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Abstract In this paper, we analyze the network properties of the Italian e-MID data
based on overnight loans during the period 1999–2010. We show that the networks
appear to be random at the daily level, but contain significant non-random structure
for longer aggregation periods. In this sense, the daily networks cannot be considered
as being representative for the underlying ‘latent’ network. Rather, the development
of various network statistics under time aggregation points toward strong non-random
determinants of link formation. We also identify the global financial crisis as a signif-
icant structural break for many network measures.
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188 K. Finger et al.

1 Introduction and existing literature

Interbank markets are crucial for the functioning of the economy. The exchange of
money on a very short-term basis allows banks to manage liquidity risks, cf. Allen
and Gale (2000). However, as painfully illustrated by the global financial crisis (GFC)
in 2007/2008, creating links at the micro-level may generate systemic risk at the
macro-level.1 Thus, the interbank network, based on connections in terms of credit
relationships, is a complete representation of the liquidity management decisions of
financial institutions. Clearly, the structure of such a network is important for its
stability. The economy depends on stable interbank markets, since short-term money
market rates affect those of longer maturities and thus the real economy. From this
viewpoint, it appears quite surprising that the economics profession has not been
concerned much with the functioning of interbank markets until recently. The usual
focus is on the overnight segment of the interbank deposit market, since it tends to
be the largest spot segment of money markets. In this paper, we analyze the network
properties of the Italian e-MID (electronic market for interbank deposits) data based
on overnight loans during the period 1999–2010.

Most existing studies on the structure of interbank markets have been conducted
by physicists trying to get an idea of the topology of the linkages between financial
institutions. Examples include Boss et al. (2004) for the Austrian interbank market,
Inaoka et al. (2004) for the Japanese BOJ-Net, Soramäki et al. (2007) for the US
Fedwire network, Bech and Atalay (2010) for the US Federal funds market, and De
Masi et al. (2006) and Iori et al. (2008) for the Italian e-MID (electronic market for
interbank deposits). The most important findings reported in this literature are: (1)
most interbank networks are quite large (e.g. more than 5,000 banks in the Fedwire
network), (2) interbank networks are sparse, meaning that only a small fraction of all
possible links do actually exist, (3) degree distributions appear to be scale-free (with
coefficients between 2 and 3), (4) transaction volumes appear to follow scale-free
distributions as well, (5) clustering coefficients are usually quite small, (6) interbank
networks are small worlds and (7) the networks show disassortative mixing with respect
to the bank size, so small banks tend to trade mainly with large banks and vice versa.

In this paper we also analyze the Italian interbank market. We should stress that
the e-MID data are the only interbank data which can be purchased freely without any
restrictions. In contrast, getting access to similar datasets for other markets is usually
far more complicated. Most relevant for our study are the two previous papers on the
e-MID. The authors analyze daily networks from 1999–2002, finding intradaily and
intramonthly seasonalities. The most important conclusion is that the networks appear
to be random at the daily level, in the sense that preferential lending is limited and
money flows directly from the lender to the borrower without intermediaries. This
finding stands in stark contrast to the findings of preferential lending relationships in
the Portuguese interbank market by Cocco et al. (2009). In the present paper, we are

1 In the literature, the traditional approach is to focus on the optimal liquidity management of a particular
financial institution, see e.g. Brodt (1978) and Ho and Saunders (1985). Recently, Brunnermeier and Peder-
sen (2009) introduced the distinction between funding liquidity and market liquidity in a theoretical model,
showing that their relationship may give rise to systemic crises.
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mostly concerned with matching these seemingly incompatible findings, by showing
that the aggregation period has an effect on the informational value of the underlying
networks. The main result is that networks constructed from daily data indeed feature
a substantial amount of randomness and cannot be considered as being representative
for the underlying ‘latent’ network of linkages between banks. This is illustrated on
the basis of a number of network statistics, which are compared to those of random
networks. Furthermore, we find a substantial amount of asymmetry in the network.
Last but not least, we find that the GFC can be identified as a significant structural
break for many network measures. While our findings do not solve the issue of what
could be the ‘optimal’ structure of the interbank network (whatever optimal means in
this context), the analysis of the dependence of reconstructed networks on the time
horizon is a first important step in understanding the structure and dynamics of the
banking system. Equipped with this knowledge, we can hope to build more realistic
models in the future, which could be used to provide policy recommendations for the
optimal management of interbank networks.

The remainder of this paper is structured as follows: Sect. 2 gives a brief introduction
into (interbank) networks, Sect. 3 introduces the Italian e-MID trading system and gives
an overview of the data set we have access to. Section 4 describes our findings and
Sect. 5 discusses the relevance of our network analysis for the management of liquidity
by banks, and how the financial crisis has distorted the normal mode of operation of
the money market. Section 6 concludes and proposes avenues for future research.

2 Networks

A network consists of a set of N nodes that are connected by M edges (links). Taking
each bank as a node and the interbank positions between them as links, the interbank
network can be represented as a square matrix of dimension N × N (data matrix,
denoted D).2 An element di j of this matrix represents a gross interbank claim, the
total value of credit extended by bank i to bank j within a certain period. The size of
di j can thus be seen as a measure of link intensity. Row (column) i shows bank i’s
interbank claims (liabilities) towards all other banks. The diagonal elements dii are
zero, since a bank will not trade with itself.3 Off-diagonal elements are positive in the
presence of a link and zero otherwise.

Interbank data usually give rise to directed, sparse and valued networks.4 However,
much of the extant network research ignores the last aspect by focusing on binary
adjacency matrices only. An adjacency matrix A contains elements ai j equal to 1, if
there is a directed link from bank i to j and 0 otherwise. Since the network is directed,
both A and D are asymmetric in general. In this paper, we also take into account valued
information by using both the raw data matrix as well as a matrix containing the number

2 In the following, matrices will be written in bold, capital letters. Vectors and scalars will be written as
lower-case letters.
3 This is true when we think of individual banks as consolidated entities.
4 Directed means that di, j �= d j,i in general. Sparse means that at any point in time the number of links is
only a small fraction of the N (N − 1) possible links. Valued means that interbank claims are reported in
monetary values as opposed to 1 or 0 in the presence or absence of a claim, respectively.
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of trades between banks, denoted as T. In some cases it is also useful to work with the
undirected version of the adjacency matrices, Au , where au

i j = max(ai j , a ji ).
As usual, some data aggregation is necessary to represent the system as a network.

In this paper we compare different aggregation periods.

3 The Italian interbank market e-MID

The Italian electronic market for interbank deposits (e-MID) is a screen-based platform
for trading of unsecured money-market deposits in Euros, US-Dollars, Pound Sterling,
and Zloty operating in Milan through e-MID SpA.5 The market is fully centralized
and very liquid; in 2006 e-MID accounted for 17 % of total turnover in the unsecured
money market in the Euro area. Average daily trading volumes were 24.2 bn Euro in
2006, 22.4 bn Euro in 2007 and only 14 bn Euro in 2008. We should mention that
researchers from the European Central Bank have repeatedly stated that the e-MID
data is representative for the interbank overnight activity, cf. Beaupain and Durré
(2012).

Available maturities range from overnight up to one year. Most of the transactions
are overnight. While the fraction was roughly 80 % of all trades in 1999, this figure has
been continuously increasing over time with a value of more than 90 % in 2010.6 As of
August 2011, e-MID had 192 members from EU countries and the US. Members were
29 central banks acting as market observers, one ministry of finance, 101 domestic
banks and 61 international banks. We will see below that the composition of the active
market participants has been changing substantially over time. Trades are bilateral
and are executed within the limits of the credit lines agreed upon directly between
participants. Contracts are automatically settled through the TARGET2 system.

The trading mechanism follows a quote-driven market and is similar to a limit-
order-book in a stock market, but without consolidation. The market is transparent in
the sense that the quoting banks’ IDs are visible to all other banks. Quotes contain the
market side (buy or sell money), the volume, the interest rate and the maturity. Trades
are registered when a bank (aggressor) actively chooses a quoted order. The platform
allows for credit line checking before a transaction will be carried out, so trades have
to be confirmed by both counterparties. The market also allows direct bilateral trades
between counterparties.

The minimum quote size is 1.5 million Euros, whereas the minimum trade size is
only 50,000 Euros. Thus, aggressors do not have to trade the entire amount quoted.7

Additional participant requirements, for example a certain amount of total assets, may

5 The vast majority of trades (roughly 95 %) is conducted in Euro.
6 This development is driven by the fact that the market is unsecured. The recent financial crisis made
unsecured loans in general less attractive, with stronger impact for longer maturities. It should be noted,
that there is also a market for secured loans called e-MIDER.
7 The minimum quote size could pose an upward bias for participating banks. It would be interesting to
check who are the quoting banks and who are the aggressors. Furthermore it would be interesting to look
at quote data, as we only have access to actual trades.
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pose an upward bias on the size of the participating banks. In any case, e-MID covers
essentially the entire domestic overnight deposit market in Italy.8

We have access to all registered trades in Euro in the period from January 1999 to
December 2010. For each trade we know the two banks’ ID numbers (not the names),
their relative position (aggressor and quoter), the maturity and the transaction type
(buy or sell). As mentioned above, the majority of trades is conducted overnight and
due to the GFC markets for longer maturities essentially dried up. We will focus on all
overnight trades conducted on the platform, leaving a total number of 1,317,679 trades.
The vast majority of trades (1,215,759 in total) involved two Italian counterparties.
The large sample size of 12 years allows us to analyze the network evolution over
time. For example, at the quarterly level we end up with 48 snapshots of the network.

4 Results

In this section, we look at the network structures formed by interbank lending over
various horizons of time aggregation of the underlying data. We will see that comparing
various network measures at different levels of time aggregation reveals interesting
features suggestive of underlying behavioral regularities. Given that most studies focus
on overnight data, it has become quite standard to focus on networks constructed from
daily data. Here we find that, at least for the Italian interbank network, it may be more
sensible to focus on longer aggregation periods, namely monthly or quarterly data.
We also discuss in how far the network structure has changed (and, in how far it has
remained intact) after the default of Lehman Brothers in September 2008.

4.1 General features

In total, 350 banks (255 Italian and 95 foreign) were active at least once during the
sample period. However, the number of active banks changes substantially over time
as can be seen from the left panel of Fig. 1.9 We see a clear downward trend in the
number of active Italian banks over time, whereas the additional large drop after the
onset of the GFC is mainly due to the exit of foreign banks. The center panel shows
that the decline of the number of active Italian banks went along with a relatively
constant trading volume in this segment until 2008. This suggests that the decline of
the number of active Italian banks was mainly due to mergers and acquisitions within
the Italian banking sector. Given the anonymity of the data set, it is impossible to
shed more light on this interesting issue. The overall upward trend of trading volumes
was due to the increase of the number of active foreign banks until 2008, while their
activities in this market virtually faded away after the onset of the crisis. Interestingly,
the average volume per trade tends to increase over time, as can be seen from the
strong negative trend in the total number of trades (right panel in Fig. 1), at least for
the Italian banks.

8 More details can be found on the e-MID website, see http://www.e-mid.it/.
9 Similar developments are reported by Bech and Atalay (2010) for the federal funds market.
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Fig. 1 Number of active banks (left), traded volume (center) and number of trades (right) over time
(quarterly). We also split the traded volume into money lent by Italian and foreign banks, respectively. The
same holds for the number of trades

An interesting question in this regard is, who trades with whom. Figure 2 illustrates
this for the number of trades (top) and the transacted volume (bottom) by country. For
example, the green lines show the total number of trades (traded volumes) of foreign
banks lending money to Italian banks, relative to all outgoing trades of foreign banks.
Similarly, the blue lines show the total number of trades (traded volumes) of money
flowing between Italian banks, as a fraction of all outgoing trades of Italian banks.
The general patterns are the same for both Figures: Italian banks lend most of the time
to other Italian banks (99.3 % on average) and only a negligible amount to foreign
banks (0.7 % on average). This pattern is remarkably stable over time. In contrast,
at the beginning of the sample period, foreign banks mostly used the market in the
absence of (many) other foreign counterparties to lend money to Italian banks. This
has changed over time and foreign banks later on mostly used the platform to trade
with other foreign banks. It is not quite clear why this is the case, the underlying trend
seems to point towards structural changes altering the (foreign) banks’ behavior. For
many research questions, one should therefore only use the subsample of Italian banks.
In most of what follows, we stick to this choice.

This leads us to a first glance at the network structure. Figure 3 shows the banking
network formed by the 119 active banks (89 Italian) in the last quarter of 2010.10 The
network mainly consists of two components: The very dense part formed by the Italian
banks (circles) on the right-hand side and the far less interconnected foreign banks
(triangles) on the left-hand side. The higher activity of the Italian banks does not come
along with a similarly higher trading volume. We use total outgoing volume as a proxy
for banks’ size and group the banks into four classes according to which percentile
(30th, 60th, 90th or above) they belong to. This attribute is shown in the Figure as the
size and the brightness of the nodes. We should note that 3 out of 12 banks of group 4
are foreign banks which is in line with their fraction of the total banks (30 out of 119).
Hence, foreign banks trade less on average (both in terms of volume and number of
trades), however, the volume per trade is higher.

10 The Figure was produced using visone, http://www.visone.info/, by Brandes and Wagner (2004).
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Fig. 2 Fraction of trades (top) and traded volume (bottom) between banks from different countries

It is also interesting to highlight some specific features of the trading behavior of
individual banks in this particular quarter, since not all banks use the market in the same
way:11 There are 14 banks with zero in-degree and 29 banks with zero out-degree.12

Surprisingly these banks are quite heterogeneous and not, as one might expect, just
small banks. As an example the highest overall transaction volume of 58.6 bn Euro
for a single bank, and therefore roughly 9.3 % of the total trading volume, was traded
by a German bank borrowing this sum in 90 trades from 8 counterparties. Another
interesting case is an Italian bank trading only with one counterparty, lending this
other bank 5.02 billion Euro in 76 trades, whereas borrowing just 0.03 billion in 3
trades. Even though these special relationships are quite interesting, the anonymity of
the data set makes it impossible for us to say more on the particular relationships that
might lead to these interesting outcomes.

11 For a detailed analysis of the trading strategies in the e-MID, see Fricke (2012).
12 In a companion paper, we focus explicitly on fitting the degree distribution, see Fricke and Lux (2013).
The main findings are: (1) the degree distributions are unlikely to follow power-laws, and (2) the in- and
out-degrees do not follow the same distribution.
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Fig. 3 The banking network in the 4th of quarter 2010: triangles are foreign banks. The size of the node
as well as the brightness of the red color indicate the size in terms of volume lent

As should be clear from the discussion above, we will mostly focus on the
(sub)network formed by Italian banks only. Table 1 summarizes, for this subset, some
basic descriptive statistics for the four different aggregation periods under investiga-
tion to get a first impression of the influence of the aggregation level.13 Note that
the number of active banks, trading volume, trades and links has to increase with the
aggregation period. The difference is, however, that volume and trades are simply
multiples of the daily values, whereas the number of links grows at a much lower
rate. This already indicates that banks prefer to trade with specific counterparties. The
trades per link show that even on the daily level on average every fourth link already
represents two trades rather than only a single one. After this broad overview of the
market and the ongoing interactions, we turn to the question of a sensible aggregation
period for the network.

4.2 Density

The density ρ of a network is defined as the number of existing links (M) relative to
the maximum possible number of links. It can be calculated as

ρ = M

N (N − 1)
. (1)

13 Note that mostly because of the shrinking number of active banks all statistics decrease over time,
irrespective of the aggregation period.
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Fig. 4 The density for yearly (blue), quarterly (red), monthly (green) and daily (black) aggregated networks.
A Chow-test and an additional CUSUM-test indicate a structural break for quarter 39 (month 117) at the 1
% significance level, but not for the yearly or daily networks

Figure 4 illustrates the evolution of the density for four different aggregation periods
(day, month, quarter, year) restricting attention to interbank credit between Italian
banks. Except for the daily networks the density is quite stable over time and slightly
increases until the GFC, which constitutes a significant structural break for the monthly
and quarterly networks. We should note that the breakpoint (quarter 39), coincides with
the quarter during which Lehman Brothers collapsed. The daily density fluctuates
much more strongly, but overall increases throughout the sample.14

We should stress that, compared to the findings for other interbank networks, the
density of the Italian interbank network is quite high. For example, Bech and Atalay
(2010) and Soramäki et al. (2007) report an average density of below 1 % in daily
interbank networks, compared to an average density of roughly 3.1 % for the daily
e-MID networks. The main reasons for the higher density are most likely the rela-
tively small number of participating banks in the market and the transparent market
structure which easily allows each bank to trade with any other bank in the market.
For comparison, the Fedwire network investigated by Soramäki et al. (2007) contains
5,086 institutions.15 The means of 20.8 % for quarterly aggregated networks (13.4
% for monthly networks) reveal much higher densities for longer aggregation levels.
Obviously the network density is positively related to the aggregation period, but to
our knowledge the structure of this relation has not been investigated for interbank
networks so far.

For this reason, we compare the aggregation properties of the empirical networks
with those of random networks. Here we use Erdös-Renyi networks, i.e. completely
random networks, and random scale-free networks, where the out-degrees follow a

14 The density for the total network, including the foreign banks, seems to steadily decline over the sample
period. This illustrates the fact that the increasing fraction of foreign banks are less interconnected with the
(smaller) Italian banks.
15 Additionally, the electronic nature of the trading platform simplifies the trading between any two coun-
terparties, i.e. increases the probability of observing any link.
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Fig. 5 Data for 1999. Density for the aggregated Erdös-Reny (blue), Scale-Free (red) with α = 2.3, and
observed networks (green). Aggregation period in days. Note: we do not plot standard deviations, since
these are negligible

power-law distribution with scaling parameter 2.3.16 The experiments work as fol-
lows: For each year, we aggregate the daily networks and plot the resulting density in
dependence on the aggregation period, from one day up to one year (roughly 250 days).
For the random networks, we aggregate artificial Erdös-Renyi and scale-free networks
for each day with the same number of active banks and density as the observed daily
network. The results are the average values for 100 runs for the Erdös-Renyi and the
scale-free networks.17

As an example, Fig. 5 illustrates the results for 1999, but we find very similar
qualitative results for all 12 sample years. For all three networks, there appears to
be a saturation level for the density, however at different levels. The Erdös-Renyi
networks always show the highest density (up to 0.851), followed by the scale-free
networks (up to 0.559) and the observed networks (only up to 0.280). Apparently, it
is much more likely for the empirical data that the same link gets activated several

16 The power-law distribution with tail exponent 2.3 is a common finding in many interbank markets, see
e.g. Boss et al. (2004). The resulting sequences of the out-degrees, i.e. the simulated quasi-daily networks,
are attributed to the nodes by ranking those according to the observed out-degrees, considering only active
banks during the particular day. Note that if we did not account for the ordering of the observed degree
sequences, we would end up with very similar aggregation properties as in the Erdös-Renyi case. The
in-degrees are distributed in a random uniform way, ruling out self-links and counting each link at most
once.
17 Note that the density of aggregated Erdös-Renyi networks can be written as

ρr
T = 1 −

T∏

t=1

(1 − ρr
t ),

where (1 − ρr
t ) is the probability of observing no links in the network at time t . Since we adjust the

number of active banks on a daily basis these probabilities would not exactly coincide with the results of
our simulations.
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times than for the randomized data of Erdös-Renyi and scale-free networks (although
the overall number of links is the same by construction). This is supported by the fact
that in the observed networks just 2,757 links are observed exactly once in this year,
while for the scale-free and random networks these values are on average 5,040 and
5,746, respectively. Hence, these results indicate the existence of lasting (preferential)
lending relationships in the actual banking network.

4.3 What is a sensible aggregation period?

After showing that longer than daily aggregation tends to reveal non-random structures
for the Italian banking network, we are concerned with determining the ‘correct’
aggregation period in more detail in this section. This question is crucial for extracting
relevant information, since the banking network typically cannot be observed at a given
point in time, but has to be approximated by aggregating trades over a certain period.18

Most studies (including the present one) tend to analyze overnight loans only, in which
case daily networks give an accurate picture of the actual linkages between financial
institutions at a certain point in time. Most of the (apparently universal) properties of
interbank networks, as mentioned in the literature overview, were derived based on
such daily networks. From the perspective of a policymaker, real-time information on
the structure of the interbank network is important as well, e.g. in order to assess the
risk of systemic crises.

However, it should be clear that focusing on daily networks can also be potentially
(dangerously) misleading, given that the low level of network connectivity suggests
a negligible degree of systemic risk in general. Aggregating over a longer period is
preferable, if it can reveal a non-random structure of the banking network. The exis-
tence of preferential relationships would imply that daily transactions are not deter-
mined myopically, but that a virtual network of longer lasting relationships exists.
Daily transactions would then be akin to random draws from this underlying net-
work with the realizations depending on current liquidity needs or liquidity overhang.
Aggregation over a sufficiently long time horizon might reveal more and more of
the hidden links, rather than adding up purely random draws from all possible links.
Thus, for the purpose of identifying community structures and systemically important
institutions, longer aggregation periods may be more sensible even if this comes at the
cost of losing information.19 Moreover, from an economic viewpoint, overnight loans
can be seen as longer-term loans, where the lender can decide every day whether to
prolong the loan or not. In this way, aggregating overnight credit relationships over
longer frequencies could provide a more accurate picture of the interbank network.

In the following, we compare several statistical properties of the e-MID networks
based on yearly, quarterly, monthly and daily aggregated networks. Table 1 briefly
summarizes a number of summary statistics for the e-MID networks in dependence

18 The literature on interbank networks is surprisingly silent about the choice of the aggregation period.
We are aware of only one paper, namely Kyriakopoulos et al. 2009, investigating this issue.
19 As an example, Craig and von Peter (2012) and Fricke and Lux (2012) identify core-periphery structures
in the German and Italian interbank network, respectively, using quarterly networks. Fricke and Lux (2012)
also discuss the results for other aggregation periods.
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Table 1 The average values for the number of active banks, total volume (million Euros), number of trades,
number of links, average degree and trades per link for daily, monthly, quarterly and yearly networks

Statistic Year Quarter Month Day

Banks 131 125 123 107

Volume 3,505,195 876,299 292,100 13,688

Trades 109,807 27,452 9,151 429

Links 5,670 3,384 2,088 344

Trades per link 19.37 8.11 4.38 1.25

on the aggregation period. The use of a ‘sensible’ aggregation period should ensure
that we extract stable features (if they exist) of the banking network rather than noisy
trading patterns at different points in time. In this regard, it is important to investigate
the stability of the link structure in order to assess whether subsequent occurrences
of the network share many common links. In order to do this, we rely on the Jaccard
Index (JI),20 which can be used to quantify the similarity of two sample sets in general.
Here it is defined as

J = S11

S01 + S10 + S11
, (2)

where Sxy counts the number of relations having status ai j = x at the first instance
and ai j = y at the second. The JI measures links which survive as a fraction of links
which are established at any of the two points in time. Hence, it also takes into account
those banks which are active in only one of the two periods.

Figure 6 shows that the JI is very stable over time for longer aggregation periods,
but much less so for the daily level. As expected, the JI tends to be higher for longer
aggregation intervals. The daily measures are much more unstable and increase sub-
stantially until the GFC. More problematic than the smaller average level are however
the extreme outliers on the downside. An established rule-of-thumb in social network
analysis is to consider networks with JI values above 0.3 as substantially stable.21

Table 2 shows the mean, minimum, 10th percentile and standard deviation of the
JIs for different aggregation periods. Again, the most evident observation is that the
daily networks are rather special: the minimum and the 10th percentile of the JI are
significantly smaller, indicating that we observe values below 0.2 in at least 10 % of the
sample, which is not a rare event.22 These results suggest a high degree of randomness
in the daily networks.

Obviously, higher values of the JI are no guarantee that we are closer to the ‘real’
network per se. Note that in a network with randomly drawn connections, the index

20 The so-called graph correlation, see e.g. Butts and Carley (2001), shows qualitatively very similar results,
but is not able to cope with banks entering or exiting the market. The correlation of both measures is always
above .9 irrespective of the aggregation period.
21 See Snijders et al. (2009).
22 We should note that, as apparent from Fig. 6, the reason for the 10th percentile to be below the 0.2
threshold is not the GFC.
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Fig. 6 Jaccard index for daily (black), monthly (green), quarterly (red) and yearly (blue) networks

Table 2 Jaccard Index for daily, monthly, quarterly and yearly networks

Jaccard Index Year Quarter Month Day

Mean 0.5543 0.5302 0.4638 0.2861

Standard deviation 0.0535 0.0368 0.0333 0.0740

Min 0.4652 0.4479 0.3735 0.0603

10th Percentile 0.5072 0.4835 0.4183 0.1904

Calculations were carried out for all subsequent networks at the different aggregation periods. Standard
deviations based on all observations

Table 3 Reciprocity of the italian banking network

Reciprocity Year Quarter Month Day

Mean 0.4264 0.2085 0.0829 0.0042

Standard deviation 0.0580 0.0423 0.0244 0.0060

Calculations were carried out for all networks at the different aggregation periods. Standard deviations
based on all observations

should be positively related to the length of the aggregation period. Thus, it is important
to show that other network measures also take on values significantly different from
random networks for longer aggregation periods. In the following, we will therefore
have a closer look at the reciprocity of the network.

Reciprocity is a global concept for directed networks that measures how many of
the existing links are mutual. It can be calculated by adding up all loops of length two,
i.e. reciprocal links, and dividing them by the total number of links.

Table 3 shows higher levels of reciprocity for longer aggregation periods.23 In the
case of daily networks we observe very few mutual links. As Iori et al. (2008) stated this

23 A structural break (after the GFC) is detected by a Chow-test as well as an additional CUSUM test for
the 10th year, the 39th quarter and the 117th month respectively, but not for daily networks. For the yearly
networks only the Chow-test indicates a structural break. Note that the yearly analysis involves only 12 data
points.
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Fig. 7 Data for 1999. Left reciprocity for the Erdös-Renyi (blue), scale-free (red) with α = 2.3, and
observed networks (green). Right difference between reciprocity and density for the respective networks.
Aggregation period in days

is a very plausible finding, since banks rarely borrow and lend money from the same
bank within a particular day. However, the values for longer aggregation periods show
that the banking network is not one-sided, supporting the evidence on the inability of
daily networks to represent the ‘true’ underlying (directed) banking network. The left
panel of Fig. 7 illustrates the results for 1999, where we perform a similar analysis
as for the density above, by comparing the observed network reciprocity to those of
Erdös-Renyi and scale-free random networks.24 The actual values are, again, always
the lowest. The right panel of Fig. 7 shows that the reciprocity (after 19 days for the real
network) exceeds the density for all three networks. Note that for random networks one
would expect the two measures to be almost identical. However, different banks are
active at different days and if many banks are often simultaneously active the chance
of forming a reciprocal link is higher (remember that we used the actually active banks
of each day in the Monte-Carlo exercise). However, more important for our analysis
is that for the real network the difference between reciprocity and density increases
steadily and exceeds the difference between both measures for the random networks.
Hence, using longer than daily aggregation is not only capable of taking mutual credit
relationships into account, but even indicates a preference of banks to form them.
Thus, the noise level of networks with longer aggregation periods is smaller and the
directed version of the networks contains a substantial amount of information.

On the base of the Jaccard index, monthly and quarterly networks appear most stable
as they have a high index with a very low standard deviation, i.e., the highest degree
of structural stability of lending relationships over time. Yearly aggregation levels,

24 Again the results are qualitatively very similar for the other years as well.
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in contrast, have somewhat higher variation in their JI and might be problematic,
because the banking network (in particular during unstable times) is likely to evolve
much faster. Somewhat related is the change in the composition of banks, i.e. banks
leaving and entering the market, since we consider a bank as active for the whole year
even if it leaves the market after the first trading day.25 Concerning the monthly level,
Iori et al. (2008) discovered intradaily and -monthly seasonalities which may affect
our results. In most of the following, we will therefore focus on the quarterly networks.

We should emphasize that providing general guidelines on the optimal aggregation
period of interbank network data might be too demanding. Clearly, it depends on the
research question at hand what the most sensible aggregation period is. Our findings
for the Italian interbank network suggest that aggregation over a sufficiently long
time horizon indeed reveals more and more of the hidden links, rather than adding up
purely random draws from all possible links. The findings for the JI and the reciprocity,
combined with the relatively fast saturation of the empirical density observed in Fig. 5,
is consistent with this interpretation. However, for policymakers, who need to monitor
the network and act on real-time data, monthly or quarterly aggregation periods may be
too long. For other purposes, e.g. identifying community structure, longer aggregation
is definitely necessary. Similar to our approach, we recommend checking the saturation
of certain network statistics in order to quantify the structural stability of the network
at hand.

4.4 Transitivity

Here we are interested in transitive relations between sets of three banks. The concept
of transitivity states that a specific relationship � is transitive if from i � j and j � k
it follows that i � k holds. Equality is a transitive relation, but inequality is not. From
i = j = k follows i = k, yet i �= j �= k does not imply i �= k.

The relation we are interested in is which other i has a link to j or ai j = 1. The
relationship is obviously not transitive, since i has a link to j and j has a link to k does
not strictly imply that k also has a link to i . However, it is interesting to investigate
how many such closed triplets occur. More generally speaking, transitivity measures
whether the existence of certain links depend both on the relation between the two
counterparties and on the existence of links with a third party. The measure most
prominently used for this purpose is the (directed) clustering coefficient26, which,
despite its name, has no relation to cluster identification whatsoever.27 It measures the
number of (directed) paths of length two in the network and takes the fraction of those
that are closed.28 Figure 8 illustrates two ways to close the triplet i, j, k in a directed

25 This problem occurs for each aggregation period, but is likely to become more pronounced for longer
frequencies.
26 For more detailed definitions of clustering coefficients see Zhou (2002).
27 See Fricke and Lux (2012) and Fricke (2012) for detailed approaches of cluster identification in the
e-MID market.
28 Any connection along directed links between two nodes i and j is called a path and the length of the path
is defined as the number of edges crossed. There are no restrictions on visiting a node or link more than
once alongside a path.
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Fig. 8 The two possibilities how the directed path of length two (solid lines) between i and k can be closed.
On the left hand side the path is closed into a loop of length three (CC1). On the right hand side the triplet
is interconnected but not in the same single direction (CC2)

network. First, the directed path may be closed into a loop as shown on the left hand
side of the figure. The fraction of such closures is given by the coefficient CC1:

CC1 =
∑

j �=i �=k ai j a jkaki∑
j �=i �=k ai j a jk

(3)

Second, the link from i to k may be reversed. The fraction of such closures is given
by the coefficient:

CC2 =
∑

j �=i �=k ai j a jkaik∑
j �=i �=k ai j a jk

(4)

An important distinction is that the nodes in the case of CC1, as apparent from Fig. 8,
have each one in- and one outgoing link and therefore show no hierarchical ordering.

Figure 9 shows that the results for the two coefficients are very different. The mean
for CC1 is 0.164 and 0.571 for CC2. This is further evidence for the non-random
character of the banking network, since the probability of an ‘average’ link to exist is
just equal to the density of 0.208. Hence, the existence of a path of length two between
i and k via j makes it 2.75 times more likely that the link from i to k exists compared
to a random link29, but reduces the probability that there is a link from k to i by 21 %.
The huge difference indicates that the banking network has a hierarchical ordering on
the triadic level.

Figure 10 illustrates that for the Erdös-Renyi networks the evolution of the clustering
coefficients is almost identical (correlation above 0.999). The exact numbers of the
clustering coefficients for the observed networks change with the aggregation, but
CC1 is always much smaller than CC2 for all aggregation levels as shown by Fig. 10.
CC2 is initially even higher for the observed network than for the random networks,
but saturates after a steep increase relatively quickly on a much lower level (up to
0.624). CC1 on the other hand is almost zero for short horizons. Note that a loop of
length three at a single day implies that each involved bank would get back some of
its own lending via an intermediate bank, which appears very unlikely. However, CC1

29 The probability of random link is exactly the density of 0.208.
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Fig. 9 The two clustering coefficients of quarterly networks: CC1 (green) is the fraction of path of length
two which are closed into a loop by a third link. CC2 characterizes links in which the triangle is closed in
a hierarchical way

Fig. 10 Left CC1 for the Erdös-Renyi (blue), Scale-free (red) with α = 2.3, and observed networks
(green), aggregated on a daily basis up to the horizon of one year(1999). Right CC2

increases (up to 0.386) for longer aggregation periods showing that such relations
do exist, albeit to a much lower degree than in the simulated random and scale-free
networks. Such closed triplets, therefore, appear to be a relatively rare phenomenon.
Besides the tendency towards lasting credit relationships, our data aggregation exercise
reveals a certain hierarchical structure of the interbank market (in the preference for
the hierarchical CC2 triplets as opposed to the non-hierarchical CC1 structure).
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4.5 Small-world property

Another very prominent measure in the network literature is the average shortest path
length (ASPL). Interest in this measure stems from the remarkable finding that in
many ‘real world’ networks the ASPL is quite small, also known as the small-world
phenomenon.30 Here we focus on the undirected version of the network.

Watts and Strogatz (1998) show that completely random networks already have
a very small ASPL, but at the same time a relatively low (undirected) clustering
coefficient (CC) equal to their density. On the other hand, a regular network, where all
nodes have connections to their s nearest neighbours, has a high clustering coefficient
and a very high ASPL. Interestingly, already the introduction of a few ‘random’ links
reduces the ASPL significantly, because these ‘long range’ links connect different
clusters of the network. The authors argue that the interesting ‘real world’ networks are
neither purely regular nor random. Therefore, Watts and Strogatz (1998) define small-
world networks by being characterized by a small ASPL together with a higher CC
than random networks. Hence, to further investigate if the banking network exhibits
the small-world property, we calculate these statistics and compare these values to
those for random networks.

Let the (symmetric) matrix G of dimension N × N have elements gi j equal to
the geodesic distances between any two nodes, i.e. each element gi j gives the length
of the geodesic path between node i and j . The ASPL is calculated by dividing the
sum of all (existing) geodesic path lengths by the total number of (existing) geodesic
paths.31 The CC is calculated similar to the directed case (CC1 and CC2), but ignores
the direction of the links.

In this case a comparison of the networks aggregated day by day is not suitable,
since the density of both random networks and scale-free networks becomes much
higher than the density of the empirical network (cf. Fig. 5). Therefore, we simulate
random and scale-free(undirected) networks corresponding to the aggregated quarterly
networks with respect to their density (and their degree distribution for scale-free
networks). Table 4 summarizes the results: the ASPL for all networks is small and
almost identical. The CC for the Erdös-Renyi networks is by construction close to
the density, since all links have exactly this probability to occur. The CC for the
scale-free networks is higher (0.413), but is exceeded by the statistics of the observed
network (0.542). This indicates higher regularity in the link structure. Hence, the
banking network lies midway between regular and completely random graphs. As can
be seen from the last column of Table 4, the ASPL does not provide much scope for
distinguishing between the benchmark Erdös-Renyi and scale-free networks and the

30 Small ASPLs have been detected for social, information, technological and biological networks. The
first empirical finding dates back to the chain letter experiments conducted by Milgram (1967). His finding
that on average only six acquaintances are needed to form a link between two random selected persons led
to the famous phrase of ‘six degrees of separation’.
31 It is not necessary for two nodes to have a shortest path, since there might be no link leading from one to
the other. In this case the two nodes lie in different components of the network and by convention the length
of these non-existing geodesic paths are set to infinity. The undirected banking network consists always
of only one connected component and the same is true for the simulated random networks, because of the
high density.
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Table 4 The average CC and ASPL for the observed network and for 100 Erdös-Renyi and scale-free (with
α = 2.3) random networks

CC ASPL

Erdös-Renyi 0.3736 (0.0058) 1.6470 (0.0073)

Scale-free 0.4131 (0.0103) 1.6259 (0.0134)

Observed 0.5422 (0.0434) 1.6486 (0.0373)

Standard deviations in brackets

empirical ones. The reason might be that the relatively high density leads to relatively
short path lengths anyway.32

4.6 Effects of the global financial crisis

Finally, we take a closer look at the effects of the GFC on the banking network.33 The
start of the GFC is not easy to determine, but we have seen that the collapse of Lehman
Brothers in quarter 39 (2008 Q4) was a major shock for the global financial markets
in general and the Italian interbank market as well.34 The effects of this event were
twofold: first, the counterparties of Lehman Brothers realized huge loses. Second, the
perception of risks changed, since Lehman had been considered to be ‘too-big-too-
fail’ before. The resulting dramatic increase of perceived counterparty risk reduced the
willingness of banks to lend to each other, which ultimately affected the real economy
due to tighter lending restrictions. The monetary authorities and governments around
the world injected substantial amounts of capital into the financial system to prevent
interbank markets from freezing in the following weeks. We have seen, that important
network measures such as density and reciprocity, were significantly affected by these
events as well.

Here we investigate the change in banks’ behavior during and after the breakdown
of Lehman Brothers in greater detail. To begin with, Table 5 contains several basic
network statistics for ten quarters around the breakpoint (quarter 39). Interestingly,
the number of active Italian banks remained relatively stable during this period, and
in fact 86 banks were active in all of the ten quarters. The stability of this composition
is important, since under these circumstances changes in the behavior of the banks on
the aggregated or individual level should be mainly driven by their response to this
exogenous shock.

We also see that the total trading volume, the number of trades and the number of
links are all decreasing over this period, but the exact patterns are distinct. Surprisingly,

32 The results are qualitatively the same for the directed version of the network. The ASPL for the quarterly
networks is 1.912, while we obtain 1.776 for the scale-free and 1.802 for the Erdös-Renyi networks. The
CC2 (0.571) is significantly higher than for the scale free with 0.342 and Erdös-Renyi networks with 0.208,
whereas CC1 (0.164) is smaller. However, in this case the network consists not only of one giant component,
but might contain separate clusters, which makes the interpretation of the ASPL more difficult.
33 See also Fricke and Lux (2012).
34 See Brunnermeier (2008).
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Table 5 The table summarizes the number of active Italian banks, total volume (million Euros), number
of trades, number of links and links per trade for the quarters 36–45

Quarter 36 37 38 39 40 41 42 43 44 45

Banks 101 100 100 98 97 96 96 94 94 94

Volume 445,991 409,340 435,338 404,353 385,819 234,102 267,057 197,021 227,076 196,503

Trades 20,984 20,078 19,963 18,160 16,477 14,184 13,981 12,525 11,636 11,577

Links 2,425 2,253 2,249 2,153 1,768 1,533 1,506 1,599 1,449 1,530

Trades per link 8.65 8.91 8.88 8.43 9.32 9.25 9.28 7.83 8.03 7.57

The default of Lehman has occurred in quarter 39

the volume is quite stable until the 40th quarter, but drops by 39.3 % in the 41st quarter.
In contrast, the number of trades starts to fall in the 39th quarter and decreases further
until quarter 44. The total number of links already started to decrease in quarter 37,
but overall tends to develop in a very similar way to the number of trades.35 In the
end, the most immediate reaction to the crisis had been that banks traded similar total
volumes but in fewer trades and with a smaller number of counterparties in order to
minimize their (perceived) counterparty risks.36

Interestingly, the trades per link are the highest for the three quarters after the
Lehman collapse. This indicates that the banks relied more heavily on their preferred
counterparties. Preferred in this context might simply mean that the banks had more
reliable information about these banks, which, however, should coincide with the
existence of a previous trading relationship.

We conclude that the breakdown of Lehman Brothers significantly affected the
behavior of individual banks and thus had a clear impact on the structure of the
network in terms of its overall volume and activity. However, at the same time we
find that the link structure of subsequent quarterly networks remained rather stable
during this period, since no structural break had been detected for the Jaccard Index.
Furthermore, despite the significant impact of the GFC, we do not find evidence for a
complete drying up of the e-MID market, even at the daily level.37

5 Discussion

What do we learn from this analysis of the network properties of the interbank market?
Network analysis is one way to cope with the complexity of a huge system of dispersed
activity and extract some hopefully important general characteristics from such a
system. Without an attempt at such a condensation of information, the raw data of
more than one million trades between financial institutions could hardly provide any
useful insights. We have, however, demonstrated that different ways to approach these

35 The correlation between both is 0.963 for this period and 0.957 over the complete sample.
36 Fricke and Lux (2012) show that most of these changes were in fact driven by behavioral changes of
core banks.
37 As noted above, this is not true for loans longer than overnight. These markets essentially collapsed
completely, which is not surprising given that the loans are unsecured.

123



Network analysis of the e-MID overnight money market 207

data (different aggregation levels) might reveal different pieces of information on the
underlying structure, with more or less robust outcomes. If we think about the data
revealing an underlying network structure through random sampling from this net of
connections (as the activation of a link depends on the random realization of liquidity
needs or liquidity overhangs), it might seem sensible to allow for a longer observation
(aggregation) period to catch more of the existing but often dormant links. As it
appears, practically all network statistics are more robust over longer horizons, while
the daily horizon might just provide information on a small random part of the ‘true’
network. Under this perspective, daily data might not be a useful format for network
inference at all—despite the fact that the underlying data are for daily maturities of
interbank lending. This important distinction between the time horizon of the legal
contract, and the appropriate time horizon for a meaningful network analysis seems
to have been largely ignored in extant literature on interbank networks.

Besides this basic message, another interesting result is that the network is asym-
metric in many respects. In particular, the two directed clustering coefficients are very
different. The probability for a path of length two to be closed into a loop is less than
one third of the probability for the alternative closure. Note that this speaks in favor
of a hierarchical structure: if bank A receives credit from bank B and extends credit
to bank C, it is much more likely that C also receives credit from B rather than being
its creditor itself. The high level of asymmetry in the network indicates that different
banks might play different roles in the network. Fricke (2012) and Fricke and Lux
(2012) provide evidence that this is indeed the case. Moreover, for many measures
the GFC could be identified as a structural break and also the decreasing number of
volume, trades and links support that the GFC heavily affected the Italian interbank
market. However, the link structure of the network remained surprisingly stable and
despite the decrease of its volume (in the beginning of 2009) the e-MID market was
never close to drying up completely.

In terms of managerial insights, our paper sheds light on the practical implementa-
tion of liquidity management at financial institutions. Indeed, while liquidity manage-
ment is of outermost importance for the stability of both individual financial institutions
and the financial system in its entirety38, relatively little is known about the empirical
conduct of liquidity management. What we can infer from out present findings is that
a purely neoclassical approach to liquidity management (as detailed, for example, in
Brodt, 1978) would probably not provide a very accurate characterization of empirical
practices. According to the neoclassical approach, individual banks (or rather their liq-
uidity managers) would pursue an intertemporal linear programming strategy in order
to maximize the profits under given constraints on reserve requirements and capital
adequacy regulations. Thus, in such a world we would expect an atomistic market
without any stable link formation between participants. Indeed, the very evidence of
an interesting (i.e. not completely random) network structure speaks against a purely
competitive market. While the present paper sheds light on the non-random structure
of links and their stability over time on a purely phenomenological level, our model-
based analyses in two companion papers underscore the non-random nature of link

38 See e.g. IIF Special Committee on Liquidity Risk (2007), Basle Committee on Banking Supervision
(2008) and Préfontaine et al. (2010).
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formation: Fricke and Lux (2012) show that participating banks in the e-MID platform
can be very consistently categorized as either core or periphery banks. Typically, core
banks borrow from a large pool of periphery banks, and lend to other core or periphery
banks thus creating indirect links particularly between members of the ‘periphery’.
Many of these links are very stable over time, as also demonstrated by Finger and Lux
(2013) in a so-called ‘stochastic actor-oriented’ model of network formation (bor-
rowed from sociology). Here it turns out that solely characteristics of the specific
counterparty, most prominently past trades with the same counterparty, and not higher
level relations39 are the strongest explanatory factors for link activation/termination
in the interbank market. Surprisingly, interest rates have only a minor influence on the
formation of links. Further evidence for the existence of stable long-run relationships
in the interbank market is also provided by Cocco et al. (2009) for a different segment
(Portuguese banks) with a different econometric methodology.

Overall, it seems that market participants focus strongly on lasting relationships
rather than shopping for the best deals in terms of interest rates offered. It is particularly
remarkable that these findings are based on data for an electronic platform that easily
provides traders access to a long list of publicly quoted bids and asks. Obviously,
trusted working relationships for liquidity adjustment are of value to the managers-in-
charge who are often prepared to forego more advantageous offers from other market
participants in favor of reliance on their existing relationships. Formation of stable links
might also work as a way to reduce the complexity of the day-to-day task of balancing
liquidity needs and excess liquidity (cf. Wilkinson and Young, 2002).40 The overall
non-random network is the ‘emergent’ macro structure from such dispersed behavioral
strategies of individual market participants.

The importance of stable links also becomes apparent during the financial crisis:
while we saw a dramatic decrease of overall activity in the network, no structural
break in the Jaccard index was found. This means that the structure of link forma-
tion and continuation has remained very much intact, but trading activity has typically
been concentrated on fewer counterparties than before. From this perspective, the non-
random character of link formation might have prevented an even more detrimental
collapse of network activity.41 While the trigger for the crisis was an event outside the
network under investigation (Lehman Brothers did not participate in the Euro denom-
inated e-MID market we are investigating)42, our analysis sheds some light on how a
network of lasting business relationships reacts on such a disturbance (which might
entail a loss of trust in some counterparties depending on experience and interaction

39 This means that banks do not consider the complete network, e.g. indirect relations, during the network
formation process, although they could, in principle, infer such information from the e-MID platform.
40 With respect to the stability of relationships, the working of the interbank market seems not too different
from that of the often-studied fish market. Here as well, stable links might underscore the importance of
trust between buyer and seller as well as the element of complexity reduction in a day-to-day task where
excessive shopping for good prices seems much less important than trust in the reliability of the counterpart,
cf. Kirman and Vriend (2001), Gallegati et al. (2011).
41 Fricke and Lux (2012) show that mostly core banks reduced their lending activity but at the same time
increased their borrowing from their counterparties in the periphery.
42 No bank from outside Europe traded in the Euro segment of the e-MID interbank market in the whole
sample period.
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or their exposure towards the source of the disruption). Both phenomenological and
model-based analyses should, therefore, contribute essentially to understanding the
vulnerability of the interbank network which is of crucial importance for the smooth
functioning of the financial sector.

Knowledge of its intrinsic structure would also be instrumental in identifying feed-
back effects from the interbank market in liquidity stress tests for single financial
institutions, or to design system-wide stress tests (cf. Elsinger et al. 2006, and Mon-
tagna and Lux 2013). In order to mitigate the danger of a collapse of the interbank
market in times of distress, both knowledge about its network ‘topology’ as well as
about the behavioral origins of this topology are indispensable. Effective and robust
measures of macro-prudential regulation can only be designed on the base of thorough
knowledge of the system (that until about 2008 was almost completely uncharted ter-
ritory). Insofar, the mapping of the interbank market in the present paper and related
research is just a preliminary step in our attempt to understand the intrinsic structure of
the financial sector and enhance its robustness against shocks. The revealed topology
of the interbank network should be instrumental in identifying relevant channels of
contagion and implementing more realistic designs for system-wide stress tests.

6 Conclusions and outlook

In this paper, we have investigated the interbank lending activity as documented in
the e-MID data from 1999 until the end of 2010 from a network perspective. Our
main finding is that daily networks feature too much randomness to be considered a
representative statistic of some underlying latent network. Various network measures
exhibit strong variation over short horizons, but become much more stable for longer
aggregation periods between monthly and quarterly time horizons. At such aggregation
levels, the network appears structurally very stable so that one might argue that the
underlying structure of link formation between banks is best studied on the base of
appropriately aggregated data. However, the transition towards this more stable format
under time aggregation also reveals interesting features. In particular, the tendency
for the network’s density to increase much more slowly than (aggregated) random
networks indicates the existence of preferred trading relations. In general the evolution
of all global network measures for longer aggregation periods (month, quarter, year)
is very similar in their deviation from the Erdös-Renyi and scale-free benchmarks.
Moreover, the monthly and quarterly networks are characterized by a significantly
higher than random clustering coefficient, and thus reveal some regularity in the link
structure. The (almost) zero reciprocity and CC1 of daily networks proves the inability
of this aggregation level to reveal information on such structural elements. Quarterly
networks, in contrast, consistently exhibit a non-random structure and allow us to
consider the mutuality of the relations and are therefore a preferable subject of study,
especially if one is interested in the evolution of the network over time.

Essentially, these results show that it is far from trivial to map a given data struc-
ture into a ‘network’. While daily records of the interbank trading system can be
arranged in an adjacency matrix and treated with all types of network statistics, they
provide probably only a very small sample of realizations from a richer structure of
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relationships. Just like daily contacts of humans provide very incomplete information
on networks of friendship and acquaintances, the daily interbank data might only pro-
vide a small selection of existing trading channels, while the majority of these probably
remains dormant on any single day. Hence, inference based on such high-frequency
data may be misleading while a higher level of time aggregation might provide a
more complete view on the interbank market. What level of aggregation is sufficient
for certain purposes is an empirical question depending on the research questions at
hand. Saturation of certain measures may be a good indicator that most dormant links
have been activated at least once over a certain time horizon. At the same time, such
dependence of statistics on the time horizon serves to sort out a number of simple gen-
erating mechanisms (i.e. completely randomly determined networks in every period)
and reveals interesting dynamic structure.

In the future, more attention should be given to the analysis of directed banking
networks using longer aggregation periods to identify structural commonalities. While
real-time information about the structure of the interbank network is important for
policymakers having to take immediate action, regulators should also take stock of
the information provided by longer network aggregates. Getting a better idea on the
wider pool of counterparties of all credit institutions would allow the identification of
possible behavioral changes among the set of active banks. Such changes might then
serve as an indicator for funding problems of individual institutions, cf. Fricke and
Lux (2012). In the end, it would be important to complement our phenomenological
investigation of aggregate data by a behavioral analysis of the liquidity management
practices at the micro level.
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