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Abstract This paper presents a new approach to randomly generate interbank net-
works while overcoming shortcomings in the availability of bank-by-bank bilateral
exposures. Our model can be used to simulate and assess interbank contagion effects
on banking sector soundness and resilience. We find a strongly non-linear pattern
across the distribution of simulated networks, whereby only for a small percentage of
networks the impact of interbank contagion will substantially reduce average solvency
of the system. In the vast majority of the simulated networks the system-wide conta-
gion effects are largely negligible. The approach furthermore enables to form a view
about the most systemic banks in the system in terms of the banks whose failure would
have the most detrimental contagion effects on the system as a whole. Finally, as the
simulation of the network structures is computationally very costly, we also propose
a simplified measure—a so-called Systemic Probability Index—that also captures the
likelihood of contagion from the failure of a given bank to honour its interbank pay-
ment obligations but at the same time is less costly to compute. We find that the SPI
is broadly consistent with the results from the simulated network structures.
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1 Introduction

The inception of the euro created a large and integrated euro area money market,
allowing euro area banks to lend and fund themselves via other euro area banks;
also across national borders. This helped ease financial transactions and facilitate
trade among euro area countries. This success notwithstanding, the global financial
crisis erupting in mid-2007 led to heavy losses at many financial institutions and to
severe disruptions in the interbank markets as individual institutions lost confidence
in the soundness of their peers. This was reinforced by a string of bank failures in
the ensuing years, the most prominent being the one of Lehman Brothers (the US
investment bank) in September 2008. More recently, the euro area sovereign debt
crisis was also accompanied by a number of bank failures and bailouts and raised
substantial concerns about the risk of pernicious contagion effects among euro area
banks (and their sovereigns).

These events have highlighted the systemic risks to the financial system of individual
bank failures via the interlinkages that exist between banks; especially in the unsecured
interbank market. Particular attention has been paid to potential counterparty risks
banks are exposed to via their bilateral interbank exposures.1 This in turn has led
to a flurry of academic research to help understand, measure and assess the impact
of contagion within the network of banks and other institutions that constitute the
financial system. In addition, a number of policy initiatives have been introduced in
recent years to counter the potential contagion risks of interlinked banking networks;
especially exemplified by the additional capital requirements on globally systemic
institutions (G-SIBs).

The academic literature analysing financial contagion has followed different
strands. One area of research has focused on capturing contagion using financial
market data. Kodres and Pritsker (2002) provide a theoretical model whereby in an
environment of shared macroeconomic risks and asymmetric information asset price
contagion can occur even under the assumption of rational expectations. On the empir-
ical side, some early studies attempted to capture contagion using event studies to
detect the impact of bank failures on stock (or debt) prices of other banks in the
system.2 The evidence from these studies was, however, rather mixed. This may be
due to the fact that stock price reactions typically observed during normal periods do
not capture well the non-linear and more extreme asset price movements typically
observed during periods of systemic events where large-scale contagion effects could
be expected. In this light, some more recent market data studies have applied extreme-
value theory to better capture such extraordinary events.3 In a similar vein, Polson and
Scott (2011) apply an explosive volatility model to capture stock market contagion
measured by excess cross-sectional correlations. Other studies have tried to capture

1 See Rochet and Tirole (1996), Allen and Gale (2000) and Freixas et al. (2000) for some early prominent
examples.
2 See e.g. Aharony and Swary (1983), Peavy and Hempel (1988), Docking et al. (1997), Slovin et al. (1999),
Cooperman et al. (1992), Smirlock and Kaufold (1987), Musumeci and Sinkey (1990), Wall and Peterson
(1990) and Kho et al. (2000).
3 See e.g. Longin and Solnik (2001), Hartmann et al. (2004, 2005), Gropp et al. (2009).
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the conditional spillover probabilities at the tail of the distribution by using quantile
regressions.4 Diebold and Yilmaz (2011) proposes in turn to use variance decompo-
sitions as connectedness measures to construct networks among financial institutions
based on market data.

A different strand of the literature has been based on balance sheet exposures (such
as interbank exposures and bank capital) with the aim of conducting counterfactual
simulations of the potential effects on the network of exposures if one or more financial
institutions encounter problems. This may overcome some of the deficiencies of the
market data-based literature, such as the fact that asset prices can be subject to periods
of significant mis-pricing which may distort the signals retrieved from the analysis.
The starting point to analyse bank contagion risks and interconnectedness on the
basis of balance sheet data is having reliable information on interbank networks.
One can view a financial exposure or liability within a network as a relationship
(or edge) of an institution (node) vis-à-vis another whereby the relationship portrays
a potential channel of shock transmission among institutions. Mutual exposures of
financial intermediaries are generally beneficial as they allow for a more efficient
allocation of financial assets and liabilities and are a sign of better diversified financial
institutions.5 At the same time, when large shocks hit the financial system, financial
networks—especially if exposures are concentrated among a few main players—can
act as an accelerator of the shock’s initial impact by propagating it throughout the
financial system via network links. As emphasized by Allen and Gale (2000) the
underlying structure of the network determines how vulnerable it is to contagion.6 For
example, Allen and Gale (2000) emphasize the contagion risk prevailing in incomplete
networks. 7 It is furthermore emphasized in the literature that in the presence of
asymmetric information about the quality of counterparties and of the underlying
collateral, adverse selection problems may arise which can render interbank networks
dysfunctional in periods of distress.8

The financial contagion literature is furthermore related to complex network analy-
sis in other academic fields (transportation, medicine and physics in particular). It
thus relates to the so-called “robust yet fragile” network characterisation, by which
networks are found to be resilient to most shocks but can be susceptible to pernicious
contagion effects when specific nodes are targeted.9 Recent models of the interbank

4 See e.g. Cappiello et al. (2005), Engle and Manganelli (2004), White et al. (2010) and Adrian and
Brunnermeier (2011).
5 For example, interbank connections may produce co-insurance against liquidity shocks and may enhance
peer monitoring; see e.g. Bhattacharya and Gale (1987), Flannery (1996), Rochet and Tirole (1996) and
Freixas et al. (2000).
6 See also Battiston et al. (2012a,b) and Gai et al. (2011). Nier et al. (2007) and Allen and Babus (2009)
provides surveys of the recent literature.
7 Brusco and Castiglionesi (2007) in contrast highlight that in the presence of moral hazard among banks,
in the sense that liquidity coinsurance via the interbank market entails higher risk-taking, more complete
networks may in fact prove to be more, not less, contagious.
8 See e.g. Flannery (1996), Ferguson et al. (2007), Heider et al. (2009) and Morris and Shin (2012).
9 See e.g. Albert et al. (2000), Barabási and Albert (1999), Doyle et al. (2005) and Nagurney and Qiang
(2008).

123



160 G. Hałaj, C. Kok

market that incorporates this knife-edge character of financial networks include Nier
et al. (2007), Iori et al. (2008) and Georg (2011).

To model how shocks to one (or more) financial entity can have contagious effects
throughout the financial system a dynamic network modelling approach is warranted.
This involves imposing certain characteristics, or behavioural assumptions, on the
nodes to allow for translating shocks to specific nodes into propagation channels
affecting other nodes in the network via the bilateral relationships.

In reality, however, network analysis is constrained by the fact that data on bilateral
interbank exposures are generally not available to other than supervisors and market
oversight authorities. To counter such difficulties, this paper proposes an alternative
approach to construct interbank networks. Our approach makes use of individual
banks’ aggregate interbank exposures to simulate a wide range of possible interbank
networks. Once the interbank interconnectedness structures have been simulated, a
dynamic analysis of how and to what extent shocks to different entities propagate
throughout the banking system can be conducted. Such analysis is, for example, useful
in a macro stress test context to gauge the impact on specific banks or the banking
system as a whole from shocks to one or more banks.

The simulation approach to analysing contagion within interbank networks pro-
posed in this paper is related to the so-called Stochastic Block Modeling of networks,
as for instance suggested by Lu and Zhou (2010), whereby link prediction algorithms
are used to produce the missing links between agents (nodes) in a given network.10 Our
dynamic network modelling is also related to the literature on shock transmissions,
which asserts that the transmission depends on the probability distribution govern-
ing whether nodes have contact with each other and can occur through “knock-on”
cascading effects (see e.g. Newman (2005)).

Notably, our approach differs from networks based on entropy methods and based
on real-time data, which are typically capturing one particular snapshot of the network
structure. Instead, we simulate a large number of possible networks contingent on the
underlying exposure data and imposed behavioural characteristics.11 This produces a
very dynamic pattern of interbank networks, which reflects well the volatile nature of
financial network structures (see e.g. Garratt et al. 2011; Gabrieli 2011). It also aims
to circumvent the averaging bias characteristic of entropy measures, which tend to
produce too much averaging at the tails and thus may underestimate contagion risk
(see e.g. Mistrulli 2011).

The main contributions of the paper to the growing literature on network analysis are
threefold: first, we propose a robust method to construct interbank networks without
necessarily having access to bank-by-bank bilateral connections. Second, our model
allows to randomly generate a wide distribution of possible networks which in turn
can be used to dynamically analyse the likelihood and size of shock propagations
throughout the interbank network. In this context, we also allow for the impact of fire

10 See also Schaefer and Graham (2002) and Kossinets (2006) for some applications to social networks.
11 For a few representative country-specific studies using real-time overnight transactions data or large
exposure data as well as entropy approaches, see e.g. Furfine (2003), Upper and Worms (2004), Boss et al.
(2004), van Lelyveld and Liedorp (2006), Soramaki et al. (2007) and Degryse and Nguyen (2007).
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sales, which is shown to exacerbate the contagion.12. Third, we derive a “contagion
index” that provides a robust proxy for the simulated networks but is computationally
easier to handle. In our view, the model will be useful for regular financial stability
analysis, as conducted in central banks in particular. First of all, it provides a convenient
tool for assessing the systemic risk of individual banks in the system and to calculate
the systemic impact (and likelihood) of shocks hitting one or more banks. As such, it
can also be linked to outcomes of traditional top-down macro stress tests to illustrate
the contagion effects from different macro-financial scenarios. A final contribution
compared to the previous literature relates to the geographical coverage. Whereas
most interbank contagion studies refer to specific country settings, in our paper we
create networks between large banks in the EU as a whole.13 This allows to also
address the importance of cross-border interbank contagion as compared to contagion
solely within the national borders. In an ever more globalized financial system, such
cross-border contagion may be expected to become increasingly relevant; as also the
financial crisis erupting in 2007 amply illustrated.

Some caveats to our modelling approach should be mentioned. First, drawing
random networks from a uniform distribution does not necessarily lead to the core-
periphery structure often observed in real world network data. This notwithstanding,
the behavioural characteristics that we impose upon the nodes (e.g. whether banks
are internationally or mainly domestically-oriented) before randomly drawing our
networks would in fact be expected to imply a priori some degree of core-periphery
structure. Moreover, owing to the substantial size differences of the interbank assets
and liabilities across banks in our sample (and hence the amount of assets/liabilities of
individual banks to be distributed within the system) the procedure would generally
result in the emergence of large money centre banks in our simulated systems. Second,
the fact that the drawing of interbank loans follows a sequential approach whereby the
loan volume is drawn as a random fraction of the remaining total exposure may have
significant implications for the overall distribution of loans held by individual banks
in the generated networks. While this bias is averaged out at the level of individual
loans among banks (i, j) once many simulations are considered, when considering
the overall distribution of loan volumes the bias may remain. It is for example rather
unlikely that, in a particular simulation, a bank would have a large number of loans
of roughly equal size—a case which may plausibly occur for money centres. Finally,
the network structures resulting from our simulations are contingent on the specific
characteristics we impose on the nodes—in other words, the probability that two banks
are linked to each other. Ultimately, the validity of the network structures randomly
generated would need to be cross-checked against real world network data.

The paper is organised as follows: Sect. 2 describes the baseline model and the
various steps involved in the derivation of the simulated networks. Section 3 in turn
presents the contagion index, and some possible model extensions. Results are dis-
cussed in Sects. 4 and 5 concludes.

12 See also Karas et al. (2008).
13 Gabrieli (2011) as an exception also provides a network analysis covering at least part of the euro area
money market. Likewise, Garratt et al. (2011) presents a global interbank network in their paper.
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2 Baseline model

The structure of our model of the interbank contagion consists of a random interbank
networks in which we apply a shock to one bank (or a set of banks) that is subsequently
transmitted within this interbank system. The network is generated in a random way
based on the banks’ balance sheet data on their total interbank placements and deposits
and on the assessment of banks’ geographical breakdown of activities. There are
89 banks in the analysed sample, mostly from euro area countries. These are banks
included in the EU-wide stress tests conducted by the European Banking Authority
(EBA), but the data used to parametrise the model are taken from Bureau van Dijk’s
Bankscope and banks’ financial reports. Notably, we do not have data on the individual
banks’ bilateral exposures, which are instead derived based on their total interbank
placements and deposits; as described below. The shock is simply meant to be a given
bank’s default on all its interbank payments. It then spreads across the banking system
transmitted by the interbank network of the simulated bilateral exposures.

There are three main building blocks of the model. First, the probability map
that a bank in a given country makes an interbank placement to a bank in another
(or the same) country was proposed; second, an iterative procedure to generate inter-
bank networks by randomly picking a link between banks and accepting it with prob-
ability taken from the probability map. Finally, the algorithm of clearing payments
proposed by Eisenberg and Noe (2001) on the interbank market in two versions was
applied: without and (modified) with a “fire sales” mechanism.

2.1 Probability map

Bank-by-bank bilateral interbank exposures are not readily available. For that reason,
to define the probability structure of the interbank linkages (a probability map), as a
starting point the EBA disclosures on the geographical breakdown of individual banks’
activities (here measured by the geographical breakdown of exposures at default) were
employed.14 The probabilities were defined at the country level, i.e. the exposures
were aggregated within a country and the fraction of these exposures towards banks
in a given country was calculated. These fractions were assumed to be probabilities
that a bank in a given country makes an interbank placement to a bank in another
(or the same) country. Banks were grouped into two subcategories within countries:
with domestic scope of activities and with international activity, respectively. Banks
within the same group were assigned similar probabilities in the probability map. The
classification was based on a ratio calculated as the share of cross-border intra-EU
exposures to total exposures. With respect to the definition of internationally active
banks we experimented with different threshold values and found the most robust
specification to be a share of international exposures to total exposures equal to 25 per
cent.

The probability map based on the EBA disclosures is an arbitrary choice contingent
on the very limited availability of data about interbank market structures. An idea of

14 The bank level exposure data were downloaded from the EBA website: http://www.eba.europa.eu.
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market fragmentation along the national borders while treating separately the interna-
tionally active banks seems to be justified. Nevertheless, the results (structure of the
network and the contagion spreading) are dependent on the particular probability struc-
ture (geographical proximity matters). In results Sect. 4 we perform some sensitivity
analysis of the systemic importance of banks if the probability map is distorted.

2.2 Interbank network

The network is generated randomly based on the probability map which is based on
the geographical breakdown of exposures. This probability is represented by a matrix
Pgeo, such that Pgeo

i j ∈ [0, 1] indicates a probability that bank j has an interbank expo-
sure vis-à-vis bank i or, in other words, bank i has liability towards bank j . The pro-
posed procedure generating the interbank system is a version of the “Accept–Reject”
scheme. A possible interbank network (realisation from a distribution of networks
given by the probability map) is generated in the following way. A pair of banks is
randomly drawn (all pairs have equal probability) and the pair is kept as an edge (link)
in the interbank network with a probability given by the probability map. If the drawn
link is kept as an interbank exposure, then the random number is generated (from
the uniform distribution on [0, 1]) indicating what percentage of reported interbank
liabilities (l) of the first bank in the pair comes from the second bank in the pair (the
amount is appropriately truncated to account for the reported interbank assets (a) of
the second bank). If not kept, then the next pair is drawn (and accepted with a corre-
sponding probability or not). Ultimately, the stock of interbank liabilities and assets
is reduced by the volume of the assigned placement. The procedure is repeated until
no more interbank liabilities are left to be assigned as placements from one bank to
another.

For one realisation of the network structure obtained by the proposed algorithm,
the size of the linkage between a given pair (i, j) of banks depends on order of drawn
linkages. The first drawn link would on average be allocated 50 % of total liabilities of
j , the second—25 % and so on. This bias related to linkages between banks i and j is
averaged out if many interbank structures are considered. The first drawn pair in one
realisation of the algorithm may be any nth pair in the next realisation. We construct
20,000 structures for the purpose of our contagion analysis. Analysing many different
interbank structures instead of just one specific (either observed at the reporting date
or—if not available—estimated e.g. by means of entropy measure) accounts for a very
dynamic, unstable nature of the interbank structures confirmed by many studies (see
e.g. Garratt et al. 2011; Gabrieli 2011). The way in which linkages are drawn may
still be an issue for the distribution of the whole network. It may underestimate the
probability of networks in which nodes have many linkages of similar size. However,
the algorithm does not exclude such configurations, which are typical for the real
interbank networks with money centers.

Figure 1 illustrates one realisation from the whole distribution of network structures
for the EU banking sector generated using the random network modelling approach.
The width of the arrows indicates the size of exposures (logarithmic scale) and the
colouring scale (from light to dark green) denotes the probability (inferred from the
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Fig. 1 Generated interbank network. An arrow between bank A and B indicates an interbank deposit of
bank B placed in bank A; the width of an arrow reflects the size of the exposure; the lighter the green color
of an arrow, the lower the probability is that the arrow joins a given pair of banks (color figure online)

interbank probability map) that a given bank grants an interbank deposit to the other
bank. Most of the connections are between banks from the same country but the
connectivity between the biggest domestic banking systems is also quite high (the
German, Spanish and British banking systems, in particular).

The very general characteristics of the network and of the role played by the par-
ticular nodes can be performed by means of some standard network measures. The
simulated network approach gives the whole distribution of measures that, further sta-
tistically analysed, may indicate some candidate banks to be systemically important.
Following ECB (2012), we looked at three centrality measures—i.e. degree, close-
ness and betweenness, which inform about network activity, independence of nodes
and nodes’ control of activity in the network respectively. We also calculated a very
simple measure of network density, i.e. the ratio of the number of linkages to total pos-
sible interbank connections (which is

(N
2

)
for N banks in the system). In our context,

betweeness seems to most appropriately address an issue of identification of systemic
nodes, i.e. causing and transmitting most sizable contagion. The centrality measures
applied to the simulated networks are discussed in Sect. 4, in particular with a ref-
erence to the entropy maximising networks broadly considered in the literature (see
Mistrulli (2011) about the entropy maximising networks). Additionally, we verify if
the network measures can explain the size of the simulated contagion losses in the
banking system.15

15 Further interesting reading about the application of network measures can be found in von Goetz (2007).
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2.3 Contagion mechanism

The assessment of the size of the interbank contagion is based on the so-called inter-
bank clearing payments vector, derived by Eisenberg and Noe (2001) and which is
define in our modification by the vector p∗ solving the following equation

p∗ = min

{

max{C − a + l +
N∑

i=1

π� p∗, 0}, l

}

(1)

where:

– C - vector of banks’ regulatory capital. It reflects the full absorption capacity of
banks;

– a - vector of interbank assets;
– l - vector of interbank liabilities;
– π� - transposed matrix of the relative interbank exposures with πi j entry defined as

bank i interbank exposure towards bank j divided by the total interbank exposure
of bank i .

The expression C − a + l can be interpreted as banks’ own funding sources adjusted
by the net interbank exposures; the ultimate interbank payments are derived as the
equilibrium of flows in the interbank network. The contagious default on the interbank
deposits is detected by comparing li and p∗ – if the difference is greater than 0 then
it means that bank i defaults on its interbank payments. The loss for the interbank
creditors is calculated as

loss = π�(l − p∗)

In order to compare the interbank losses in a standardised way across the banking
system, we calculate an impact of the losses on a capital adequacy measure (CAR)
defined as the Core Tier 1 capital divided by the risk weighted assets. Consequently,
the CAR reduction of bank i as a result of losses incurred on the interbank exposures
is defined as

�CARi = 100 ·
(

CT1i − lossi

RWAi
− CARi

)

where CT1 is Core Tier 1 capital and RWA denoted risk-weighted assets. The equi-
librium payments vector is calculated in an iterative (sequential) procedure. Namely,
let us define a function F : [0, l1] × · · · × [0, lN ] → [0, l1] × · · · × [0, lN ] as

F(p) = min

{

max{C − a + l +
N∑

i=1

π� p, 0}, l

}

(2)

The value of F for a given p can be interpreted as the vector of the interbank payment
given banks receive back as much as π� p of their interbank assets. It can be shown
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that a sequence (pn) defined as p0 = l and pn = F(pn−1) converges to the clearing
payments vector p∗.16

The clearing payments vector approach to study the contagion effect is one of two
common strands present in the literature. The other one is a cascade approach (see e.g.
van Lelyveld and Liedorp 2006; Nier et al. 2007) that analyses sequences of banks’
defaults. Unlike in models of the cascade defaults, interbank clearing payments do
not reflect any dynamics of contagion spreading. In the clearing payments theory, the
equilibrium resolves immediately after an external shock affects a group of bank in a
system (eg. in form of default on the interbank liabilities πi j · li or reduction of the
capital base Ci ). As such, the sequence (pn) cannot be interpreted as a dynamic model
of defaults but is rather a technical way to compute the equilibrium payments in an
efficient way.

In an event-driven concept of contagion it is interesting to decompose the first and
second round effects of contagion. First, we introduce a notion of a triggering bank,
i.e. a bank that initially defaults on their interbank deposits (due to some exogenous
shock not encompassed by the model). Second, we define the first round effects as
those related purely to the default of banks on their interbank payments given

– default of a triggering bank or a group of triggering banks on all its interbank
deposits,

– all other banks declaring to pay back all their interbank debts.

Third, the default of other banks following bank-triggers’ inability to pay back their
interbank debts would be classified as second round contagion effects if

– they would pay back all their debts if all non-triggering banks which are their
debtors returned their debts,

– they are not capable of paying back part of their interbank deposits in the clearing
payments equilibrium.

In other words, first round effects describe the knock-on results nearest to the triggering
banks in the network. The second round effects thus refer to all subsequent rounds
of shock propagation. Formally, let us denote by J the set of triggering banks, i.e.
J ⊂ {1, . . . , N }, and define N × 1 vector l(J ) as

li (J ) : =
{

li if i /∈ J
0 if i ∈ J

It can be interpreted as an indicator for which banks are assumed not to pay back their
interbank liabilities. Formally, the decomposition is defined as:

l − p∞ = l − F (l(J ))︸ ︷︷ ︸
I round

+ F (l(J )) − p∞
︸ ︷︷ ︸

II round

, (3)

where p∞ is the limit of the iteration pn = F(pn−1) with p0 = l(J ).

16 Convergence follows the Tarski’s fixed point theorem for the isotone mappings on a complete lattice
(see also Cifuentes et al. 2005 or Hałaj 2012).
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2.4 Fire sales of illiquid portfolio

The concept of the sequence (pn) is helpful in introducing the “fire sales” mechanism
to the interbank equilibrium. In order to meet their obligations, banks may need to shed
part of their securities portfolio; the less interbank assets they receive back, the higher is
the liquidation need. This may adversely affect the mark-to-market valuation of their
securities portfolios and further depress their capacity to pay back their interbank
creditors. Consequently, this mechanism may lead to a spiral effect of fire sales of
securities (as, for example, suggested in recent papers by Geanakoplos 2009 and
Brunnermeier 2009.

Banks may respond in different ways to the losses on the interbank exposures
depending on their strategies and goals. In order to cover the resultant liquidity short-
fall, they may simply shed some assets. However, the sell-off may be much more
severe for banks targeting their leverage ratio (see also Adrian and Shin 2010). In the
latter case, the usually double digit ratio of “x” would translate into securities disposal
of “x ∗ loss”. We account for both cases in our modeling framework of the “fire sales”.

Covering liquidity shortfall from interbank losses. We assume that the depth of
the devaluation of securities portfolios is related to the share of the liquidated securities
to the total volume of securities held by banks. In order to quantify this “fire sales”
mechanism we introduce an auxiliary measure of the conditional amount of securities
sold (SecSold) by bank i given all banks pay back p units of their interbank deposits,
i.e.:

SecSold(p) =
N∑

i=1

min{Si , (pi − li )
−} (4)

where Si denotes the stock of securities held in the assets of bank i and a− : =
− min(a, 0), called a negative part of a.

The above formula sums up the volume of all the securities needed to cover the
difference between interbank assets (equal to (π�)i p given banks pay back p of their
interbank debts, where (A)i denotes the i-th raw of a given matrix A) and interbank
liabilities li . Obviously, a natural cap for that volume is the total volume of securities
portfolio.

The new equilibrium interbank payments vector can be computed with a new loss
absorption capacity which is equal to the initial capital level less the devaluation of
the securities. Let TS denote the aggregate volume of securities held by the banks in
the analysed system. Following the idea of Cifuentes et al. (2005), in order to relate
the price of securities to the supply of these securities (equal to the volume of the “fire
sales”) we introduce the α > 0 elasticity factor. Then the market value of securities
is defined as S(p) : = S exp (−αSecSold(p)/TS). Hence, the equilibrium interbank
payments vector p∗ satisfies

p∗ =min{max{C−S ·
(

1−exp

(
−α

SecSold(p∗)

TS

))
− a + l+

N∑

i=1

π� p∗, 0}, l} (5)
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The term S · (1 − exp (−αSecSold(p∗)/TS)) reflects the negative impact of selling of
securities at “fire sale” prices on the loss absorption capacity of banks. A discussion
of some results of contagion in case of “fire sales” in the securities portfolio can be
found in ECB (2012).

Target leverage ratio. The “fire sales” can be more pronounced if banks aim to
maintain the target leverage ratio, i.e. the ratio of assets to the amount of capital. This
strategy is usually an outcome of the optimal funding structure given the risk tolerance
of the shareholders. Fulfilling that strategy, any loss, which depresses the capital base,
would trigger asset sales bringing the leverage ratio to the assumed level. Should the
banking system react in this way, the depth of asset disposal were typically 10 or 20
times higher than the interbank losses.

SecSoldL(p) =
N∑

i=1

min

{
Si ,

TAi

CT 1i
(pi − li )

−
}

, (6)

where TAi denotes total assets of bank i .
The existence of the equilibrium payments vector in both versions of the “fire sales”

model follows application of the famous Tarski–Knaster’s theorem about fixed points
of an isotone mapping (see a similar application by Hałaj 2012).

2.5 Advantages–disadvantages

The proposed simulation procedure, apparently of a Monte Carlo type, may potentially
give results of any predefined accuracy but at a cost of long, even enormously long,
computational time. Let the following parametrisation serve as an example. If 20,000
networks are to be generated, and for each of them the clearing payments be calculated
(with and without “fire sales” mechanism) then a parallel mode computing in Matlab
on 8 processor unit lasts ∼8 h.

The computational burden prompted us to try defining a simplified measure of a
systemic importance of bank that would be far easier and faster to calculate. Obvi-
ously, the simplifying assumptions are likely to distort the results but that trade-off is
unavoidable. We would treat a simplification as viable if the simplified model detects
the same group of the most systemically important banks.

3 Systemic Probability Index

The main goal of the section is to define a measure of systemic fragility in the sys-
tem, measure that reflects the losses generated via clearing payments vectors in the
simulated networks. We have four general objectives:

– building an index (called: Systemic Probability Index) measuring the contagion
risk stemming form the interbank structure rather than the risk related to an external
shock;

– taking into account the whole range of possible interbank structures accounting
for the probability map introduced in Sect. 2.1;
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– designing it in such a way that it is easy and fast to compute for large interbank
systems, at least substantially reducing the time of Monte Carlo simulations;

– providing consistent results with the most systemically important banks indicated
by the losses derived upon the clearing payments method for the simulated network.

The Systemic Probability Index (SPI) reflects the likelihood of the contagion spread-
ing across the banking system after a default of a given bank on its interbank debt.
Therefore, it is a bank-specific measure, depending on the distribution of the interbank
deposits and placements among banks and on the probability map. The rest of the sec-
tion is devoted to describing the sufficient assumptions needed to satisfy the objectives
listed above and leading to a particular definition of the Index. The performance of
SPI is assessed in Sect. 4 by comparing the sets of systemically important banks indi-
cated by SPI and clearing payments approach, and more quantitatively, by measuring
correlation of the index with the interbank losses in the simulated networks.

Our starting point was to use a probability structure based on the simulated interbank
networks to construct a measure of how likely, how broad and how fast is the interbank
contagion spreading after a given bank defaults on all its interbank payments. Let us
suppose that a node I defaults on its interbank payments. What is the probability that
node j defaults? It can be expressed as

P(1)
I j = P

(
G I jπI j lI > C j

)
,

where G I j is a random variable taking values from the set {0, 1}, where 1 occurs with
probability Pgeo

I j (defined in Sect. 2.1). The relative exposure πI j can formally be
characterised by the joint probability of the whole matrix π . The algorithm of random
networks in the Sect. 2.2 suggests a uniform distribution on a set of matrices with
predefined sum of columns (given by a) and rows (given by l).

What is the impact of a default at round k on the probability of default at round
k + 1? More precisely, what is the relationship between probability of default at k and
k + 1? Let us assume that the default at k means that the whole volume of debt is not
returned back by the defaulted bank to its creditors. Thus,

P(k+1)
I j = P

(
N∑

i=1

Gi jπi j · P(k)
I i li > C j

)

(7)

is the probability of default of the bank j at time k + 1 given that the probabilities of
default of banks at time k are Pk

I j .
In order to calculate the probability index P the distribution of the sum of K indepen-

dent uniform random variables X1, . . . , X K on intervals [0, x1], [0, x2], . . . , [0, xK ]
has to be determined. However, even the simplest known to us characterisation of the
distribution given by Bradley and Gupta (2002) leads to intractable recursion 7.17 All
in all, this prompted us to consider a different distribution on edges, with an invariance
property as far as summation is concerned.

17 A more elaborate discussion included into the working paper version of the article can be provided on
request.
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The basic idea behind the simplification of the interbank network distribution refers
to the flexibility with which the sum of normally distributed random variables can be
handled. For that reason we replace the uniform distribution on edges of the net-
work with normal distribution preserving some key characteristics of these edges. The
simplification is summarised in the following assumption.

Assumption 1 For a given sequence of coefficients (b1, . . . , bN ), the weighted sum
of bank’s j interbank relative exposures

∑N
i=1 bi Gi jπi j is approximated by the sum

of normally distributed components (πG
i j )i∈{1,...,N } weighted by bi s. The mean and

standard deviation of the approximate relative exposure ratios πG is

E[πG
i j ] = Pgeo

i j min(1,
a j

li
)/2, σ (πG

i j ) =
√

3

6
Pgeo

i j min(1,
a j

li
)

The assumption has a statistical justification based on central limit theorems. Namely,
for a sufficiently large number of components, the sum of uniformly distributed vari-
ables can be quite accurately approximated by the normal distribution (see an exten-
sive, but rather technical discussion in a working paper version Hałaj and Kok 2013).
Most importantly, the approximation may understate the tail probabilities of network
configurations that are crucial from the systemic risk perspective. We checked that
the distribution of the original sum tends to have a systematically “fatter” right tail.
Therefore, based on the Berry–Esseen theorem, we propose a correction term in the
definition of the systemic probability index accounting for the maximum possible error
in the approximation of the sum of uniform distributions, which is defined as (detailed
explanation in Hałaj and Kok 2013):

ω(Pgeo
· j , d· j , b(k)

I ) = 6
√

3

∑N
i=1

(
(Pgeo

i j )2

16 + Pgeo
i j

(
1 − Pgeo

i j
2

)4

+ (1−Pgeo
i j )(Pgeo

i j )3

2

)

(di j b
(k)
I i )3

(√
∑N

i=1

(
Pgeo

i j di j b
(k)
I i

)2
)3 (8)

�(·) is the cumulative probability function of the standard normal distribution and
di j := min(1, a j/ li ). The coefficient b(k)

I i can be interpreted as the size of the expected,
k-round default of bank i on its interbank payments. Namely, in a general case of a
recovery ratio Ri of the interbank losses, b(k)

I i = P(k)
I i (1 − Ri )li .18 For brevity of

notation, let us define a loss ratio Li = 1 − Ri .
Summarising, we define the individual bank systemic indices in the following way:
Let γ > 0, b(k)

I = [P(k)
I 1 L1l1 . . . P(k)

I N L N lN ]� and

ω
(k)
I j = ω(Pgeo

· j , d· j , b(k)
I )K1/

⎛

⎝1 + | C j − b(k)
I · E[πG

· j ]√
(b(k)

I )2 · D2[πG
· j ]

|3
⎞

⎠

18 Anyway, we conservatively assume that Ri = 0 for all banks.
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Define 	
(k)
j : = ∑N

i=1 πG
i j · P(k)

I i Li li . Then, for all k ∈ N P(k)
I I = 1. If j 
= I , then

P(1)
I j =

{
P(πG

I j L I lI > C j ) if P(πG
I j L I lI > C j ) > γ

min(γ, ω
(1)
I j + P(πG

I j L I lI > C j )) if P(πG
I j L I lI > C j ) ≤ γ

P(k+1)
I j =

{
P(	

(k)
j > C j ) if P(	

(k)
j > C j ) > γ

min(γ, ω
(k)
I j + P(	

(k)
j > C j )) if P(	

(k)
j > C j ) ≤ γ

(9)

The recursive formula 9 is complicated enough to deserve detailed explanations. First,
P(1)

I j indicates probability that bank’s I default on interbank payments triggers losses
in bank j that are higher than capital of bank j . Therefore, bank I is a triggering
bank. The γ fraction should be relatively low in order to account for the tail correction
ω. Second, the lion share of the distribution lies ex definitione within the admissible
ranges. If the link between banks i and j is certain according to the probability map, i.e.
Pgeo

i j = 1, then precisely 1 − 2�(2
√

3) � 99.97 % of the distribution belongs to the

range [0, min(1,
a j
li

)]. Third, the distribution is centered around Pgeo
i j min(1,

a j
li

)/2.
Therefore, the lower the probability Pgeo of the link, the lower values are sampled
from the distribution in Assumption 1 (with the vanishing link if Pi j approaches 0).
The main, unquestionable advantage of the index is a substantial reduction of the
computational burden comparing with the Monte Carlo simulation; practically, the
recursion can be explicitly solved. The first visible drawback of the index is the infinite
support of the distribution which allows for realisations higher then 1 (the share in
total exposures higher then 100 %). However, it happens with marginal probability.
The same reasoning applies to equally probable shares of the distribution that are
negative.

Summerising, the normal distribution simplifies the system a lot. This is shown in
the following corollary:

Corollary 3.1 Let mi j : = E[πi j ],�l(k)
i : = P(k)

I i Li li . Then

	
(k)
j ∼ N

⎛

⎜
⎝

N∑

i=1

mi j�l(k)
i ,

[
N∑

i=1

(
mi j�l(k)

i

)2
] 1

2

⎞

⎟
⎠

A vector measure P(k)
I · should be aggregated across the banking system to obtain

a scalar and comparable measure of bank’s default impact on the interbank system,
i.e. Systemic Probability Index. It can be done in many ways and we propose 2: one
reflecting the limit (equilibrium) probability index and the other accounting for the
speed with which the index stabilises at the equilibrium. In order to define the former,
we weigh the individual indices at their limits by banks’ total assets. i.e.:

SPII =
∑N

j=1 TA j P(∞)
I j

∑N
j=1 TA j

(10)
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The index representing the second mentioned type is computed in two steps. First, the
individual path P(1)

I j , P(2)
I j , . . . P(K )

I j , for some large K is averaged using the decreasing
weights exp(−1β), exp(−2β), . . . exp(−Kβ), with β > 0 as a given decay factor.
Second, as in the former case we weigh the resulting time weighted indices by banks’
total assets and define a time weighted average of individual indices in the following
way:

Pw
I j =

∑∞
k=1 e−βk P(k)

I j∑∞
k=1 e−βk

= (eβ − 1)

∞∑

k=1

e−βk P(k)
I j

It depends on β which measures how we weigh the importance of the outcomes from
the early stages of the recursion 9. Consequently, the weighted Systemic Probability
Index is defined as

SPIwI =
∑N

j=1 TA j Pw
I j

∑N
j=1 TA j

(11)

Convergence It is not a priori obvious, that the Systemic Probability Index is well-
defined. Namely, the individual probabilities P(k)

I j may not be convergent as k tends to
infinity, what would lead to an ambiguity in the definition. However, it is not the case
if only for some k, P(k)

I j ≥ γ .

Theorem 3.1 For every I ∈ {1, . . . , N } and every i ∈ {1, . . . , N }, the sequences
(P(k)

I i )k∈N either converge, with the limit denoted P(∞)
I i or stay within a (narrow)

band [0, γ ] (with the limit defined in this case as lim supk P(k)
I i ).

Proof (rather technical and postponed to the Appendix) ��
Remark 3.1 The convergence is unconditional of γ if no tail-correction is introduced.
Then, the proof simplifies substantially.

4 Results

The very first conclusion about how reasonable is the simulated network approach
rather than approaches focusing just on one particular network structure can be inferred
from the topological properties of the simulated networks. For that purpose, we calcu-
late the distribution of the betweenness measures for all nodes in the 20,000 simulated
networks and compare those with the entropy maximising network (using the efficient
RAS algorithm Mistrulli 2011) and the average network (described by the sum of all
the simulated relative exposure matrices π divided by 20,000). The results shown in
Fig. 2. The complex shape of the resulting distributions suggests that none of the two
calculated special networks are far from approximating the set of simulated networks.
In addition, the study of systemically important nodes in the two special network
cases could be misleading. For example, it is counterintuitive that (as indicated by
the entropy maximising network) the Hungarian bank in our sample should be more
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Fig. 2 Betweenness-centrality measures: distribution on the simulated networks vs the average network.
Blue line distribution on the simulated networks, red (vertical) line measure for the average simulated
network, green (vertical) line measure for the entropy maximising network (color figure online)

systemically important than all the German banks in the sample or (as pointed out
by the average network) that the default of one of the Irish banks may induce higher
contagion than any of the German banks. Summing up, the simulated networks allow
for analysing much richer structures related to the probability map of the geographical
breakdown of banks’ activities than just the usually available (or estimated) one period
snapshots. Otherwise, one ignores some very useful information about probabilities
of the interbank links which is helpful in studying the tail contagion risk related to the
variety of possible formation of the interbank structures.

Against this background, we now turn to discuss the contagion results based on
our simulated networks. First, to illustrate the outcome of the network simulation, we
compute—for each simulated network—the average Capital Adequacy Ratio reduc-
tion (i.e. average �CARi ) in the event of one bank failing on its interbank liabilities.
Figure 3 shows the distribution of average CAR reductions across all the simulated
networks; with and without “fire sale” losses. It is observed that for the large major-
ity of simulated networks the average solvency implications are relatively muted. In
other words, contagious bank default is a tail-risk phenomenon. Broadly speaking, in
99 % of the scenarios the CAR reduction is negligible, while only in 1 percentage
point of the network realisations the CAR reduction surpasses 0.2 percentage point.
This suggests that the interbank network structures are overall fairly robust against
idiosyncratic shocks to the system, which thus serves the purpose of diversifying risks
among the banks. This notwithstanding, we also observe substantial non-linear effects
in terms of contagion as for some, albeit limited in number, network structures the
impact on overall banking sector capitalisation turns out to be much larger than for
the vast majority of the networks.
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Fig. 3 Distribution of the average CAR reduction (in p.p.)

It is furthermore noticeable from Fig. 4 that when including a fire sale mechanism the
interbank contagion will increase the CAR reduction. It is, however, also observed that
the additional contagion impact compared to the case without any fire sales is relatively
limited under the “liquid assets” assumption described in Sect. 2.4. The fire sale impact
is considerably more pronounced if banks instead are assumed to sell assets in order to
retain a specific target leverage ratio, as the implications of contagious bank defaults
now kick-in at substantially lower percentiles of the distribution of simulated networks
(see Fig. 4). This finding is consistent with theoretical predictions about the potential
for substantial and long-lasting spillover effects when financial intermediaries aim at
controlling their leverage metrics.19 It also suggests that bank-specific characteristics
are crucial determinants for contagion risk (see e.g. Nier et al. 2007).

Another notable feature of the simulated networks we observed is that in the vast
majority of cases there are no substantial differences between the contagion effects
derived using the probability map to simulate the networks and those derived without
averaging out the cross-border exposures (i.e. disaggregate map).

We can also decompose the CAR reductions into first-round and second-round
contagion effects; as proposed in Eq. 3 (see Fig. 5). We observe that while the first-
round, or direct, effects are clearly dominating the overall impact across all banks,
at least for some banks also the second-round shock propagation adds to the overall
losses in the system. This shows that when analysing interbank contagion one needs
to look beyond the direct exposures between the banks in the network, but also needs
to consider potential knock-on effects once the first round impact of bank defaults has
been accumulated.

Turning now to the results based on the SPI, Fig. 6 shows the bank-by-bank SPI
index values for the two different probability maps that we consider; i.e., one where
banks are grouped into international and domestically-oriented institutions and another

19 See, for example, Adrian and Shin (2010), Geanakoplos (2009) and Brunnermeier (2009).
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Fig. 4 Distribution of the average CAR reduction with target leverage ratio (in p.p.)
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Fig. 5 Decomposition of the distribution of individual banks’ CAR reduction into first and second round
contagion (in p.p.). Blue area aggregate effect of first round contagion, red area (above the blue one) second
round contagion (color figure online)
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Fig. 6 SPI index for two different probability maps (for grouped banks into domestic/internationally active

banks and for disaggregate data). SPI total assets weighted average of P(∞)
i s

where no distinction is made between the different types of banks. We observe that
according to the SPI only around a dozen of banks (mainly from Germany, France
and Spain) out of the sample of 89 banks appear to be systemic in nature whereby a
failure of one of these banks is attached with a high likelihood of spreading to the rest
of the interbank network.

It is furthermore noticeable that for the large majority of the banks the SPI based on
the international/domestic grouping and the SPI based on the disaggregate measure
(i.e. no grouping) are broadly the same. In other words, the same set of banks appear
systemically relevant, according to the index, independent of the aggregation method.
Only in a few cases, mainly pertaining to the French banking groups, we find that the
“disaggregate” SPI lies significantly above the “grouped” SPI. For those few banks it
thus appears that grouping banks according to their international activities matters, as
their systemic relevance is somewhat “averaged out” taking into account the interna-
tional dimension. In this sense, using the international/domestic grouping of banks is
useful as it allows for detecting outliers.

With a view to using the SPI to identify the systemic nature of a bank, we find some
indication that there is a clearly visible positive relationship between the SPI and the
failure results from our simulated network (Fig. 7). The only exception concerns three
German banks for which the SPI is relatively high compared to the simulated results.
A simplistic method to quantify the positive relationships discerned in Fig. 7 is to
calculate the correlation coefficient. Correlation of the index with the average CAR
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reductions related to the 10 % worst contagion losses is at the level of 64 % (see
Table 1). Overall, this gives us confidence that the trade-off between computational
simplicity and precision in the results does not compromise the SPI.

The results of the simulations and SPI can be compared also in a time dimension.
For that purpose, we collected end of 2010 data on interbank assets and liabilities and
capital from banks’ balance sheets and we performed an analogues exercise as for the
2011 data in order to calculate CAR reduction due to contagion losses and values of
SPI indices. We used the same probability map as in the case of 2011 simulations. The
results are presented in Fig. 8. There are two important conclusions that can be drawn
from this comparison. First, at the end of 2011 the contagion risk measured by SPI
increases (the 2011 line lies above the corresponding 2010 line on the upper part of
the figure, except for one Dutch bank). Second, this observation is mostly confirmed
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Fig. 7 Probability Index (SPI, y-axis) vs results of the simulation (log scale, x-axis). SPI total assets

weighted average of P(∞)
i s; results of the simulation presented as the average of the 10 % worst losses

induced by a given banks default on its interbank deposits

Table 1 Correlation between SPI, weighted SPI and average banks’ CAR reductions for a given percentile
of distribution of the simulated networks

CAR reduction (average for a given percentile of distribution) SPI (%) SPIw (%)

90 64 38

95 59 36

99 54 33

Source: own calculations
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by the �CAR showing a general consistency between results of the simulation and
SPI (apart from one French and one British bank).

The importance of controlling for (especially French) banks’ international activities
is also discernible when looking at the cascading effects on other banks conditioned
on individual bank defaults. Thus, Fig. 9 illustrates the extent to which individual
bank defaults trigger contagion to other banks when using the probability map, while
Fig. 10 shows the same cascades but using the disaggregate map.

Common for both examples is that the knock-on effects of bank defaults on other
banks tend to affect other domestic banks (red lines) first, and only subsequently
(if at all) the shock propagates to foreign banks (green lines). Notably, the international
contagion is more visible (especially for French banks, but also for German and UK
banks) when applying the disaggregate map.

In general, it is notable that many banks only display contagion to other domestic
entities whereas cross-border contagion appears to be substantially more limited. This
may reflect that apart from a few large players the EU interbank market is still very
much fragmented along national lines.

The probability map was constructed defining internationally active banks as
those with cross-border exposures exceeding an arbitrary threshold of 25 % of
their total exposures. Checking the robustness of this assumption, in Fig. 11 the
SPI impact of incrementally shocking the probability map entries are shown. We
observe that for the large majority of banks marginally changing the probability map
does not materially alter the results; especially in terms of the relative ranking of
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Fig. 8 Comparison of results (simulation vs SPI) for 2010 and 2011 data. CAR reduction = average of
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Fig. 9 Convergence of SPI index components for bank-triggers

the banks. In other words, varying the thresholds for when a bank is internation-
ally active does not materially affect the assessment of which banks are system-
ically relevant: systemic banks remain systemic, while non-systemic ones remain
non-systemic.

So far, in our simulated networks we did not restrict the size of exposures a bank is
allowed to hold against another bank. However, in practice banks are constrained by
so-called “large exposure limits”.20 To account for such regulations, we impose two
conditions:

1. the sum of all exposures that (individually) exceed 10 per cent of the capital should
not exceed 800 % of capital;

2. each exposure should not exceed 25 % of the total regulatory capital.

Figure 12 illustrates the implications in terms of CAR reductions when imposing such
“large exposure limits”. As expected, this has the effect of substantially reducing the
overall contagion impact across the networks compared to the situation without any
limits to counterparty exposures (see Fig. 3).

Having analysed the topological properties of the simulated networks and the dis-
tribution of losses induced by the networks it is natural to ask about any formal
relationship between network measures and network related losses. More specifi-

20 See Article 111 of Directive 2006/48/EC that introduces the limits.
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Fig. 10 Convergence of SPI index components for bank-triggers with disaggregate probability map
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Fig. 11 SPI and SPIw indices under various scenarios of Pgeo. The original Pgeo matrix entries were ran-
domly shocked by adding to each entry a number drawn from uniform distribution on interval [−0.05, 0.05]
(100 scenarios considered)
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Table 2 Correlation between network statistics and the two simulated network measures (in %)

In-degree Out-degree Betweenness Clustering Avg. links

SPI 50 70 49 −2 49

Tail CAR reduction 26 24 44 −14 45

Note: tail CAR reduction—average CAR reduction related to the interbank exposures in 5 % of the worst
cases of losses generated in the analyses simulated networks

cally, the question is whether there is a relationship between any of the centrality
measures and the size of the losses. We tested measures like in- and out-degree,
betweenness, clustering coefficient and—the very simple one—the average num-
ber of nodes. We have found (see Table 2) that the only insignificant correlation
is between clustering measure and SPI or losses obtained from the clearing pay-
ments. Other statistical measures are positively correlated with the results of our
model but the strength of the correlation differs substantially among the calculated
network statistics and does not exceed 50 % (except for out-degree correlation with
the SPI). This comparison proves that clearing payment losses (expressed in CAR
reduction) and consequently SPI are complementary measures to the standard net-
work statistics. They provide additional information about nodes’ systemic impor-
tance.

5 Conclusions

We propose two new tools to study the contagion risk in the banking system based on
the simulated networks concept. Both abstract from the usual snapshot perspective in
most contagion studies. The first tool allows for generating many possible interbank
structures and for analysing distribution of clearing payments vector á la Eisenberg and
Noe (2001). Since the simulation of the random networks is computationally costly
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we propose a second tool which is the so called SPI. It is based on the same set of
information as the random networks (publicly available data and EBA disclosures on
the geographical breakdown of banks’ activities) but is substantially easier to compute.
Both tools give consistent results measured in terms of inclusion of the sets of systemic
banks, i.e. banks that are found to be systemic in the random network tool (generate
highest contagion losses in the interbank system) are confirmed to be systemic by the
SPI.

The simulations that we performed confirm that contagion is heterogenous
across the banking system and strongly non-linear. We found that there are banks
that pose much higher contagion risk to the banking system than other banks.
At the same time, a small fraction of possible network structures may spread
relatively sizable contagion losses across the system, thus highlighting the non-
linear nature of shock propagation effects. Contagion is very much a tail risk
problem.

Our simulated networks approach (either in form of random networks or the SPI
allows for comparison of the tail risk networks. Although, all of the simulated structures
on average can transmit contagion of only very limited size, the impact of bank-triggers
on the system may substantially differ in extreme cases. This is both confirmed by the
simulations of contagion losses and by the SPI.

There is a couple of interesting extensions of the analysis presented in the article.
We can group them into theoretical and empirical strands.

Sensitivity of contagion related to the changes of interbank activity and changes
in capitalisation of nodes banks in the system is one research path that seems to
be interesting to follow. Theoretically necessary conditions for a system to remain
resilient to systemic risk would have interesting policy implications as far as simple
monitoring of the system’s proneness to contagion risk is concerned. As far as the
SPI is concerned, there is a couple of technical extensions to follow in order to bring
the probability structure closer to the initial sum of uniform random variables (see
working paper version Hałaj and Kok 2013 for some details). They may increase the
accuracy of the SPI-based results, although at a higher computational cost, however
still manageable.

The answer to the question about how realistic are the simulated networks could
be obtained based on the interbank exposures extracted from the payment systems.
An ideal source of data for the European banking system is the overnight interbank
payments data. Not only can the simulated and the true structures be compared but
the probability map could be estimated from the time series of the observed networks.
Even if such the highly confidential data are not available for such the analysis, one
could still study empirically the development of the contagion risk in time. For that
purpose, at least a time series of the balance sheet interbank exposures should be
gathered to verify how changes in other systemic risk measures (see Holló et al. 2012)
correlate with the contagion losses in the simulated random networks or with changes
in SPI.
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Appendix

6.1 Proof of theorem 3.1

We focus on the triggering bank I . Let us define a mapping �I : [0, 1]N → [0, 1]N

as

�I j (z) =
{

P((π�)I · A(z) > C j ), P((π�)I · A(z) > C j ) > γ

min
{
γ, B(z) + P((π�)I · A(z) > C j )

}
, P((π�)I · A(z) > C j ) ≤ γ

where A(z) is an isotone, positive mapping and B(z) a given mapping (in R).
Suppose that z1 ∈ [0, 1]N is such that z1i ≥ γ and z1 � z2. Then,�I (z1) � �I (z2).

It follows from the fact that A(·) is isotone and positive. In fact, A(·) and B(·) both
depend on j but we drop the index for brevity. Let us notice, that for e being a
unit vector (e.g. e(k) : = [0 . . . 0︸ ︷︷ ︸

k

1 0 . . . 0︸ ︷︷ ︸
N−k−1

]), e(k) � �I (e(k)), since by definition

�I is bounded by 0 and 1. If �I j (e(k)) ≥ γ , then the sequence �I j (e(k)), �I j ◦
�I j (e(k)), . . . , �I j ◦ · · · ◦�I j (e(k)), . . . is non-decreasing and, since is bounded by
1, it converges. It is, then, sufficient to prove the theorem by showing that �I is isotone
if A(z) is replaced by [z1L1l1, . . . , zN L N lN ]�. But trivially, A j (z) is increasing in
every zi . This completes the proof.

Remark 6.1 Why (P(k)
I j ) may not be globally convergent? Set b : = [z1L1l1 . . . zN

L N lN ]�. Let B(z) be replaced by

⎡

⎢
⎢⎢⎢⎢⎢⎢
⎣

ω(Pgeo
·1 , d·1, b) K1

1+
∣∣
∣
∣
∣

C1−b·E[πG·1 ]√
b2 ·D2[πG·1 ]

∣∣
∣
∣
∣

3

...

ω(Pgeo
·N , d·N , b) K1

1+
∣
∣
∣
∣∣

CN −b·E[πG·N ]√
(b)2 ·D2[πG·N ]

∣
∣
∣
∣∣

3

⎤

⎥
⎥⎥⎥⎥⎥⎥
⎦

.

Let us represent B in the following way (we slightly abuse the notation introducing
z to power nth, i.e. zn : = [zn

1, . . . , xn
N ]�):

B(z) = B1(z)B2(z)

where

B1(z) = Q(21) · z3

√
Q(22) · z23

B2(z) = 1

1 + C j −Q(23)·z√
Q(24)·z2
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for positive vectors Q(21), Q(22), Q(23) and Q(24). We determine a region where B
is increasing. Namely, differentiating B1 with respect to zi (in the set {z|P((π�)I ·
A(z) > C j ) < γ }), one observes that it is increasing if

3Q(21)
i z2

i

√
Q(22) · z2

3 − 3Q(21) · z3
√

Q(22) · z2 Q(22)
i zi > 0.

It happens for z bounded from 0N , i.e. for all i ∈ {1, . . . , N } satisfying

zi >
Q(22)

i

∑
m 
=i Q(21)

m z3
m

Q(21)
i

∑
m 
=i Q(22)

m z2
m

.

In case of B2 the differentiation with respect to zi brings us to the following inequality

Q(23)
i zi

√
Q(24) · z2 + (C j − Q(23) · z)

Q(24)
i zi√

Q(24) · z2
> 0

that translates into increasing B2. The sufficient condition for the inequality to hold is
C j − Q(23) · z > 0.
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