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Abstract Stochastics affects the optimal design of a network. This paper examines
the single-source single-commodity stochastic network design problem. We character-
ize the optimal designs under demand uncertainty and compare with the deterministic
counterparts to outline the basic structural differences. We do this partly as a basis
for developing better algorithms than are available today, partly to simply understand
what constitutes robust network designs.

Keywords Single-commodity network design · Stochastic · Correlation ·
Robustness

1 Introduction

There are many real-life problems that can be described as network flow problems
and for most (if not all) of them there is an underlying design problem. The purpose
of this paper is to study the relationship between the stochastic and the deterministic
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single commodity network design problem, all the time under the assumption of a
single source.

The traditional approach to network design is to formulate deterministic models.
The demand is usually set to its expected value or sometimes some other, somewhat
higher, value, to cater for “normal variation”. In almost all cases, it is understood that
the demand is actually stochastic, but the handling of stochasticity is deferred to the
operational planning level. The reasons for doing so can be many: computational com-
plexity even of the deterministic network design model; a view that modeling wise,
we know too little about demand while still being at the network design level of the
planning; or simply that it is appropriate to postpone such details of the plan. After
all, the goal is to set up the network, not decide how to route the flow.

The question we ask here is: For the single-source single-commodity stochastic
network design (SSSND) problem, how much do we lose by not taking stochastic-
ity in demand into account already at the design level? Could it be that the design
coming from a model which is explicitly told that the future demand is uncertain is
substantially better than a design not based on this knowledge? Given the distributional
information used in the stochastic formulation, the design coming from the stochas-
tic model will by definition be better (measured by the objective function) than the
design from any deterministic model. Of course, if the distributional information is
substantially incorrect, a deterministic design might (by chance) behave better in the
real world. That, however, is not the focus of this paper. Rather, what we are interested
in is, given distributional information, how much better is the stochastic design, and
even more importantly: In what way does the stochastic design differ from its deter-
ministic counterpart, that is, what is it that makes one design better than the other?
We know it is related to investment in flexibility, see Wallace (2010) for a discussion
in the framework of option theory, but we would like to know rather precisely what
this investment in flexibility consists of. And conversely, we are also interested to see
if some structures from the deterministic design actually carry over to the stochastic
counterpart.

We thus study the structural difference between the deterministic and stochastic
formulation to better understand the phenomenon of investing in flexibility. We also
hope to use the results to develop algorithms to solve the problem approximately (for
large cases) or potentially to optimality (for moderate cases).

Our work is related to that of Lium et al. (2009). They study the multi-commodity
problem (and hence have several sources and several sinks for the flow). They iden-
tify two major structural differences: In the stochastic solution it is valuable to have
several paths for each commodity and each of these paths should be shared with
other commodities. Sharing is particularly useful in the case of negative correlations
between demands. Without enforcing consolidation, their networks end up as consoli-
dation networks, often hub-and-spoke. Contrary to conventional deterministic design,
consolidation is a hedging device, not a volume related undertaking. Hence, they
identify structures that can be seen as investments in flexibility, that is, options, along
what is discussed in Wallace (2010). Deterministic models would not produce such
results.

We are studying the single commodity case. And we are limiting ourselves to a
single supply node (or alternatively a single demand node). We chose to look at the
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single supply node case in order to have a simpler (structurally speaking) problem, so
that it is easier to see what structures emerge in the solutions.

From a linear programming perspective, single commodity flow problems are
simpler to solve than multi-commodity flow problems since classical network flow
algorithms can be applied directly, see for example Ahuja et al. (1993). However, this
simplicity of the single commodity case in terms of flow problems does not carry
over to the problem we are studying: the structure of the designs. In fact, we believe
that single commodity design is structurally more complicated to interpret than the
multi-commodity counterpart. In the multi-commodity case, the commodities share
edge capacities, while in the single commodity case with a single source node, the
different demand nodes (which is the closest we can get to something that corresponds
to a commodity in the multi-commodity case), certainly share edge capacities, but also
experience cancellation of flow. That is, if two commodities in the multi-commodity
case need to use the same edge, but in opposite directions, we must cater explicitly for
both, while if the same occurs for two demand nodes in the single-commodity case,
flow cancellation occurs and we must cater only for the difference. It is our experience
that this cancellation of flow increases the complexity of interpretation, and this is
why we in this paper start with the simpler single source case.

The use of network optimization occurs in many different fields. Production–
distribution systems, economic planning, energy systems, communication systems,
material handling systems, water distribution, traffic systems, railway systems, evac-
uation systems, and many others use network optimization models. Aronson (1989)
surveys applications of network design problems in different fields. Most existing
works are focused on the multi-commodity case, whereas much less attention is given
to the single-commodity setting. This is, at least partly, caused by the assumption that
single-commodity network problems are not very rich in applications. However, when
we look into the single-commodity network design problems, we see that this is not
totally true. The single-commodity network design problem is encountered in various
applications, like the design of water distribution systems (Sherali and Smith 1997),
oil pipeline design (Hochbaum and Segev 1989; Rothfarb et al. 1970), sewer network
design (Liang et al. 2004), one-terminal telpak problems (Rothfarb and Goldstein
1971), local access design problems in telecommunications networks (Hochbaum and
Segev 1989), and feeder-bus network design problems (Kuah and Perl 1989; Kuan
et al. 2006), to name a few. The richness of the problem class also increases with the
transformation of certain multi-commodity network problems to a single-commodity
setting as discussed in Evans (1978).

The remainder of the paper is organized as follows. Section 2 explains the prob-
lem in detail with its mathematical formulation. Section 3 explains the set-up of our
experiments and lists the computational results with discussions. Section 4 concludes
the paper.

2 Problem description

Given a set of potential undirected edges connecting a set of nodes, one of which is the
supply node and the rest are demand and transshipment nodes, determine which edges
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to open (including their capacities), such that the edges can carry flow from the source
node to fulfill the demand at the demand nodes. The design is based on minimizing
the sum of the fixed costs of selecting edges connecting the nodes, linear costs to
open capacities on the edges, per unit costs of flows on the edges, and per unit penalty
costs for not satisfying demand. Lack of satisfaction of demand could amount to using
another transportation mode, using the same mode, but delayed, using a competitor,
or simply rejecting the demand.

It is important to include the possibility of rejecting flow in the model. The main
reason is that reality dictates, except in extremely particular situations, that it is pro-
hibitively costly to build a network that can meet any possible demand—however
unlikely it might be. Deterministic models, operating on expected demand, may
reasonably operate under the assumption that (average) demand must be met. But
even there, there will normally be an understanding that some demand may end
up being turned down in reality. When working with stochastic demand, there is
also the problem that requiring demand to be met turns the model into a worst-
case model, where the worst-case in most cases is not even well understood. So,
in total, we find it crucial to include the possibility of not satisfying all the demand.
We use the same formulation also in the deterministic models, to make the results
comparable.

The stochastics in the problem arises in the form of demand uncertainties. It is rare
that demand is fully known when the design is determined, be it a distribution network
or a pipeline network.

This problem is formulated as a two-stage stochastic programing model where the
first-stage decisions are which edges to open, and which capacities to install. The
second-stage decisions are the flow decisions in the given network. The recourse
actions, which are performed in the second stage, are described by a penalty cost
incurred for unsatisfied demand.

In the deterministic case, the demand in each node is fixed at the mean demand
for the stochastic case. We do not discuss edge failures here, but leave that for a later
paper.

2.1 Mathematical formulation

Let G = (N , E) be a network defined by a set N of n nodes, where one of them is
a source node and rest are demand nodes and transshipment nodes, and a set E of m
undirected edges, where

E ⊂ {k = (i, j) : i ∈ N , j ∈ N and i < j}.

Each edge is indexed either by i, j or by k. We assume that supply equals demand in
all scenarios. The notation for the sets, parameters, and variables associated with this
problem is as follows:

Sets:

D set of all nodes with non-zero demand;
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T set of all nodes with zero demand (transshipment nodes);

C singleton set containing the supply node so N = D
⋃

T
⋃

C ;

S set of all scenarios s.

Variables:

xs
k = xs

i j flow on edge k = (i, j) ∈ E going in direction i → j , in scenario s ∈ S ;

zs
k = zs

i j flow on edge k = (i, j) ∈ E going in direction j → i , in scenario s ∈ S ;

uk new capacity that is developed on edge k ∈ E ;

es
i for i ∈ D , unsatisfied/lost demand in node i in scenario s ∈ S ;

for i ∈ C , unused capacity of source node i in scenario s ∈ S ;

yk 1 if edge k ∈ E is developed, 0 otherwise.

Parameters:

M maximal edge capacity; used for linking capacities and open edges in (4);

R unit cost of unsatisfied demand;

ps probability of scenario s ∈ S ;

ck flow cost on edge k ∈ E ;

gk fixed setup cost for edge k ∈ E ;

hk variable setup cost; the cost for adding one unit of capacity to edge k ∈ E ;

vk initial/existing capacity on edge k ∈ E ;

ds
i demand (ds

i < 0) or supply (ds
i > 0) in node i ∈ N in scenario s ∈ S .

Our overall problem is hence:

min
∑

k

gk yk +
∑

k

hkuk +
∑

s

ps
{ ∑

k

ck
(
xs

k + zs
k

) + R
∑

i∈D

es
i

}

(1)
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Subject to:

∑

j : (i j)∈E

(
xs

i j − zs
i j

)
−

∑

j : ( j i)∈E

(
xs

ji − zs
ji

)
=

⎧
⎨

⎩

0 ∀ i ∈ T , s ∈ S
ds

i − es
i ∀ i ∈ C , s ∈ S

ds
i + es

i ∀ i ∈ D, s ∈ S
(2)

xs
k + zs

k ≤ uk + vk ∀ k ∈ E, s ∈ S (3)

uk ≤ Myk ∀ k ∈ E (4)

0 ≤ es
i ≤ |ds

i | ∀ i ∈ D
⋃

C , s ∈ S (5)

xs
k , zs

k, uk ≥ 0 and yk ∈ {0, 1} ∀ k ∈ E, s ∈ S (6)

The objective function (1) minimizes the total expected cost of the network. The
first part is the costs of constructing the new edges, the second part, the costs of build-
ing the new capacities, the third part, the flow costs through all the edges, and the
fourth part is the penalty costs of not fulfilling demand.

Constraints (2) model conservation of flow at nodes. The left-hand side is the net
outflow from node i , which must be zero for all the transshipment nodes i ∈ T and is
equal to the used capacity for the single source node i ∈ C . For the demand nodes, the
net outflow must be equal to the satisfied demand; since ds

i is negative in this case, the
right-hand side is the difference between the scenario demand ds

i and the (positive)
unsatisfied demand es

i .
Notice that in an optimal solution, we will never have flow in both directions of

an edge, consequently Constraints (3) represent the flow limit on each edge. The left
hand side of the equation is the net flow on edge k which should be less then or equal
to the total capacity of the edge. Constraints (4) show that new capacity uk can be
developed only if edge k is built. Constraints (5) show the bound for the unsatisfied
demand and unused supply. Finally, (6) ensure that all variables are non-negative and
the edge construction variables are binary.

We model the problem in AMPL and solve it to optimality using CPLEX 9.0. The
solution times varied from few seconds to 18 h depending on the case, on an Intel®

Core™ Duo running at 2.2 GHz with 3.5 GB of RAM.

3 Experimentation and computational results

In this section, we begin by describing how we generate our random test instances,
and then present our computational results.

3.1 Test instance generation

We used six different type of network instances taken from two different libraries.
The first four instances, namely Atlanta, France, Nobel-EU, and Pdh are telecom-
munication examples from the SNDlib library (Orlowski et al. 2010), available from
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Table 1 The list of different
versions of the test cases used
for computation

Problem name alt. sources # nodes # edges # demand
nodes

Atlanta 1, 2, 11 15 22 12

Atlanta_nonplanar 1, 2, 11 15 29 12

France 12, 13, 16 16 29 13

Nobel-EU 1, 9, 12 19 28 16

Nobel-EU_nonplanar 1, 9 19 32 16

Pdh 1, 2 11 30 9

Molde 2, 9, 14 15 30 12

Molde_nonplanar 2, 9, 14 15 38 12

Montreal 5, 8, 10 10 29 7

http://sndlib.zib.de/, with some modification to suit our problem’s needs. The fifth
instance was generated by us and named Molde and the sixth (Montreal) comes from
Crainic et al. (2000). The names of the instances as such do not mean anything par-
ticular in this computational setup.

The Montreal test instance does not include node coordinates, so we used Graphviz
(Gansner and North 2000), available from http://graphviz.org/, to draw the graph using
fixed setup cost as a distance measure. This resulted in a non-planar graph. The graphs
of the test instances Atlanta, Nobel-EU and Molde are all planar. From each of them,
we created non-planar instances by randomly adding a few extra edges. This gave
us a total of nine problems. For each of the nine problems, we picked three nodes
(two in the cases of Nobel-EU_nonplannar and Pdh) as possible source nodes,
thus creating in total 25 base test instances. These 25 different versions of the test
cases are presented in Table 1. Given the difficulty of solving the stochastic network
design problem to optimality, we kept n (the number of nodes) below 20 and m (the
number of edges) below 40.

Out of the three potential supply nodes (or two nodes for some problems), when
one of them is the source node, the other two (or one) are transshipment nodes. The
possible source nodes are listed in the second column of Table 1. We know from
the work of Lium et al. (2007) that correlations are important in shaping the structure
of the network. Hence, we further create three cases from each problem instance:
one with uncorrelated demands, one with positively correlated demands and one with
mixed correlated demands. In the positively correlated demand cases all correlations
are set to 0.7 and in the mixed correlated demand cases: the demand nodes are divided
into two groups such that each group contains about half of the nodes. All correlations
within a group are set to 0.7, while between groups we use −0.7. Thus we have in
total 75 test cases.

It is worth noting that all the cases from SNDlib and the Montreal test instances are
multi-commodity network design problems, so not all parameters can be used directly
by us. We only kept the coordinates (where available) for the nodes and the fixed setup
cost gk for the edges. The values for the other parameters—variable setup costs hk

and flow costs ck—are all chosen proportional to the Euclidean distance between the
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node pairs. The cost of unfulfilled demand R is selected with trial and error until we
felt that it did not drive the solution in an unreasonable way. We chose R so that we do
not get more than 5% of total demand rejected. Mostly we saw rejections around 2–3
percent. The results in the first part of Sect. 3.3 are based on test cases with these cost
structures. In the second part of the section, we changed the fixed costs (as discussed
in the Sect. 3.3) to understand their relative importance.

In the absence of reference to a particular distribution representing the random
demand we chose to use normal distributions with mean equal to the deterministic
demand (from the underlying cases) and standard deviation equal to 25% of the mean
to represent its stochasticity. As stochastic programs need discrete distributions to
represent the stochastics, we discretized the chosen distributions by creating scenarios
each having equal probabilities to occur. This process of creating scenarios to discret-
ize the distribution representing the stochastics is known as scenario generation. We
generated scenarios using the moment-matching method from Høyland et al. (2003).
This method generates scenarios with a given correlation matrix and marginal distri-
butions specified their first four moments (mean, variance, skewness and kurtosis).
Since we use standard deviation equal to 25% of the mean, negative values happen
with probability 0.000032, or 1 in 31,574. Thus when we generate scenarios, the pos-
sibility of getting extreme values are very low. But we have seen that when the mean
value is a very small positive number we might observe demands with the wrong sign,
and if so, we manually replace them with zero. Thus, in practice, we use truncated
normal distributions to represent the stochasticity of demand.

The decision on the number of scenarios used to represent the stochastics is critical
as we want to be sure we study the effects of randomness on our model, and not some
random effect of the scenario generating procedure. There is a trade-off between the
quality of scenarios representing the underlying distribution reasonably well and the
time needed to solve the stochastic program to optimality. As we increase the num-
ber of scenarios, we increase the quality of the representation of the distribution, but
also decrease the chance to solve the model to optimality within a manageable time.
In our case, we generated 100 scenarios to represent the distributions as this gives
us in-sample stability (solving the same problem on a large number of 100-scenario
trees gives only a 2% difference between the highest and the lowest optimal objec-
tive-function values, except the case ‘Molde’ where it was 3.5%) and manageable
solution times. For more discussion on this subject we refer to Kaut and Wallace
(2007).

3.2 Comparison tests

It is well known that, in general, the solutions from the deterministic versions of a prob-
lem can behave rather badly in a stochastic environment. The reasons are outlined in
some detail in Wallace (2000) and Higle and Wallace (2003). If the scenario tree used
when solving the stochastic version of the problem is considered the “truth”, then,
by definition, the stochastic solution is always better than the deterministic one. But
even though the objective function values corresponding to deterministic solutions at
times were extremely bad, we seemed to observe that the structure of the deterministic

123



Single source single-commodity stochastic network design 147

solutions were retained in the stochastic solutions (see Sect. 3.3), an observation that
is not common. We have thus devised three different tests to better understand the
relationship between the deterministic and stochastic solutions.

A The classical test where the deterministic solution is evaluated using the sce-
nario tree from the stochastic version of the problem. This amounts to solving the
stochastic program with all first-stage variables fixed.

B Only edge information is imported from the deterministic case, the fixed setup
costs gk being set to zero for the edges opened in the deterministic case, while all
other fixed setup costs are set to infinity (i.e. we do not allow these edges to be
opened). The stochastic model is then solved.

C The deterministic solution (both edges and capacities) is taken as an input to the
stochastic program. Then, for the stochastic program, these edges with corre-
sponding capacities are “free”. Both fixed setup costs gk and variable setup costs
hk are paid for the installed capacities. The stochastic program can then add new
edges (paying both fixed and variable setup costs) and new capacities on already
opened edges (paying only variable setup costs). No premium is given for not
using capacities opened in the deterministic case.

In all cases, for each of the comparisons, all costs are added up, both those inherited
from the deterministic solution and those incurred via the stochastic program. All costs
are therefore comparable.

The purpose of comparisons B and C is to check whether the structure from the
deterministic solution really is good for the stochastic case. By making edges from
the deterministic case “free” in two different ways, the stochastic program is guided
toward the deterministic solution. If this is not a good idea, the result will be a solution
with a behavior which is much worse than that of the stochastic program which has
no deterministic input. Note that, while comparison B also represents an alternative
solution procedure (use a deterministic model to determine which edges to open and
then a continuous two-stage stochastic program to set the capacities), comparison C
does in itself imply the solution of a problem of the same type as the original problem,
albeit with some discrete variables fixed.

3.3 Inheritance from the deterministic solutions

We focus on the major findings, while details of the results are given in the appendix.
Our first need is to understand the relationship between the stochastic and deterministic
designs. We therefore perform comparisons A, B, and C from Sect. 3.2. That is, for all
25 deterministic cases, we solve the corresponding network design problem. Also, we
solve all 75 stochastic cases, representing the stochastic versions of the deterministic
cases (each with three different correlation structures).

Then, each of the 25 deterministic solutions are imported into its three stochastic
counterparts (three different correlation matrices). This is done for all three compari-
sons. Figure 1 shows the results.

The deterministic solution is rather bad in the stochastic environment, while inher-
iting the structure seems to be rather good. For comparison A, the deterministic solu-
tions have expected objective function values which are from one percent to almost
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Fig. 1 Ratios of the expected
value of the deterministic
solutions (25 base test instances)
imported into the stochastic
setting divided by the optimal
objective function value for the
stochastic program, for all three
comparisons

 1

 1.5

 2

 2.5

 3

 3.5
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 4.5

5

Minimum MaximumGeometric mean

Comparison A
Comparison B
Comparison C

400 percent higher than that of the stochastic counterpart. But comparisons B and C
show that inheriting the structure of the deterministic solution is surprisingly good.
Errors ranges from 0 to 5%, and larger values are observed for the mixed and zero
correlation cases. This is not unreasonable since these are the cases where we see, to
the largest extent, the different demand nodes interact. We shall see more of that in
Sect. 3.4.

We believe that a major reason for the somewhat surprising result that forcing the
deterministic solution structures upon the stochastic program has so little effect is the
fact that we are studying the single source case. In that case, all demand nodes are
supplied from the same single node, which therefore becomes the root of a tree in
the deterministic case. Since the whole point of network design is the fixed charges
(particularly the fixed setup costs, but also the capacity costs) discouraging the open-
ing of edges, this tree is also useful for the stochastic case, although it might have
preferred a slightly different one (the stochastic solution must contain a tree rooted in
the supply node). Hence, forcing it upon the solution of the stochastic program is not
too serious. Note that the deterministic solution itself is at times very bad. It is only
after capacities have been adjusted (comparison B) or new edges and capacities have
been added (comparison C) that the deterministic structure is good in most cases.

Let us turn next to testing these results when we vary the way setup costs are dis-
tributed between the fixed setup cost gk and the variable setup cost ht . Let M be the
maximal capacity of an edge, as defined in our parameter list. For each of the 25
test cases, we calculate for each edge Ck = gk + Mhk . Then we redistribute Ck in
following five different ways:

a Fixed setup cost 0.1% of Ck and variable setup cost 0.999Ck/M
b Fixed setup cost 5% of Ck and variable setup cost 0.95Ck/M
c Fixed setup cost 25% of Ck and variable setup cost 0.75Ck/M
d Fixed setup cost 50% of Ck and variable setup cost 0.5Ck/M
e Fixed setup cost 99.9% of Ck , and variable setup cost 0.001Ck/M .

All tests described earlier were performed for each of these five cases and results
are shown in Fig. 2. We find that the deterministic solution is, as before, rather bad in
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Fig. 2 Ratios of the expected
value of the deterministic
solutions imported into the
stochastic setting divided by the
optimal objective function value
for the stochastic program, for
all three comparisons, taken over
all ways to distribute costs
between fixed setup costs and
capacity costs

 1
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 3

 3.5

 5

 4.5

4

Minimum Geometric mean Maximum

Comparison A
Comparison B
Comparison C

the stochastic environment (with errors up to over 400%), while inheriting the struc-
ture is no longer as good as it was, in particular when the fixed setup cost is low
and the capacity cost is high. This is natural, since in that case, the cost of opening
one edge with a given capacity costs basically the same as opening two edges with
the same total capacity. Hence, the structures enforced upon the solutions in compar-
isons B and C become costly and make robustness more expensive to achieve. We
see errors up to 18%, which in most real terms is rather high, but not in comparison
to the behavior of the deterministic solution. The results seem little dependent on
correlations.

3.4 Structural differences

In Lium et al. (2009), some structures are observed for a multi-commodity case.
These structures are very general and applicable across many different parameter
settings. We were not able to find equally simple and general rules in the SSSND
case and believe the reason to be the structural complexity of flow cancellation.
But we do observe differences in design between the deterministic and stochas-
tic formulations, which gives insights into what constitutes a robust design. Hence,
what we shall do in this section is to provide a number of specific examples, all
taken from the collection of problems in Sect. 3.1, and show in detail how the
stochastic solutions differ from their deterministic counterparts. By doing so, we
provide examples of how to think about flexibility in routing flow, and hence robust-
ness in design. That, after all, is the goal of this paper. This structural knowledge
can be used to develop heuristics as well as, and maybe more importantly, help
researchers and practitioners alike to understand how to look at a given design and
check its quality, even when no quantitative tool is involved. We want to develop
a qualitative understanding of a robust design for SSSND. Some of the results
are “obvious”. Rather than this being a problem, we view it as a very desirable
property. It means that robust designs are, at least structurally, not so difficult to
understand.
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Fig. 3 Deterministic, stochastic, and comparison B solutions of Nobel_EU (left) and Molde (right) test
cases showing presence of deterministic structures in the stochastic solutions

3.4.1 Similarity

Let us first look at Fig. 3 which covers two cases with uncorrelated demand where
the fixed setup costs gk are rather high. (Thick lines denote installed edges, with
capacities given by labels, while thin lines denote edges that are not installed. The
supply node is marked by a filled rectangle and the filled rounded nodes denote the
demand nodes. The rest, i.e. the unfilled nodes, are the transshipment nodes. This
color scheme is followed in all the subsequent figures.) The deterministic solutions
are, of course, trees; we do not necessarily have spanning trees due to the presence
of transshipment nodes. These trees are contained in the stochastic designs, but with
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different capacities. Generally, the capacities are higher in the stochastic case to cater
for the high-demand scenarios. To what extent this happens (rather than high demands
not being fully served) of course depends on the relationships among the different
cost elements. The reason we get the same trees in these cases is that they represent
the cheapest way of connecting all demand nodes with the source node (at least for
the expected demand case). This becomes such a forceful property of the network
that even in the stochastic case this structure is kept as long as the fixed setup costs
are reasonably high. However, consider the bottom two graphs in Fig. 3. They show
the solutions corresponding to comparison B, that is, when only edges opened in the
deterministic case are allowed, but capacities can be set freely. What we see is that
capacities generally are much higher than in the deterministic case. That is natural
as one wishes to cater for high demand scenarios. But capacities are also generally
higher than for the stochastic case, showing that even though the deterministic tree is
present in the stochastic design, it is certainly valuable to add cross-over edges rather
than just increasing capacities on the deterministic tree.

The advantage of test cases like this one, where the structure is similar, is that it is
easier to see how the stochastics updates the tree and thereby what constitutes a robust
design. Later we will see cases where the tree within the stochastic solution (there
must be one because we have only one supply node) is different from the tree of the
deterministic solution.

3.4.2 Connecting branches

Sometimes branches in the deterministic design are connected in the stochastic design.
Consider the Molde test case (right) in Fig. 3. Note how an edge has been added
between nodes 1 and 3, serving two purposes: If node 1 has a particularly large demand,
it can be supplied via node 3. On the other hand, if demand in node 1 is small, the path
via node 1 can be used to supply all nodes downstream from node 3. Also note how
nodes 7, 10, 11 and 12 have been connected downstream from the supply node. This
way less capacity needs to be added close to the source node on several branches since
the branches can share capacities using these new edges. Also this makes evident that
in a stochastic design the tree actually splits farther from the source node as compared
to the deterministic design and this is to benefit from available installed capacities.

We can see the importance of these cross-over edges by comparing the stochastic
solutions with the comparison B solutions. As we just noted, the comparison B solu-
tions, which do not have cross-over edges, have higher capacities than the stochastic
solution, as we see in Fig. 3.

In the deterministic solution of Fig. 4, we see two major branches connecting the
demand nodes with the source node. One of them (named branch-1) connects demand
nodes 1, 3, 5 and 6 with source node 9, while the other (branch-2) connects 7, 10, 11,
12, and 15. In the stochastic solution we see that these two branches are connected
by edges 6–10 and 3–7 (while 1–3 connects branches within branch-1). Branch-1 and
branch-2 have 301 and 345 units of demands respectively in the deterministic case.
In the stochastic case, branch-1 and branch-2 have maximal demands of 378 and 441
units, respectively. But if we compare the capacities of the edges coming out of the
source node, we observe that in the deterministic case it is 646 in total, while for the
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Fig. 4 Deterministic (top left), stochastic (top right), and comparison B (bottom) solutions of the Molde
test instance showing connections between leaves of the deterministic solution tree in stochastic solution

stochastic case it increases by 16.5% to 753. The capacities installed on these branches
in comparison B, shown in Fig. 4, is 819 units in total. This is an uncorrelated sto-
chastic case, and there is no scenario with such a total demand (as it is very unlikely
to happen given the distributional assumptions). So we can see that in the stochastic
case, instead of installing a total of 819 units, the demand is managed by installing
less (only 753 units in total plus some assistance via node 4) and this is possible due
to the edges 6–10 and 3–7 which help sharing installed capacity among the nodes of
the two branches. The fact that the maximal branch demands cannot occur at the same
time cannot be utilized in comparison B.

3.4.3 Connecting leaves

In some cases the cross-over edges occur at the leaves of the deterministic tree, usu-
ally with moderate capacities. This typically happens when the nodes have comparable
variation in demand. (In our test cases, where standard deviation is set at 25% of mean
demand, it means we see nodes with similar mean demands). Two examples can be
found in Fig. 4 with the edges between nodes 1, 3 and 7 helping out all three leaves
of the tree. The reason is that in these cases all three nodes can handle most of their
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high demand scenarios (which in this example occur independently of each other)
using these moderate cross-over edges. If the variation in demand is very different
between two leaf nodes, then we do not see this cross-over (discussed in detail in
the next heading). However, generally, if the leaves are far from the source node the
chances of edge formation is highest as then it becomes cheaper to open a new edge
between them and share the capacity of the cross-over edge rather than increasing the
flow capacity all along the two paths from the source node. This can be seen in
the stochastic structure (link between demand nodes 13 and 15 via transshipment
node 14) of Molde in Fig. 3.

3.4.4 Balanced variation

We mentioned earlier that leaves of the tree are typically connected if the variation in
demand are of comparable size, since the edge can then help out both the connected
nodes. This is illustrated in Fig. 5. In the top right graph, we see a connection between
leaf nodes 13 and 14, while there is none between 10 and 12. The mean demands are
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9,239 and 5,582 for nodes 10 and 12. In the bottom graph we have changed the mean
demands to the fairly similar values of 6,639 and 5,582. Then the cross-over edge
appears. This is due to the fact that when the fixed setup costs are high (as they are
here), these linking edges are economically useful only when used to resolve demand
variation in both ends. If the variation in demand is very different between two leaf
nodes, only the smaller of the nodes can fully utilize the cross-over edge (the other one
needs more help), and then we typically do not see the cross-over edges. Remember
that in our tests standard deviation is 25% of mean demand for all demand nodes.

3.4.5 Mixed correlations

Let us next turn to some cases where we face mixed correlations, that is, some corre-
lations are positive, some negative, still with fixed setup costs relatively high. We have
set up the correlation structure as follows: The demand nodes have been put into two
groups of approximately the same size. Within each group all demands are strongly
positively correlated, while all correlations between pairs of node in different groups
are strongly negatively correlated. So the assumption is that there is some underlying
phenomenon that causes low demands in one group to typically match high demands
in another group. For example, water demand tends to be high in residential areas
on warm, dry days, while colder, wetter days cause high demand in indoor sports
facilities.

As an extreme case of the hedging phenomena observed for the uncorellated cases,
where some of the deterministic edges become weaker, for mixed correlations some
edges disappear completely. This happens especially when the demand nodes can
connect more beneficially to other nearby node(s) with negatively correlated demand.
In other words, some nodes switch from one subpath to another. This can be seen in
Fig. 6. In the upper part of the figure, the demand of node 4 is positively correlated
to that of node 6 and negatively correlated to that of node 3. Hence, in the stochastic
solution, it switches from being connected to node 6 to being connected to node 3.
A simililar phenomenon can be observed for node 5 in the bottom part of the figure.

With negative correlations present, most leaf nodes in the deterministic tree get
connected to some other leaf nodes, where connections are guided by negative cor-
relations. Further we observe that leaves from different branches are linked in the
stochastic solution if they have similar variation in demand or if they are far from the
source node as in the previous cases.

3.4.6 Positive correlations

While it is most beneficial to connect nodes with negatively correlated demands, pos-
itively correlated nodes may be connected as well. Typically, the connection is of
moderate size, while the variations in demand are reasonably large (but of same size)
for both nodes, so that even variation consistent with positive correlations can use a
new edge in a balanced way. In addition, positively correlated demand nodes may be
connected because one of them (or both) is connected to negatively correlated nodes,
creating a pool of nodes that can share capacity.
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Generally speaking, if all the demand is positively correlated, we observe that the
stochastic solutions are very similar to the deterministic ones. The reason is that the
stronger are the correlations, the less likely it is that one demand node has low demand
when another has high, which removes incentives for capacity sharing. Because of
the variable demand, the installed capacities are higher than in the deterministic case
(Fig. 7), with the difference depending on the rejection costs. With weak positive cor-
relations the solutions are close to those from the uncorrelated case which we already
discussed.

4 Conclusion

The purpose of this paper has been to better understand what constitutes a robust
design for the SSSND problem. The single commodity case is, structurally speaking,
more complex to understand than the multi-commodity case due to the phenomenon
of flow cancellation. For that reason, we chose to start our investigation of the single
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commodity case with just a single source, to increase the chance of capturing the
structural properties of robust designs.

Not very surprisingly, we find that the deterministic solution can be very bad indeed
in terms of expected behavior. However, we also find that in most cases, the struc-
ture from the deterministic solution tends to be good also in the stochastic setting, if
we can adjust the capacities and/or add new edges. To understand this, firstly note that
the deterministic solution will always be a tree as long as any amount of capacity can
be opened on an edge. Secondly, if the fixed setup costs are large enough relative to
the capacity and flow costs, also the stochastic solution will be a tree, as creating loops
will simply be too expensive. It is not clear that we shall get the same tree, but since
the deterministic tree carries the expected flow at minimal cost, it is also likely to carry
the stochastic flow most cheaply. As the variance in demand increases, particularly
when there are negative correlations, the stochastic tree will tend toward one where
negatively correlated demand nodes sit on the same branches of the tree. If this was
not the case in the deterministic solution (which is a fully random phenomenon), the
trees will tend to be different. With high fixed setup costs, this will only happen if
several trees have about the same fixed setup cost.

As the fixed setup costs decrease, we still get a tree in the deterministic case. And the
very fact that this tree (where now capacity and flow costs count relatively more than
before) carries the expected flow at minimum cost still carries weight in the stochastic
case. Therefore, the deterministic tree tends to remain in the stochastic solution. How-
ever, in this case, where capacity costs are relatively more important than the fixed
setup costs, it is much less costly to add new edges, creating circuits in the solution.
We also occasionally see the structure change totally, and edges from the deterministic
tree disappear. Important phenomena, which makes the stochastic structure different
from deterministic structure, are the size of the variation (the variance) representing
how stochastic the problem really is, and the correlation structure.

A case where all correlations are positive and large is similar to a deterministic case
with demands higher than the expected demands. We typically get a tree with higher
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capacities than in the deterministic case to facilitate the high demand scenarios. As
before, if fixed setup costs are high, we tend to get the same tree, but if capacity costs
dominate, the tree might be different. Positive small correlations are similar to the
uncorrelated case.

With uncorrelated demands and moderate fixed setup costs, a number of important
phenomena occur. If variance in demand is moderate, the deterministic tree is still
a good candidate for carrying a major portion of the flow. However, in addition we
observe cross-over edges between branches in this tree in the stochastic solution. The
placement of these cross-overs will depend on the following factors: Firstly, nodes with
similar variation in demand, if far from the source node, will tend to be connected
with edges of moderate capacity, taking care of much of the (uncorrelated) variation
between them. We may also see a group of nodes, lying far from the source node,
connected that way. Secondly, somewhat downstream from where two branches split,
we tend to see high capacity cross-over edges, used to make the branches help each
other when demand varies. However, connecting two large branches (in terms of the
number of demand nodes) too close to the node where the branches split is not useful,
as each branch will tend to have a rather fixed demand due to the law of large numbers.
Also, too close to the split it might be better to add capacity to both branches to avoid
the fixed setup cost of the cross-over. So cross-over edges must be placed such that
there is genuine (and preferably comparable in size) variation in demand downstream
or upstream (or both) from the cross-over. In addition it is worth noting that in the
stochastic case, there is a tendency for branches to split later than in the deterministic
case, as that will tend to utilize the installed capacity better.

With negative correlations present, we see the phenomena from the uncorrelated
case strengthened. In particular, cross-over edges connect, when possible, nodes or
clusters of nodes, with negatively correlated demand upstream or downstream (or
both). The more negative, the better. A typical setting is a collection of leaf nodes,
with some pairs having negatively correlated demands, being connected with moder-
ately large edges, basically facilitating the demand variation in the whole collection.

So, what brings us furthest away from the deterministic tree is a case with large
negative correlations, moderate fixed setup costs, and large variation (large variance)
in demand.

The message of the paper could thus be summarised as follows: there are important
very large stochastic network design problems in the real world; the corresponding
models cannot in any way be solved, not even approximately. On the other hand, the
decision problems remain, and solutions are found, somehow. Distribution networks
are planned and built even though traditional OR models cannot really help with respect
to the stochastics. So we put on our OR hats and say: anything that sheds light on these
problems is useful as it (at least potentially) brings us closer to understanding what
we are looking for: good network designs when stochastics is considered. It is in this
light the paper is written—with the very modest hope of adding some understanding.
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Appendix

Results of the numerical tests

This appendix provides detailed results from the tests in Sect. 3. We provide the num-
bers used to generate Figs. 1, 2 in Sect. 3.3. Also the discussions in Sect. 3.4 are
based on these computations, but the individual cases cannot be reproduced from
these tables.

Since the results, particularly for Fig. 2, depend on correlations, we also show the
ratios in Table 2 split by correlation structures—see Table 3 and 4. Finally, the full
computational results for Fig. 1 are presented in Table 5.

Table 2 The numbers
corresponding to Figs. 1, 2

Figure 1 Figure 2

A B C A B C

Minimum value 1.011 1.000 1.000 1.011 1.000 1.000

Geometric mean 1.991 1.011 1.002 1.718 1.010 1.004

Maximum value 4.912 1.047 1.015 5.188 1.180 1.180

Table 3 The numbers corresponding to Fig. 1 split by correlation structure

Zero correlations Mixed correlations Positive correlations

A B C A B C A B C

Minimum value 1.017 1.004 1.000 1.022 1.000 1.000 1.011 1.000 1.000

Geometric mean 1.973 1.016 1.003 1.994 1.017 1.003 2.005 1.001 1.001

Maximum value 4.721 1.047 1.011 4.910 1.040 1.015 4.912 1.007 1.007

Table 4 The numbers corresponding to Fig. 2 split by correlation structure

Zero correlations Mixed correlations Positive correlations

A B C A B C A B C

Minimum value 1.013 1.000 1.000 1.019 1.000 1.000 1.011 1.000 1.000

Geometric mean 1.705 1.011 1.002 1.737 1.011 1.002 1.712 1.009 1.008

Maximum value 5.013 1.075 1.048 5.188 1.081 1.018 5.059 1.180 1.180
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