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Abstract Convex optimization methods are used for many machine learning mod-
els such as support vector machine. However, the requirement of a convex formula-
tion can place limitations on machine learning models. In recent years, a number of
machine learning methods not requiring convexity have emerged. In this paper, we
study non-convex optimization problems on the Stiefel manifold in which the fea-
sible set consists of a set of rectangular matrices with orthonormal column vectors.
We present examples of non-convex optimization problems in machine learning and
apply three nonlinear optimization methods for finding a local optimal solution; geo-
metric gradient descent method, augmented Lagrangian method of multipliers, and
alternating direction method of multipliers. Although the geometric gradient method
is often used to solve non-convex optimization problems on the Stiefel manifold, we
show that the alternating direction method of multipliers generally produces higher
quality numerical solutions within a reasonable computation time.
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1 Introduction

Convex optimization is widely used to solve statistical problems such as classification
and high-dimensional regression problems (Sra et al. 2011). Convexity is an impor-
tant feature of high-performance learning algorithms. However, convex formulations
have limitations. In recent years, a number of machine learning methods that do not
require convexity have emerged. For example, submodular maximization in structured
learning, as discussed in Krause and Guestrin (2008), and difference of convex (d.c.)
programming in clustering, feature selection, etc. (An et al. 2008). Efficient learning
algorithms for non-convex optimization problems have a wide range of statistical data
analysis applications.

In this paper, we study optimization problems on the Stiefel manifold that is defined
as the set of all rectangular matrices with orthonormal column vectors. The problems
are formulated as nonlinear optimization, and our purpose is to find a local optimal
solution of those optimization problems. We show several machine learning problems
that can be expressed in this framework.

1.1 Examples of learning models on Stiefel manifold

Dimensionality reduction problems: A lower dimensional representation of the orig-
inal data structure is estimated in dimensionality reduction problems. The projection
of the data onto a subspace should preserve the original data structure as precisely
as possible. The subspace is expressed by using a matrix in the Stiefel manifold; i.e.,
the column vectors of the matrix correspond to a set of the basis vectors of the sub-
space. Hence, dimensionality reduction problems can be formulated as optimization
problems on the Stiefel manifold.

Independent component analysis: We describe independent component analysis
(ICA) as another application. Suppose that the observed data is a linear mixture of
signal components. The goal of ICA is to recover the original signals on the assump-
tion that the components of the signals are independent of each other. To recover the
signals, we estimate the mixing matrix from the observed data. Without loss of gener-
ality, let us assume that the multi-dimensional data has the zero mean vector and the
variance-covariance matrix is the identity matrix. When the dimension of the signals
and that of the observed data are the same, the problem is to find an appropriate orthog-
onal transformation that converts the data to the signals with independent components.
When the dimension of the signals is lower than that of the observed data, the mixing
matrix is expressed as a matrix in the Stiefel manifold. Hence, ICA is formulated as
the maximization of the degree of the independence on the Stiefel manifold.

Robust classification models: Recently, Takeda et al. (2012) proposed robust classi-
fication models that unify many learning algorithms from the perspective of robust
optimization (Ben-Tal et al. 2009). The model includes an unit norm equality con-
straint, that is a special case of the Stiefel manifold.
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1.2 Standard local optimization method for optimization on Stiefel manifold

The geometric gradient method has been often used to solve non-convex optimization
problems on the Stiefel manifold (Nishimori and Akaho 2005). Indeed, for that purpose
many authors (Absil et al. 2008; Edelman et al. 1998; Nishimori and Akaho 2005) have
studied geometric constraints consisting of matrix manifolds. The geometric proper-
ties of matrix manifolds are investigated by using Riemannian geometry. By taking
geometric properties into account, we can develop efficient numerical algorithms on
manifolds. A drawback of the geometric approach is that we need to calculate ana-
lytic solutions of geometric quantities such as the gradient direction and the geodesic
defined in terms of the Riemannian metric.

1.3 Our local optimization approach: alternating direction method of multipliers

The purpose of this paper is to show the superiority of the alternating direction method
of multipliers (ADMM), a variant of the augmented Lagrangian method of multipli-
ers (AL), over the geometric gradient method for non-convex optimization problems
on the Stiefel manifold. The AL and ADMM are popular methods in nonlinear pro-
gramming (Luenberger and Ye 2008). Learning algorithms based on these simple
yet powerful optimization methods have attracted much attention in machine learning
community; for example, ADMM has been used to solve complex problems with huge
datasets (Boyd et al. 2011). The local convergence property of ADMM for non-convex
constraint problems was theoretically studied by Zhang (2010).

We evaluate the performance of these numerical algorithms at solving non-convex
optimization problems on the Stiefel manifold. In particular, we deal with classification
problems based on robust classification models (Takeda et al. 2012) and dimensionality
reduction problems for estimating the density ratio (Sugiyama et al. 2012). Since these
problems are relatively new in the machine learning community, efficient optimization
algorithms for them should be developed.

This paper is organized as follows. Section 2 describes the formulation of optimiza-
tion problems on the Stiefel manifold. Then, it describes the optimization algorithms,
i.e., the geometric gradient method, the augmented Lagrangian method of multipliers
and the alternating direction method of multipliers. In Sect. 3, we study the stabil-
ity and efficiency of optimization algorithms by using condition number analysis.
Applying these optimization methods to an eigenvalue problem, we clarify the behav-
ior of each optimization method. Section 4 introduces a robust classification model
for classification problems. The robust classification model is formulated as a non-
convex optimization problem on the unit sphere. We apply the optimization methods
to this model and compare their numerical performances. Section 5 discusses the prob-
lem of estimating the density ratio with dimensionality reduction. The density ratio
is a ratio of two probability densities, and it is used in a great variety of statistical
problems (Sugiyama et al. 2012). Here, the Stiefel manifold is used to represent a
subspace of Euclidean space. The dimensionality reduction onto the subspace can be
formulated as a minimization problem on the Stiefel manifold. This section evalu-
ates the non-convex optimization algorithms for dimensionality reduction problems.
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Section 6 summarizes the results of the numerical studies and shows future research
directions.

Let us start by describing the notation to be used throughout the paper. R
n×p

denotes the set of all n by p matrices. For a matrix A, AT denotes its transposition.
For two matrices A, B ∈ R

n×p, A • B is the canonical inner product, i.e., A • B =∑n
i=1

∑p
j=1 Ai j Bi j . The norm ‖A‖2

F of the matrix A is defined by the canonical inner
product. The p-dimensional identity matrix is expressed as Ip ∈ R

p×p, and the zero-
matrix is denoted as O. The size of the zero-matrix is not explicitly specified if there
is no confusion. The column vector is written in boldface, e.g., x ∈ R

n , and the zero
vector is denoted as 0. The norm on the Euclidean space is denoted as ‖x‖ = √

xT x.

2 Optimization on Stiefel manifold

The Stiefel manifold, denoted as Sn,p, consists of n by p rectangular matrices whose
column vectors are orthonormal, i.e.,

Sn,p = {W ∈ R
n×p: W T W = Ip},

where n ≥ p is assumed. The Stiefel manifold with n = p is equivalent to the set of
all orthogonal matrices. On the other hand, the Stiefel manifold with p = 1 is reduced
to the unit sphere in R

n .
The optimization problem on the Stiefel manifold can be formulated as

min
W

f (W ) subject to W ∈ Sn,p, (1)

where f (W ) is a real-valued function on the set of rectangular matrices R
n×p. Below,

we introduce three optimization methods for solving problem (1).

2.1 Geometric approach

In the geometric approach, the gradient descent direction is computed on the basis
of the Riemannian structure of the Stiefel manifold. Let ∇W f (W ) ∈ R

n×p be the
gradient of the function f ,

(∇W f (W ))i j = ∂ f

∂Wi j
(W ),

and grad f (W ) ∈ R
n×p be the steepest gradient direction of f with respect to the

Riemannian metric on the Stiefel manifold. For t ∈ R, let φ(W, t) be the geodesic
on the Stiefel manifold satisfying φ(W, 0) = W and d

dt φ(W, 0) = −grad f (W ). The
geodesic φ(W, t) is represented as

φ(W, t) = exp{−t (∇W f (W )W T − W∇W f (W )T )}W, (2)
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where exp{· · · } is the matrix exponential (Edelman et al. 1998; Nishimori and Akaho
2005). Note that φ(W, t) ∈ Sn,p holds for all t ∈ R, since the matrix exponential
of a skew symmetric matrix is an orthogonal matrix. The line search for the one-
dimensional optimization problem,

min
t≥0

f (φ(W, t)),

determines the step length of t from the present point W to the gradient descent
direction. The use of quasi-geodesics is a promising way to reduce the computational
cost of the matrix exponential. Details on the geometric algorithm on the Stiefel
manifold can be found in Nishimori and Akaho (2005).

2.2 Augmented Lagrangian method of multipliers

We introduce a versatile method called the augmented Lagrangian method of multi-
pliers, or AL for short. The augmented Lagrangian of problem (1) is defined as

Lα(W,Λ) = α f (W ) − Λ • (W T W − Ip) + 1

2
‖W T W − Ip‖2

F , (3)

where Λ is a p by p matrix and α is a positive number. The dual ascent method for
(3) yields the following update formula:

Wt+1 := argmin
W∈Rn×p

Lα(W,Λt ),

Λt+1 := Λt − (W T
t+1Wt+1 − Ip).

(4)

The augmented Lagrangian method with sufficiently small positive α generates a
convergent sequence under a modest condition on the objective function f . The method
is described in detail in (Luenberger and Ye 2008, Chap. 14).

Note that the optimization of Lα(W,Λt ) might be ill-conditioned when α is small
and the optimal solution of Lα(W,Λt ) is close to the Stiefel manifold. An example
of an ill-conditioned problem is presented in Sect. 3.

2.3 Alternating direction method of multipliers

A survey of ADMM and its applications are found in Boyd et al. (2011). We will
describe the algorithm of the ADMM on the Stiefel manifold by following the presen-
tation of Zhang (2010). By introducing an extra parameter V ∈ R

n×p, problem (1)
can be represented as

min
V,W∈Rn×p

f (V ) subject to V − W = O, W T W − Ip = O.

123



324 T. Kanamori, A. Takeda

Here, let us define the partial augmented Lagrangian as

Lα(V, W,Λ) = α f (V ) − Λ • (V − W ) + 1

2
‖V − W‖2

F , (5)

where Λ is an n by p matrix and α is a positive number. The constraint W T W − Ip = O
is not included in (5). Different from AL, ADMM has two stages, i.e., the update of V
and update of W . In each iteration of the ADMM using Lα(W, V,Λ), the parameters
V, W and Λ are updated as follows:

Vt+1 := argmin
V ∈Rn×p

Lα(V, Wt ,Λt ) = argmin
V ∈Rn×p

α f (V ) + 1

2
‖V − Wt − Λt‖2

F , (6)

Wt+1 := argmin
W :W T W=Ip

Lα(Vt+1, W,Λt ) = argmin
W :W T W=Ip

‖W − (Vt+1 − Λt )‖2
F ,

Λt+1 := Λt − (Vt+1 − Wt+1).

(7)

The above computation is repeated until f (Wt ) converges. Note that the optimal
solution of (7) is found by the singular value decomposition of Vt+1 − Λt , whereas
(6) is solved by using nonlinear optimization. The solution of (7) always satisfies the
constraint W T W = Ip. Hence, in each iteration, ADMM produces a feasible solution
of (1).

3 Stability and efficiency of computation

The stability and efficiency of the optimization algorithm is governed by the condition
number of the Hessian matrix of the objective function (Demmel 1997; Luenberger and
Ye 2008). Here, we perform a condition number analysis to study the computational
properties of AL and ADMM.

3.1 Condition number analysis

In the ADMM algorithm, we need to solve (6). When the parameter α is small, the
condition number of the Hessian of the objective function in (6) can be approximated by
the condition number determined from the quadratic term in (6). Clearly, the condition
number of the Hessian of the quadratic term ‖V − Wt − Λt‖2

F with respect to V is
equal to 1. This result implies that ADMM does not significantly worsen the condition
number of the Hessian of the objective function.

Now let us compute the condition number of the Hessian of the objective function
in AL. Suppose that n > p holds for Sn,p. We show that the condition number of
the Hessian of the objective function in the AL can be extremely large. We repeatedly
solve the problem,

min
W∈Sn,p

α f (W ) − Λ • (W T W − Ip) + 1

2
‖W T W − Ip‖2

F , (8)
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for a given matrix Λ ∈ R
p×p. Suppose that α is small and that the optimal solution

of (8) is close to the Stiefel manifold. Then, the condition number determined by the
third term becomes dominant. The Hessian matrix of the third term is equal to

4Ip ⊗ W W T + 2W T W ⊗ In − 2Ip ⊗ In, (9)

where ⊗ is the Kronecker product of matrices. Let λ1 ≥ · · · ≥ λp ≥ 0 be the
eigenvalues of W T W ∈ R

p×p, where W ∈ R
n×p is not necessarily a member of the

Stiefel manifold. In addition, let us define λp+1 = · · · = λn = 0. The singular values
of (9) are given by |4λi + 2λa − 2| for i = 1, . . . , n and a = 1, . . . , p. The maximum
singular value is equal to maxi,a |4λi + 2λa − 2|, which is greater than or equal to
|6λ1 −2|. The minimum singular value is mini,a |4λi +2λa −2|. Hence, the condition
number is greater than or equal to

|6λ1 − 2|
mini,a |4λi + 2λa − 2| .

When the matrix W is close to the Stiefel manifold, all singular values λa, a =
1, . . . , p are close to 1. Accordingly, the denominator of the condition number,

min
i,a

|4λi + 2λa − 2|,

tends to zero for n > p, and the numerator is close to |6 · 1 − 2| = 4. As a result,
the condition number may be extremely large. This implies that AL is unstable and
inefficient when the optimal solution of (8) is close to the Stiefel manifold.

The above calculation implies that ADMM is preferable to AL in view of the
stability and efficiency of the computation.

3.2 Experiments for eigenvalue problem

The following eigenvalue problem is used for investigating computational stability
and efficiency of the optimization algorithms described in Sect. 2:

min
W

Tr W T AW subject to W ∈ Sn,p, (10)

where A is an n by n symmetric positive definite matrix. The solution is directly given
by the eigenvalue decomposition of A, and the optimal value is equal to

∑p
i=1 λi (A),

where λi (A) stands for the i-th smallest eigenvalue of A. Note that the principal compo-
nent analysis involves maximization of the objective function instead of minimization;
see Bishop (2006) for details.

In the numerical simulations, the matrix A was defined as A = BT B for B ∈ R
n×n

whose elements were independent copies of a random variable with the standard
normal distribution. The size of the matrix W was n = 16, p = 15, n = 60, p = 4 or
n = 120, p = 2. The number of the parameters was np = 240 in all cases.
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Fig. 1 Eigenvalue problem for n = 60, p = 4: The computation time of each step is shown. The solid
(dashed) line shows the computation time of ADMM (AL). Left panel hot start is used to solve the inner
optimization problems. Right panel cold start is used to solve the inner optimization problems

We implemented numerical algorithms with R language (R Development Core
Team 2012). The command optim was used to solve (4) and (6). The optim
command invokes the BFGS quasi-Newton method (Luenberger and Ye 2008). The
optimize command was used for the line search in the geometric gradient method.
The numerical experiments were conducted on a computer with an AMD Opteron
Processor 6176 (2.3GHz), 128 GB of physical memory, and 0.5 MB of L2 cache and
12 MB of L3 cache running CentOS Linux release 5.4.

The objective functions in (4) and (6) have a parameter α. The parameter α may
depend on the number of iterations t in order to improve the convergence speed. In
preliminary experiments, we found that α = αt = 10/t was a good choice for both
AL and ADMM.

First, we verified the results of Sect. 3 for the case of n = 60, p = 4. The
computational cost of the optimization depends on the initial point of the BFGS quasi-
Newton method for solving (10). The condition number analysis showed that the
computational cost of solving (4) is larger than that of solving (6) when the initial
point is fixed to a matrix, say W0. The use of a fixed initial point in each iteration is
called cold-start. In contrast, the optimal solution of the last step can be used as the
initial point for the optimization in the next step. For example, the matrix Wt (resp.
Vt ) can be used as the initial point to solve (4) (resp. (6)). Using the solution of the
last step is called hot-start.

Figure 1 shows the computation time needed to solve (4) and (6) in each step. In the
hot-start setup, the computation time of AL was almost the same as that of ADMM.
In contrast, in the cold-start setup, the computation time of AL was much longer than
that of ADMM. The numerical results were thus in good agreement with the condition
number analysis of Sect. 3.1. In what follows, the hot-start setup is used in all of the
numerical experiments.

Next, the convergence properties of the optimization methods were investigated.
Figure 2 shows the average results over 30 runs. A matrix A was randomly generated
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Fig. 2 Eigenvalue problem: results of numerical experiments are plotted. The size of the matrix W is
n = 16, p = 15 (upper panels), n = 60, p = 4 (middle panels) or n = 120, p = 2 (lower panels). In
the left panels, the horizontal axis is the computation time in seconds, and the vertical axis is the objective
value Tr W T AW −∑p

i=1 λi (A) that should converge to zero. In the right panels, the horizontal axis is the

computation time in seconds, and the vertical axis is the error of the constraint condition, ‖W T
t Wt − Ip‖1.

For the AL in n = 16, p = 15, the objective value and error of the constraint condition only started to
decrease after a computation time of 200 s
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in each run of the experiment. The objective value in the figures was given as
Tr W T AW − ∑p

i=1 λi (A) that converges to zero and the error of the constraint con-
dition was ‖W T

t Wt − Ip‖1 = ∑p
i, j=1 |(W T

t Wt − Ip)i j |. At the optimal solution, both
the objective value and error of the constraint condition are equal to zero.

AL did not converge in the case of n = 16, p = 15 in Fig. 2. The objective value and
error of the constraint condition only started to decrease after 200 s. The convergence
of the AL may be improved by making a better choice of the sequence α = αt . On
the other hand, the computation of the geodesic (2) in the geometric gradient descent
method is hard for large n. Thus, the convergence of the gradient descent method was
slower than the other methods for n = 60 and n = 120. The constraint conditions
of the gradient descent method and ADMM were satisfactory. AL did not produce a
feasible solution in each step, but it decreased the objective value faster than the other
methods for n = 60 and n = 120.

ADMM is preferable if the numerical solution needs to strictly satisfy the ortho-
normality. In contrast, AL may be a good choice if p is small enough and the objective
value is more important than the feasibility of the solution, but AL is rather sensitive
to the choice of αt .

4 Robust classification models for binary classification

Here, the optimization methods presented in Sect. 2 are applied to classification prob-
lems.

4.1 Problem setup

Let X ⊂ R
n be the input domain and {+1,−1} be the set of the binary labels. Suppose

that we have training samples,

(x1, y1), . . . , (xm, ym) ∈ X × {+1,−1}.

Based on these samples, we predict the label for a given input point x ∈ X . For this
purpose, the decision function h(x) = wT x + b is used. If h(x) is positive (resp.
negative), the label of x is predicted to be +1 (resp. −1). The equality wT w = 1 is
assumed, since scaling by a positive number does not change the sign of the decision
function value. The parameters, w and b, in the decision function are estimated from the
training samples. There are a number of estimation methods for binary classification
problems (Bishop 2006; Hastie et al. 2001; Schölkopf and Smola 2002).

Recently, Takeda et al. (2012) proposed robust classification models that unify many
learning algorithms from the perspective of robust optimization. Robust optimization
(Ben-Tal et al. 2009) is an approach that handles optimization problems defined by
uncertain inputs. There are several existing works (Caramanis et al. 2011; Xanthopou-
los et al. 2012) which have used robust optimization for binary classification problems.
However, they used robust optimization in a different way from us by making statistical
learning able to handle uncertain observations.
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Let us briefly describe our approach, i.e., the robust classification model. Suppose
that x+ (resp. x−) is a representative of the inputs with positive (resp. negative) labels.
For example, x+ can be defined as the mean vector of the samples with positive labels,
and x− can be defined in the same way for negative labels. For the decision function
h(x) to be good, the difference h(x+) − h(x−) = wT (x+ − x−) should be large.
The representatives, x±, may be uncertain, since the samples are affected by noise.
Accordingly, let us define uncertainty sets for x+ and x−. Let M+ (resp. M−) be
the set of indices of training samples with positive (resp. negative) labels. We can
construct a convex set U+ ⊂ R

n from the positive inputs {xi : i ∈ M+} and another
convex set U− ⊂ R

n from the negative inputs {xi : i ∈ M−}. These convex sets
U± represent the uncertainty of the representatives x±. Later, we present an example
of such uncertainty sets. In the robust classification model, the parameter w in the
decision function is estimated by solving the optimization problem in the worst-case
setup,

max
w:wT w=1

min
x+∈U+
x−∈U−

wT (x+ − x−). (11)

The above problem is non-convex because of the constraint wT w = 1. However,
when U+ and U− do not intersect, the non-convex constraint can be replaced with a
convex constraint, wT w ≤ 1, without changing the optimal value of (11). In this case,
the optimal value is positive. Note that U+ ∩ U− = ∅ does not imply that the training
samples are separable by a linear classifier (see Example 1 below). In contrast, if U+
and U− intersect, the constraint wT w = 1 can be replaced with wT w ≥ 1 without
changing the optimal value of (11), and the optimal value is non-positive. (See Takeda
et al. (2012) for details.) If we do not know whether or not U+ ∩ U− = ∅, we need
to solve problem (11) with the non-convex constraint wT w = 1 for given uncertainty
sets.

Given the estimator of w, the bias term b ∈ R in the decision function h(x) is
estimated by applying several criteria, such as the minimum training error, or the
maximum margin criterion. Here, we will not go into detail on how the bias term b is
estimated.

Let us define the objective function f (w) by

f (w) = max{−wT (x+ − x−) : x+ ∈ U+, x− ∈ U−}.

Accordingly, solving problem (11) is equivalent to solving

min
w

f (w) subject to wT w = 1. (12)

The above problem is an optimization on the unit sphere, i.e, the Stiefel manifold Sn,1.
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Example 1 (Ellipsoidal uncertainty set) Let μ+, μ− be mean vectors,

μ± = 1

|M±|
∑

i∈M±
xi ,

where |M | is the size of the finite set M . For each label, the variance–covariance matrix
is estimated by

Σ± = 1

|M±|
∑

i∈M±
(xi − μ±)(xi − μ±)T ∈ R

n×n .

Let us define the ellipsoidal uncertainty sets U+, U− as

U± = {μ± + Σ
1/2
± u : ‖u‖ ≤ c±},

where c+ and c− are positive constants that determine the size of the ellipsoids, i.e.,
the degree of the uncertainty. Even if the samples are non-separable, U+ ∩U− = ∅ can
occur for small tuning parameters c±. For the ellipsoidal uncertainty sets, the objective
function f (w) is

f (w) = max{−wT (x+ − x−) : x+ ∈ U+, x− ∈ U−}
= −wT (μ+ − μ−) + c+

√

wT Σ+w + c−
√

wT Σ−w.

The objective function is convex in w ∈ R
n . Upon replacing the non-convex constraint

wT w = 1 in (12) with a convex one, wT w ≤ 1, problem (12) reduces to a second-order
cone program (SOCP) (see, e.g., Boyd and Vandenberghe 2004).

4.2 Experiments

The optimization methods presented in Sect. 2 are applied to robust classification
models (12). Perez-Cruz et al. (2003) and Takeda et al. (2012) proposed a two-stage
procedure to solve (12). Their algorithms approximate the quadratic surface, wT w =
1, by a linear one, wT

t w = 1, with the use of a feasible solution wt and solve an
SOCP on the linear surface in every iteration until they converge. The computational
cost for solving SOCPs is large. Compared with these algorithms (Perez-Cruz et al.
2003; Takeda et al. 2012), an ADMM-based algorithm is much faster and more easily
implementable to solve (12), and therefore, we compare three optimization methods
presented in Sect. 2.

The problem setup is the following. We assumed that the conditional probabili-
ties, p(x|y = +1) and p(x|y = −1), were multivariate normal distributions. The
dimension of the input vector x was set to n = 100 or n = 300. The conditional
probability p(x|y = +1) was defined as the multivariate standard normal distri-
bution; i.e., the mean vector was the zero vector μ+ = 0 = (0, . . . , 0) ∈ R

n ,
and the variance-covariance matrix was the identity matrix Σ+ = In ∈ R

n×n .
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For the other conditional probability, p(x|y = −1), the variance-covariance matrix
Σ− was defined as Σ− = SST , where each element of the n by n matrix S
was an independent copy of a random variable obeying the one-dimensional stan-
dard normal distribution. The mean vector μ− of p(x|y = −1) was defined as
μ− = (10/

√
n, . . . , 10/

√
n) ∈ R

n . The marginal probability of the label was defined
as Pr(y = +1) = Pr(y = −1) = 0.5; i.e., the label probability was balanced. The
training sample size was set to m = 1000.

The robust classification model with the ellipsoidal uncertainty set defined in Exam-
ple 1 was used. The mean vectors and the variance-covariance matrices were estimated
on the basis of training samples. The parameter c± in Example 1 was set to c± = 1 or
3. For c± = 1, problem (11) reduces to a convex problem, because U+ and U− do not
intersect. When the parameter c± is large, such as c± = 3, problem (11) is essentially
non-convex.

In this experiment, we investigated the computational aspect of the learning algo-
rithm. It is straightforward to see that there is a real number λ such that the optimality
condition ∇ f (w) = λw holds if and only if ∇ f (w) − wwT ∇ f (w) = 0 is satisfied.
Thus, the optimality condition of problem (12) can be expressed as

‖∇ f (w) − wwT ∇ f (w)‖1 = 0,

|wT w − 1| = 0,
(13)

where ‖a‖1 is the L1-norm of the vector a, i.e., ‖a‖1 = ∑
i |ai |. For the sequence

{wt }∞t=0 generated by the optimization algorithm, it is expected that ‖∇ f (wt ) −
wtw

T
t ∇ f (wt )‖1 and |wT

t wt − 1| converge to zero.
To improve the convergence properties of AL and ADMM, a parameter α depending

on the number of iterations t was used; i.e., α = αt for the t-th iteration in the
algorithms. In preliminary experiments using small problems, αt = 1/

√
t, 1/t and

αt = 1 were examined and αt = 1/t was chosen for both algorithms.
We implemented the algorithms with R language (R Development Core Team 2012)

and ran them on the same computer that was used in experiments described in Sect. 3.2.
The average numerical results over 40 runs are shown in Figs. 3 and 4. For ADMM
and geometric gradient method, the error of the constraint condition was almost equal
to zero. For AL, the constraint condition was not satisfied with a sufficient accuracy.
For c± = 1, the solution of ADMM satisfied the optimality condition (13) with high
accuracy. For c± = 3, AL provided a better solution in the sense of the error of the
optimality condition, but it did not exactly satisfy the constraint wT w − 1 = 0. The
solution of ADMM satisfied the optimality condition with higher accuracy than that
of the geometric gradient method, while their numerical accuracies of the constraint
condition were almost the same. Hence, in this experiment, ADMM was superior to
the geometric gradient method.

In the numerical experiments of this section, the results of the optimization methods
using the Lagrangian function are better than those of the geometric gradient method.
The superiority of AL or ADMM depends on the problem setup. ADMM is a good
choice for the problems with a small c±; i.e., the problem is essentially convex. On
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Fig. 3 Robust classification models for binary classification: results of numerical experiments are depicted.
The sample size is m = 1,000, and the dimension of the parameter is dim w = 100. The size of the
ellipsoidal uncertainty set is c± = 1 (upper panels) or c± = 3 (lower panels). In the left panel, the
horizontal axis is the computation time in seconds, and the vertical axis is the error of the optimality
condition, ‖∇ f (wt ) − wt w

T
t ∇ f (wt )‖1. In the right panel, the horizontal axis is the computation time in

seconds, and the vertical axis is the error of the constraint condition, |wT
t wt − 1|. For both ADMM and the

geometric gradient method, the error of the constraint condition is close to the machine epsilon, i.e., 10−16

the other hand, AL works better for the problems with a large c±, i.e., the case that
the feasible region of (11) is not reduced to the convex set.

5 Density ratio estimation with dimensionality reduction

Here, the numerical optimization methods presented in Sect. 2 are used to the dimen-
sionality reduction in the density ratio estimation.
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Fig. 4 Robust classification models for binary classification: results of numerical experiments are depicted.
The sample size is m = 1,000, and the dimension of the parameter is dim w = 300. The size of the
ellipsoidal uncertainty set is c± = 1 (upper panels) or c± = 3 (lower panels). In the left panel, the
horizontal axis is the computation time in seconds, and the vertical axis is the error of the optimality
condition, ‖∇ f (wt ) − wt w

T
t ∇ f (wt )‖1. In the right panel, the horizontal axis is the computation time in

seconds, and the vertical axis is the error of the constraint condition, |wT
t wt − 1|. For both ADMM and the

geometric gradient method, the error of the constraint condition is close to the machine epsilon, i.e., 10−16

5.1 Problem setup

Suppose that we are given independent and identically distributed (i.i.d.) samples
xi , i = 1, . . . , m from a probability density p0(x) on X ⊂ R

n and another set of i.i.d.
samples x′

j , j = 1, . . . , m′ from a probability density p1(x) on X . The problem is to
estimate the density ratio,
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r(x) = p0(x)

p1(x)

from the training samples xi , i = 1, . . . , m and x′
j , j = 1, . . . , m′. The density ratio

is used in a great variety of statistical problems, including regression problems under
covariate shifts, statistical tests, and independent component analysis (see Sugiyama
et al. (2012) for details).

Suppose that the difference between p0 and p1 is concentrated in a low-dimensional
subspace. Then, there exists an n by p orthonormal matrix W and a function r̄ : R

p →
R such that

r(x) = r̄(W T x)

holds. This assumption stems from the homogeneity of the conditional probability
of p0(x) and p1(x), as follows. Suppose that W ∈ Sn,p and U ∈ Sn,n−p and that
W T U = O holds. Then, (W, U ) is an orthogonal matrix. The probability density can
be decomposed into the conditional probability and the marginal probability. Hence,
we have

p0(x) = p0(U T x|W T x)q0(W T x),

p1(x) = p1(U T x|W T x)q1(W T x).

Let us assume that the conditional probability densities above are the same, i.e.,

p0(U
T x|W T x) = p1(U

T x|W T x).

Accordingly, the density ratio r(x) can be described as

r(x) = q0(W T x)

q1(W T x)
.

The right-hand side is expressed as r̄(W T x), which is regarded as a function on the
p-dimensional subspace of R

n .
Following Sugiyama et al. (2011), we introduce an estimator of the function r̄

and the matrix W ∈ Sn,p. In particular, a kernel-based density-ratio estima-
tor (Kanamori et al. 2012) is used. Let us define the Gaussian kernel k(x, x′) =
exp{−γ ‖x − x′‖2}, γ > 0 and assume that on X , the density ratio r(z) = r̄(W T z)
can be approximated by a linear combination of the Gaussian kernel functions,

m′
∑

i=1

αi k(W T z, W T x′
i ) +

m∑

j=1

β j k(W T z, W T x j ).

For a fixed W ∈ Sn,p, the coefficient vectors α = (α1, . . . , αm′)T ∈ R
m′

and
β = (β1, . . . , βm)T ∈ R

m can be estimated by using a least squares estima-
tor. We use the explicit form of the estimated coefficients proposed by Kanamori
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et al. (2012). Let us define an m′ by m′ gram matrix K11 whose components are
(K11)i j = k(W T x′

i , W T x′
j ), and m′ by m gram matrix K10 whose components are

(K10)i j = k(W T x′
i , W T x j ). The vector 1m stands for (1, . . . , 1)T ∈ R

m . The esti-
mators of the coefficient vectors, α and β, are written as

α = − 1

mλ
(K11 + m′λIm′)−1 K101m, β = 1

mλ
1m, (14)

where λ is a positive number used to avoid overfitting the training samples.
Kanamori et al. (2012) proved that the kernel-based density ratio estimator with
λ = 1/ min{m, m′}δ, 0 < δ < 1 is statistically consistent.

The density ratio is estimated by using the function r̂ :

r̂(u; W ) =
m′
∑

i=1

α̂i k(u, W T x′
i ) + 1

mλ

m∑

j=1

k(u, W T x j ), u ∈ R
p,

where α̂i , i = 1, . . . , m′ are the estimated coefficients defined in (14). Note that the α̂i

depends on W via the gram matrices. Now we are in a position to solve the optimization
problem,

min
W

− 1

m

m∑

i=1

r̂(W T xi ; W ) subject to W ∈ Sn,p. (15)

The optimal solution Ŵ provides a potentially accurate estimator of W . Solving prob-
lem (15) is equivalent to finding the density ratio that is far from the constant function.
A detailed exposition of the statistical properties of the above estimator can be found
in Sugiyama et al. (2011). The computational cost of evaluating the function value in
(15) is high, and therefore, an efficient optimization algorithm to solve (15) is needed.

5.2 Experiments

The optimization methods presented in Sect. 2 are used to the dimensionality reduction
for the density ratio estimation. The problem setup is as follows.

Define matrices W ∈ Sn,p and U ∈ R
n×(n−p) such that (U, W ) ∈ R

n×n is an
orthogonal matrix. Assume that the probability density p0(x) is

p0(x) = q(U T x)q0(W T x),

where q(u), u ∈ R
n−p and q0(w),w ∈ R

p are probability densities of a multivariate
standard normal distribution. For p1(x), assume that

p1(x) = q(U T x)q1(W T x),
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where q1(w),w ∈ R
p is a p-dimensional normal distribution with a unit mean vector

μ ∈ R
p and the variance-covariance matrix 1.52 Ip. The density ratio is r(x) =

r̄(W T x) = q0(W T x)/q1(W T x). The sample size is set to m = m′ = 500.
Let us consider problem (15) defined from the observed data. The experiments

focused on the computational cost of the learning algorithms. It is straightforward to
see that there is a p by p matrix Λ such that the optimality condition ∇W f (W ) = WΛ

holds if and only if ∇W f (W )−W W T ∇W f (W ) = O is satisfied. Thus, the optimality
condition of problem (15) is

‖∇W f (W ) − W W T ∇W f (W )‖1 = 0,

‖W T W − Ip‖1 = 0,

where ‖A‖1 is the L1-norm of the matrix A, i.e., ‖A‖1 = ∑
i, j |Ai j |. For the sequence

{Wt }∞t=0 generated by the optimization algorithm, it is expected that ‖∇W f (Wt ) −
Wt W T

t ∇W f (Wt )‖1 and ‖W T
t Wt − Ip‖1 converge to 0.

We implemented the algorithms with R language (R Development Core Team 2012)
and ran them on the same computer used in the experiments described in Sect. 3.2. The
numerical experiments were repeated 30 times. In (4) and (6), a parameter α depending
on the number of iterations t was used, i.e., α = αt . Preliminary experiments conducted
on small problems indicated αt = 1 to be a good choice for ADMM and αt = 1/t to
be a good choice for AL.

The geometric gradient method and subspace rotation method were mainly pro-
posed to solve (15) in Sugiyama et al. (2011). The subspace rotation method is a
variant of the gradient method in which the variable W is represented by using a
skew symmetric matrix M ∈ R

n×n and the matrix M is optimized. The subspace
rotation approach was recommended in Sugiyama et al. (2011), since it may be com-
putationally more efficient than the geometric gradient algorithms for large p. In our
preliminary experiments, however, the computational cost of the subspace rotation
method was almost the same as that of the geometric gradient method. This result is
not surprising, since basically the subspace rotation method is also a gradient descant
method in another coordinate system. Although an efficient implementation of the
subspace rotation method may be possible, there was no concrete description of the
algorithm in Sugiyama et al. (2011). Hence, we show only the numerical results of
the geometric gradient method.

Figures 5 and 6 show good and stable performance of ADMM. ADMM eventually
achieved the smallest error of the optimality condition among the three algorithms.
As for AL, the error of the constraint condition hardly becomes smaller, whereas the
error of the optimality condition smoothly becomes smaller in the early stage of the
optimization for the setup of p = 2 (upper panels). AL with a different αt may speed
up convergence, but the computational cost needed to find a good αt sequence will
be high. In contrast, ADMM with αt = 1/t performed well in all experiments. As
for the geometric gradient method, it has similar levels of error for the constraint
condition with ADMM, but the performance with respect to the optimality condition
is not stable; it achieved relatively good performance for the case of p = 8 but it did
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Fig. 5 Density ratio estimation with dimensionality reduction: results of numerical experiments are
depicted. The sample size is m = m′ = 500, and the size of the matrix is n = 10, p = 2 (upper
panels), n = 10, p = 5 (middle panels) or n = 10, p = 8 (lower panels). In the left panels, the horizon-
tal axis is the computation time in seconds, and the vertical axis is the error of the optimality condition,
‖∇ f (Wt ) − Wt W T

t ∇ f (Wt )‖1. In the right panels, the horizontal axis is the computation time in seconds,
and the vertical axis is the error of the constraint condition, ‖W T

t Wt − Ip‖1. For AL in n = 10, p = 8, the
error of the optimality condition only starts to decrease after the computation has run for more than 6,000 s
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Fig. 6 Density ratio estimation with dimensionality reduction: Results of numerical experiments are
depicted. The sample size is m = m′ = 500, and the size of the matrix is n = 10, p = 2 (upper
panels), n = 10, p = 5 (middle panels) or n = 10, p = 8 (lower panels). In the left panels, the horizon-
tal axis is the computation time in seconds, and the vertical axis is the error of the optimality condition,
‖∇ f (Wt ) − Wt W T

t ∇ f (Wt )‖1. In the right panels, the horizontal axis is the computation time in seconds,
and the vertical axis is the error the constraint condition, ‖W T

t Wt − Ip‖1. For AL in n = 30, p = 8, the
error of the optimality condition starts to decrease after the computation has run for more than 2,000 s

123



Learning algorithms on Stiefel manifold 339

not for p = 2. Therefore ADMM generally achieved good and stable performance in
the experiment.

6 Conclusions

We used the geometric gradient descent method and Lagrangian-based methods to
solve optimization problems over the Stiefel manifold Sn,p.

The numerical results are summarized as follows.

1. The condition number analysis suggested that ADMM is more efficient than AL
in the cold-start setup. The validity of this analysis was illustrated by conducting
numerical experiments on eigenvalue problems. The inefficiency of AL is com-
pensated by using the hot-start strategy.

2. ADMM, AL, and the geometric gradient descent method were compared for eigen-
value problems with different matrix sizes. When n is almost the same as p, the
geometric gradient descent outperforms other methods. When n is much larger
than p, ADMM and AL are superior to geometric gradient descent method. This
is because the computational cost of the geodesic (2) becomes high in such a case.
In addition, AL for the problem with large p did not work well.

3. At solving robust classification problems and density ratio estimation with the
dimensionality reduction, ADMM is generally better than the geometric gradient
descent method. The convergence of the geometric gradient method is not neces-
sarily as fast as AL or ADMM. The superiority of AL or ADMM depends on the
problem setup. We found that AL converged extremely slowly when p is large. AL
with a good choice of αt converges quickly, but it is rather sensitive to the choice
of αt . In addition, the constraint condition, W T W = Ip, is not exactly satisfied in
each step of AL. On the other hand, the convergence property of ADMM is good.
ADMM did not fail for any problem presented in this paper.

We conclude that ADMM is a promising method for optimization on the Stiefel
manifold Sn,p. In many applications such as dimensionality reduction, n is much larger
than p. In such a situation, geometric gradient descent will be inferior to optimization
methods using the Lagrangian function. For the problems with large p, AL tends to
converge extremely slowly. On the other hand, ADMM produced fairly good results
for all problems in the numerical experiments. AL and ADMM both need good choices
of the sequence αt . It would thus be worthwhile to develop a simple way to determine
αt in practical problems.

Many problems in statistics and machine learning can be formulated as optimiza-
tions on the Stiefel manifold, for example, principal component analysis, independent
component analysis, and dimensionality reduction. We often need to introduce addi-
tional constraints besides the orthonormality. For example, sparse principal component
analysis seeks a sparse representation of the principal component (Zou et al. 2006)
and imposes an L1 constraint such as ‖W‖1 ≤ c. ADMM can deal with some of such
non-differentiable constraints (Boyd et al. 2011). It is important to develop optimiza-
tion algorithms for problems over the Stiefel manifold including non-differentiable
objective functions and constraints.
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