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Abstract The container was introduced as a universal carrier for various goods in
the 1960s and soon became a standard worldwide transportation. The competitiveness
of a container seaport is marked by different success factors, particularly the time
in port for ships. Operational problems of container terminals is divided into several
problems, such as assignment of vessels, loading/unloading and storage of the contain-
ers, quay cranes scheduling cite, planning yard cranes cite and assignment of storage
containers cite. In this work, the study will focus on piloting yard trucks. Two different
types of vehicles can be used, namely automated guided vehicles (AGVs) and lifting
vehicles (LVs). An AGV receives a container from a quay crane and transports con-
tainers over fixed path. LVs are capable of lifting a container from the ground by itself.
The model that we consider is formulated as a mixed integer programming problem,
and the difficulty arises when the number of binary variables increases. There are a lot
of algorithms designed for mixed integer programming problem such as Branch and
Bound method, cutting plane algorithm, . . . By using an exact penalty technique we
treat this problem as a DC program in the context of continuous optimization. Further,
we combine the DCA with the classical Branch and Bound method for finding global
solutions.
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1 Introduction

The container was introduced as a universal carrier for various goods in the 1960s and
soon became a standard worldwide transportation. Compared to conventional bulk, the
use of containers has several advantages: higher productivity, less product packaging
and less damaging. Today over 60% of the world’s deep-sea general cargo is trans-
ported in containers, especially between economically strong and stable countries. The
increasing number of container shipments causes higher demands on the seaport con-
tainer terminals. Container terminals, especially between geographically close ones,
are continuously facing the challenge of strong competition between ports. The com-
petitiveness of a container seaport is marked by different success factors, particularly
the time in port for ships and low rates for loading and discharging.

At automated container terminals, containers are transported from one mode of
transportation to another. Ship operations consists of the an discharging operation,
during which containers are uploaded and stacked in a marshalling yard, and load-
ing operation, during which container are handle in the reverse direction. Operational
problems of container terminals is divided into several problems, such as assignment
of vessels (Imai et al. 2001), loading/unloading and storage of the containers for a con-
tainer ship (Imai et al. 2006), quay cranes scheduling (Lee et al. 2008), planning yard
cranes (Lee et al. 2007) and assignment of storage containers (Lee et al. 2006). In this
work, the study will focus on piloting yard trucks. There are several types of trucks. Two
different types of vehicles can be used, namely automated guided vehicles (AGVs) and
lifting vehicles (LVs). An AGV receives a container from a quay crane and transports
containers over fixed path. In this case, a yard crane is required to take the container
off the vehicle. LVs are capable of lifting a container from the ground by itself. To
uncouple the unloading process and the transportation process, buffer areas are created
where cranes position containers. A LV retrieves a container from a buffer area and
transports it to its destination. In this study, we present the terminal of Normandy; Le
Havre port. This terminal has a special characteristic which distinguishes him in the
other terminals known in the world. It has only two types of handling that are the quay
cranes (QCs) and the LVs. A few previous researches have concerned LVs. Iris et al.
(2004) have compared the performance of two types of automated vehicles, AGV and
ALV, by a simulation study. From this specific study, the authors concluded that, by
observing only purchasing costs of equipment, ALVs are a cheaper option than AGVs
(38% more AGVs need to be used than ALVs). In Nguyen and Kim (2009), have
proposed a mixed zero-one programming model for assigning optimal delivery tasks
to LVs. The authors used a heuristic algorithm to solve this problem. In this work, we
consider a similar model to the model in Nguyen and Kim (2009).

The model that we consider is formulated as a mixed zero-one programming prob-
lem, and the difficulty arises when the number of binary variables increases. There are
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a lot of algorithms designed for mixed zero-one programming problem such as Branch
and Bound method, cutting plane algorithm and dynamic programming. In this paper,
by using an exact penalty technique we treat this problem as a DC program in the
context of continuous optimization. Further, we combine the DCA with the classical
Branch and Bound method for finding global solutions.

The remainder of the paper is organized as follows. In Sect. 2, we report the descrip-
tion and the formulation of this problem as a mixed zero-one program. Section 3,
describes how to reformulate the problem in the continuous form via an exact penalty
technique. Section 4, is devoted to the DC programming and DCA for solving the
penalty equivalent. The combined DCA & Branch and Bound algorithm is presented
in Sect. 5, while the computational results are reported in Sect. 6.

2 Problem definition and mathematical model

2.1 Problem definition

The handling activities performed by QCs are called seaside operations, while those
performed by LVs are called landside operations. We define the task of a LV in ship
operations as delivering a container from the apron to the yard for a discharging oper-
ation or from the yard to the apron for a loading operation. During the discharging
operation, a container, picked up by a QC, is put on a buffer space. A LV picks up the
container from the buffer and delivers it to the marshalling yard. In the marshalling
yard, a LV stacks the container onto an empty slot. The loading operation is performed
in the reverse order. The following assumptions are introduced:

– Congestions of LVs are not considered.
– All LVs are same and transfer one container at a time.
– Pick up and release time of a contrainer by QC/LV can be neglected.

2.2 Mathematical model

– Let qk
i be an event representing the moment that QC k transfers the i th container.

When the i th operation of QC k is a loading operation, qk
i corresponds to the

beginning of collecting of a container from the ground. When the operation of QC
k is an unloading operation, qk

i corresponds to the beginning of the release of a
container.

– yk
i : the event time of qk

i .
– sk

i : the earliest event time of qk
i (represent the date when the QC is free). The delay

of an operation occurs when the LV corresponding does not arrive at the required
moment.

– Let ak
i be an event representing the moment that a LV transfers the i th container.

When the ith operation of QC k is a loading operation, ak
i corresponds to the

release of the i th container by a LV under QC k. When the operation of QC k is
an unloading operation, ak

i corresponds to the pickup of the i th container by a LV
from the pickup point of QC k.
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– zk
i : the event time of ak

i .
– We add two fictive QCs: O and F . One denotes: aO

j (resp. aF
j ) the starting event

of LV j(resp. the stopping event of LV j).
– l(ak

i ): the position of the event ak
i . l(aO

i ) represents the initial position of LV i

and l(a f
i ) represents the final position of LV i .

– t l j
ki : the pure travel time from l(ak

i ) to l(al
j ).

– cl j
ki : the time required for a LV to be ready for al

j after ak
i . For example, if both ak

i

and al
j are related to loading operations, then the starting event for evaluating cl j

ki

is the release of the ith container by LV. cl j
ki includes the travel time from an apron

to the location of the next container (the j th container of QC l) in the marshalling
yard, the pickup time of the container by LV, and the travel time of the LV to
QC l.

– V : the set of LVs.
– K : the set of QCs. K ′ = {0} ∪ K ; K ′′ = {F} ∪ K .
– mk : the set of tasks of every QC K.
– S: the set of a0

j .

– D: the set of a f
j .

– T : the set of ai
k .

– Lk : the set of loading tasks of QC k.
– U k : the set of unloading tasks of QC k.

A feasible dispatching decision of forwarding is an assignment one to one between
all the events of S∪T and D∪T . Let k′ = {0}∪k, K ′′ = {F}∪k and xl j

ki be a decision

variable xl j
ki . xl j

ki = 1 if ak
i is assigned to al

j for k ∈ K ′ and l ∈ K ′′(implies that the
LV, which has just delivered the i th container of QC k, will deliver the j th container
of QC l), 0 otherwise. One denotes the travel cost per unit time of a LV by α and the
penalty cost per unit time for the delay in the completion time by β. We assume that
α� β.

We minimize at same time the total travel time of LVs and the total delays of QCs.
Since α� β, the total delays of QCs is much more important than the total travel time
of LVs. Objective function is defined as follows:

min f (x, y) = α
∑

k∈K ′

mk∑

i=1

∑

l∈K ′′

ml∑

j=1

t l j
ki xl j

ki + β
∑

k∈K

(yk
mk
− sk

mk
) (1)

The constraints are summarized as follows:

1. One-to-one assignment between S ∪ T and D ∪ T :
∑

l∈K ′′

ml∑

j=1

xl j
ki = 1 ∀k ∈ K ′; i = 1 . . . mk

∑

k∈K ′

mk∑

i=1

xl j
ki = 1 ∀l ∈ K ′′; j = 1 . . . ml

(2)
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2. Two events which are carried out in a consecutive way by the same LV must be set
apart at least the time necessary by a LV to travel and to transfer its load between
the two events.

zl
j−(zk

i +cl j
ki )≥M(xl j

ki−1) ∀k ∈ K ′, l∈K , i=1 . . . mk, j=1 . . . ml

(3)

with M , a big positive number.
3. Two events which are been useful by the same QC must be set apart at least

the time necessary with the QC to carry out all the movements between the two
events.

yk
i+1 − yk

i ≥ sk
i+1 − sk

i ∀k ∈ K , i = 1 . . . mk (4)

4. The actual event time is always equal to or greater than the date earliest possible

yk
i ≥ sk

i ∀k ∈ K , i = 1 . . . mk (5)

Finally we get the following optimization problem:

(P)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min f (x, y) = α
∑

k∈K ′
∑mk

i=1

∑
l∈K ′′

∑ml
j=1 t l j

ki xl j
ki + β

∑
k∈K (yk

mk
− sk

mk
)

Subject to:

(2)− (5)

xl j
ki ∈ {0, 1} ∀k ∈ K ′, l ∈ K ′′, i = 1 . . . mk, j = 1 . . . ml

(6)

We are then facing the minimization of a linear function with mixed zero-one variables
under linear constraints.

3 Reformulation

In this section, using the well known results concerning the exact penalty we will
formulate (P) in the form of concave minimization programming. Consider now the
mixed zero-one linear program in a general form:

α = min
{
cT x + dT y : (x, y) ∈ D, x ∈ {0, 1}m}

(MIP)

where x ∈ {0, 1}m and y ∈ R
n are binary and continuous variables respectively, and

D is a nonempty bounded polyhedral convex set in R
m×R

n defined by a finite number
of linear constraints.

Let us consider the function p defined by

p(x, y) = θ(x) :=
m∑

i=1

min(xi , 1− xi ).
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Set K := {(x, y) ∈ D : x ∈ [0, 1]m}. Clearly, p is concave and finite on K , p(x, y) ≥
0 for all (x, y) ∈ K , and

{(x, y) ∈ D, x ∈ {0, 1}m} = {(x, y) ∈ K , p(x, y) ≤ 0}.

Hence Problem (MIP) can be rewritten as

α = min : {cT x + dT y : (x, y) ∈ K , p(x, y) ≤ 0}. (7)

From Theorem 1 below we get, for a sufficiently large value of t (t ≥ t0), the equivalent
concave minimization problem to (MIP):

min : {cT x + dT y + tp(x, y) : (x, y) ∈ K }. (8)

Theorem 1 (Theorem 1, Le Thi et al. 1999) Let K be a nonempty bounded polyhedral
convex set, f be a finite concave function on K and p be a finite nonnegative concave
function on K . Then there exists t0 ≥ 0 such that the following problems have the
same solution set and the same optimal value:

α(t) = inf{ f (x)+ tp(x) : x ∈ K } (Pt )

α = inf{ f (x) : x ∈ K , p(x) ≤ 0}. (P)

More precisely if the vertex set of K , denoted by V (K ), is contained in {x ∈ K , p(x) ≤
0}, then t0 = 0, otherwise t0 = min

{
f (x)−α(0)

S : x ∈ K , p(x) ≤ 0
}

, where S :=
min{p(x) : x ∈ V (K ), p(x) > 0} > 0.

Now let x ∈ R
m be the binary variables and y ∈ R

n be the continuous variables
in Problem (P). Clearly, the set D of feasible points (x, y) determined by the system
of the constraints (2)–(5) is a nonempty, bounded polyhedral convex set in R

n × R
n .

Problem (P) can be expressed in the form of (MIP) and so the above result is available
for (P).

4 A DCA scheme for solving Problem (MIP)

4.1 DC Programming

In this section we investigate a DC programming approach for solving (8). DC pro-
gramming and DCA constitute the backbone of smooth/nonsmooth nonconvex pro-
gramming and global optimization. They address the problem of minimizing a function
f which is the difference of two convex functions on the whole space R

p or on a con-
vex set C ⊂ R

p. Generally speaking, a DC program is an optimisation problem of the
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DCA for solving the scheduling of lifting vehicle 279

form:

α = inf{ f (x) := g(x)− h(x) : x ∈ R
p} (Pdc)

where g, h are lower semi-continuous proper convex functions on R
p. Such a function

f is called a DC function, and g–h a DC decomposition of f while g and h are the DC
components of f. The convex constraint x ∈ C can be incorporated in the objective
function of (Pdc) by using the indicator function on C denoted by χC which is defined
by χC (x) = 0 if x ∈ C , and +∞ otherwise:

inf{ f (x) := g(x)− h(x) : x ∈ C } = inf{χC (x)+ g(x)− h(x) : x ∈ R
p}.

Let

g∗(y) := sup{〈x, y〉 − g(x) : x ∈ R
p}

be the conjugate function of a convex function g. Then, the following program is
called the dual program of (Pdc):

αD = inf{h∗(y)− g∗(y) : y ∈ R
p}. (Ddc)

One can prove that α = αD, and there is the perfect symmetry between primal and
dual DC programs: the dual to (Ddc) is exactly (Pdc). For a convex function θ , the
subdifferential of θ at x0 ∈ dom θ := {x ∈ R

p : θ(x0) < +∞}, denoted by ∂θ(x0),

is defined by

∂θ(x0) := {y ∈ R
n : θ(x) ≥ θ(x0)+ 〈x − x0, y〉,∀x ∈ R

p}. (9)

The subdifferential ∂θ(x0) generalizes the derivative in the sense that θ is differentiable
at x0 if and only if ∂θ(x0) ≡ {�xθ(x0)}.

DCA is based on the local optimality conditions of (Pdc), namely

∂h(x∗) ∩ ∂g(x∗) �= ∅ (10)

(such a point x∗ is called a critical point of g–h), and

∅ �= ∂h(x∗) ⊂ ∂g(x∗). (11)

Note that (11) is a necessary local optimality condition for (Pdc). For many classes
of the DC program, it is also a sufficient optimality condition (see Le Thi and Pham
(2005, 1997)).

The idea of DCA is simple : each iteration l of DCA approximates the concave
part −h by its affine majorization (that corresponds to taking yl ∈ ∂h(xl)) and mini-
mizes the resulting convex function (that is equivalent to determining a point xl+1 ∈
∂g∗(yl)).
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DCA scheme
Initialization: Let x0 ∈ R

p be a best guess, 0← k.

Repeat

– Calculate yl ∈ ∂h(xl)

– Calculate xl+1 ∈ arg min{g(x)− h(xl)− 〈x − xl , yl〉 : x ∈ R
p} (Pl)

– l + 1← l

Until convergence of the values xl .

Note that (Pl) is a convex optimisation problem and in so far “easy” to solve. Conver-
gence properties of DCA and its theoretical basis can be found in (Le Thi and Pham
2005; Pham 1988; Le Thi and Pham 1997).

4.2 DCA for solving Problem (8)

We first prove that (8) is a DC program and then present the DCA applied to the
resulting DC program.

Denote by χK the indicator function on K , i.e., χK (x, y) = 0 if (x, y) ∈ K , +∞
otherwise. Let g and h be functions defined by

g(x, y) = χK (x, y) and h(x, y) = −cT x − dT y − t
m∑

i=1

min(xi , 1− xi ).

(12)

Hence g and h are convex functions, and so Problem (8) is a DC program in the form

min{g(x, y)− h(x, y) : (x, y) ∈ R
m × R

n}. (13)

By the very definition of h, a subgradient (u, v) ∈ ∂h(x, y) can be chosen as follows:

(u, v) ∈ ∂h(x, y)⇐ u = −c, v = (vi )i , with vi =
{
−1− di if yi ≥ 0.5

1− di otherwise.

(14)

Algorithm 1 (DCA applied to (8))

1. Let (x0, y0) ∈ R
m × R

n . Set k = 0 and let ε1, ε2 be sufficiently small positive
numbers.

2. Compute (uk, vk) ∈ ∂h(xk, yk) via (14).
3. Solve the linear program:

min
{
−〈(uk, vk), (x, y) : (x, y) ∈ K

}
(15)

to obtain (xk+1, yk+1).

123



DCA for solving the scheduling of lifting vehicle 281

4. If either
∥∥(xk+1, yk+1)− (xk, yk)

∥∥ ≤ ε1(
∥∥(xk, yk)

∥∥+ 1) or

∣∣∣∣∣〈c, xk+1 − xk〉〈d, yk+1−yk〉+t
m∑

i=1

(
min(xk+1

i , 1−xk+1
i )−min(xk

i , 1−xk
i )

)∣∣∣∣∣

≤ ε2

(∣∣∣∣∣〈c, xk〉 + 〈d, yk〉 + t
m∑

i=1

min(xk
i , 1− xk

i )

∣∣∣∣∣+ 1

)

then stop, (xk, yk) is the computed solution, otherwise, set k = k + 1 and go to
Step 2.

The convergence of Algorithm 1 can be summarized in the next theorem whose
proof is essentially based on the DCA’s Convergence Theorem for a polyhedral DC
program (Le Thi and Pham 2005; Pham 1988; Le Thi and Pham 2002).

Theorem 2 (Theorem 2, Convergence properties of Algorithm 1)

(i) Algorithm 1 generates a sequence {(xk, yk)} contained in V (K ) such that the
sequence {g(xk, yk)− h(xk, yk)} is decreasing.

(ii) For a sufficiently large value of t , if at iteration r we have xr ∈ {0, 1}m, then
xk ∈ {0, 1}m for all k ≥ r .

(iii) The sequence {(xk, yk)} converges to (x∗, y∗) ∈ V (K ) after a finite number
of iterations. The point (x∗, y∗) is a critical point of Problem (8). Moreover if
x∗i �= 1

2 for i = 1, . . . , m, then (x∗, y∗) is a local minimizer to Problem (8).

Proof (i) is a consequence of DCA’s Convergence Theorem for a general DC pro-
gram (see Le Thi and Pham 2001, 2005; Pham 1988; Pham and Le Thi 1997).

(ii) Let t > t1 := max
{ 〈c,x〉+〈d,y〉−α

β
: (x, y) ∈ V (K ), θ(x) ≤ 0

}
, where α :=

min{〈c, x〉+〈d, y〉 : (x, y) ∈ V (K )} and β := min{θ(x) : (x, y) ∈ V (K )}. Let
{(xk, yk)} ⊂ V (K ) (k ≥ 1) be generated by Algorithm 1. If V (K ) ⊂ {0, 1}n,

then the assertion is trivial. Otherwise, let xr ∈ {0, 1}n and (xr+1, yr+1) ∈
V (K ) be an optimal solution of the linear program (15). Then from (i) of this
theorem we have

〈c, xr+1〉 + 〈d, yr+1〉 + tθ(xr+1) ≤ 〈c, xr 〉 + 〈d, yr 〉 + tθ(xr ).

Since θ(xr ) = 0, it follows

tθ(xr+1) ≤ 〈c, xr 〉 + 〈d, yr 〉 − 〈c, xr+1〉 − 〈d, yr+1〉 ≤ 〈c, xr 〉 + 〈d, yr 〉 − α.

If θ(yr+1) > 0, then

t ≤ 〈c, xr 〉 + 〈d, yr 〉 − 〈c, xr+1〉 − 〈d, yr+1

θ(xr+1)
≤ 〈c, xr 〉 + 〈d, yr 〉 − α

β
≤ t1

which contradicts the fact that t > t1.
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(iii) Problem (8) with the DC decomposition (12) is a polyhedral DC program of the
form (4.1) since the second DC component h is a polyhedral convex function.
(In fact the first DC component g is polyhedral convex too). So DCA applied
to (4.1) has a finite convergence (Le Thi and Pham 2005; Pham 1988; Le Thi
and Pham 2002). According to the DCA’s convergence theorem, for any DC
program, the solution computed by DCA is a critical point of g–h, i.e.,

∂g(x∗, y∗) ∩ ∂h(x∗, y∗) �= ∅. (16)

If x∗i �= 1/2,∀i = 1, . . . , m, then h is differentiable at (x∗, y∗) and then the con-
dition (16) becomes ∂h(x∗, y∗) ⊂ ∂g(x∗, y∗). This subdifferential inclusion (which
is a necessary condition of local optimality in DC programming) is also sufficient in
the case of a polyhedral DC program whose second DC component h is a polyhedral
convex function (Le Thi and Pham 2005; Pham 1988; Le Thi and Pham 2002). The
proof is then complete. ��

We remark that Algorithm 1 converges to a local solution after a finite number of
iterations and it consists in solving a linear program at each iteration. Moreover,
although the DCA works on a continuous domain, it provides an integer solution.

5 A combined DCA-Branch and Bound algorithm for solving Problem (MIP)

For globally solving the problem we combine the DCA with the classical Branch and
Bound method applied to (MIP). The linear relaxation is used for computing lower
bounds while the upper bounds are determined by applying DCA to (8). Our combined
algorithm can be summarized as follows:

DCA-BB.
Let R0 := [0, 1]m . Set γ0 := +∞, β0 := −∞, restart := true, R := {R0}, and
k = 0. Let ε be sufficiently small positive number.

1. Let Rk be the rectangle such that βk = β(Rk) = min{β(R) : R ∈ R}.
Bisect Rk into two subrectangles Rk0 and Rk1 via the index j∗

Rki = {x ∈ Rk : x j∗ = i, i = 0, 1}

2. Compute lower bounds βki (i = 1, 2) by solving the linear relaxation problems
corresponding to the set Rki .

3. If (restart = true) then update γk , the best upper bound of the optimal value of
(MIP) by applying DCA to Problem (8) from a suitable starting point discovered
in Step 2.

4. If R = (i.e. γk − βk ≤ ε), then STOP, the optimal solution is (xk, yk) that verify
cT xk + dT yk = γk , otherwise update

R ← R ∪ {Rki : β(Rki ) < γk − ε, i = 0, 1}\Rk

and go to Step 1.
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Our combined DCA-BB differs from the classical Branch and Bound scheme by Step 3
in which DCA is investigated. In fact, the Branch and Bound algorithm is introduced
to find a good starting point for DCA and check the globality of DCA. restart is a
boolean variable which takes value true if we decide to restart DCA. The question
when DCA is restarted is interesting from numerical points of view and it will be
studied in Sect. 5.2. As in several DC programs, DCA provides a global solution to
(8) (and so is to (MIP)) from a good starting point. This question will be studied in
Sect. 5.1.

5.1 How to find a good starting point for DCA?

From Theorem 2 we see that, starting with a feasible solution to (MIP) DCA provides
a better feasible solution, although it works on a continuous feasible set of (8). It is
so important to find a good feasible point to (MIP) for restarting DCA. We can restart
DCA from the best feasible solution to (MIP) that is discovered while computing lower
bounds. This is motivated by a similar and efficient way introduced in the combined
DCA-Branch and Bound algorithm for nonconvex quadratic programming (Le Thi
and Pham 2001).

On the other hand, for obtaining rapidly a good feasible point to (MIP) we also
investigate a fast procedure to compute an optimal solution of the concave quadratic
program

0 = min
{ m∑

i=1

xi (1− xi ) : (x, y) ∈ K
}
. (17)

That is the DCA developed in (Le Thi and Pham 2001).
In our algorithm, a suitable starting point is computed by choosing one of the two

procedures according to the current situation.

5.2 When do we restart DCA?

During the branch and bound process we restart DCA in two cases:

– when a feasible solution to (MIP) which improves the best current upper bound
is found. In such a case, the starting point of DCA is the just mentioned feasible
solution to (MIP).

– when the number of the 0–1 components of the binary variables (denoted Nx Rk )
of the solution (x Rk , y Rk ) to the corresponding linear relaxation problem is suffi-
ciently large, namely Nx Rk ≥ m/2. The starting point of DCA in this case is the
solution of Problem (17).

5.3 Algorithm 2 (DCA-BB)

We will now describe the combined DCA-Branch and Bound algorithm for solving
Problem (MIP).
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1. Let R0 := [0, 1]m .
2. Solve the linear relaxation problem of (MIP) to obtain an optimal solution

(x R0 , y R0 ) and the first lower bound β0 := β(R0).
3. Solve (8) by DCA from the starting point (x R0 , y R0 ) to obtain (x R0

t , y R0
t ).

If (x R0
t , y R0

t ) is feasible to (MIP) then setγ0 := cT x R0
t and set (x0, y0):=(x R0

t , y R0
t ).

else set γ0 := +∞.
4. If (γ0 − β0) ≤ ε|γ0| then (x0, y0) is an ε-optimal solution of (MIP)

else set R ← {R0}, k ← 0.
5. While stop = f alse do

(a) Select a rectangle Rk such that βk = β(Rk) = min{β(R) : R ∈ R}.
(b) Bisect Rk into two subrectangles Rk0 and Rk1 via the index j∗

Rki = {x ∈ Rk : x j∗ = i, i = 0, 1}

(c) Solve the subproblems (Pki ) to obtain β(Rki ) and (x Rki , y Rki ):

β(Rki ) := min
{
cT x + dT y : (x, y) ∈ K , x ∈ Rki } (i = 0, 1).

(Pki )

If (x Rki , y Rki ) is the best feasible solution to (MIP) then update γk and
the best feasible solution (xk, yk) by applying DCA to (8) from (x Rki , y Rki ).

Else if (N
y

Rki
≥ m/2) then solve (17) by DCA to obtain (x

Rki
t , y

Rki
t ).

Apply DCA to (8) from (x
Rki
t , y

Rki
t ). Update γk and the best feasible point

(xk, yk).
Endif

(d) Set R ← R ∪ {Rki : β(Rki ) < γk − ε, i = 0, 1}\Rk

(e) If R = ∅ then STOP, (xk, yk) is ε-optimal solution, else k ← k + 1.
Endwhile

6 Numerical experiments

In this section, in order to evaluate the performance of the proposed algorithm, we
randomly generated a number of problems by changing the number of QCs, the num-
ber of LVs and the number of containers assigned to each QC. Table 1 displays a few
line of an example of a sequence list applied in ship operations for a QC.

The algorithm was implemented in C++ and run on a Intel Core 2CPU 1.86Ghz of
2GB RAM. For solving linear programs, CPLEX 9.1 was used. We used also CPLEX
9.1 for solving the original problem (P). In this experiment, we compare the efficiency
of three algorithms: our combined B B− DC A, the classical Branch and Bound algo-
rithm and CPLEX 9.1. For the tolerance, ε ≤ 5.10−2 is chosen for all the methods.
The time limit of CPLEX 9.1 is limited to 2 h. We use following notations:

– n: number of quay cranes.
– m: number of vehicles.

123



DCA for solving the scheduling of lifting vehicle 285

Table 1 Exemple of a sequence
list

a L loading, U unloading
b (N row, N tier)
c (N block, N row, N tier)

Container Typea Ship locationb Yard locationc Earliest
ID event time

1 L (12, 2) (65, 3, 1) 0

3 U (24, 3) (64, 10, 2) 210

6 L (14, 1) (61, 12, 3) 210

7 U (12, 1) (67, 14, 2) 420

10 L (13, 2) (12, 18, 1) 420

12 U (15, 2) (132, 2, 3) 630

Table 2 Comparaison of BB-DCA, BB and CPLEX 9.1

N Size BB BB-DCA CPLEX 9.1

n m Gap Time Gap Time Gap Time

1 2 10 0.0033 425 0.0033 310 0.0033 367

2 3 15 0.0017 721 0.0010 412 0.0005 745

3 2 15 0.0025 512 0.0027 365 0.0023 376

4 3 20 0.0034 861 0.0013 432 0.0018 812

5 2 10 0.0012 336 0.0012 212 0.0012 187

6 2 15 0.0006 442 0.0005 212 0.0005 218

7 3 15 0.0034 1,056 0.0021 632 0.0011 645

8 3 20 0.0134 1,103 0.0087 871 0.0101 1,024

9 3 10 0.0125 774 0.0102 489 0.0078 891

10 3 20 0.0131 934 0.0111 645 0.0093 1,020

Average 0.0055 736 0.0040 458 0.0038 628

Bold values are the best results

– U B : the last upper bound of each algorithm.
– L B : the last lower bound of each algorithm.
– Gap = (UB− LB)/(1+ UB).
– T ime : CPU time for each algorithm in seconds.

The comparative results between three algorithms are reported in Table 2. 10 sizes
of test are considered (10 instances per size).

From numerical results, we observe that:

– In all test size, BB-DCA gives better results than classical BB, not only the qual-
ity of solution but also the CPU time. DCA is inexpensive and can so handle
problems with large number of binary variables. The superiority of DCA-BB rel-
ative to the Branch and Bound algorithm increases when the number of binary
variables increases. DCA-BB is fast for large-scale problems while Branch and
Bound algorithm is quite slow or it cannot solve some problems in reasonable
times.

– CPLEX 9.1’s quality of solution is slightly better than BB-DCA’s one but BB-DCA
is faster than CPLEX 9.1 in most of cases.
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