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Abstract Infrastructure-planning models are challenging because of their combina-
tion of different time scales: while planning and building the infrastructure involves
strategic decisions with time horizons of many years, one needs an operational time
scale to get a proper picture of the infrastructure’s performance and profitability. In
addition, both the strategic and operational levels are typically subject to significant
uncertainty, which has to be taken into account. This combination of uncertainties
on two different time scales creates problems for the traditional multistage stochastic-
programming formulation of the problem due to the exponential growth in model size.
In this paper, we present an alternative formulation of the problem that combines the
two time scales, using what we call a multi-horizon approach, and illustrate it on a
stylized optimization model. We show that the new approach drastically reduces the
model size compared to the traditional formulation and present two real-life applica-
tions from energy planning.

Keywords Stochastic programming · Multistage · Energy planning ·
Scenario tree construction

1 Introduction

Infrastructure-planning models typically focus on long-term investment strategies with
time horizons of years or even decades. For many such models it is important to
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acknowledge how operational aspects will affect (and will be affected by) these strate-
gic decisions: in order to find robust, flexible, and profitable solutions, it is necessary
to assess how the infrastructure can be used, at what cost, and how it can respond to
varying conditions.

Hence, the goal is often to design infrastructure in a way that maximizes the net
present value of constructing, maintaining, and using the infrastructure, while still
allowing the users to satisfy their operational targets. These aspects are on very dif-
ferent time scales: construction and maintenance of the infrastructure are strategic
decisions with time scales of months or years, while the operational targets and costs
are driven by operational decisions with time scales of days, hours, or even minutes.
The main topic of this paper is how to address these complementary time scales in
one optimization model.

To further complicate the matter, these planning processes are subject to substantial
uncertainty: on the strategic level, there is uncertainty about future demands, prices,
technology development, etc. The uncertainty on the strategic level will influence the
operational decisions, and in addition there may be uncertainty in the short term. The
sources of the uncertainties vary between different types of applications.

One of the standard tools for solving optimization problems with uncertainty is
stochastic-programming models, in particular their scenario-tree-based formulations.
With these models, it is not obvious how to combine the two time scales, without the
exponential growth in model size described in Sect. 2. Depending on the objective
function and purpose of the analysis, this problem can be addressed in different man-
ners. We can have separate strategic and operational models and run them alternatively
in a loop, adjusting the strategic model based on the results from the operational model.
An example of such an approach is provided in Myklebust (2010), where a strategic
and an operational model are run in sequence, as two separate entities.

There are also papers that consider aspects related to handling both time scales
in one model and, partially, uncertainty on the different time scales. One example is
provided by Schütz et al. (2009) who include short-term variations in a strategic model
for the Norwegian meat industry. The model is a two-stage stochastic model where a
supply chain is designed in the first stage and then operated under uncertain demand
in the second stage. The uncertainty in demand comes from both short-term variations
and long-term trends. De Jonghe et al. (2011) use an equilibrium model to study the
expansion of electricity generation capacity. They integrate the short-term demand
response in their strategic model by way of a representative profile and discuss the
effects on flexibility of the generation capacity. Their approach, however, considers
only a one-period deterministic model. Sönmez et al. (2013) analyze strategic invest-
ment decisions in liquefied natural gas transport and discuss the impact of using a
stochastic model (simulation) for the throughput, i.e., at the operational level. They
show that, when deciding about technology and capacity choices, also operational
flexibility is important in order to cope with short-term variations and has a significant
impact on profitability. Finally, Singh et al. (2009) describe a multi-stage capacity-
planning problem with potentially stochastic operational ‘submodels’ and show how
to solve it using Dantzig-Wolfe decomposition with variable splitting. This paper
focuses on the solution method and does not describe the structure of the operational
uncertainty.
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In this paper, we describe a model and scenario-tree structure that allows for using
operational decisions to evaluate the quality of the strategic decisions, while having
uncertainty on both the strategic and the operational levels. This is done by using a
‘multi-horizon’ optimization model, where we embed important operational features
directly into the strategic decision model, thus allowing an immediate evaluation of
potential investment solutions. An application of the same scenario-tree structure has
been presented in Hellemo et al. (2013). That paper, however, focuses on a mathemat-
ical model developed for the natural gas industry, without an in-depth discussion of
the tree structure for the considered application. In contrast, our contribution lies in a
detailed discussion of the structure and its comparison to standard multi-period trees.
We also provide guidance on how to populate such scenario trees and describe two
applications from the area of energy planning.

The rest of this paper is organized as follows: in Sect. 2, we show why the standard
approach to building multistage stochastic models is not well suited for models with
both strategic and operational uncertainties. Then, in Sect. 3, we present our new multi-
horizon structure that resolves the problem and illustrate its use on a stylized optimiza-
tion problem. Finally, in Sect. 4, we describe the two example applications. We also
discuss other areas where it could potentially be useful, before we conclude the paper.

2 Limitations of the standard approach

In this section, we explain why the standard approach for building scenario trees is not
suitable for models that combine long- and short-term uncertainties. We start by intro-
ducing the necessary terminology for multistage stochastic-programming problems
and the related scenario trees: a period denotes the time interval between two consec-
utive time-discretization points. A stage starts at a time point where new information
is received. Per definition, the first time point in the tree starts a stage.

A node represents a time point where decisions are made. We define two node
types, strategic nodes (illustrated in the figures with ‘ ’) for long-term decisions and
operational nodes (illustrated with ‘ ’) for short-term decisions. A leaf node represents
either a time point only or the start of the last time period. An example of the former
is the evaluation of a portfolio’s value at a later point of time, while the latter could
be decisions about operating a system in the last hour. In this paper, all leaf nodes
start a last operational period. In the figures, this last period is represented by ‘⊥’.
Note that we do not include a corresponding illustration of the last strategic period,
since the succeeding operational nodes make it clear that the last strategic node is not
momentary.

2.1 Models with one strategic stage

We start with the case where the standard approach works well: the classical two-stage
stochastic programming model. There, the first stage represents the strategic decisions
about the infrastructure and the second stage the operational decisions, see cases (a)
and (b) in Fig. 1. The only difference between the two cases is that (b) includes several
operational periods; since these are deterministic (no branching there), this is still a
two-stage problem.
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(a) (b) (c)

Fig. 1 Example of scenario trees with one strategic stage and, respectively, one operational period (a), four
operational periods (b), and a two-stage operational part (c)

The last case (c) is different in the sense that it is a three-stage problem, since
there is one extra operational stage. This means that unlike the previous two cases
that modelled operating the infrastructure under several deterministic scenarios, this
one actually models its operation under uncertainty. In this way, it is a more complex
model, but still relatively easy to solve as it has only one strategic period, so we avoid
mixing the strategic and operational time steps.

Since this class of problems is relatively easy to both model and solve, we have to
understand the assumptions behind using just one strategic stage. Firstly, having only
one strategic stage means that all the strategic decisions have to be found now, there is
no way of postponing a strategic decision until we have learned more. In other words,
the option to wait does not exist in such a model—see Christiansen and Wallace (1998)
or Fleten et al. (1998) for the connection between options and stochastic optimization.

Furthermore, with only one strategic node, the model does not take into account
the time it takes to implement the strategic decisions—all the strategic decisions are
implemented during the first stage and used in the rest of the model.

There are many applications where this approach is sufficient. As an example,
consider the case where the strategic decision concerns routes and/or timetables for
some form of transport and the operational periods represent daily usage of those
routes under different conditions (scenarios). Such models, using the scenario-tree
structure from Fig. 1b, can be found, for example, in Lium et al. (2009); King et al.
(2012); Thapalia et al. (2012a,b).

2.2 Models with multiple strategic stages

With multiple strategic stages, things become much more complicated, as illustrated in
Fig. 2. We see that going from the deterministic case (a) to a case with uncertainty at the
strategic level (b), the number of scenarios increases, though in a manageable manner.
The problem is that we still have no operational uncertainty—and how realistic is it to
assume that we know all parameters three years ahead? When we add the operational
uncertainty, we get a scenario tree similar to case (c). We see that the number of
scenarios grows from eight to 32, for a model with three strategic periods and two
branches per period for both the strategic and operational nodes. Clearly, such an
approach is not practical for real-life problems: if we increase the number of branches
from two to ten, which might still be too few for many practical problems, we would
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(a) (b) (c)

Fig. 2 Models with multiple strategic stages, using standard scenario trees. This illustrates the increase of
the tree size from a deterministic model (a), through a model with strategic uncertainty (b), to a model with
uncertainty on both the strategic and operational level (c)

need 100 000 scenarios. Hence, the question is whether we can come up with a way of
modelling these two uncertainties that avoids this explosion in the number of scenarios;
we present one such a way in the next section.

3 Multi-horizon scenario trees

Our solution to the problem from the previous section is based on the observation
that strategic decisions typically do not depend directly on any particular operational
scenario, but rather on the overall operational performance during the time since the
previous strategic decision. This implies that, in the strategic model, it is enough
to branch only between the strategic stages; the operational nodes can be seen as
embedded into (or attached to) their respective strategic nodes. They are there, in a
way, to check the feasibility and profitability of the decisions made in their respective
strategic nodes.

This is presented in Fig. 3. In this figure, tree (a) includes the same nodes as the
tree in Fig. 2b, except that we interpret the nodes differently: in the new structure,
the tree is constructed solely out of the strategic nodes, which have the associated
operational nodes ‘embedded’ in them. The second tree in the figure corresponds
directly to the tree from Fig. 2c. Finally, Fig. 3c demonstrates that the operational part
does not need to consist of a set of deterministic scenarios (or profiles), but can itself
be a multistage stochastic problem. This allows for an evaluation of the infrastructure
under more complex stochastic operational conditions. In this sense, Fig. 3c provides
a multi-strategic-stage equivalent of Fig. 1c.
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nodes with
embedded
operational
scenarios

(a) (b) (c)

Fig. 3 Multi-horizon scenario trees with strategic uncertainty. The operational subtrees attached to the
strategic nodes vary from s single operational scenario/profile (a), through multiple operational scenarios
(b), to a stochastic multistage operational submodel (c)

Table 1 Numbers of strategic and operational nodes for the standard tree in Fig. 2c and the multi-horizon
tree in Fig. 3b

Standard tree Multi-horizon tree

# strategic nodes 1−(Bo Bs )
Ps

1−Bo Bs
≈ (Bo Bs )

Ps 1−(Bs )
Ps

1−Bs
≈ B Ps

s

# operational nodes Po Bo
1−(Bo Bs )

Ps

1−Bo Bs
≈ Po Bo (Bo Bs )

Ps Po Bo
1−(Bs )

Ps

1−Bs
≈ Po Bo B Ps

s

Ps is the number of strategic periods, Po the number of operational periods per strategic period. Bs and
Bo are the numbers of strategic and operational successors in each strategic and operational branching,
respectively. We assume that these numbers are constant throughout the tree and that Bs > 1

We can see from the trees in Figs. 2c and 3b that the new multi-horizon structure
brings a dramatic reduction in the size of the resulting tree. How large this difference
will be depends on the numbers of operational and strategic periods and the number
of successors in the branchings. Table 1 illustrates the size of this reduction, where
the different base in the exponential function is the main driver. This transfer to the
problem size in terms of number of variables and constraints, since variables and
constraints in a period are duplicated for each node in that period.

Since the new structure significantly reduces tree and problem sizes, it is natural
to ask about the cost of this reduction. The answer depends on the structure of the
optimization model. The new approach is exact if the following conditions are satisfied:
firstly, strategic uncertainty must be independent of the operational uncertainty and the
strategic decisions must not depend on any particular operational decisions. Without
these requirements, we would not be able to have a single strategic decision following
two or more operational scenarios. Secondly, the first operational decision in a strategic
node cannot depend on the last operational decision from the previous period—in
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the proposed structure; there is no connection between operational scenarios of two
consecutive strategic nodes.

The first requirement is quite natural and can be expected to be fulfilled in many
situations, especially if the difference between the strategic and operational time scales
is big (years vs. hours). The second requirement, on the other hand, is harder to fulfil
exactly; for example, if we have strategic periods coinciding with calendar years,
together with one-hour operational periods, we require that the operational decisions
at 00:00 on January 1 do not depend on the operational decisions from 23:00 on
December 31 from the previous year. It follows that the proposed structure will, in
most cases, be an approximation of the ‘standard trees’ from the previous section. How
good an approximation will be very much case-dependent. As an example, consider
a power producer with hydro power plants; clearly, the water reservoirs introduce a
memory aspect to the operational model, invalidating the second requirement above.
However, at least in regions with cold winters, it can be expected that the reservoirs
will be at their minimum level by the end of winter, in most scenarios. Hence, if we
place the strategic decisions at the end of winter, the approximation error will be very
small.

In the application discussed in Sect. 4.1, EnRiMa, the links between the operational
decisions and the following investment periods are weak, and we can rely on such a
scenario tree structure. On the other hand, in the Ramona model presented in Sect. 4.2,
the decisions in the operational periods may influence the decision space for the
following investment periods, such that the tree structure will be an approximation.

3.1 Representative sub-periods

Even if the multi-horizon trees from Fig. 3 are significantly smaller than the standard
trees from Fig. 2, they have the same number of operational periods. With yearly strate-
gic decisions and hourly operational resolution, each operational scenario consists of
365×24=8,760 periods—this might make our model intractable. Our solution is to
split the interval between strategic decisions into several sub-periods. For the ease of
explanation, we describe the idea on the case of yearly strategic decisions and hourly
operational periods.

Let us first assume that we have a system that is being actively operated only during
the day and reverts to some ‘default state’ during the night. In such a case, there would
be no link between two consecutive days, i.e. the operational model could be run for
each day separately. For the scenario-tree structure from Fig. 3a, this would mean that
a one-year scenario with 8,760 hourly periods could be equivalently interpreted as
365 daily scenarios with 24 hourly periods. In our idealistic example with no links
between days, this restructuring provides an equivalent model formulation. If there
are links between consecutive days, usually in some form of storage, then we get only
an approximation. In such cases, one may split where the links between consecutive
operational periods are the weakest. For example, there might be strong links between
weekdays, but much weaker during weekends; hence, we might consider splitting the
one-year interval into 52 weeks instead.
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This restructuring does not increase the problem size when using the multi-horizon
scenario tree. With the restructured tree we can now employ different scenario reduc-
tion techniques to reduce the number of operational scenarios (see, for instance,
Römisch (2009) for an overview), resulting in a suitable number of representative
operational sub-periods.

3.2 Generating values for multi-horizon scenario trees

Once we have decided the form of the scenario tree and the decomposition of the
operational periods, we are ready to build the full multi-horizon scenario tree and
fill it with values. We can start by generating the tree of the strategic nodes: this is
a standard multistage scenario tree, so one can use any standard method—see, for
example, Dupačová et al. (2000) or Høyland and Wallace (2001). The only non-
standard aspect is that, because of the very long time span of these trees, one often
cannot use historical data and has to rely on some prediction methods and/or expert
opinions to get the parameters of the distributions.

Next, we have to generate values for the operational scenarios. We distinguish
between operational parameters that have the same distributions in all strategic periods
and parameters that change over time (either deterministically or stochastically). An
example for the former is weather, at least when we ignore climate-change effects. For
these parameters, we can use the same set of operational scenarios in all the strategic
nodes. Parameters that evolve also on the strategic scale such as spot market energy
prices require a different treatment: we have to separate the long-term trends from the
short-term uncertainty. One way of doing this is to express the operational values in
terms relative to the corresponding value in the strategic node. We can then use the
same operational scenario in all the strategic nodes (given that the distribution itself
is independent of the long-term trends).

3.3 Illustrative example

We illustrate the approach on a small two-stage model, inspired by the EnRiMa model
presented in the next section: we consider installing photovoltaic (PV) panels on a
building and want to find out what capacity we should install and when. To be able to
evaluate the value of the panels, we need to model how they help to cover the electricity
demand on an hourly basis. We make the strategic periods one year long, so we have
to have operational profiles to model how the production of the PV panels changes
throughout the year. In our simple example, we model this using three profiles: winter
and summer representing 90 days each, and one for the rest of the year.

The model itself is very simple; we have only two decision variables in each strategic
node n: xn denoting the capacity to be installed and yn the total installed capacity,
both measured in kW. In the operational profiles, we have, in addition, variables z p,t

n
denoting the amount of purchased electricity at time t of profile p, in kWh. The
objective is to minimize the expected cost, which gives the following model:
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1

2 3

(a)

1 – 1 700 0 05
2 1 0 5 500 0 06
3 1 0 5 600 0 04

(b) (c)

Fig. 4 Example: the strategic tree (a), its parameters (b), and the complete multi-horizon scenario tree (c).
Note that we show only the first four operational periods in (c)

min
∑

n∈N

Prn

(
CIn xn +

∑

p∈P

W p
∑

t∈T

CE p,t
n z p,t

n

)
(1)

s. t. yn = yPa(n) + xn ∀n ∈ N (2)

�
p,t
n Rp,t

n yn + z p,t
n ≥ Dp,t

n ∀n ∈ N , p ∈ P, t ∈ T (3)

In the objective function (1), Prn is the probability of node n, CIn is the PV installation
cost ine/kW, W p is the weight of the profile (90 for winter and summer, 185 for ‘rest’),
and CE p,t

n is the electricity cost at time t of profile p, in e/kWh. Constraints (2) keep
track of the installed capacity. There, Pa(n) denotes the parent node of n; since the
root node does not have a parent, yPa(n) is defined as zero there.1 Finally, constraints
(3) ensure that we have enough power to satisfy the demand Dp,t

n , given in kWh, at
each period, profile and node. There, �

p,t
n is the duration of the operational periods,

in our case 1 hour, and Rp,t
n is a factor specifying what percentage of the nominal

capacity the panel actually produces at the given hour.

3.3.1 Generating values for the stochastic parameters

To keep the model as simple as possible, we have only three strategic nodes: the root
node representing ‘now’ and two nodes representing two different scenarios one year
ahead—see Fig. 4a. When we add the three operational profiles, we get the multi-
horizon tree in Fig. 4c.

We start by generating values for the strategic stochastic parameters. In our case,
there is only one such parameter, namely the PV installation costs CI ; its values in the
three strategic nodes are presented in Fig. 4b.

However, we need additional strategic parameters for modelling operational para-
meters that evolve on the strategic time scale, as described at the end of Sect. 3.2.

The first such a parameter is the electricity price CE , which we want to be stochastic
also on the strategic scale. This is accomplished by introducing additional parameters
SCE modelling the long-term averages of the price—see Fig. 4b. The actual operational
values are then computed as

CE p,t
n = SCEn × ICE p,t ,

1 Actually, yPa(n) in the root node represents the currently installed capacity—which we assume to be zero.
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Fig. 5 Operational profiles for electricity prices. The first plot shows the input profiles ICE , given as
relative values, the remaining three plots show the resulting profile values CE

where ICE p,t are dimensionless multipliers modelling the daily price profiles for each
p ∈ P . In our case, we let the price profiles be constant throughout the day but
varying in the course of the year, with the highest prices in winter—see Fig. 5. This
corresponds to the situation in Norway, where electricity prices typically do not depend
on the hour, but change often throughout the year.

For the demand values D, we simplify the situation slightly by assuming that the
long-term development is known (deterministic). This is modelled by a parameter
SDτ , where τ is the strategic time period. In our case, we have used SDτ = 10 kWh.
The operational values are, therefore, computed as

Dp,t
n = SDPer(n) × IDp,t ,

where Per(n) denotes the strategic period of node n and IDp,t are, again, the multipliers
from the operational profiles. Unlike the electricity prices, we let the demand vary
throughout the day, as shown in Fig. 6.

Finally, the PV-production factors R are assumed to be constant in the long term.
Since these are relative values by definition, we get simply

Rp,t
n = IRp,t ,

so we do not need any extra strategic parameter. The profiles are presented in Fig. 7—
the values correspond to Bergen, Norway, as provided by the PVWatts™ calculator.2

2 The PVWatts™ calculator was developed by the National Renewable Energy Laboratory and is available
from http://www.nrel.gov/rredc/pvwatts/.
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Fig. 6 Demand profiles: the left plot shows the input profiles ID, given as relative values, the right plot
the resulting profile values D in kW. The long-term demand is given as SD=10 kWh
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the rest

Fig. 7 Profiles for the fraction of PV production (IR). This is given as data and repeated in all the strategic
nodes

3.3.2 Numerical results

With the given data, the optimal solution is to not install any PV panels and buy all
the electricity. This is hardly surprising, given the assumptions of the model: the time
horizon is too short to make the panels profitable for the considered location. We also
do not allow for the electricity to be sold and ignore end-of-horizon issues, i.e. we do
not assign any value to the PV panels at the end of the last period.

To create a more realistic investment model, we would also have to include aspects
such as discount rates and depreciation. Instead, the presented model is meant as a
demonstration of how to populate a multi-horizon tree—something that would be less
transparent with a more complex model.

4 Applications

4.1 Efficient energy usage—EnRiMa

EnRiMa (Energy Efficiency and Risk Management in Public Buildings) is a research
project funded by the European Commission via the 7th Framework Programme (FP7).
In the context of our paper, we are interested in the strategic decision-support system
(DSS) developed as part of the project. This DSS considers retrofits, investments
into new equipment and decommissions of obsolete installations, for a given public
building. During the course of the project, the EnRiMa DSS shall be implemented at
several test sites in Austria and Spain.
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As the above example demonstrates, the situation fits nicely into the multi-horizon
framework. We have strategic decisions with a long time horizon (ten years or more)
and want to include the option to postpone some of the decisions until later, due to
the expected development of some of the involved technologies: should we install
PV panels now, or wait a couple of years until their efficiency and price improve—or
should we perhaps install only a few now and wait with the rest? For this, we need
multiple strategic periods.

At the same time, we need operational periods in order to evaluate operational costs,
efficiency, and robustness of the installed portfolio of equipment under different sce-
narios: with the strategic period length set to 1 year, we need to test the performance
of the installed infrastructure in both summer and winter, using both the representative
and the extreme load scenarios. All the operational scenarios are for 1 day, with hourly
resolution. For the representative operational periods, a few profiles representing sea-
sonal variation appear sufficient. The critical periods are modelled using CVaR values
from historical data, implying that we do not require the system to handle the most
extreme cases—it is most likely acceptable if temperature in an office building goes
outside of the specified comfort zone on the very warmest or coldest days.

The most important stochastic parameters on the strategic level are the long-term
development of electricity and gas prices, the development of price and efficiency of
different technologies and, finally, regulations such as government subsidies or new
electricity tariffs. For the operational periods, the most important stochastic parameters
are the energy loads of the buildings. In the model, these are calculated as a function of
weather (temperature, humidity, and wind), occupancy of the building, and building
characteristics (Groissböck et al. 2011), where the latter might be dependent on some
of the strategic decision variables. In addition, there can also be uncertainty about
the electricity prices in the case of real-time pricing; this provides an example of a
parameter that can be stochastic on both the strategic and the operational level and,
therefore, requires the special treatment described in Sect. 3.2.

4.1.1 Model size and comparison to standard scenario trees

The model sizes depend on the number of technologies and energy types, but even a
small realistic example will have about 100 binary variables in each strategic node.
Furthermore, if we have 10 operational profiles with one-hour resolution for 24 hours
ahead, this gives about 30 000 continuous variables per strategic node. For a three-
stage model that plans 10 years ahead, with 10 branches in the fifth period, the multi-
horizon model will have 65 strategic nodes, which means about 6500 binary and 2
million continuous variables. A standard stochastic-programming model, as presented
in Fig. 2c, would need over 1011 strategic nodes to model the same situation, clearly
an impossible task to handle.

4.2 Natural gas transport infrastructure planning—Ramona

The Ramona project (‘regularity and uncertainty analysis and management for the
Norwegian gas processing and transportation system’) was funded by the Norwegian
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Research Council and ran from 2008 till 2011. The principal objective was the develop-
ment of new theory, methods, and tools to optimize regularity and capacity utilization
in gas production, processing, and transportation systems. Part of the project was con-
cerned with developing decision support system for the design of robust and flexible
processing and transport infrastructure from fields (reservoirs) to markets, allowing
reliable and profitable operations under various, and also adverse situations.

New investments in natural gas transport network infrastructure such as platforms,
pipelines, compressors, or processing facilities should work well with existing and
future infrastructure. Rather than evaluating these investment options in isolation
and independently of the total system, their interactions with and effects on other
infrastructure elements need to be taken into account. The timing aspect is impor-
tant with respect to satisfying production obligations and developing new production
fields, thus re-using infrastructure.

Increased focus on production assurance and security of supply makes it paramount
to also evaluate how the design solutions will perform during daily operations and what
their financial effects (costs and revenue) will be. For example, would a new pipeline
allow to better satisfy delivery contracts in critical times or to route gas not bound in
contracts to the most profitable markets—and how would it affect the gas flows in other
pipelines? System effects in the pipeline network mean that the pressure and flow in
one part of the network may influence the capacity in other parts (Midthun et al. 2009).
Line-pack and other storage options require a multi-period approach to fully appre-
ciate their value for the system (Midthun 2007). Consequently, finding a robust and
flexible design of natural gas transport networks requires, in addition to economics,
also considering operational aspects such as physical processes and day-to-day gas
routing decisions.

At the same time, decision makers face various kinds of uncertainty. Some uncertain
parameters such as gas composition and volumes in undeveloped reservoirs, discover-
ies of new reservoirs, and long-term changes (trends) in price and demand levels, refer
to the strategic model horizon. Other uncertain parameters may vary from day to day.
Examples are prices and demands at the markets or nominations in long-term delivery
contracts. Another kind of short-term uncertainty is unplanned events (e.g., network
outages) that can cause problems for the security of supply in the system by drasti-
cally reducing capacity in parts of the network, if only for a short time. Considering
only average values for these uncertain parameters may conceal important details. For
example, delivery bottlenecks occurring during peak demand will not be visible when
aggregating and using average demand levels. Brief outages of critical infrastructure
may seriously affect the security of supply; using averaged values would completely
disguise them.

A detailed description of the developed model is presented in Hellemo et al. (2013).

4.2.1 Model size

The investment analysis is typically performed over a time horizon of between twenty
and fifty years while the operational analysis is carried out with daily time resolution.
A typical case instance would contain about 200 network elements. For a three-stage
model with 12 strategic periods and daily operational profiles with 10 branches, the
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multi-horizon model will then have approximately 80 million continuous variables and
20 million binary variables, already a very large model. In contrast, the corresponding
model with a standard stochastic programming formulation as in Fig. 2c would be two
orders of magnitude larger with around 7 billion continuous variables and almost 2
billion binary variables.

4.3 Other applications

The presented multi-horizon structure is useful for strategic models where dealing with
operational uncertainty is an important aspect for the strategic decisions and there are
many potential applications.

In the energy-planning sector, an example is the design of power networks capable
of dealing with fluctuating production from wind farms and other non-dispatchable
energy sources—a problem that will become even more important in the coming
decades, with an increasing share of renewable energy sources. It can, for example,
be expected that this will cause the model to suggest the installation of short-term
energy-storage solutions—while these do not have any value if we do not consider
variability on the operational level. Such a model could also be extended to include
other energy carriers, such as natural gas, to take advantage of the interaction between
them.

For the design of supply chains, both strategic and operational uncertainty can be
of significant importance, as shown in the work by Schütz et al. (2009) mentioned in
the Sect. 1. Another example of a two-stage model with both strategic and operational
nodes is presented in Pérez-Valdés et al. (2012), where the design of an industrial park
is considered. Extending these models from two to multiple strategic decision points
would enable the user not only to optimize the static design of the supply chain, but
also to optimize the timing of the strategic design decisions. It is well known from
real options theory that optimal timing is highly affected by uncertainty, for instance,
through the value of postponing a decision until more information becomes available.
And we are sure there are many other situations where the multi-horizon structure will
be useful.

5 Conclusions

In this paper, we have discussed a multi-horizon structure for multistage stochastic
programs and their associated scenario trees. The structure allows one to model and
solve problems that need to combine strategic (long term) and operational (short
term) uncertainty, without the explosion in the problem size that would follow from
using a standard multistage model. We have discussed conditions under which the
new structure is equivalent to the standard approach, and also provided guidelines for
generating values for the multi-horizon scenario tree.

We have illustrated the proposed approach on a stylized optimization problem and
also presented two real-world examples from the energy sector, one concerning climate
control of public buildings and the other gas pipelines and related infrastructure in the
Norwegian and North Sea.
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Dupačová J, Consigli G, Wallace SW (2000) Scenarios for multistage stochastic programs. Ann Oper Res
100:25–53

Fleten S-E, Jørgensen T, Wallace SW (1998) Real options and managerial flexibility. Telektronikk
94(3/4):62–66

Groissböck M, Stadler M, Edlinger T, Siddiqui A, Heydari S, Perea E (2011) The first step for implementing
a stochastic based energy management system at campus Pinkafeld. Technical Report C-2011-1, Center
for Energy and innovative Technologies, Hofamt Priel, Austria

Hellemo L, Midthun K, Tomasgard A, Werner A (2013) Multi-stage stochastic programming for natural
gas infrastructure design with a production perspective. In: Gassmann, HI, Wallace, SW, Ziemba, WT
(eds) Stochastic programming: applications in finance, energy, planning and logistics, World Scientific
Series in Finance. World Scientific, Singapore

Høyland K, Wallace SW (2001) Generating scenario trees for multistage decision problems. Manag Sci
47(2):295–307

King AJ, Wallace SW, Lium A-G, Crainic TG (2012) Service network design, chapter 5, Springer series in
operations research and financial engineering. Springer. doi:10.1007/978-0-387-87817-1_5

Lium A-G, Crainic TG, Wallace SW (2009) A study of demand stochasticity in stochastic network design.
Transport Sci 43(2):144–157. doi:10.1287/trsc.1090.0265

Midthun KT (2007) Optimization models for liberalized natural gas markets. PhD thesis, Department of
Industrial Economics and Technology Management, Norwegian University of Science and Technology,
Trondheim, Norway

Midthun KT, Bjørndal M, Tomasgard A (2009) Modeling optimal economic dispatch and system effects in
natural gas networks. Energy J 30:155–180

Myklebust J (2010) Techno-economic modelling of value chains based on natural gas—with consideration
of CO2 emissions. PhD thesis, Department of Industrial Economics and Technology Management,
Norwegian University of Science and Technology

Pérez-Valdés G, Kaut M, Nørstebø V, Midthun K (2012) Stochastic MIP modeling of a natural gas-powered
industrial park. Energy Procedia 26:74–81. doi:10.1016/j.egypro.2012.06.012. Proceedings of the 2nd
Trondheim Gas Technology Conference

Römisch W (2009) Scenario reduction techniques in stochastic programming. In: Stochastic Algorithms:
Foundations and Applications. Lecture Notes in Computer Science, vol 5792, pp 1–14. Springer, Berlin

Schütz P, Tomasgard A, Ahmed S (2009) Supply chain design under uncertainty using sample average
approximation and dual decomposition. Eur J Oper Res 199(2):409–419. doi:10.1016/j.ejor.2008.11.
040

Singh KJ, Philpott AB, Wood RK (2009) Dantzig-Wolfe decomposition for solving multistage stochastic
capacity-planning problems. Oper Res 57(5):1271–1286. doi:10.1287/opre.1080.0678

Sönmez E, Kekre S, Scheller-Wolf A, Secomandi N (2013) Strategic analysis of technology and capacity
investments in the liquefied natural gas industry. Eur J Oper Res 226(1):100–114. doi:10.1016/j.ejor.
2012.10.042

Thapalia BK, Crainic TG, Kaut M, Wallace SW (2012) Single-commodity network design with random
edge capacities. Eur J Oper Res 220(2):394–403. doi:10.1016/j.ejor.2012.01.026

Thapalia BK, Crainic TG, Kaut M, Wallace SW (2012b) Single source single-commodity stochastic network
design. Comput Manag Sci 9(1):139–160. doi:10.1007/s10287-010-0129-0. Special issue on ‘Optimal
decision making under uncertainty’

123

http://dx.doi.org/10.1007/978-0-387-87817-1_5
http://dx.doi.org/10.1287/trsc.1090.0265
http://dx.doi.org/10.1016/j.egypro.2012.06.012
http://dx.doi.org/10.1016/j.ejor.2008.11.040
http://dx.doi.org/10.1016/j.ejor.2008.11.040
http://dx.doi.org/10.1287/opre.1080.0678
http://dx.doi.org/10.1016/j.ejor.2012.10.042
http://dx.doi.org/10.1016/j.ejor.2012.10.042
http://dx.doi.org/10.1016/j.ejor.2012.01.026
http://dx.doi.org/10.1007/s10287-010-0129-0

	Multi-horizon stochastic programming
	Abstract
	1 Introduction
	2 Limitations of the standard approach
	2.1 Models with one strategic stage
	2.2 Models with multiple strategic stages

	3 Multi-horizon scenario trees
	3.1 Representative sub-periods
	3.2 Generating values for multi-horizon scenario trees
	3.3 Illustrative example
	3.3.1 Generating values for the stochastic parameters
	3.3.2 Numerical results


	4 Applications
	4.1 Efficient energy usage---EnRiMa
	4.1.1 Model size and comparison to standard scenario trees

	4.2 Natural gas transport infrastructure planning---Ramona
	4.2.1 Model size

	4.3 Other applications

	5 Conclusions
	Acknowledgments
	References


