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1 Introduction

Let us consider the following scalar convex composite programming problem:

(P) min F(x)
subject to x ∈ Rn,

where F(x) = h( f (x)) with h : Rm �→ R convex and f : Rn �→ Rm continuously
differentiable. This model has received a great deal of attention in the literature, since
it offers a unified framework within which many of the traditional problem occurring
in mathematical programming can be studied, for example to study the convergence
behavior of various algorithms and Lagrangian conditions in constrained and uncon-
strained optimization. Rockafellar (1988) pointed out that most common problems
of optimization that arise in practice can be reformulated using convexly composite
functions.

However, convexity does not appear as a natural property for various functions
in the mathematical modelling of real world systems. Hence, there has been several
extensions and generalizations for classical convexity. Hanson (1981) generalized con-
vex functions to introduce the concept of invexity, which was a significant milestone
as it inspired a great deal of subsequent work which has greatly expanded the role
and applications of invexity in optimization theory. Considering the wide applica-
tions of composite functions and limitations of convexity, Askar and Tiwari (2009)
discussed first-order optimality conditions and duality results for composite multiob-
jective optimization problems. Recently, Padhan andNahak (2015) established second
order duality results for an invex composite optimization problem.

Vector variational inequalities, which serve as an efficient tool to investigate vector
optimization problems, was introduced byGiannessi (1980). The proper use of a prob-
lem’s structure can lead to very efficient optimization methods. Considerably, there
has been extensive generalization of vector variational inequalities, see for instance
(Chen and Huang 2012; Jabarootian and Zafarani 2008; Jahn 2004; Oveisiha and
Zafarani 2012; Ruiz-Garzón-Lizana et al. 2004; Verma 1998). Ruiz-Garzón-Lizana
et al. (2004) established the relationships between vector variational-like inequal-
ity problems and vector optimization problems, under the assumption of generalized
invexity. Recently, a new class of exponential form of vector variational-like inequality
problems was introduced and studied by Jayswal et al. (2014) under the frame work
of (p, r)-invexity.

The above facts serve to establish the importance of introducing the concept of
composite vector variational-like inequality problem to study invex composite opti-
mization problems, which covers the class of convex optimization problems as a
special case. It is well known that an equilibrium problem, researched by various
authors (Ansari et al. 2002; Ansari 2012; Blum and Oettli 1994; Huang et al. 2003;
Mehta and Chaudhary 2014; Sun and Li 2013) is a unified model of several prob-
lems, namely, variational inequality problem, complementarity problem, fixed point
problem, saddle point problem, Nash equilibrium problem, etc. And, gap function is
a powerful concept for transforming variational inequalities into optimization prob-
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lems. Consequently, we study these problems in accordance with composite vector
optimization problem and composite vector variational-like problem.

Our paper is organized as follows: In Sect. 2, we recall some definitions and lem-
mas, which will be applicable in the sequel of the paper. In Sect. 3, the relationship
between a composite vector variational-like inequality problem and a composite vec-
tor optimization problem is established. In Sect. 4, we prove an existence result for
solutions of composite vector variational-like inequality problem. A gap function for
composite vector variational-like inequality problem is defined in Sect. 5. In Sect. 6,
we introduce the system of composite vector optimization problems and system of
vector variational-like inequality problems, obtain relation of these problems with
Nash equilibrium problem. Lastly in Sect. 7, we conclude the paper.

2 Notations and preliminaries

Let Rn denote the n-dimensional Euclidean space. Let x, y ∈ Rn , we use the following
convention for equalities and inequalities throughout this paper.

(a) x ≤ y ⇔ xi ≤ yi , i = 1, . . . , n, with strict inequality holding for at least one i ;
(b) x � y ⇔ xi ≤ yi , i = 1, . . . , n;
(c) x = y ⇔ xi = yi , i = 1, . . . , n;
(d) x < y ⇔ xi < yi , i = 1, . . . , n.

Now, we extend the notion of composite invex functions defined in Padhan and
Nahak (2015) to composite invex vector and composite psuedo invex vector func-
tions. Throughout this paper, we define X ⊂ Rn and Y ⊂ Rm . Let F : X �→ Y be a
vector valued function.

Definition 2.1 A differentiable vector function g : Y �→ Rp is said to be composite
invex at a point F(u) ∈ Y with respect to η : Y × Y �→ Rm , if the inequality

g(F(x)) − g(F(u)) � 〈∇g(F(u)), η(F(x), F(u))〉 , ∀ F(x) ∈ Y,

holds.

The following example shows that there exists a function which is composite invex
but not invex with respect to a given function η.

Example 2.1 Let X = [2, 3] and Y = R. Consider the functions F : X �→ Y, g : Y �→
R2 and η : Y × Y �→ R defined as

F(x) = −x, g(x) =
(
x2

2x2

)
and η(F(x), F(u)) = 10 sin(F(x)) sin(F(u))

respectively. Obviously, we have ∇g(x) =
(
2x
4x

)
. Also,

g(F(x)) = g(−x) =
(
x2

2x2

)
and ∇g(F(x)) = ∇g(−x) =

(−2x
−4x

)
.
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For u = 2, we have

g(F(x)) − g(F(u)) − 〈∇g(F(u)), η(F(x), F(u))〉 =
(

x2 − u2 + 20u sin x sin u
2x2 − 2u2 + 40u sin x sin u

)

=
(
x2 − 4 + 40 sin x sin 2
2x2 − 8 + 80 sin x sin 2

)

≥ 0, for all x ∈ X.

Therefore, the function g is composite invex function at F(2) = −2 ∈ Y with respect
to η. However, g is not an invex function at u = 2, with respect to η, since

g(x) − g(u) − 〈∇g(u), η(x, u)〉 =
(

x2 − u2 − 20u sin x sin u
2x2 − 2u2 − 40u sin x sin u

)

=
(
x2 − 4 − 40 sin x sin 2
2x2 − 8 − 80 sin x sin 2

)

< 0, for all x ∈ X.

Definition 2.2 A differentiable vector function g : Y �→ Rp is said to be composite
strictly invex at a point F(u) ∈ Y with respect to η : Y × Y �→ Rm , if the inequality

g(F(x)) − g(F(u)) > 〈∇g(F(u)), η(F(x), F(u))〉 , F(x) = F(u) and ∀ F(x) ∈ Y,

holds.

Definition 2.3 A differentiable vector function g : Y �→ Rp is said to be composite
psuedo invex at a point F(u) ∈ Y with respect to η : Y × Y �→ Rm , if the inequality

g(F(x)) − g(F(u)) < 0 ⇒ 〈∇g(F(u)), η(F(x), F(u))〉 < 0, ∀ F(x) ∈ Y,

holds.

Now,we introduce the composite vector variational-like inequality problemas follows.
Let h : Y �→ Rp×m be a matrix valued function.

(CVVLIP)A composite vector variational-like inequality problem is to find a point
F(u) ∈ Y such that there exists no F(x) ∈ Y, satisfying

〈h(F(u)), η(F(x), F(u))〉 ≤ 0.

Remark 2.1 If F(x) = x , then the above (CVVLIP) reduces to vector variational-like
inequality problem (VVLIP) defined by Ruiz-Garzón-Lizana et al. (2004).

(WCVVLIP) A weak composite vector variational-like inequality problem is to
find a point F(u) ∈ Y such that there exists no F(x) ∈ Y, satisfying

〈h(F(u)), η(F(x), F(u))〉 < 0.

Remark 2.2 From the above two definitions it is clear that (CVVLIP)⇒ (WCVVLIP).
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The following example shows that there exists a solution for (CVVLIP), but the
(VVLIP) given by Ruiz-Garzón-Lizana et al. (2004) is not solvable.

Example 2.2 Let X = [1, 2] and Y = R. Consider the functions F : X �→ Y , h : Y �→
R2×1, and η : Y × Y �→ R defined by

F(u) = −eu, h(F(u)) =
( −F(u) − 1

−F(u) − 1/2

)
and η(F(x), F(u)) = F(x)F(u),

respectively. Now, for u = 1, we have

〈h(F(u)), η(F(x), F(u))〉 =
( −F(u) − 1

−F(u) − 1/2

)
F(x)F(u)

=
(

eu − 1
eu − 1/2

)
exeu

=
(

e2u+x − eu+x

e2u+x − (1/2)eu+x

)

=
(

e2+x − e1+x

e2+x − (1/2)e1+x

)
.

From above, it is clear that for u = 1, there exists no F(x) ∈ Y, where x ∈ X such
that

〈h(F(u)), η(F(x), F(u))〉 =
(

e2+x − e1+x

e2+x − (1/2)e1+x

)
≤ 0,

which means that F(1) ∈ Y is a solution of (CVVLIP). However, the following vector
variational-like inequality problem is not solvable, since

h(u)η(x, u) =
( −u2x − ux

−u2x − (1/2)ux

)
≤ 0, ∀ x, u ∈ X.

Consider the following composite vector optimization problem:

(CVOP) min f (x)
such that x ∈ X,

where f (x) = g(F(x)), g : Y �→ Rp is a differentiable vector function and F : X �→
Y is a vector valued function.

Definition 2.4 Given a function g : Y �→ Rp, a point F(u) ∈ Y is said to be an
efficient (Pareto) point, if there exists no F(x) ∈ Y such that g(F(x))− g(F(u)) ≤ 0.

Definition 2.5 Given a function g : Y �→ Rp, a point F(u) ∈ Y is said to be a weak
efficient (Pareto) point, if there exists no F(x) ∈ Y such that g(F(x))−g(F((u)) < 0.
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Definition 2.6 A feasible solution F(u) ∈ Y is said to be a vector critical point for
(CVOP), if there exists a vector μ ∈ Rp with μ ≥ 0 such that μT∇g(F(u)) = 0.

In order to identify the solutions of (WCVVLIP) with the weak efficient points of
(CVOP), we define the following definition on the lines of Definition 2.1 defined by
Mohan and Neogy (1995).

Definition 2.7 Let F(u) ∈ Y . A set Y is said to be invex at a point F(u) ∈ Y with
respect to η : Y × Y �→ Rm , if for each F(x) ∈ Y , 0 ≤ t ≤ 1,

F(u) + tη(F(x), F(u)) ∈ Y.

The set Y is said to be an invex set with respect to η, if Y is invex at each F(u) ∈ Y .
Obviously, if η(F(x), F(u)) = F(x) − F(u), then Y is said to be a convex set.

3 Relationship between composite vector variational-like inequality
problem and composite vector optimization problem

The following theorems demonstrate the relationship between (CVVLIP) and (CVOP).

Theorem 3.1 Let g : Y �→ Rp be a differentiable function. Assume that

(i) h = ∇g and g is composite invex function with respect to η at a point F(u),
(ii) F(u) solves (CVVLIP) with respect to same η.

Then, F(u) is an efficient point of (CVOP).

Proof Suppose F(u) is not an efficient point of (CVOP), then there exists a point
F(x) ∈ Y such that

g(F(x)) − g(F(u)) ≤ 0. (1)

Now, by using composite invexity of g with respect to η at the point F(u), we have

g(F(x)) − g(F(u)) � 〈∇g(F(u)), η(F(x), F(u))〉 , ∀ F(x) ∈ Y,

which by using (1), it follows that, there exists F(x) ∈ Y such that

〈∇g(F(u)), η(F(x), F(u))〉 ≤ 0.

From the assumption, h = ∇g, the above inequality yields that, there exists F(x) ∈ Y
such that

〈h(F(u)), η(F(x), F(u))〉 ≤ 0,

which contradicts our assumption that F(u) solves (CVVLIP). Hence the proof. ��
Theorem 3.2 Let g : Y �→ Rp be a differentiable function. Assume that

(i) h = ∇g and −g is composite strictly invex function with respect to η at a point
F(u),
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(ii) F(u) is a weak efficient point of (CVOP).

Then, F(u) solves (CVVLIP).

Proof Suppose F(u) is a weak efficient point of (CVOP) but it does not solve the
(CVVLIP), then there exists a point F(x) ∈ Y such that

〈h(F(u)), η(F(x), F(u))〉 ≤ 0.

From the assumption, h = ∇g, the above inequality gives

〈∇g(F(u)), η(F(x), F(u))〉 ≤ 0. (2)

Now, by using composite strict invexity of −g with respect to η at the point F(u), we
have

g(F(x)) − g(F(u)) < 〈∇g(F(u)), η(F(x), F(u))〉 , ∀ F(x) ∈ Y and F(x) = F(u).

(3)

On combining inequalities (2) and (3), we can write, there exists F(x) ∈ Y such that

g(F(x)) − g(F(u)) < 0,

which contradicts our assumption that F(u) is aweak efficient point of (CVOP).Hence
the proof. ��

The following example shows that under the assumptions of Theorem 3.2, if there
exists a weak efficient point of(CVOP) then it is also a solution of (CVVLIP).

Example 3.1 Let X = [2, 3] and Y = R. Consider the functions F : X �→ Y , g : Y �→
R2 and η : Y × Y �→ R defined by

F(x) = −x, g(x) =
(
ex

2ex

)
and η(F(x), F(u)) = 100 cos(F(x)) sin(F(u)),

respectively. Then obviously, we have

∇g(x) =
(
ex

2ex

)
, ∇g(F(x)) = ∇g(−x) =

(
e−x

2e−x

)
, g(F(x)) = g(−x) =

(
e−x

2e−x

)
.

It can be easily verified that −g is composite strictly invex at F(3) ∈ Y with respect
to η. Now, for u = 3 we have

g(F(x)) − g(F(u)) =
(

e−x − e−u

2e−x − 2e−u

)
=

(
e−x − e−3

2e−x − 2e−3

)
.
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From above, it is clear that for u = 3, there exists no F(x) ∈ Y, where x ∈ X such
that

g(F(x)) − g(F(u)) =
(

e−x − e−3

2e−x − 2e−3

)
< 0,

which shows that F(3) ∈ Y is a weak efficient point of (CVOP). Further, for u = 3,
we have

〈∇g(F(u)), η(F(x), F(u))〉 =
(
e−u

2e−u

)
100 cos(−x) sin(−u)

=
(−100e−u cos x sin u

−200e−u cos x sin u

)

=
(−100e−3 cos x sin 3

−200e−3 cos x sin 3

)
.

From this, it is clear that for u = 3, there exists no F(x) ∈ Y, where x ∈ X, such that

〈∇g(F(u)), η(F(x), F(u))〉 =
(−100e−3 cos x sin 3

−200e−3 cos x sin 3

)
≤ 0.

Thus, F(3) ∈ Y is a solution of (CVVLIP).

Remark 3.1 It is clear that the function −g considered in the above example is not
strictly invex with respect to η at u = 3.

Corollary 3.1 Let g : Y �→ Rp be a differentiable vector function. Assume that

(i) h = ∇g and −g is composite strictly invex function with respect to η at a point
F(u),

(ii) F(u) is an efficient point of (CVOP).

Then, F(u) solves (CVVLIP).

Proof Since, every efficient point is weak efficient point, hence the proof follows from
Theorem 3.2. ��
The following theorem enables us, under which conditions wemight identify solutions
of (WCVVLIP) with the weak efficient points of (CVOP).

Theorem 3.3 Assume that, Y is an invex set and h = ∇g. If F(u) is a weak efficient
point of (CVOP), then i t solves (WCVVLIP).

Conversely, if g is a composite pseudo invex function with respect to η at a point
F(u) and F(u) solves (WCVVLIP) with respect to the same η, then i t is a weak
efficient point of (CVOP).

Proof Let F(u) be a weak efficient point of (CVOP). Since Y is an invex set, then
there exists no F(x) ∈ Y such that

g(F(u) + tη(F(x), F(u))) − g(F(u)) < 0, 0 < t < 1.
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Dividing the above inequality by t , taking the limit t → 0, and using Taylor’s series,
we obtain

0 > lim
t→0

g(F(u) + tη(F(x), F(u))) − g(F(u))

t

= lim
t→0

g(F(u)) + 〈∇g(F(u)), tη(F(x), F(u))〉 +
〈∇2g(F(u)), t2η2(F(x), F(u))

〉
2! + · · · · · · − g(F(u))

t
.

⇒ lim
t→0

(
〈∇g(F(u)), η(F(x), F(u))〉 +

〈∇2g(F(u)), tη2(F(x), F(u))
〉

2! + · · · · · ·
)

< 0,

i.e., 〈∇g(F(u)), η(F(x), F(u))〉 < 0.

From the assumption, h = ∇g, above inequality implies that, there exists no F(x) ∈ Y
such that

〈h(F(u)), η(F(x), F(u))〉 < 0,

which shows that F(u) solves (WCVVLIP).
Conversely, suppose that F(u) is not a weak efficient point of (CVOP). Then there

exists F(x) ∈ Y such that

g(F(x)) − g(F(u)) < 0.

Since, g is composite pseudo invex vector function at F(u)with respect to η, it follows
that, there exists F(x) ∈ Y such that

〈∇g(F(u)), η(F(x), F(u))〉 < 0.

From the assumption h = ∇g, the above inequality gives, there exists F(x) ∈ Y such
that

〈h(F(u)), η(F(x), F(u))〉 < 0,

which contradicts our assumption that F(u) solves (WCVVLIP). Hence the theorem.
��

The following theorem enables us, under which condition a weak efficient point will
be an efficient point of (CVOP).

Theorem 3.4 Let Y be invex set and g : Y �→ Rp be a differentiable function. Assume
that

(i) h = ∇g and g is a composite strictly invex function with respect to η at a point
F(u),

(ii) F(u) is a weak efficient point of (CVOP).

Then, F(u) is an efficient point of (CVOP).
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Proof Suppose, F(u) is a weak efficient point of (CVOP) but it is not an efficient
point of (CVOP). Then, there exists F(x) ∈ Y such that

g(F(x)) − g(F(u)) ≤ 0. (4)

By composite strict invexity of the vector function g with respect to η at the point
F(u), we have

g(F(x)) − g(F(u)) > 〈∇g(F(u)), η(F(x), F(u))〉, ∀ F(x) ∈ Y and F(x) = F(u).

(5)
On combining inequalities (4) and (5), we get, there exists F(x) ∈ Y such that

〈∇g(F(u)), η(F(x), F(u))〉 < 0.

By using h = ∇g, above inequality implies that, there exists F(x) ∈ Y such that

〈h(F(u)), η(F(x), F(u))〉 < 0.

From the above inequality, it is clear that F(u) does not solve the (WCVVLIP). By
Theorem 3.3, it follows that F(u) is not a weak efficient point of (CVOP), which
contradicts our assumption. Hence the proof. ��
The following theorem enables us to establish the relationship between a vector critical
point and a weak efficient point of (CVOP).

Theorem 3.5 Let g : Y �→ Rp be a differentiable function. Assume that

(i) g is a composite pseudo invex function with respect to η at a point F(u),
(ii) F(u) is a vector critical point of (CVOP).

Then, F(u) is a weak efficient point of (CVOP).

Proof Suppose F(u) is a vector critical point of (CVOP) but not its weak efficient
point. Then, there exists F(x) ∈ Y such that

g(F(x)) − g(F(u)) < 0.

By using composite pseudo invexity of g with respect to η at the point F(u), we have

〈∇g(F(u)), η(F(x), F(u))〉 < 0.

Now, by applying Gordan’s Theorem, the above inequality implies that the system

μT∇g(F(u)) = 0

has no solution for μ ∈ Rp with μ ≥ 0, which contradicts our assumption that F(u)

is a vector critical point of (CVOP). Hence the theorem. ��
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4 Existence of solutions of the composite vector variational-like
inequality problem

In this section, we derive the result for existence of solution of (CVVLIP) using com-
posite proper quasi-monotonicity andKKMLemma.Weneed the following definitions
and lemmas to prove our existence result. Throughout this section let Y ⊂ Rm be a
real topological vector space.

Definition 4.1 Let g : Y �→ Rp be a differentiable function, then ∇g is said to be
composite properly quasi-monotone with respect to η : Y × Y �→ Rm , if for any
{F(x1), F(x2), . . . , F(xn)} ∈ Y and F(y) ∈ conv{F(x1), F(x2), . . . , F(xn)}, there
exists i ∈ {1, 2, . . . , n} such that

〈∇g(F(y)), η(F(xi ), F(y))〉 ≥ 0,

where conv{F(x1), F(x2), . . . , F(xn)}denotes the convexhull of {F(x1), F(x2), . . . ,
F(xn)}.
Definition 4.2 (Ansari 2012) Let K be an arbitrary subset of a real vector space E . A
set-valued map � : K �→ 2E is said to be a Knaster–Kuratowski–Mazurkiewicz map
(KKM map), if for every finite subset A = {x1, . . . , xn} ⊆ K , it holds

conv(A) ⊂
n⋃

i=1

�(xi ).

Lemma 4.1 (Ansari 2012) Let � : K �→ 2E be a set-valued map defined on a subset
K of a real topological vector space E and verifying:

(i) � is a KKM map,
(ii) all values of � are closed and convex.

Then, the family {�(x)}x∈X has the finite intersection property.
If in addition, at least one value �(x0) for some x0 ∈ X, is compact, then⋂
x∈X �(x) = φ.

Theorem 4.1 Let g : Y �→ Rp be a differentiable function and ∇g be composite
properly quasi-monotone with respect to η : Y × Y �→ Rm. Assume that

(i) h = ∇g,
(ii) the set-valued map � : Y �→ 2Y , defined by

�(F(x)) = {F(y) ∈ Y : 〈∇g(F(y)), η(F(x), F(y))〉 � 0, ∀ y ∈ X}

is closed and convex valued,
(iii) for at least one F(x0) ∈ Y , �(F(x0)) is compact.

Then, (CVVLIP) has a solution.
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Proof Firstly, we shall show that � is a KKM mapping. We proceed by contradiction
and suppose that� is not aKKMmapping.Then there exist {F(x1), F(x2), . . . , F(xn)}
⊂ Y , λi ≥ 0, i = 1, 2, . . . , n with

∑n
i=1 λi = 1 such that

F(y) =
n∑

i=1

λi F(xi ) /∈
n⋃

i=1

�(F(xi )).

Then, for any i = 1, 2, . . . , n,

〈∇g(F(y)), η(F(xi ), F(y)〉 ≤ 0,

which contradicts our assumption that∇g is composite properly quasi-monotone with
respect to η. Hence, � is a KKM mapping.

Now, by condition (ii) and (iii), we have �(F(x)) is KKM mapping with closed
and convex value and for some F(x0) ∈ Y , at least one value �(F(x0)) is compact.
Then, by Lemma 4.1, we have

⋂
F(x)∈Y

�(F(x)) = φ.

Thus, it follows that there exists F(u) ∈ Y , for which

〈∇g(F(u)), η(F(x), F(u))〉 � 0, ∀ F(x) ∈ Y.

By condition (i), we can rewrite the above inequality as, there exists no F(x) ∈ Y
such that

〈h(F(u)), η(F(x), F(u))〉 ≤ 0.

Hence, F(u) ∈ Y is a solution of (CVVLIP). ��
The following example shows that under the assumptions of Theorem 4.1, (CVVLIP)
has a solution.

Example 4.1 Let Y = R and X = [4, 5]. Consider the functions F : X �→ Y , g : Y �→
R2 and η : Y × Y �→ R defined by

F(x) = −x, g(x) =
(
x3

x5

)
and η(F(x), F(y)) = sin(F(x))eF(y),

respectively. Obviously, ∇g(x) =
(
3x2

5x4

)
, ∇g(F(x)) = ∇g(−x) =

(
3x2

5x4

)
.

Since, for any {F(x1), F(x2), . . . , F(xn)} ∈ Y and F(y) ∈ conv{F(x1),
F(x2), . . . , F(xn)} there exists i ∈ {1, 2, . . . , n} such that

〈∇g(F(y)), η(F(xi ), F(y))〉 =
(
3y2

5y4

)
sin(−xi )e

−y ≥ 0.
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Therefore,∇g is composite properly quasi-monotone with respect to η. Now, we have
the mapping � : Y �→ 2Y defined by

�(F(x)) = {F(y) ∈ Y : 〈∇g(F(y)), η(F(x), F(y))〉 � 0, ∀ y ∈ X}
=

{
F(y) ∈ Y :

(
3y2

5y4

)
sin(−x)e−y � 0, ∀ y ∈ X

}

=
{
−y ∈ Y :

(−3y2 sin(x)e−y

−5y4 sin(x)e−y

)
� 0, ∀ y ∈ X

}

= [−5,−4].

It is obvious that set-valued map � is closed and convex valued and at least for one
F(x0) ∈ Y , �(F(x0)) is compact. For u = 4, we have

〈∇g(F(u)), η(F(x), F(u))〉 =
(
3u2

5u4

)
sin(−x)e−u =

(−3u2 sin(x)e−u

−5u4 sin(x)e−u

)

=
( −48 sin(x)e−4

−1280 sin(x)e−4

)
≥ 0, ∀ x ∈ X.

From this, it is clear that for u = 4, there exists no F(x) ∈ Y, where x ∈ X, such that

〈∇g(F(u)), η(F(x), F(u))〉 =
( −48 sin(x)e−4

−1280 sin(x)e−4

)
≤ 0.

Thus, F(4) ∈ Y is a solution of (CVVLIP).

Remark 4.1 In the above example, we can easily show that ∇g is composite properly
quasi-monotone with respect to η but not properly quasi-monotone with respect to the
same η, as shown below. Since,

〈∇g(y), η(xi , y)〉 =
(
3y2 sin(xi )ey

5y4 sin(xi )ey

)
.

Therefore, for any {x1, x2, . . . , xn} ∈ X and y ∈ conv{x1, x2, . . . , xn},

〈∇g(y), η(xi , y)〉 ≤ 0, ∀ i ∈ {1, 2, . . . , n}.

5 Gap function for composite vector variational-like inequality problems

Gap function has become a powerful tool in the study of optimization problems as
it can reformulate a variational inequality as an equivalent optimization problem.
Gap functions can also be used to obtain error bounds for the solutions of vector
variational inequalities. In this section, we define a gap function for the introduced
class of composite vector variational-like inequality problem.
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Definition 5.1 A function φ : Y �→ R is said to be a gap function for the (CVVLIP)
if:

(i) φ(F(u)) ≤ 0, ∀ F(u) ∈ Y and ∀ u ∈ X,

(ii) φ(F(u)) = 0 if and only if F(u) is a solution of (CVVLIP).

Now, we define φ : Y �→ R as

φ(F(u)) = inf
F(x)∈Y
x∈X

min
1≤i≤p

(〈h(F(u)), η(F(x), F(u))〉)i , (6)

where,

〈h(F(u)), η(F(x), F(u))〉 = (〈h(F(u)), η(F(x), F(u))〉1 , . . . , 〈h(F(u)), η(F(x), F(u))〉p)

i.e., (〈h(F(u)), η(F(x), F(u))〉)i is the i th component of 〈h(F(u)), η(F(x), F(u))〉,
i = 1, 2, . . . , p.

Theorem 5.1 The function φ defined in (6) is the gap function for (CVVLIP), if

〈h(F(u)), η(F(u), F(u))〉 = 0, ∀ F(u) ∈ Y and ∀ u ∈ X.

Proof Let 〈h(F(u)), η(F(u), F(u))〉 = 0, ∀ F(u) ∈ Y and ∀ u ∈ X . Now, we have
to prove that function φ defined in (6) is the gap function for (CVVLIP). It is clear
that, for any F(u) ∈ Y

φ(F(u)) ≤ min
1≤i≤p

(〈h(F(u)), η(F(x), F(u))〉)i , ∀ F(x) ∈ Y.

In particular, if F(x) = F(u), then by the hypothesis, we have

φ(F(u)) ≤ min
1≤i≤p

(〈h(F(u)), η(F(u), F(u))〉)i = 0, ∀ F(u) ∈ Y and ∀ u ∈ X,

which implies that, φ(F(u)) ≤ 0, ∀ F(u) ∈ Y and ∀ u ∈ X.

On the other hand, if φ(F(u)) = 0, then we have

inf
F(x)∈Y
x∈X

min
1≤i≤p

(〈h(F(u)), η(F(x), F(u))〉)i = 0,

⇔ min
1≤i≤p

(〈h(F(u)), η(F(x), F(u))〉)i ≥ 0, ∀ F(x) ∈ Y and ∀ x ∈ X.

The above inequality can be rewritten as

〈h(F(u)), η(F(x), F(u))〉 � 0, ∀ F(x) ∈ Y and ∀ x ∈ X.
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Thus, it follows that, there exists no F(x) ∈ Y such that

〈h(F(u)), η(F(x), F(u))〉 ≤ 0,

which implies that, F(u) ∈ Y is a solution of (CVVLIP). Ultimately, we conclude that
φ(F(u)) = 0 if and only if F(u) ∈ Y is a solution of (CVVLIP). Hence the theorem.

��
We present the following example to illustrate the result established in the above

theorem.

Example 5.1 Let X = [1, 2] and Y = R. Consider the functions F : X �→ Y , h : Y �→
R2×1 and η : Y × Y �→ R defined as

F(u) = −u, h(F(u)) =
(
F(u)

2F(u)

)
and η(F(x), F(u)) = F(x) − F(u),

respectively. Now, for F(x) = F(u), we have

〈h(F(u)), η(F(u), F(u))〉 =
(
F(u)

2F(u)

)
(F(u) − F(u))

= 0.

The composite vector variational-like inequality problem (CVVLIP) is to find a point
F(u) ∈ Y such that there exists no F(x) ∈ Y , satisfying

〈h(F(u)), η(F(x), F(u))〉 =
(

ux − u2

2ux − 2u2

)
≤ 0.

Now, we shall show that φ defined in (6) is the gap function for (CVVLIP).

(i) Since,

φ(F(u)) = inf
F(x)∈Y
x∈X

min
1≤i≤p

(〈h(F(u)), η(F(x), F(u))〉)i

= inf
x∈X min(ux − u2, 2ux − 2u2)

= min(u − u2, 2u − 2u2).

Thus, we observe that φ(F(u)) ≤ 0, ∀ F(u) ∈ Y and ∀ u ∈ X.

(ii) It is obvious that φ(F(u)) = 0 for u = 1. Now, for u = 1, we have

〈h(F(u)), η(F(x), F(u))〉 =
(

ux − u2

2ux − 2u2

)

=
(
x − 1
2x − 2

)
.
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From above, it is clear that for u = 1, there exists no F(x) ∈ Y , where x ∈ X
such that

〈h(F(u)), η(F(x), F(u))〉 =
(
x − 1
2x − 2

)
≤ 0,

which means that F(1) ∈ Y is a solution of (CVVLIP).

6 Applications

The Nash equilibrium problem, in which each player’s strategy may depend on the
rival strategies, has attracted growing attention due to its interesting applications in the
field of economics, mathematics, engineering and operations research. Facchinei and
Kanzow (2007) served a historical note, some relevant applications and also existence
results ofNash equilibriumproblems. These results stimulate the interest ofNash equi-
librium problem in operations research field. For various approaches, see Facchinei
and Kanzow (2007), Krawczyk (2007) and Pang and Fukushima (2009). Accordingly,
as an application, we define a system of composite vector optimization problems and
system of composite vector variational-like inequality problems. Moreover, solutions
of these introduced problems imply the solution of Nash equilibrium problem.

Throughout this section, let I = {1, . . . , n} be a finite index set and for each
i ∈ I , Xi and Yi be finite dimensional Euclidean spaces Rqi and Rpi , respectively.
Further, we assume {Ki }i∈I is a family of nonempty convex subsets with each Ki in
Xi and define K = �i∈I Ki , an element of the set Ki = � j∈I, i = j K j is written as xi ,
therefore, x ∈ K can be written as x = (xi , xi ) ∈ Ki ×Ki . We consider the functions,
Ai : K �→ Yi , for each i ∈ I and F : K �→ K , whereAi (x) = (Ai1(x), . . . , Aipi

(x)).
A Nash equilibrium problem is to find an element u ∈ K such that for each i ∈ I,

there exists no xi ∈ Ki , satisfying

Ai (u
i , xi ) − Ai (u) < 0.

(SCVOP) The system of composite vector optimization problems is to find a point
F(u) ∈ K such that for each i ∈ I , there exists no F(x) ∈ K , satisfying

Ai (F(x)) − Ai (F(u)) < 0. (7)

Now, we can choose F(x) ∈ K in such a way that, for each i ∈ I

Fi (x) = Fi (u) = ui , Fi (x) = xi and Fi (u) = ui . (8)

Since F(u) ∈ K , we have F(u) = (Fi (u), Fi (u)) = (ui , ui ) = u ∈ K . Then, by
using assumption (8), (SCVOP) reduces to find a point u ∈ K such that for each i ∈ I ,
there exists no xi ∈ Ki , satisfying

Ai (u
i , xi ) − Ai (u) < 0,
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which is the well-known Nash equilibrium problem. Clearly, every solution of
(SCVOP) is also a solution of Nash equilibrium problem but converse is not true.

Now, we define the composite invexity for the function Ai : K �→ Yi , i ∈ I , by
keeping the view of generalized invexity, considered in Ansari et al. (2002).

Definition 6.1 For each i ∈ I , Ai : K �→ Yi is called composite invex at F(u) ∈ K
with respect to a given function ηi : Ki × Ki �→ Xi , if

Ai (F(x)) − Ai (F(u)) � 〈∇Ai (F(u)), ηi (Fi (x), Fi (u))〉 , ∀ F(x) ∈ K .

Ultimately, we introduce the system of composite vector variational-like inequality
problems.

(SCVVLIP) To find F(u) ∈ K such that for each i ∈ I , there exists no Fi (x) ∈ Ki ,
satisfying

〈∇Ai (F(u)), ηi (Fi (x), Fi (u))〉 < 0.

Theorem 6.1 Let for each i ∈ I , Ai be composite invex function at F(u) ∈ K and
with respect to ηi . If F(u) solves (SCVVLIP), then it solves (SCVOP).

Proof Suppose, contrary to the hypothesis, that F(u) solves (SCVVLIP) but does not
solve (SCVOP). Therefore, for some i ∈ I , there exists F(x) ∈ K such that

Ai (F(x)) − Ai (F(u)) < 0. (9)

By using the invexity of each Ai with respect to given ηi at point F(u), we have

Ai (F(x)) − Ai (F(u)) � 〈∇Ai (F(u)), ηi (Fi (x), Fi (u))〉 , ∀ F(x) ∈ K . (10)

On combining inequalities (9) and (10), it follows that for some i ∈ I , there exists
F(x) ∈ K such that

〈∇Ai (F(u)), ηi (Fi (x), Fi (u))〉 < 0,

which leads to a contradiction that F(u) solves (SCVVLIP). Hence the theorem. ��
Remark 6.1 Since every solution of (SCVOP) is also a solution of Nash equilibrium
problem. Hence, by Theorem 6.1, we can say that every solution of (SCVVLIP) is
also a solution of Nash equilibrium problem.

7 Conclusion

In this paper, we have introduced composite vector variational-like inequality problem
and established its relationship with composite vector optimization problem under the
condition of composite invexity. We have also established the relation of a vector
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critical point with a weak efficient point of composite vector optimization problem,
using the assumption of composite pseudo invexity. Moreover, we have derived the
existence result for solutions of composite vector variational-like inequality problem
using composite proper quasi-monotonicity and defined a gap function. For applica-
tion, we have introduced the system of composite vector optimization problems and
system of vector variational-like inequality problems and derived the relation of these
problems with Nash equilibrium problem.
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