +

∑t

i=1
(qi (α, d) − di )

)
∀d ∈ Ubox , ∀t = 1, . . . , T

(ii) yt (β, d) ≥ − p̄t

(
I0 +

∑t

i=1
(qi (α, d) − di )

)
∀d ∈ Ubox , ∀t = 1, . . . , T

(iii) q (α, d) ≥ 0 ∀d ∈ Ubox

(iv) qt (α, d) ≤ Mzt ∀d ∈ Ubox , ∀t = 1 . . . , T

(v) zt ∈ {0, 1} ∀t = 1 . . . , T (37)

where the t-th component of y(β, d) and q(α, d) are given by (11) and (10), respec-
tively.

The following proposition is used to show that, despite the partial adjustability, zt is
essentially adjustable, since qt is adjustable for all t = 1, . . . , T due to their coupling
constraints.

Proposition 1 Let qt (α, d) = α0
t + ∑t−1

r=1 αr
t dr be the production quantity at period

t, and let Ubox be a non-degenerated uncertainty set. Then qt (α, d) = 0 ∀d ∈ Ubox if
and only if α

j
t = 0 ∀ j = 0, . . . , t − 1 for non-degenerated uncertainty set Ubox .

Proof Recall that the uncertainty set is defined to be Ubox = {d ∈ R
n|d ≤ d ≤ d̄}

with d < d̄ , and let v,w two vectors in Ubox such that v j = w j ∀ j 
= τ and
vτ 
= wτ . Then in particular:

α0
t +

t−1∑

r=1

αr
t vr = 0 (38)
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α0
t +

t−1∑

r=1

αr
t wr = 0. (39)

Subtracting (39) from (38) we get:

0 =
t−1∑

r=1

αr
t (vr − wr ) = ατ

t (vτ − wτ )

which implies that ατ
t = 0. This holds for every choice of τ ∈ {1, . . . , t −1}, and thus

α
j
t = 0 ∀ j = 1, . . . , t − 1, which further implies that α0

t is zero as well. ��
At every period t = 1, . . . , T if it is not worthwhile to produce for any d ∈ Ubox

by Proposition 1 it holds that α j
t = 0 ∀ j = 0, . . . , t − 1. This allows zt , by constraint

(iv), to take one of the values zero or one. Nonetheless, the objective function is linear
and decreasing in zt and thus zt will take the minimal value, that is, zero. if there exists
at least on α

j
t then zt will take the value 1.

As we compare the average performance of the PAARC and the MCL-ROmethods
when considering the settings without fixed cost, we also consider the MCL-RO with
fixed costs here given by:

F∗
fixed MC L−RO = max

γ,δ,z

1

N

N∑

n=1

Ffixed
(
q

(
γ, dn)

, y
(
δ, dn)

, z, dn)

s.t.

yt (γ, dn) ≥ h̄t

(
I0 +

∑t

i=1
(qi

(
δ, dn) − dn

i )
)

∀n = 1, . . . , N , ∀t = 1, . . . , T

yt (γ, dn) ≥ − p̄t

(
I0 +

∑t

i=1
(qi

(
δ, dn) −dn

i )
)

∀n =1, . . . , N , ∀t = 1, . . . , T

q (γ, d) ≥ 0 ∀d ∈ Ubox

qt (α, d) ≤ Mzt ∀n = 1, . . . , N , ∀t = 1 . . . , T

zt ∈ {0, 1} ∀t = 1 . . . , T . (40)

7.1 Simulations results

We used the same simulation sets with k = 100 demand vectors, as described in the
Appendix, to compare the PAARC and the MCL-RO solution corresponding average

Table 3 Simulations results for Ubox (ρ = 14 %, bt = 3, C2)—average profit (std)

Applied method D1 D2 D3 Worst profit
β (2, 5) β (1, 1) β (5, 2)

PAARC 59.19 (1.86) 64.52 (2.95) 70.32 (1.40) 47.51

MCL-RO 58.62 (1.95) 64.73 (3.09) 71.53 (1.40) 45.09
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profits. Table 3 shows the average (over the simulations) profit of the PAARC and
MCL-RO solutions, as well as the corresponding standard deviation.

Table 3 also includes the predicted worst possible profit. Such worst profit asso-
ciated with the uncertainty set Ubox and T = 12 can be obtained by solving
mind∈Ubox F

(
qmethod(d), d

)
via enumeration of its reasonable sized 2T vertices.

Recall that it requires only ᾱ, or γ for the PAARC or MCL-RO methods, respec-
tively. The Table shows that these worst profits are very similar, yet the models’ size
differ in favor of the PAARC method.

In general, the performance of the PAARC and MCL-RO methods is very similar,
as seen for the model without fixed costs in Sect. 5.1, and hence also strengthen the
empirical results shown in Table 1. Since the results for the cost sets C1 and C3 are
showing the same trend we omitted them here.
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Appendix

Demand simulations

In order to examine theperformanceof the differentmethods under demanduncertainty
we used demand simulations from the uncertainty set. For several uncertainty levels
ρ, l = 3 sets of k=100 demand vectors were generated, each vector consisting of
T=12 entries to represent a twelve month planning horizon. Each set corresponds
to a different distribution, with parameters, that were chosen to explore the effect of
symmetric as well as non-symmetric demand distributions.

Ubox

The entries were generated from a linearly transformed Beta distribution with specific
shape parameters supported by the uncertainty set for the demand as shown in Table 4.
The distributions’ parameters were chosen to explore the effect of symmetric as well
as non-symmetric demand distributions.

Uellip

The demand vectors were generated according to the Generalized Dirichlet distrib-
utions (Barthe et al. 2010) on the ball. It is a generalization of the beta distribution

Table 4 Demand simulations
Beta distribution shape
parameters

Shape
parameters

D1 (right-skewed) D2 (uniform) D3 (left-skewed)

α 2 1 5

β 5 1 2
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Table 5 Cost parameters
Period t Production ct Selling mt Penalty pt Holding ht

C1 C2 C3

1–3 1 3 1.5 0.15 0.4 2.25

4–9 1 2 1 0.1 0.4 1.5

10–11 1 0.8 0.4 0.04 0.4 0.6

12 1 0.8 0.4 0 0 0

to a multivariate distribution. We used the same shape parameter as described in
Table 4.

Cost parameters

The cost parameters are all set relatively to the production cost ct , whichwas set to 1 for
all t . The life-cycle pattern of the demand affects the structure of the selling price vector
m. At first, the price is high and it is decreasing according to the life-cycle pattern’s
sequential stages. In addition, we assumed that the penalty on shortage p satisfies
pt = 0.5mt for all t . Accordingly, the salvage value was set to s = mT = 0.8. These
aforementioned cost parameters are identical for all the different sets: C1, C2, and
C3. These sets differ in the holding cost vector h. The set C2 has a constant h, which
is again set relatively to the production cost vector c. Whereas in sets C1 and C3 we
examine the trade-off between the holding and penalty costs by changing the holding
cost vector h according to a specific ratio ht

pt
,which was set to 0.1 and 1.5, respectively.

Table 5 shows the cost parameters in use. Note, that the initial inventory level I0 was
set to zero.
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