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Abstract We consider optimal decision-making problems in an uncertain environ-
ment. In particular, we consider the case in which the distribution of the input is
unknown, yet there is some historical data drawn from the distribution. In this paper,
we propose a new type of distributionally robust optimization model called the like-
lihood robust optimization (LRO) model for this class of problems. In contrast to
previous work on distributionally robust optimization that focuses on certain parame-
ters (e.g., mean, variance, etc.) of the input distribution, we exploit the historical data
and define the accessible distribution set to contain only those distributions that make
the observed data achieve a certain level of likelihood. Then we formulate the target-
ing problem as one of optimizing the expected value of the objective function under
the worst-case distribution in that set. Our model avoids the over-conservativeness of
some prior robust approaches by ruling out unrealistic distributions while maintaining
robustness of the solution for any statistically likely outcomes. We present statisti-
cal analyses of our model using Bayesian statistics and empirical likelihood theory.
Specifically, we prove the asymptotic behavior of our distribution set and establish the
relationship between our model and other distributionally robust models. To test the
performance of our model, we apply it to the newsvendor problem and the portfolio
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selection problem. The test results show that the solutions of our model indeed have
desirable performance.

1 Introduction

The study of decision-making problems in uncertain environments has been a main
focus in the operations research community for decades. In such problems, one has
a certain objective function to optimize, however, the objective function depends not
only on the decision variables, but also on some unknown parameters. Such situations
are ubiquitous in practice. For example, in an inventory management problem, the
inventory cost is influenced by both the inventory decisions and the random demands.
Similarly, in a portfolio selection problem, the realized return is determined by both
the choice of the portfolio and the random market fluctuations.

One solution method to such problems is stochastic optimization. In the stochastic
optimization approach, one assumes the knowledge of the distribution of the unknown
parameters and chooses the decision that optimizes the expected value of the objective
function. If the knowledge of the distribution is exact, then this approach is a precise
characterization for a risk-neutral decision maker. Much research has been conducted
on this topic; we refer the readers to Shapiro et al. (2009) for a comprehensive review
on the topic of stochastic optimization.

However, there are several drawbacks of the stochastic optimization approach. First,
although stochastic optimization can frequently be formulated as a convex optimiza-
tion problem, in order to solve it, one often has to resort to the Monte Carlo method,
which can be computationally challenging. More importantly, due to the limitation
of knowledge, the distribution of the uncertain parameters is rarely known in prac-
tice to a precise level. Even if enough data have been gathered in the past to perform
statistical analyses for the distribution, the analyses are often based on assumptions
(e.g., independence of the observations, or stationarity of the sequence) that are only
approximations of the reality. In addition, many decision makers in practice are not
risk-neutral. They tend to be risk-averse. A solution approach that can guard them
from adverse scenarios is of great practical interest.

One such approach was proposed by Scarf (1958) in a newsvendor context and
has been studied extensively in the past decade. It is called the distributionally robust
optimization (DRO) approach. In the DRO approach, one considers a set of distrib-
utions for the uncertain parameters and optimizes the worst-case expected value of
the objective function among the distributions in that set. Studies have been done by
choosing different distribution sets. Among them, most choose the distribution set to
contain those distributions with a fixed mean and variance. For example, Scarf (1958)
shows that a closed-form solution can be obtained in the newsvendor problem context
when such a distribution set is chosen. Other earlier works include Gallego and Moon
(1993), Dupacova (1987) and Z4ckova (1966). The same form of the distribution set
is also used in Calafiore and El Ghaoui (2006), Yue et al. (2006), Zhu et al. (2013) and
Popescu Popescu (2007) in which a linear-chance-constrained problem, a minimax
regret objective and a portfolio optimization problem are considered, respectively.
Other distribution sets beyond the mean and variance have also been proposed in the
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literature. For example, Delage and Ye (2008) propose a more general framework with
a distribution set formed by moment constraints. A review of the recent developments
can be found in Gabrel et al. (2014).1

Although the mean-variance DRO approach is intuitive and is tractable under cer-
tain conditions, it is unsatisfactory from at least two aspects. First, when constructing
the distribution set in such an approach, one only uses the moment information in the
sample data, while all the other information is ignored. This procedure may discard
important information in the data set. For example, a set of data drawn from an expo-
nential distribution with A = 1/50 will have similar mean and variance as a set of data
drawn from a normal distribution with © = o = 50. In the mean-variance DRO, they
will result in the same distribution set and the same decision will be chosen. However,
these two distributions have very different properties and the optimal decisions may be
quite different. Second, in the DRO approach, the worst-case distribution for a decision
is often unrealistic. For example, Scarf (1958) shows that the worst-case distribution
in the newsvendor context is a two-point distribution. This raises the concern that
the decision chosen by this approach is guarding some overly conservative scenarios,
while performing poorly in more likely scenarios. Unfortunately, these drawbacks
seem to be inherent in the model choice and cannot be remedied easily.

In this paper, we propose another choice of the distribution set in the DRO frame-
work that solves the above two drawbacks of the mean-variance approach. Instead of
using the mean and variance to construct the distribution set, we choose to use the like-
lihood function. More precisely, given a set of historical data, we define the distribution
set to be the set of distributions that make the observed data achieve a certain level of
likelihood. We call this approach the likelihood robust optimization (LRO) approach.
The goal of this paper is to study the properties of LRO and its performance.

First, we show that the LRO model is tractable. By applying the duality theory,
we formulate the robust counterpart of this problem into a single convex optimization
problem. In addition, we show that our model is very flexible. We can add any convex
constraints (such as moment constraints) to the distribution set while still maintaining
its tractability. Two concrete examples (a newsvendor problem and a portfolio selection
problem) are discussed in the paper to illustrate the applicability of our framework.

Then we study the statistical theories behind the LRO approach by illustrating
the linkage between our approach and the Bayesian statistics and empirical likelihood
theory. We show that the distribution set in our approach can be viewed as a confidence
region for the distributions given the set of observed data. Then we discuss how to
choose the parameter in the distribution set to attain a specified confidence level.
Furthermore, we show a connection between the LRO approach and the mean-variance
DRO approach. Our analysis shows that the LRO approach is fully data-driven, and it
takes advantage of the full strength of the available data while maintaining a certain
level of robustness.

1 We note that there is also a vast literature on robust optimization where the worst-case parameter is
chosen for each decision made. However, the robust optimization is based on a slightly different philosophy
than the distributionally robust optimization and is usually more conservative. It can also be viewed as a
special case of the distributionally robust optimization where the distribution set only contains singleton
distributions. In view of this, we choose not to include a detailed discussion of this literature in the main
text but refer the readers to Ben-Tal et al. (2009) and Bertsimas et al. (2011) for comprehensive reviews.
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Finally, we test the performance of the LRO model in two problems, a newsvendor
problem and a portfolio selection problem. In the newsvendor problem, we find that
our approach produces similar results compared to the mean-variance DRO approach
when the underlying distribution is symmetric, while the solution of our approach is
much better when the underlying distribution is asymmetric. In the portfolio selection
problem, we show by using real historical data that our approach achieves decent
returns. Furthermore, the LRO approach will naturally diversify the portfolio. As a
result, the returns of the portfolio have a relatively small fluctuation.

Recently, Ben-Tal et al. (2013) studied a distributionally robust optimization model
where the distribution set is defined by divergence measures. Their model contains the
LRO as a special case. They also discuss solvability and the statistical properties of
their models. Besides the paper by Ben-Tal et al. (2013), a recent paper by Bertsimas
etal. (2013) also studies DRO with various choices of the distribution set. In particular,
they focus on using data and hypothesis-testing tools to construct those sets. In this
paper, we focus on the distribution set defined by the likelihood function and further
explore the connections of this approach to the empirical likelihood theory. Thus,
we derive specific results for the DRO problems with distribution sets defined by the
likelihood function.

Two other papers related to this one are Iyengar (2005) and Nilim and El Ghaoui
(2005). In these two papers, the authors study the robust Markov Decision Process
(MDP) problem in which the transition probabilities can be chosen from a certain set.
They mention the likelihood set as one choice. However, they do not further explore
the properties of this set or attempt to extend it to general problems.

The remainder of this paper is organized as follows: in Sect. 2, we introduce our
likelihood robust optimization framework and discuss its tractability and statistical
properties. In Sect. 3, we present numerical tests of our model. Section 4 concludes
this paper.

2 Likelihood robust optimization model

In this section, we formulate the likelihood robust optimization (LRO) model, dis-
cuss its tractability and statistical properties. We only consider the case where the
uncertainty parameters have a finite discrete support in this section.

Suppose we want to maximize an objective function h(x, &) where x is the
decision variable with feasible set D, and & is a random variable taking values in
E=1{&,&,,...,&,}). The set E is known in advance. Assume we have observed N
independent samples of &, with N; occurrences of &;. We define:

n
> Nilogpi =y,
i=1

MWZIPZWhmwnﬁﬂ

n
szLﬁzszk”ml ()

i=1

We call D(y) the likelihood robust distribution set with parameter y. Note that D(y)
contains all the distributions with support in E such that the observed data achieve an
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empirical likelihood of at least exp(y). At this point, we treat y as a given constant.
Later we will discuss how to choose y such that (1) has a desirable statistical meaning.
We formulate the LRO problem as follows:

maximizeyep [ min Zp,-h(x,&i)l. 2)

peD(y) =
i=1

In (2), we choose the decision variable x, such that the expectation of the objective
function under the worst-case distribution is maximized, where the worst-case distri-
bution is chosen among the distributions such that the observed data achieve a certain
level of likelihood. Prior to this work, researchers have chosen other types of distri-
bution sets for the inner problem in (2), e.g., distributions with moment constraints.
Works of that type have been reviewed in Sect. 1.

Here we comment on our assumption about the known support of the random
variable &. In the LRO, the choice of E is important; a different choice of E will
result in a different distribution set and a different solution to the decision problem.
In practice, sometimes E has a clear definition. For example, if § is the transition
indicator of a Markov chain (thus those ps are transition probabilities), then the set
of E is simply all the attainable states in the Markov chain. However, in cases where
the choice of E is less clear, e.g., when & represents the return of certain assets, the
decision maker should choose E to reflect his view of plausible outcomes. Also, as we
will show later, one can sometimes add other constraints such as moment constraints
into the distribution set. Once such constraints are added, the choice of support often
becomes less critical, since the support may be constrained by existing constraints.

2.1 Tractability of the LRO model

In this subsection, we show that the LRO model is easily solvable. To solve (2), we
write down the Lagrangian of the inner optimization problem:

L(p,h, 1) = D pih(x, &) +k(y - DN logpi)Jru(l - Zpi)-

i=1 i=1 i=1

Therefore, the dual formulation of the inner problem is

i=1

n
maximize, , ©+ A (y + N — > N;log Ni) — Nxloga

+4 2 Nilog (h(x.§;) — )

i=1

s.t. A>=0, h(x,&)—pn=0, Vi 3)
Since the inner problem of (2) is always convex and has an interior solution (given

it is feasible), the optimization problem (3) always has the same optimal value as the
inner problem of (2) (see, e.g., Boyd and Vandenberghe 2004). Then we combine (3)
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and the outer maximization problem. We have that (2) is equivalent to the following
concave maximization problem:

n
maximizey y , H+ A (7/ + N — > Nilog Ni) — NXlog A

i=1
n
+A > Nilog(h(x,§;) — )
i=1
st. 2>0, h(x,&)—unu=>0,Vi, xeD. )

The following proposition follows immediately from examining the convexity of the
problem and studying its KKT conditions. The detailed proof is given in the Appendix.

Proposition 1 Ifh(x, &) is concave in x, then the likelihood robust optimization prob-
lem described in (2) can be solved by solving (4), which is a convex optimization
problem. Furthermore, if (x*, \*, u*) is an optimal solution for (4), then

A*N;

A U
heer &) — e

Pi

is the corresponding worst-case distribution.

One advantage of the LRO approach is that one can integrate the mean, variance
and/or certain other information that is convex in p into the distribution set. For
example, if one wants to impose additional linear constraints on p, say Ap > b (note
that this includes moment constraints as a special case), then the likelihood robust
optimization model can be generalized as follows:

n

maximizerep minyen(y) ap=p P, Pih(x. &,). )
i=1

By applying the duality theory again, we can transform (5) into the following problem
(p is the dual variable associated with the constraint Ap > b, and we assume that
> ', pi = 1 has been incorporated into Ap > b):

n
maximizey ;. , b7 p + A (y +N->N; logN,-) — Nilog A
i=1

n
+1 > Nilog(h(x, &) —a] p)
i=1
S.t. h(x,§&)— a,.Tu >0, Vi
xeD,u>0,1>0,

which is again a convex optimization problem and readily solvable.
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2.2 Statistical properties of the LRO model

In this subsection, we study the statistical theory behind the LRO model. Specifically,
we focus on the likelihood robust distribution set defined in (1). We will address the
following questions:

1. What are the statistical meanings of (1)?

2. How does one select a meaningful y?

3. How does the LRO model relate to other types of distributionally robust optimiza-
tion models?

We answer the first question in Sect. 2.2.1 by using the Bayesian statistics and empirical
likelihood theory to interpret the likelihood constraints. Those interpretations clarify
the statistical motivations of the LRO model. Then we answer the second question in
Sect. 2.2.2 in which we perform an asymptotic analysis of the likelihood region and
point out an asymptotic optimal choice of y. We study the last question in Sect. 2.2.3
where we present a relationship between our model and the traditional mean robust
optimization model.

2.2.1 Bayesian statistics interpretation

Consider a random variable taking values in a finite set Z. Without loss of generality,
we assume Z = {l,...,n}. Assume the underlying probability distribution of the
random variable is p = {p1, ..., pn}. We observe historical data ¥ = {Ny, ..., N,}
in which Ny represents the number of times the random variable takes value k. Then
the maximum likelihood estimate (MLE) of p is given by (N1/N, N»/N, ..., N,/N)
where N = >"'_| N; is the total number of observations.

Now we examine the set of distributions p such that the likelihood of W under
p exceeds a certain threshold. We use the concepts from Bayesian statistics (see
e.g., Gelman et al. 1995). Instead of thinking that the data are randomly drawn from
the underlying distribution, we treat them as given, and we define a random vector
p = (p1, ..., pp) taking values on the (n — 1)-dimensional simplex A = {p|p; +
-+ p, = 1, p; > 0} with probability density function proportional to the likelihood

function:
n
N.
H pi'.
i=1

This distribution of p is known as the Dirichlet distribution. A Dirichlet distribution
with parameter W (denoted by Dir(W)) has the density function as follows:

l n
V) = —— N
f(p; W) B(\Il)zl:[lp

with

n
_ [T=, TV
B(\y)z/ piNi ldpy - dp, = ==
peAiE[l ’ SRR
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where I'(-) is the Gamma function. The Dirichlet distribution is used to estimate
the unknown parameters of a discrete probability distribution given a collection of
samples. Intuitively, if the prior distribution is represented as Dir («), then Dir (o + f8)
is the posterior distribution following a sequence of observations with histogram .
For a detailed discussion on the Dirichlet distribution, we refer the readers to Gelman
et al. (1995).

In the LRO model, we assume a uniform prior Dir(e) on each point in the support of
the data, where e is the unit vector. After observing the historical data W, the posterior
distribution follows Dir (W + e). Note that this process can be adaptive as we observe
new data.

Now we turn to examine the likelihood robust distribution set

n n
D(V)={P ZNilogPi Z)/,Zpi=1,l7iZO,ViZl,...,n}. 6)

i=1 i=1

This set represents a region in the probability distribution space. In the Bayesian
statistics framework, we can compute the probability that p satisfies this constraint:

1 n n
P'(peD =—/ N1 N;log p; > v Vdpi---dpy,
(P DY) = 30T PeAi]:[lpl > Nilogpi =y )dpi---dp,

i=1

where P* is the probability measure of p given the observed data W (thus P* is the
probability measure under Dir(V + e)), and I(-) is the indicator function. When
choosing the likelihood robust distribution set, we want to choose y* such that

P*(peD(y”))=1-«a @)

for some predetermined «. That is, we want to choose y* such that (6) is the 1 — «
confidence region of the probability parameters. The LRO model can then be inter-
preted as choosing the decision variable to maximize the worst-case objective value
where the worst-case distribution is chosen from the confidence region defined by the
observed data.

However, in general, trying to find the exact y* that satisfies (7) is computationally
challenging. In the next subsection, we study the asymptotic properties of y*, which
help us to approximate it.

2.2.2 Asymptotic analysis of the likelihood robust distribution set

Now we investigate the asymptotic behavior of the likelihood robust distribution set
and give an explicit way to choose an appropriate y in the LRO model. In this section,
we assume that the true underlying distribution of the datais p = {py, ..., p,} with

pi > 0. We observe N data drawn randomly from the underlying distribution with N;
observations on outcome i (Z;‘zl N; = N). We define y to be the solution such that

Pv(peDyn) =1-ca.
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Here « is a fixed constant and Py is the Dirichlet probability measure on p with
parameters N1, ..., N,. Clearly yy depends on {N;}!"_, and thus is arandom variable.
We have the following theorem about the asymptotic properties of y, whose proof is
referred to Pardo (2005). (We use — , to mean “converge in probability.”)

Theorem 1
1
VN_ZNlog anla

where Xj,lf o IS the 1 — a quantile of a x 2 distribution with d degrees of freedom.

Theorem 1 provides a heuristic guideline on how to choose the threshold y in the
LRO model. In particular, one should choose approximately

N; 1
ZNlog—’— ~Xoila

in order for the likelihood robust distribution set to have a confidence level of 1 —«. Note
that y*/N converges to > ;(N;/N)log (N;/N) as N grows. This means that when
the data set is large, the allowable distributions must be very close to the empirical
data. This is unlike some other distributionally robust optimization approaches which
construct the distribution sets based on the mean and/or the variance. Even with large
data size, the distribution set in those approaches may still contain distributions that
are far from the empirical distribution, such as a two-point distribution at the ends of
an interval. Therefore our approach does a better job in utilizing the historical data to
construct the robust region.

In the following, we prove a theorem about the convergence speed of yy. We use
=>4 to denote “converge in distribution.”

Theorem 2
‘}/ n
N _ _
VN(W - '21 Di logpi) =4 Xo,
=

where Xog = Z;’:l(l + log pi) X; with (X1, ..., Xn) ~ N(0, X) where

pid—p1) —pip2 -+  —Pipn
5 —pip2 pp(lL=p2) -+ —p2pn
_ﬁlﬁn _132p_n e ﬁn(l - ﬁn)

Proof Given Theorem 1, it suffices to prove that:

Ni N;
m(zﬁllog——z“p,logpl):m Xo.

i=1 i=1
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To show this, we note that for fixed N, (N, ..., N,) follows a multinomial distribution
with parameters N, p1, ..., pn. By Theorem 14.6 in Wassaman et al. (2009), we have

Ny _ N _
VN{=-p1,...,—= — N, 2).
N P N P =4 N0, X)

Define f(x) = xlogx. By the mean value theorem,
n n n
N;i N; _ _ N;  _
W(Z} ~ g~ Z}Pi logpi) = 21: f' VN (ﬁl — pi)
1= 1= 1=

where n; lies between N;/N and p;. By the strong law of large numbers, n;, — p;
almost surely. Therefore,

n
Ni
> favVN (ﬁl - Pi) =a Xo,
i=l
and thus the theorem is proved. O

Theorem 2 precisely states the distribution of Yy when the sample size is large. In
particular, it states that as the number of samples increases, the difference between
y~/N and the negative entropy of the true underlying distribution (3_7_, p; log p;)
shrinks in the speed of O (1/ VN).

2.2.3 Relation to other types of DRO models
In this section, we show how one can relate other types of DRO models to our

LRO model through results in the empirical likelihood theory. Given observed data
X1, ..., Xy with the empirical distribution:

1 N
Fy@) =+ 2 1(Xi <),
i=1

we define the likelihood ratio of any distribution F by

L(F)
R(F) = ,
L(Fn)
where L(F) is the likelihood value of the observations X1, ..., Xy under distribution

F. Now suppose we are interested in a certain parameter (or certain parameters)
6 = T (F) of the distribution. We can define the profile likelihood ratio function as
follows (see Owen 2001):

Rr(0) = SI;P{R(F)IT(F) = 0}. ®)
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Here some common choices of T include the moments or quantiles of a distribution. In
DRO, one selects a region ® and maximizes the worst-case objective value for 6 € ©.
Using the profile likelihood ratio function in (8), we can define ® to be of the form

© ={0|Rr(0) = ro} = {0|3F, R(F) = ro, T(F) = 0}.

When 6 is the mean of the distribution, the next theorem helps to determine ry such
that asymptotically ® is a certain confidence interval for the true mean.

Theorem 3 (Theorem 2.2 in Owen 2001) Let X1, ..., X,, be independent random
variables with common distribution Fy. Let po = E[X1], and suppose that 0 <
Var(X1) < oo. Then —21og(R7 (1L0)) converges in distribution to X(zl) asn — 0.

Therefore, in order for the set {# |R7(0) > ro} to achieve a 1 — « confidence level
(under the Dirichlet distribution induced by the observed data), one should approxi-
mately choose the boundary 6 such that

Rr(0) = e 2 i1-a,
To find such 6, we solve the following convex optimization problems:

maximize/minimize g 0

n

st > Nilog pi = log (L(Fy)) = 5x} |,

i=1

=

n
S pi=1,3dipi =6, p: >0,Vi. (C))
i=1 i=1

Note that the optimal values to the maximization and the minimization problems give
the exact upper bound and lower bound for 6. We illustrate this with the following
example:

Example 1 We consider a data set with support on all integers between 0 and 20 with
the histogram shown in Fig. 1. There are 100 data points with sample mean X = 9.88
and sample standard deviation s = 3.30. (Each data is a sample generated by rounding
a normal distribution with mean 10 and variance 10.) By using the above procedure
while choosing @ = 0.05, we obtained that the optimal values of the maximization
and the minimization problems in (9) are 10.5234 and 9.227, respectively. Therefore,
the confidence region generated by this approach is [9.227, 10.523].

We can also directly build a confidence interval for the mean, using the formula

, X+

Vn Vn

As one can see, the two confidence intervals are very close, indicating that when
restricting to mean uncertainty, our approach is a reasonable approximation. O

- - 1 — - - 1 —
[X— LT 1 ezl } = [9.225,10.535].
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frequency

0 2 4 6 8 10 12 14 16 18
data

Fig. 1 Histogram for the data in Example 1

Finally, we note that the idea of using the profile likelihood function can also be
used to establish relationships between the LRO model and other types of distribution-
ally robust optimization. However, there might not be a closed-form formula for the
asymptotic choice of (. In those cases, one may need to resort to sampling methods to
find an approximate ry, the procedure of which is beyond the discussion of this paper.

3 Applications and numerical results

In this section, we show two applications of the proposed LRO model and perform
numerical tests on them. The two applications are the newsvendor problem (see Sect.
3.1) and the portfolio selection problem (see Sect. 3.2).

3.1 Application 1: newsvendor problem

In this subsection, we apply the LRO model to the newsvendor problem. In such prob-
lems, a newsvendor facing an uncertain demand has to decide how many newspapers
to stock on a newsstand. If he stocks too many, there will be a per-unit overage cost for
each copy that is left unsold; and if he stocks too few, there will be a per-unit underage
cost for each unmet demand. The problem is to decide the optimal stocking quantity
in order to minimize the expected cost.

The newsvendor problem is one of the most fundamental problems in inventory
management and has been studied for more than a century. We refer the readers to
Khouja (1999) for acomprehensive review of this problem. In the classical newsvendor
problem, one assumes that the distribution of the demand is known (with distribution
F). The problem can then be formulated as:

minimize, Gp(x) = bEp(d — x)T + hEr(x —d)*. (10)
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In (10), x is the stocking quantity, d is the random demand with a probability distrib-
ution F, and b, h > 0 are the per-unit underage and overage costs, respectively.

It is well-known that a closed-form solution is available for this problem. However,
such a solution relies on the accurate information about the demand distribution F.
In practice, one does not always have such information. In many cases, what one
has is only some historical data. To deal with this uncertainty, Scarf (1958) proposed
a distributionally robust approach in which a decision is selected to minimize the
expected cost under the worst-case distribution, where the worst-case distribution is
chosen from all distributions that have the same mean and variance as the observed
data. However, as we discussed earlier, such an approach does not fully utilize the
data. It is also overly conservative as the corresponding worst-case distribution for
any given decision is a two-point one, which is implausible from a practical point of
view.

On the other hand, researchers have also proposed pure data-driven models to solve
the problem, i.e., using the empirical distribution as the true distribution. However,
pure data-driven approaches tend to be less robust, since they ignore the potential
deviations from the data and do not guard against it.

In the following, we propose the LRO model for the newsvendor problem. We
assume that the support of all possible demands is & = {0, ..., n}, i.e., the demand
takes integer values between 0 and n. Suppose we are given some historical demand
data. We use N; to denote the number of times that demand is equal to i in the observed
historical data. The total number of observations is N = > N;.

The LRO model for the newsvendor problem is given as follows:

n
minimize, max, Z pi (b(di =) +h(x —dp)7T)
i=0

n
s.t. Z Nilogpi >y
i=0

n
S pi=1. pi =0 Vi (11)
i=0

where d; = i. Here the outer problem chooses a stocking quantity, while the inner
problem finds the worst-case distribution and cost with respect to that decision. Here
the first constraint makes sure that the worst-case distribution is chosen among those
distributions that make the observed data achieve a chosen level of likelihood y. By
applying the same techniques as in Sect. 2, we can write (11) as a single convex
optimization problem:

1=

n n
minimizey  , p ©+ A (Z N;ilogN; — N — y) + Nilogh — > Nirlog(y;)
i=0 i=0

s.t. b(di —x)+yi <u,Vi
h(x —di) +yi <, Vi
A>0, y>0.
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This problem is thus easily solvable. Similar approach can be applied to multi-item
newsvendor problems.

Now we perform numerical tests for this problem using the LRO model and com-
pare the solution to that of other methods. In the following, we consider a newsvendor
problem with unit underage and overage costs b = h = $1. We consider two under-
lying demand distributions. The first one is a normal distribution with mean pu = 50
and standard deviation o = 50. The second one is an exponential distribution with
A = 1/50. When generating the data, we truncate the demand at 0 and 200 and round
the randomly generated values to the nearest integer.

For each underlying distribution, we perform the following procedures for the LRO
approach:

1. Generate 1000 historical data from the underlying distribution, and record the
number of times the demand is equal to i by N;.

2. Construct the likelihood robust distribution set D(y) = {p|>.'_, N;log p; >
v, 2i_oPi = 1, pi = 0,Vi}. To choose a proper y, we use the asymptotic
result in Theorem 1. We choose y such that D(y) covers the true distribution
with probability 0.95, where the probability is under the Dirichlet measure with
parameters No + 1,..., N, + 1. By Theorem 1, y should be approximately
2 i—o Nilog % - %Xzzoo,o.%'

3. Solve the LRO model (11) with the y chosen in Step 2.

Using the same group of sample data, we also test the following approaches:

1. LRO with fixed mean and variance: denote the sample mean by /& and the sample
variance by 62. We add two constraints > 1 pid; = fiand > /_ pid? = >+ 62
to the inner problem of (11), that is, we only allow those distributions that have
the same mean and variance as the sample mean and variance. As we discussed in
(5), this would still be a convex problem and one can obtain the optimal solution
easily. We denote this approach by LRO(j1, 62).

2. The distributionally robust approach with fixed mean and variance: this is the
approach proposed by Scarf (1958). In this approach, one minimizes the worst-case
expected cost where the worst-case distribution is chosen from all the distributions
with a fixed mean (equal to the sample mean) and a fixed variance (equal to the
sample variance). We call this approach the Scarf approach. In Scarf (1958), it
is shown that the optimal decision for the Scarf approach can be expressed in a

closed-form formula:
N . O b h
xxcarf:,u"i'i 7 Vs )

3. The empirical distribution approach: we solve the optimal solution using the empir-
ical distribution as the true distribution.
4. We solve the optimal solution using the true underlying distribution.

Our test results are shown in Tables 1 and 2. All the computations are run on a
PC with 1.80GHz CPU and Windows 7 Operating System. We use MATLAB version
R2010b to develop the algorithm for solving the optimization problems. In Tables
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Table 1 Results when the underlying distribution is normal

Solution (x*) B £y [ (X%, )] hLRO(™)

LRO 56 35.97 (+0.84 %) 49.32 (+0,00 %)
LRO(fz, 82) 54 35.80 (+0.37 %) 49.47 (+0.30 %)
Scarf 53 35.74 (+0.20 %) 49.63 (+0.63 %)
Empirical 50 35.79 (+0.34 %) 50.03 (+1.40 %)
Underlying 51 35.67 (+0.00 %) 49.87 (+1.11 %)

Table 2 Results when the underlying distribution is exponential

Solution (x*) Efyy 0 1G5, )] hRO(™)
LRO 46 35.72 (+3.51 %) 53.71 (+0.00 %)
LRO(71, 62) 41 34.99 (+1.39 %) 54.45 (+1.38 %)
Scarf 50 36.64 (+6.17 %) 54.27 (+1.04 %)
Empirical 37 34.55 (+0.16 %) 55.75 (+3.80 %)
Underlying 35 34.51 (+0.00 %) 56.20 (+4.64 %)

1 and 2, the second column is the optimal decision computed by each model. The
third column shows the expected cost of each decision under the true underlying
distribution, which is truncated N (50, 2500) in Table 1 and truncated Exp(1/50) in
Table 2. The last column shows the objective value of each decision under the LRO
model, i.e., the worst-case expected objective value when the distribution could be
chosen from D(y). The numbers in the parentheses in both tables are the relative
differences between the current solution and the optimal solution under the measure
specified in the corresponding column.

In Table 1, one can see that when the underlying demand distribution is normal,
the solutions of different models do not differ much from each other. This is mainly
because the symmetric property of the normal distribution pushes the solution to the
middle in either model. Nevertheless, the worst-case distributions in different cases
are quite varied. We plot them in Fig. 2.

In Fig. 2, the x-axis is the demand and the y-axis is the probability mass function
over the demands. We can see that the worst-case distribution in the Scarf model
is a two-point distribution (with positive mass at 3 and 103). However, a two-point
distribution is not a realistic one, which means that Scarf’s approach might be guarding
some overly conservative scenarios. In contrast, the worst-case distributions when we
use LRO and LRO(j, 62) models are much closer to the empirical data and look much
more plausible. In particular, the LRO with mean and variance constraints results in a
worst-case distribution closest to the empirical data among these three approaches.

The situation is different in the second case when the underlying distribution is an
exponential distribution. In this case, Scarf’s solution is significantly worse than the
LRO solutions. This is because it does not use the information that the data are skewed.
In fact, it still only takes the mean and variance as the input. In contrast, the LRO and
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Fig. 2 Worst-case distributions when the underlying demand distribution is normal

LRO(/1, 62) adapt to the asymmetry of the data and only consider the distributions
that are close to the empirical distribution.

In both cases, we observe that the LRO(/i, 62) seems to work better. Indeed, we
find that adding some constraints on p regarding the mean/variance of the distribution
usually helps the performance. This is because it helps to further concentrate the
distribution set to those that have similar shape as the empirical distribution. Lastly,
we find that the empirical distribution works well if we use the true distribution to
evaluate the performance. However, it is not robust to potential deviations from the
underlying distribution. As shown in the last column in Tables 1 and 2, when we allow
the underlying distribution to change to some degree (within a 95 % confidence range),
the performance of the solution obtained by using the empirical distribution might be
suboptimal.

3.2 Application 2: portfolio selection problem

In this subsection, we apply the LRO model to the portfolio selection problem. In
the portfolio selection problem, there are d assets that are available to invest for
the next day. The decision maker observes N historical daily returns of the d assets
{&;} lN: | Where each §; is a d-dimensional vector drawn from some underlying unknown
distribution. In our case, we consider a certain support & of all possible returns, and
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the choice of E can be derived by using statistical models to calculate the boundaries
of the possible returns. The decision in this problem is to make a portfolio selection
x in a feasible set D (e.g., D may contain some budget constraints) to maximize the
expected return. We refer the readers to Luenberger (1997) for a thorough review on
this problem.

In this section, we demonstrate how to apply the LRO model to the portfolio selec-
tion problem and compare its performance to that of some other methods. First, we
formulate the LRO model for the portfolio selection problem as follows:

N
maximizeyep ming Zpi . EiTx + Z 2 ng
i=1 oeB\{&,...En]
N
s.t. Zlog pi >y
i=1
elp=1,p=>o0. (12)

In (12), the first term in the objective function corresponds to the scenarios that have
been observed in the data, while the second term corresponds to the unobserved sce-
narios. Note that theoretically E could be an uncountable set, in which case the second
term should be replaced by an integral. However, practically, one can always discretize
E to arbitrary accuracy (e.g., use a grid discretization). Therefore, writing the second
term as a sum is without loss of practicality. The first constraint in (12) is the likelihood
constraint introduced in Sect. 2. For the ease of notation, we assume that each return
profile occurs only once in the data, which is reasonable if the set of possible return
profiles is huge (e.g., if the set is a result of discretizing a continuous set). Although
the number of points in E could be large or even infinite, as long as we can solve

g(x) = r;leigsfx (13)

efficiently for any x, the whole problem can be formulated as a convex optimization
problem of polynomial size. To see that, we take the dual of the inner problem of (12)
and combine it with the outer problem. We have that the entire problem can be written
as one single optimization problem as follows:

maximizey ;3 4+ YA+ N1 — Niloghi + )\ZZNZI log(éiTx — 1)
sit. w<&'x, Voe& (14)
A>0, xeD.

It appears that the first set of constraints could be of large size, however, if g(x)
defined in (13) can be solved efficiently, then this is effectively one single constraint.
For example, if & = {(r1,...,ra)|ri € [r;, 1]}, then the constraint is equivalent to
w<rlx. If 8 ={(r1,...,ra)llIr — roll2 < n}, then the constraint is equivalent to
n < rgx — n]|x]|, which is also convex.
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Again, we can add any convex constraints of p into (12) such as constraints on the
moments of the returns. Thus our model is quite flexible. Next we perform numerical
tests using our model. We adopt the following setup (this setup is also used in other
studies of the portfolio selection problem, see, e.g., Delage and Ye 2008):

e We gather the historical data of 30 assets from the S&P 500 Index during the time
period from 2001 to 2004. In each experiment, we choose four assets to focus on
and the decision is to construct a portfolio using these four assets for each day
during this period. We use the past 30 days’ data as the observed data in the LRO
approach.

To select the y in (14), we still use the asymptotic result in Theorem 1. In particular,
we choose the degree of freedom in the chi-square distribution to equal the number
of historical observations. Although this is a heuristic choice, we find it works well in
the numerical test. We compare our approach to the following three other approaches:

1. A naive approach in which each day, the stock with the highest past 30 days’
average daily return is chosen to be the sole stock in the portfolio. We call this
approach the single stock (SS) approach.

2. Anapproach in which each stock is chosen with 1/4 weight (in terms of the capital
size) for each day. We call this approach the equal weights (EQ) approach.

3. The distributionally robust approach with fixed mean and variance estimated from
the past 30 days’ observations (see Popescu 2007), called the DRO approach.

We acknowledge that there are many other ways one can choose the portfolio and
we do not intend to show that our approach is the best one for this problem. Instead,
we aim to illustrate that the LRO approach gives a decent performance with some
desired features.

In Table 3, we present the test results. The results are obtained using codes written
in MATLAB 2010b. Some of the codes are borrowed from Delage and Ye (2008). We
did 100 experiments (each with four different stocks randomly chosen from the 30 to
form the portfolio for each day), and the tested period covers 721 days.

In Table 3, the numbers in the second column indicate that among the 100 exper-
iments, the number of times the overall return of the LRO approach outperforms the
corresponding method. The numbers in the third column are the improvements of
the average return of the LRO method over the corresponding model, and the num-
bers in the last column are the standard deviations of all daily returns of the portfolio

Table 3 Test results for the portfolio selection problem

Approach # LRO outperforms Average gain of LRO Std of returns
(out of 100 cases) over

LRO N/A N/A 2.3 %

SS 65 1.8 % 33 %

EQ 60 1.1 % 1.5%

DRO 58 1.3 % 2.4 %
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constructed using each method. From Table 3, we observe that among the 100 exper-
iments, LRO outperforms all other tested methods in terms of the number of times it
has a higher return, as well as the average overall return during the 721 days. Also,
it has a decent standard deviation of the daily returns. In particular, it has a much
smaller standard deviation than the SS approach, and a comparable standard deviation
to the DRO approach. To investigate further, when we look at the portfolios con-
structed by the LRO method, we find that 52 % of the time, it chooses a single stock
to form the portfolio. And it chooses two stocks, three stocks and all four stocks in
its solution for 39 %, 8 % and 1 % of the times. Therefore, we find that LRO approach
implicitly achieves diversification, which is a feature that is usually desired in such
problems.

4 Conclusion

In this paper, we propose a new distributionally robust optimization framework, the
likelihood robust optimization model. The model optimizes the worst-case expected
value of a certain objective function where the worst-case distribution is chosen from
the set of distributions that make the observed data achieve a certain level of likelihood.
The proposed model is easily solvable and has strong statistical meanings. It avoids
the over-conservatism of other robust models while protecting the decisions against
reasonable deviations from the empirical data. We discuss two applications of our
model. The numerical results show that our model might be appealing in several
applications.
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5 Appendix

Proof of Proposition 1 First, we show that problem (4) is a convex optimization prob-
lem. To see this, we first write (4) in a slightly different but equivalent way:

maximizey . u,y 4+ A(y + N — >0 NilogN;) — Nilogh+ 1> | N;logy;
S.t. A>0, h(x,&)—pn=>y, Vi, xeD. (15)

Note that because the objective is to maximize, (15) is an equivalent representation of
(4). It is easy to see that when i (x, &) is concave in x, the constraints are all convex
constraints. Now we only need to verify that the objective function is jointly concave.
Note that the first two terms of the objective function are linear, therefore, we only
need to show that the function —NAlogi + 1 >, N;log y; is jointly concave in A
and y. We consider the Hessian matrix of the objective function with respect to A and

y:
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_N M N Na
A i 2 Yn
Ny ANy
" 7 0 0
Ny _xN
H = s 0 7 0
N0 0 ... M
Yn y,%
Now consider a diagonal matrix A with diagonal elements X, yi, ..., y,, then we
have
—NXA AN AN>» -+ AN,
ANT —AN; 0 . 0
ATHA = | AN2 0 —ANy --- 0
AN, 0 0 - —AN,

which is a diagonal dominant matrix with all negative diagonal elements. Thus A7 H A
is negative semidefinite, which further implies that H is negative semidefinite. Thus
the objective function is a concave function and the optimization problem is a convex
optimization problem.

Finally, we prove that the worst-case distribution satisfies:

A*N;

= — Vi
h(xet &) —

Pi

We consider the derivative of the Lagrangian function L(p, A, ) with respect to
pi- By the KKT conditions, we must have p; V), L(p, A, ) = 0, which implies
that p; (h(x*, §;) — u*) = A*N;. Also, we note that in (4), since there is a term of
log (h(x, &;) — ), therefore, h(x*, §;) — u* # 0. Thus Proposition 1 is proved. O
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