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Abstract Mean-variance portfolios have been criticized because of unsatisfying out-
of-sample performance and the presence of extreme and unstable asset weights, espe-
cially when the number of securities is large. The bad performance is caused by
estimation errors in inputs parameters, that is the covariance matrix and the expected
return vector. Recent studies show that imposing a penalty on the 1-norm of the
asset weights vector (i.e. �1-regularization) not only regularizes the problem, thereby
improving the out-of-sample performance, but also allows to automatically select a
subset of assets to invest in. However, �1-regularization might lead to the construction
of biased solutions. We propose a new, simple type of penalty that explicitly considers
financial information and then we consider several alternative penalties, that allow to
improve on the �1-regularization approach. By using U.S.-stock market data, we show
empirically that the proposed penalties can lead to the construction of portfolios with
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an out-of-sample performance superior to several state-of-art benchmarks, especially
in high dimensional problems.

Keywords Minimum variance portfolio · Statistical regularization · Lasso ·
Non-convex penalties

1 Introduction

TheMarkowitzmean-variance portfoliomodel (Markowitz 1952) indisputably consti-
tutes a milestone in modern finance. Given a set of assets with expected return vector
μ and covariance matrix �, Markowitz’ model aims to find the optimal asset weight
vector that minimizes the portfolio variance, subject to the constraint that the portfolio
exhibits a desired portfolio return. Since μ and � are unknown, some estimates μ̂

and ̂� must be obtained from a finite sample of data to compute the optimal asset
allocation vector.

As financial literature has largely shown, using sample estimates can hardly provide
reliable out-of-sample asset allocations in practical implementations (e.g., Jobson and
Korkie 1980; Best and Grauer 1991; Broadie 1993; Britten-Jones 1999; DeMiguel et
al. 2009a). Frankfurter et al. (1971), Dickinson (1974), Jobson and Korkie (1980),
and Frost and Savarino (1988) already provided strong empirical evidence that the
estimates of the expected portfolio return and variance are very unreliable. By now,
it is commonly accepted that estimation errors in the expected return estimates are
much larger than those in the covariance matrix estimates (e.g. Merton 1980). Hence,
in this investigation, we choose to join the large group of researchers who have more
recently focused on theminimum-variance portfolio (MVP), which relies solely on the
covariance structure and neglects the estimation of expected returns altogether (see,
e.g., Chan et al. 1999; Jagannathan and Ma 2003; Ledoit and Wolf 2003; DeMiguel
and Nogales 2009; Fan et al. 2012; Fernandes et al. 2012; Behr et al. 2012). Despite
evidence on MVPs shows that they perform better out-of-sample than portfolios that
consider asset means (Jorion 1986; Jagannathan andMa 2003; DeMiguel et al. 2009a),
they still suffer considerably from estimation errors (Chan et al. 1999; Jagannathan
and Ma 2003; Ledoit and Wolf 2003).

In principle, the opportunity for allowing portfolio managers to select their con-
stituents from an extremely large universe of assets is desirable, because it corresponds
with a large potential to diversify risk. Unfortunately, exploiting such potential is very
difficult, as the presence of estimation error increases and the out-of-sample perfor-
mance worsens when the dimensionality K increases relative to the number of obser-
vations T . Thus, if, as it often happens, K is large compared to T , only an insufficient
amount of data is available to precisely estimate the K (K + 1)/2 parameters in ̂�.
For example, Ledoit and Wolf (2003) observe that small sample problems in covari-
ance matrix estimation, such as severe estimation errors and numerical instability,
may occur whenever T is not at least ten times larger than K .1 As a consequence, a
portfolio manager might not be able to (optimally) benefit from a high diversification

1 Note that sample covariance matrix estimates are singular when T <K .
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potential while (somehow) selecting constituents to obtain portfolios of a manageable
size. Nevertheless, as a manageable portfolio size is essential, the ability to select good
assets is an important requisite.

One research stream has recently focused on shrinking asset allocation weights by
using regularization methods. Among the first contributors, Brodie et al. (2009) and
DeMiguel et al. (2009b) use �1-regularization to obtain stable and sparse (i.e. with
few active weights) portfolios, which is an adaptation of the Least Absolute Shrinkage
and Selection Operator (LASSO) by Tibshirani (1996).2 Both studies provide some
insights into the earlier work of Jagannathan and Ma (2003) on no-shortselling port-
folios, because �1-regularization allows a limit on the total shorting of a portfolio.
Moreover, the empirical results show that the newly proposed portfolio construction
methods outperform many strategies in terms of the out-of-sample portfolio risk and
Sharpe ratio. Fan et al. (2012) provide both theoretical and empirical evidence sup-
porting the use of �1-regularization to identify sparse and stable portfolios by limiting
the gross exposure, showing that this causes no accumulation of estimation errors,
the result of which is an outperformance compared to standard Markowitz portfolios.
Recent examples of regularization techniques applied in the Markowitz framework
are Yen (2010), Carrasco and Noumon (2011), Yen and Yen (2011), and Fernandes et
al. (2012), while in index tracking are Giomouridis and Paterlini (2010) and Fastrich
et al. (2014).

The large appeal of using �1-regularization in portfolio optimization is the possibil-
ity to estimate (numerically stable) asset weights and select the portfolio constituents
in a single step by solving a convex optimization problem. An �1-penalty term in
the objective function prevents an overfitting of the portfolio to erroneous estimates,
thereby preventing the estimation errors from entering the portfolio without restriction
and allowing a better out-of-sample performance. However, Fan and Li (2001) show
that the �1-penalty, as a linear function of absolute coefficients, tends to produce biased
estimates for large (absolute) coefficients. As a remedy, they propose using penalties
that are singular at the origin, just like the �1-penalty, in order to promote sparsity, but
non-convex, in order to countervail bias.3 An alternative to non-convex approaches,
which can still retain the oracle property, has been suggested by Zou (2006). His
approach is now known as the adaptive LASSO and has proven to be able to pre-
vent bias while preserving convexity of the optimization problem, and thus clearly
alleviates the optimization challenge as compared to the non-convex approaches.

This work contributes to the literature on portfolio regularization by proposing a
new, simple type of convex penalty, which is inspired by the adaptive LASSO and
explicitly considers financial information to optimally determine the portfolio com-
position. Moreover, we are, to our knowledge, the first to apply non-convex penalties
in the Markowitz framework to identify sparse and stable portfolios. We particularly
focus on four types of non-convex penalty functions and provide a financial interpre-

2 The LASSO relies on imposing a constraint on the �1-norm the regression coefficients. In this paper,
�1-regularization is used synonymously.
3 They claimed that a goodpenalty function should result in an estimatorwith three properties: unbiasedness,
sparsity, and continuity. They also coined the term oracle property, which, in a nutshell, means that a strategy
performs as well as when the true underlying model is known a priori.
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tation of their effect on asset weights. Extensive empirical investigations with various
U.S.-stock market data sets and covariance matrix estimators support the validity of
our proposals.

The paper is organized as follows: Sect. 2 introduces the asset selection framework
as well as the (new) penalty functions and provides their economic motivations. Sec-
tion 3 discusses the experimental set-up, while Sect. 4 comments on themain empirical
findings on small and large data sets. Finally, Sect. 5 concludes this work.

2 Regularization approaches for minimum variance portfolios

Given a set of K assets and a penalty function ρ(·), the regularized minimum-variance
problem can be stated as:

w∗ = argmin
w∈RK

{

w′�w + λ

K
∑

i=1

ρ(wi )

}

(1)

subject to 1′
Kw = 1, (2)

where w∗ is the optimal (and potentially sparse) (K × 1)-vector of asset weights, 1K
is a (K × 1)-vector of ones and λ is the regularization parameter that controls the
intensity of the penalty and thereby the sparsity of the optimal portfolio.

Assuming we estimate � by ̂� and we set λ = 0, the solution to problem (1)–(2)
is simply the MVP, where the optimized portfolio weights vector w∗ is (over)fitted
to the correlation structure in ̂�. Such a fit implies unlimited trust in the precision
of the estimate ̂�, which is obviously very naive. In fact, especially when K is large
relative to sample size T , ̂� contains a considerable amount of estimation errors that
suggests the presence of a diversification potential that is actually non-existent and
typically leads to large absolute components in w∗. The latter will cause the penalty
term

∑K
i=1 ρ(wi ) to be large, which then prevents the unreal diversification potential

in ̂� from being excessively exploited whenever λ > 0. The larger λ, the smaller is
the number of active weights and the total amount of shorting. The optimal solution
w∗ is thus determined by a trade-off between the estimated portfolio risk and the
corresponding penalty term, whose magnitude is controlled by λ.

In this work, we focus on penalty functions ρ(·) that are singular at the origin
and thus allow a shrinkage of the components in w to exactly zero. Hence, the cor-
responding approaches not only stabilize the problem to improve the out-of-sample
performance, but simultaneously also conduct the asset selection step.

2.1 LASSO and weighted LASSO

The Least Absolute Shrinkage and Selection Operator (LASSO) is the only one of the
proposed approaches that has already received considerable attention in the portfolio
optimization context (Brodie et al. 2009; DeMiguel et al. 2009b; Yen 2010; Yen and
Yen 2011; Carrasco and Noumon 2011; Fan et al. 2012; Fernandes et al. 2012). Hence,
we choose it as a benchmark to test the validity of the newly proposed approaches.
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(a) (b)
Fig. 1 The Lasso (a) and w8Las penalty (b) functions

Problem formulation (1)–(2) constructs �1-regularized (LASSO) portfolios if the
weighted penalty term is proportional to the 1-norm of the asset weight vector (i.e.
||w||1), such that:

λ

K
∑

i=1

ρ(wi ) = λ(|w1| + |w2| + · · · + |wK |) = λ||w||1 (3)

Due to the budget constraint (2), theminimum value that ||w||1 can be shrunk to is one.
This is only possible when the portfolio weights are shrunk towards zero until they
are all non-negative, identifying the so-called no-shortsale portfolio (Jagannathan and
Ma 2003). Hence, only if the portfolio exhibits many and/or large negative weights,
||w||1 takes on large values. In fact, we can re-write (3) as:

λ||w||1 = λ

(

1 − 2
∑

j={i :i=1,...,K | wi<0}
w j

)

. (4)

Equation (4) shows that the LASSO-penalty can only increase when the shorting
increases and that its minimum value is λ. Increasing values of λ cause the construc-
tion of portfolios with less shorting, or more precisely, with a shrunken �1-norm of the
portfolio weight vector. This prevents the estimation errors contained in ̂� from enter-
ing unhindered in the portfolio weight vector. Hence, the economic intuition of the
LASSO-regularized portfolios is to limit the shorting of the whole portfolio instead
of the shorting of individual assets via additional constraints.4 Note that while the
intensity of shrinkage is controlled by the value of λ, the decision which assets to
shrink and to which relative extent is determined by the estimated correlation struc-
ture. Finally, from the optimization viewpoint, as Fig. 1a shows, introducing the lasso
penalty still results in a convex optimization problem, which can be easily solved for
large dimensional problems.

Zou (2006) proposed a new version of the convex LASSO, displayed in Fig. 1b, to
countervail the difficulties of the LASSO that are related to potentially biased estimates

4 This is a very useful approach for practitioners, among whom the so-called 130/30, 120/20, and 110/10
portfolios are very popular. These portfolios consist of, e.g., 130 percent long and 30 percent short positions.
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of large true coefficients (Fan and Li 2001). The idea is to replace the equal penalty that
is applied to all coefficients (here portfolio weights) with a penalization-scheme that
can vary among the K portfolio weights. This can be easily achieved by introducing
a weight ωi so that, in equation (3), each absolute portfolio weight |wi | is assigned an
individual regularization parameter λi = λωi . This explains the abbreviation w8Las
used henceforth.5 If ∀ i ωi = 1, then the w8Las-penalty is identical to the LASSO-
penalty. In contrast, whenever there is reason to assume that asset i can contribute
to the desired portfolio performance by more (less) than is implied by the LASSO-
regularized portfolio weights, the factor ωi should be reduced (increased) in order to
favor (discriminate against) this asset by a lower (higher) slope of the penalty function.

In general, the economic intuition is to over- or underweight some assets in compari-
son to the LASSO in order to improve performance. Specifically, this intuition depends
on the method used to determine the ωi , for which no “blueprint” exists in a portfolio
optimization context. In the original work of Zou (2006) the weights are computed
by ωi = 1/|̂βi |γ , where ̂βi is an OLS-estimate and γ > 0. This is now known as the
adaptive LASSO. In a financial context, Brodie et al. (2009) suggest some ideas of how
to use the additional flexibility to consider transaction costs (e.g. by determining ωi

according to the bid-ask spread of asset i). But, to our knowledge, no implementation
and empirical results have been provided so far in a financial context. We interpret the
w8Las-penalty as a possibility not only to regularize the MVP, but also to incorporate
investment styles of any kind, while still dealing with a convex optimization problem.
In particular, we suggest determining the (individual) regularizationweightsλi by con-
sidering specific financial time series properties that are ignored when, e.g. T =250,
historical observations are used to estimate one (constant) covariance matrix. The
components of the latter can be thought of as average (co)variances of the sample with
T observations, while trends and clusters in the volatilities (heteroscedasticity) remain
unexploitedwhen the portfolio is constructed. Figure 2a showsone year of daily returns
for the guns-industry portfolio, which is one of the 48 industry portfolios provided
by Kenneth French (thin line, left axis). The remaining lines correspond to the right
axis. The thick dashed line represents the volatility of the sample covariance matrix
computed with the 250 observations shown, while the thick solid line corresponds to
the historical return volatility of the most recent 4 months of daily data. Clearly, a
trend of a decreasing volatility can be observed and is supported by a moving average
over the most recent 42 observations of the 4-month-volatility (thick dashed-dotted
line). This scenario indicates that the volatility in the near future will also be below
the value of the covariance matrix estimate. This should materialize in both a smaller
penalty λi and, consequently, a larger portfolio weight in comparison to the LASSO.

We operationalize this idea by extracting three signals from the data that determine
the individual factors ωi , i=1, . . . , K . One component for the signals is the historical
return volatility over the last T1 = 84 observations, at time t denoted by σ̂ (T1)i,t—
the thick solid line in Fig. 2a. Another component is a moving average over the last
T2 = 42 observations of σ̂ (T1)i,t , at time t denoted by MA

[

σ̂ (T1)i , T2
]

t—the thick
dashed-dotted line in Fig. 2a. The last component for the three signals are the main-

5 Obviously, w8 abbreviates weighted and Las LASSO.
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(a) (b)
Fig. 2 aOne year of daily returns from 23.08.2002 to 23.08.2003 (thin line), full-period standard deviation
obtained from the covariance matrix estimator (thick dashed line), standard deviation based on the last
4 months of daily return observations (thick solid line), 2 months moving average of the thick solid line
(thick dashed-dotted line). All values are reported in percent. b Re-weighting factors ωi of the K = 48
individual constituents

diagonal components of the covariance matrix estimate ̂�i,i—the thick dashed line in
Fig. 2a.

We define the first signal ϒ1 as:

ϒ1,i,T = MA
[

σ̂ (T1)i , T2
]

T −
√

̂�i,i, (5)

where T represents the current end of the sample. The smaller the value of ϒ1,i,T is,
the smaller the regularization weight and thus the penalty for asset i should ceteris
paribus be, because its out-of-sample volatility is expected to be smaller than implied
by the covariance matrix estimate.

The second and the third signals attempt to capture recent trends in the historical
volatility σ̂ (T1)i,t . For that, we define ϒ2 as:

ϒ2,i,T = σ̂ (T1)i,T − MA
[

σ̂ (T1)i , T2
]

T. (6)

Whenever ϒ2,i,T < 0, the recent return volatility is smaller than its average, thereby
indicating a negative short-term tendency and vice versa. A negative (positive) short-
term tendency should ceteris paribus decrease (increase) λi and thus the penalty.
Analogously, we try to capture longer-term tendencies by the third signal ϒ3:

ϒ3,i,T3,T = MA
[

σ̂ (T1)i , T2
]

T − MA
[

σ̂ (T1)i , T2
]

T−T3
, (7)

i.e. by the difference between the moving average at time T and at time T−T3, where
T3 = 42.

The three signals (5)–(7) shown in Fig. 2a are now combined to obtain the individual
factors ωi to reweight the LASSO-regularization parameter λ according to λi =λωi .
First, the K values per signal are shifted by the absolute value of the most negative
realization in order to avoid negativity (denoted by a plus-sign in the superscript).
Then, the shifted signals are weighted and scaled by their mean to obtain the individual
factors ωi :
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ωi =
(

θ1ϒ
+
1,i,T + θ2ϒ

+
2,i,T + θ3ϒ

+
3,i,T3,T

1
K

∑K
i=1 θ1ϒ

+
1,i,T + θ2ϒ

+
2,i,T + θ3ϒ

+
3,i,T3,T

)θ4

. (8)

Parameters θ1, θ2, θ3 > 0 determine the relative importance of the (shifted) signals
while parameter θ4 > 0 controls the general impact of the strategy on the portfolio
weight vector. Figure 2b shows the factorωi for all assets i =1, . . . , 48, when θ1=0.3,
θ2=0.5, θ3=0.2 and θ4=1.5. Asset i=26 corresponds to Fig. 2a (the guns portfolio)
and exhibits a factor of about ω26=0.5. In other words, the individual regularization
parameterλ26=λω26 is half the size as it is in the LASSO-approach. Consequently, the
favorable expectations with respect to the (near-future) volatility of the guns industry
will encourage investment in this sector. In case the portfolio allocation ought to be
more similar to the LASSO-portfolio, parameter θ4 can be reduced to a value of, e.g.,
θ4=0.5. Then, the individual factors ωi are shrunk towards a value of one.

Note that beyond the simple strategy we suggest, the penalty construction allows
for a simple processing of all kinds of signals, may they be gained from (time series)
econometrics, fundamental or technical analysis, or expert knowledge.

2.2 Non-convex penalties

Statistical research has shown that the class of non-convex penalties provides an alter-
native approach to countervail the difficulties of the LASSO related to potentially
biased estimates of large absolute coefficients. In particular, Gasso et al. (2009) have
already shown the goodmodel selection performance of non-convex penalties when K
and the level of correlation are high. The common idea behind this class is to penalize
gains in small (absolute) portfolio weights more heavily than gains in large (absolute)
portfolio weights. This causes the portfolio weights to take on more extreme long
and short positions than in the LASSO-penalty, because it allows a reduction of the
estimated portfolio risk without increasing the value of the penalty term (by much).
The economic intuition behind the non-convex penalties is based on the fact that if the
true correlation of assets is high, shorting can reduce the risk, since it accounts for true
similarities of the assets instead of being the result of overfitting. Analogously, large
portfolio weights tend to be appropriate if the true correlations are small. Now, if a
correlation structure is “strong enough” to grow absolute portfolio weights—against
the counteracting penalty—large enough, it is considered reliable and should there-
fore enter the portfolio to a greater extend. The �q - and the Log-penalty provide a
particularly strong incentive to avoid small and presumably dispensable positions in
favor of selecting a small subset of presumably indispensable assets. This tendency to
construct very sparse and less diversified portfolios coincides with the suggestion of
Fernholz et al. (1998) to use the �q -norm as a diversity measure for portfolios.

Table 1 reports the mathematical descriptions of the non-convex penalties and their
corresponding domains, while Fig. 3 shows all the non-convex penalties considered in
this work for a single asset weight. Figure 3a presents the non-convex SCAD-penalty
(Fan and Li 2001), which is linear for small, and constant for large |wi |. In between the
linear and the constant domain, there is a “softly clipped” domain. A discontinuous
and piecewise linear approximation of the SCAD-penalty is sometimes referred to as
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Table 1 Regularization
penalties

Penalty λρ(wi ) Domain

LASSO = λ|wi | All

w8Las = λωi |wi | All

SCAD =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

λ|wi |
−|wi |2+2aλ|wi |−λ2

2(a−1)
(a+1)λ2

2

|wi | ≤ λ

λ < |wi | ≤ aλ

aλ < |wi |

Zhang =
{

λ|wi |
λη

|wi | < η

η ≤ |wi |
Lq = λ|wi |q , 0<q<1 All

Log = λln(|wi |+φ)

− λln(φ)
All

the Zhang-penalty (see, e.g., Gasso et al. 2009) and shown by Fig. 3b. It introduces
further discontinuities at locations η and −η that separate the linear and the constant
penalty domain. The fact that η is independent of the value λ can be beneficial for
parameterization.6 Figure 3c shows the �q -penalty (Frank and Friedman 1993; Fu
1998; Knight and Fu 2000), which nests classical subset selection when q = 0, the
LASSO when q = 1, and the Ridge Regression (Hoerl and Kennard 1970) when
q = 2. However, a simultaneous asset selection and portfolio weight estimation is
only possible when 0< q ≤ 1, which is the domain considered in this paper.7 Then,
compared to the LASSO, the penalty imposed is relatively large for an increase in
small absolute weights, which is a characteristic that is exhibited neither by the SCAD
nor by the Zhang-penalty, and imposes a higher incentive on the portfolio-construction
process to avoid small positions. Figure 3d shows the Log-penalty (see, e.g. Weston
et al. 2003), which can be considered an approximation of the �0-penalty and showed
a good sparsity recovering capability (Candes et al. 2008).

3 Data and experimental setup

3.1 Data sets

We consider daily observations of five different data sets, summarized in Table 2, to
evaluate the proposed portfolio approaches. Data sets, that represent the U.S. stock
market at different levels of aggregation, are characterized by a different number
of constituents: from now on, the 48 industry portfolios and the 98 firm portfolios
provided by Kenneth French are referred to as small data sets,8 while the remaining

6 It is relatively easy to choose a value for η because it can be directly interpreted as the threshold that
determines how large an absolute portfolio weight must (at least) be to be constantly penalized.
7 The parameter φ is simply a very small increment that prevents division by zero.
8 In the latter case firmswere sorted according to themarket (ME) and the book-to-market (BE/ME) value to
obtain the firm portfolios. The data sets may be downloaded from the homepage of Kenneth French (http://
mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html), where information on the portfolio
construction methods is also provided.

123

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html


426 B. Fastrich et al.

(a
)

(b
)

(c
)

(d
)

F
ig
.3

T
he

fo
ur

no
n-
co
nv
ex

pe
na
lty

fu
nc
tio

ns

123



Constructing optimal sparse portfolios using regularization methods 427

Table 2 U.S. stock market data sets for the period 23.08.02 to 27.03.08

Data set Source T K r̄ σ̂ Ŝ ̂Ku

F&F 48: industry portfolios K. French 1,401 48 11.83 14.95 −0.0935 4.27

F&F 100: firm portfolios (ME & BE/ME) K. French 1,401 98 8.42 15.03 −0.0037 5.12

S&P 200: largest firms (w.r.t. ME) Datastream 1,401 200 6.57 14.79 0.0487 5.32

S&P 500: largest firms (w.r.t. ME) Datastream 1,401 500 6.57 14.77 0.0410 5.13

S&P 1,036: largest firms (w.r.t. ME) Datastream 1,401 1036 6.39 14.88 0.0380 4.99

Table reports the data sets under consideration, the source of the data, the number of assets (K ), and the
number of observations (T ) in each data set. For the S&P data sets, value weighted indices are computed
whose return distributions are characterized by themeanp.a. (r̄ ), the standard deviation p.a. (̂σ ), the skewness
(̂S), and the kurtosis (̂Ku) given in the last four columns. For the F&F48 data set, an equally weighted index
is computed due to the non-availability of market values or an appropriate analogue, while the returns of
the portfolios in the F&F100 data set are weighted by the average firm size that a portfolio is composed
of. The S&P indices are market value weighted. The weighting schemes are updated daily and applied the
following day

ones, which include the 200, 500, and 1,036 largest individual firms (with respect to
the market value on March 27, 2008) of the S&P 1500 constituents list, are referred
to as large data sets.9

3.2 Backtesting procedure, performance measures, and benchmarks

We backtest the out-of-sample performance of the proposed methods with a moving
time window procedure, where τ = 250 in-sample observations (corresponding to
one year of market data) are used to form a portfolio. The optimized portfolio allo-
cations are then kept unchanged for the subsequent 21 trading days (corresponding
to 1 month of market data) and the out-of-sample returns are recorded. After hold-
ing the portfolios unchanged for 1 month, the time window is moved forward, so
that the formerly out-of-sample days become part of the in-sample window and the
oldest observations drop out. The updated in-sample window is then used to form a
new portfolio, according to which the funds are reallocated. The T = 1,401 obser-
vations allow for the construction of � = 54 portfolios with the corresponding out-
of-sample returns, which are then used to compute the out of sample portfolio vari-
ance (i.e. s2 = 1

T−τ−1

∑T
t=τ+1(rt − r̄)2), the Sharpe Ratio (i.e. SR = r̄√

s2
) and

the Value-at-Risk (i.e. VaR1−p) as the F−1
r (p), that is value of the inverse cumu-

lated empirical distribution function of the daily out-of-sample returns at probabil-
ity level p. Moreover, to compare the portfolio composition, we also compute the
number of active positions (i.e. No.act. = 1

�

∑�
γ=1 |{i | wi,γ �= 0 ∀ i}|), the total

amount of shorting (i.e. Short = 1
�

∑

j={i | wi,γ <0 ∀ i} −w j,γ ) and the turnover (i.e.

T O = 1
�−1

∑�
γ=2

∑K
i=1 |wi,γ − wi,γ−1|).

9 The largest data set consists of 1,036 assets, because in the course of data preparation, penny stocks and
series with missing data were excluded.
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For comparative evaluations, we consider the following standard benchmarks: (1)
the shortsale-unconstrained MVP, denoted MVPssu, the shortsale-constrained MVP,
denoted MVPssc, the market value weighted portfolio, denoted mvw, and the equally
weighted portfolio, denoted 1oK. The above performance measures are reported for
the benchmarks, the only exception being the mvw in the case of the F&F 48 data set,
where neither the market values of the firms that compose the industry portfolios nor
an appropriate analogue is provided by Kenneth French.10

3.3 Covariance matrix estimators

For determining the minimum variance portfolio, we focus on two frequently used
covariance matrix estimators: (1) the sample estimator and (2) a three-factor model
estimator (Chan et al. 1999). Note that we keep the in-sample window size τ = 250
fixed throughout all experiments, which makes the sample estimator exhibit a poor
quality quickly when K/T grows. We do not choose to simply increase τ to improve
the quality of the estimator, because, in reality, portfolio selection problems contain
thousands of assets to choose from, so that tens of thousands of observations are
required. Time series of this length are hardly available or, if they are, contain in a
sense “outdated” observations. Instead, the three-factor model estimator imposes a
factor structure on the returns and is thus clearly more stable, allowing for a better
quality even for large ratios K/T . The cost of the higher (matrix) stability of this
estimators is its lower precision.

3.4 Optimization algorithm

The optimization task is very challengingwhen the penalty function in problem (1)–(2)
is specified by one of the non-convex approaches. We modify the DC-programming
approach proposed by Gasso et al. (2009) to tackle the non-convex optimization prob-
lems. The optimization relies on using an iterative primal dual-approach for the non-
convex penalty functions considered, where in each iteration a convex primal problem
is solvedwith agradient projection algorithmproposedbyFigueirdo et al. (2007).More
details on the optimization procedure can be found in the supplementary materials.

4 Empirical analysis

Prior to optimizing problem formulation (1)–(2) for any of the six penalization
approaches, a value of the regularization parameter must be chosen. Section 4.1 pro-
vides some insights on the relationship between the choice of λ and the portfolio risk
and shorting profiles, while Sect. 4.2 reports results in a realistic investment context,
when cross-validation is used to choose the optimal value of λ∗. For each approach,
we set a grid of 30 ascending values starting from zero. The largest element in each
set is chosen such that the resulting portfolios exhibit only few active positions and a
high out-of-sample portfolio variance. In this way, it is most likely that the intervals
spanned by zero and the largest regularization parameters cover λ∗.

10 This is different for the 98 firm portfolios (see the caption of Table 2).
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4.1 Portfolio risk and shorting profiles

As a first set of experiments, we fix a priori a grid of 30 possible values for λ and deter-
mine in each rolling window the optimal portfolio in correspondance of a given value
of λ. Figure 4 shows for the S&P 1,036 data set the portfolio variance (labeled as risk)
and the mean shorting of all approaches in comparison to the LASSO, which serves as
a benchmark and is shown in all graphs. For each approach the entire spectrum of 30
portfolios of different sizes is shown—corresponding to 30 regularization parameters
fixed a priori.11 Note that the leftmost LASSO-portfolio corresponds to the MVPssu
and the rightmost to the MVPssc. The profile of the LASSO shows that the risk (s2

and VaR) can be minimized by investing neither in the MVPssu nor the MVPssc, but
instead in a regularized portfolio. The reason for this is that the imposed penalties
prevent estimation errors in ̂� from fully and freely entering the portfolio weights and
deteriorating the performance. Comparing the risk profiles among the various penal-
ties reveals that not only our w8Las but also all non-convex penalties are capable of
constructing portfolios with a lowerminimum risk than the LASSO. This is a first indi-
cation for the success of the portfolio regularization strategies proposed in this paper.
While the minimum risk portfolio of the Zhang and thew8Las approach exhibit about
as many active positions as the LASSO, the (other) non-convex approaches construct
clearly smaller and thus more practical portfolios, especially when dealing with a
large pool of candidate assets. That the minimum risk portfolios of the latter group
exhibit about the same amount of shorting but fewer constituents than the LASSO, is
a consequence of the more uncompromising fit of the (left) active positions to the esti-
mated correlation structure. This characteristic is especially beneficial in large data
sets where the complexity of the underlying asset selection problem is sufficiently
high. Then, it is advantageous to maintain presumably relevant assets in the portfolio
with relatively large absolute weights, while an increasing regularization parameter
can shrink the absolute weights only of presumably less relevant assets. In contrast,
the LASSO always shrinks all weights, causing a “biased estimate” of the portfolio
vector. The asset-specific penalties in the w8Las approach circumvent this problem.
However, the w8Las performs especially well in the small data sets as it can be seen
in Sect. 4.2 and in the supplementary materials.12

4.2 Choosing the regularization parameter by cross validation

As a second set of experiments, we consider a real-world context where the portfolio
manager has to determine and update his portfolio allocation every month. Then, we
invest in only one of the 30 possible optimal portfolio by applying tenfold cross-
validation to choose a suited value of λ prior to the investment decision in each period.
The cross-validation procedure is as follows: 21 observations are randomly picked
from the in-sample data, portfolios are optimized on the remaining 229 observations

11 The abscissa denotes the number of active positions instead of the values of λ, since the scaling of the
latter differs among the penalties.
12 Note that the latter contain detailed results for five data sets and three covariance matrix estimators.
These results do not only support the above findings but also provide various additional insights.
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(a)

(c) (d)

(e)

(b)

Fig. 4 Risk and shorting profiles of portfolios constructed by the LASSO and the competing regularization
strategies based on the three-factor model covariance matrix computed with the S&P 1,036 data set. The
risk and shorting profile of the LASSO is shown in all graphs with markers [see the tags in graphs (a) and
(b)]

for all 30 regularization parameters, and the portfolio variance is computed using
the 21 picked observations. This is done ten times and the chosen λ is the one that
corresponds to the smallest average portfolio variance.

4.2.1 Small data sets

Table 3 shows the results for the sample covariance matrix estimator in a realistic set-
tingwhen ten-fold cross-validation is applied to the current in-sample data to determine
the optimal λ. The results found in the previous section can generally be confirmed,
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Table 3 Sample covariance matrix - Cross-validation choice of λ

MVPssu MVPssc mvw 1oK Lasso w8Las Log �q Zhang SCAD

Panel A: F&F 48 industry portfolios

s2 · 105 2.890 3.471 − 7.061 2.669 2.624 2.734 2.732 2.875 2.803

VaR ·102 0.879 1.017 − 1.446 0.834 0.820 0.816 0.806 0.850 0.818

SR 0.058 0.053 − 0.041 0.062 0.060 0.067 0.070 0.060 0.064

No. act. 48.0 9.1 − 48.0 25.1 27.0 15.5 15.2 21.7 15.4

Short 1.17 0.00 − 0.00 0.42 0.48 0.42 0.42 0.47 0.42

T O 1.06 0.23 − 0.00 0.56 0.64 0.74 0.77 0.85 0.74

Panel B: F&F 100 ME-BE-portfolios

s2 · 105 1.984 4.633 6.389 8.414 1.667 1.654 1.928 1.959 1.903 1.928

VaR ·102 0.659 1.163 1.352 1.555 0.576 0.585 0.616 0.615 0.608 0.616

SR 0.102 0.059 0.027 0.028 0.096 0.101 0.101 0.103 0.092 0.100

No. act. 98.0 5.6 98.0 98.0 46.2 48.4 27.5 25.0 28.6 27.6

Short 3.19 0.00 0.00 0.00 1.19 1.26 1.28 1.19 1.28 1.27

T O 3.04 0.31 0.03 0.00 1.39 1.55 2.20 2.10 2.13 2.20

Table shows in the upper part of both panels the performance measures based on the out-of-sample returns,
while the lower parts summarize the portfolio compositions

i.e. in Table 3 all regularization approaches outperform all benchmarks with respect
to the risk (s2 and VaR). Note that the stabilizing effect of regularization increases
with K/T . Compared to the best benchmark (MVPssu), s2 can be reduced by about
20 % for F&F 100 in Panel B compared to about 10 % for F&F 48 in Panel A. The
Sharpe ratios of the regularized strategies are higher as well, with the only exception
being the MVPssu in Panel B. Our proposed w8Las-strategy shows the lowest vari-
ance, which is a result we obtained in all experiments using the small data sets (see
supplementary materials). The non-convex strategies consist of fewer active positions
with about the same amount of shorting (or slightly more). This shows the capability
of non-convex approaches of identifying sparse solution by avoiding (over)fitting to
the estimated correlation structure. Moreover, the non-convex regularized portfolios
tend to exhibit higher Sharpe ratios while their risks are overall slightly higher than
those of the convex approaches. Thus, considering the fact that the need for solutions
with very few active position might not be as important in small data sets as in large
dataset, empirical results for F&F48 and F&F100 points out the benefit of using the
LASSO and the newly proposed w8Las strategies.

4.2.2 Large datasets

Table 4 shows that the cross-validation approach works well for the large data sets. In
Panel B for S&P 500 and C for S&P 1,036, the portfolio variances and Value-at-Risks
of all regularization approaches reach lower levels of portfolio variance thanMVPssu,
MVPssc, mvw and 1oK, while having a much smaller number of active positions.
This shows that the possibility of having a stronger shrinkage in some periods but not
in others can be beneficial. The same is not true for the S&P 200 data set in Panel
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Table 4 Three-factor model covariance matrix—Cross-validation choice of λ

MVPssu MVPssc mvw 1oK Lasso w8Las Log �q Zhang SCAD

Panel A: S&P 200 individual firms

s2 · 105 3.007 3.162 6.023 6.524 2.843 2.808 3.017 3.009 2.777 2.942

VaR ·102 0.885 0.898 1.312 1.348 0.828 0.824 0.893 0.916 0.843 0.881

SR 0.054 0.062 0.018 0.050 0.049 0.050 0.054 0.048 0.049 0.054

No. act. 200.0 54.9 200.0 200.0 82.6 91.1 66.1 65.6 93.9 64.8

Short 0.75 0.00 0.00 0.00 0.26 0.29 0.38 0.38 0.32 0.39

T O 0.57 0.52 0.04 0.00 0.59 0.68 0.96 0.98 0.73 0.90

Panel B: S&P 500 individual firms

s2 · 105 2.883 3.796 6.081 6.799 2.529 2.495 2.617 2.601 2.538 2.643

VaR ·102 0.923 1.071 1.335 1.385 0.834 0.835 0.794 0.814 0.847 0.842

SR 0.031 0.042 0.018 0.045 0.043 0.043 0.043 0.049 0.042 0.036

No. act. 500.0 278.6 500.0 500.0 131.9 147.6 102.8 108.1 151.6 101.0

Short 0.83 0.00 0.00 0.00 0.20 0.24 0.33 0.35 0.24 0.33

T O 0.61 0.22 0.04 0.00 0.69 0.75 1.11 1.04 0.80 1.09

Panel C: S&P 1036 individual firms

s2 · 105 2.649 4.593 6.254 9.001 2.382 2.379 2.343 2.356 2.485 2.369

VaR ·102 0.833 1.166 1.352 1.566 0.802 0.792 0.775 0.789 0.819 0.754

SR 0.031 0.031 0.016 0.028 0.054 0.050 0.041 0.045 0.050 0.044

No. act. 1,036.0 572.4 1,036.0 1,036.0 276.7 308.3 179.6 153.8 298.7 161.3

Short 0.84 0.00 0.00 0.00 0.26 0.30 0.33 0.31 0.28 0.31

T O 0.65 0.22 0.04 0.00 0.84 0.89 1.30 1.13 0.87 1.26

Table shows results of the four benchmarks and the six regularization approaches for the three large data
sets and the three-factor model covariance matrix

A, where the Log- and the �q -regularized portfolios exhibit slightly higher risks than
the MVPssu. However, this fits the picture that the non-convex approaches can be
mostly beneficial when dealing with large data sets. In fact, the number of non-convex
regularized portfolios that outperform the convex ones is only one in Panel A, while
it is three in Panel C. However, this relationship cannot be shown as clearly as it can
for the a priori choice of λ in Fig. 4. Further research on how to optimally choose λ is
needed.

5 Conclusion

In this work, we show that the performance of the minimum-variance portfolio can be
substantially improved byusing regularizationmethods that aim to control (over)fitting
of the asset weight vector to the estimation errors in the covariance matrix. Our main
contributions and findings can be smmarized as follows.

First, we propose a new type of a (convex) penalty whose construction allows for
easy processing of all kinds of signals to optimized portfolios,may they be gained from
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(time series) econometrics, fundamental or technical analysis, or expert knowledge.
We have shown that over- or underweighting assets based on a simple strategy works
well, especially when dealing with small data sets. It almost always leads to the
construction of portfolios with a smaller variance and often a higher Sharpe ratio than
all benchmarks and even the LASSO-portfolios. The individual penalization of asset
weights was also shown to partly compensate for the disadvantages of the LASSO in
larger data sets (even though the non-convex approaches dominated).

Second, we contribute to the existing literature on portfolio-regularization by pro-
viding empirical results for several non-convex penalty functions that have not yet
been examined in a portfolio optimization context. It turned out that these approaches
perform very well when dealing with very large data sets, where they not only outper-
formed standardbenchmarks but also the (convex) “state-of-the-art”LASSOapproach.
The success of these approaches stems from their ability to maintain relevant assets
in the portfolio with large absolute weights, while only the weights of the remaining
assets are shrunk. This can be thought of as a financial interpretation of the oracle
property-notion used in the statistical regularization literature and allows for a better
exploitation of the higher potential to diversify portfolio risk in larger data sets.

Third, we show that the regularization parameter can be determined successfully via
ten-fold cross-validation. However, several cross-validation criteria, considering dif-
ferent objective functions, can be specified and might allow for a further improvement
of the portfolio performances. So far, our results refer to the minimum variance port-
folios. Extending the portfolio set-up by considering alternative risk-measures, such
as tail-related or one-sided ones, is currently high on our agenda for future research.
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