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Abstract Among a comprehensive scope of mitigation measures for climate change,
CO2 capture and sequestration (CCS) plays a potentially significant role in industria-
lised countries. In this paper, we develop an analytical real options model that values the
choice between two emissions-reduction technologies available to a coal-fired power
plant. Specifically, the plant owner may decide to invest in either full CCS (FCCS) or
partial CCS (PCCS) retrofits given uncertain electricity, CO2, and coal prices. We first
assess the opportunity to upgrade to each technology independently by determining
the option value of installing a CCS unit as a function of CO2 and fuel prices. Next, we
value the option of investing in either FCCS or PCCS technology. If the volatilities of
the prices are low enough, then the investment region is dichotomous, which implies
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that for a given fuel price, retrofitting to the FCCS (PCCS) technology is optimal if the
CO2 price increases (decreases) sufficiently. The numerical examples provided in this
paper using current market data suggest that neither retrofit is optimal immediately.
Finally, we observe that the optimal stopping boundaries are highly sensitive to CO2
price volatility.

Keywords Real options analysis · CCS · Geometric Brownian motion ·
Mutually exclusive options

1 Introduction

Since the 1970s, as global greenhouse gas (GHG) emissions have increased signifi-
cantly due to human activities, so have temperatures. Global average sea levels have
been rising, global average air and ocean temperatures have been increasing, and wind
patterns as well as snow, ice, and frozen ground have been changing (IPCC 2005).
Carbon dioxide (CO2) is referred to as the most critical anthropogenic GHG, annual
emissions of which grew by about 80% between 1970 and 2004 (IPCC 2007) mainly
due to fossil-fuel combustion and deforestation. Continuing CO2 emissions at or above
current rates would result in further warming and more changes to the global climate
during the 21st century.

Serious consideration is currently being given by industrialised countries to reduc-
ing their CO2 emissions. These countries, known as Annex 1 (forty countries and
separately the European Union), joined the 1997 Kyoto Protocol and have agreed to
reduce their CO2 emissions to an average of 5% below 1990 levels during the period
2008–2012. In order to implement its commitments, the European Union introduced
a CO2 Emission Trading Scheme (EU ETS) that allocates CO2 emission permits to its
facilities in the power sector, iron and steel manufacturing, and other heavy industries.
Such facilities may emit CO2 annually up to their allowance limits, and any additional
emission requires purchase of surplus permits from counterparties. Thus, the negative
externality of CO2 emissions may be reflected in the cost of purchasing additional
permits.

A wide range of mitigation options is now available or proposed to be available by
2030. These options include better end-use efficiency improvements, conversion to
less carbon-intensive fuels (e.g., switching from coal to gas), nuclear power, renewable
energy sources (such as hydropower, wind, and solar), and CO2 capture and seques-
tration (CCS) technology. However, since primary energy use will continue to rely on
fossil fuels in the near term, CCS technology could play a key intermediate role in
alleviating climate change. Moreover, CCS is more likely to reduce overall mitiga-
tion costs and allow additional flexibility in attaining GHG emission reduction (IPCC
2005). Nevertheless, according to Hildebrand and Herzog (2008), capturing almost
all emissions, or full capture, is a policy that is less likely to progress either new
coal-fired plants or CCS technology in the near term. The implementation of full cap-
ture at a coal-fired power plant has a critical effect on plant technology, operation, and
economics. On the other hand, partial capture of the emissions could be a very good
replacement at the first step. In effect, it could provide plant owners with additional
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flexibility in offsetting emissions costs without the burdensome capital investment or
efficiency loss associated with full CCS.

This paper considers the perspective of a coal-fired power plant owner that must
decide how to mitigate its CO2 emissions by investing in either partial (PCCS) or full
(FCCS) CCS technology. The former may correspond to either retrofitting only some
of the generators in a power plant or capturing some of the CO2 emissions. We assume
that the power plant is operating at its rated capacity in a CO2-constrained environ-
ment that requires the purchase of permits for any CO2 emissions. Given uncertainty in
electricity, coal, and CO2 prices, following the standard smooth-fit techniques devel-
oped by Dixit and Pindyck (1994), we value each mutually exclusive mitigation option
via the real options approach and determine when to adopt it assuming discretion over
timing and technology choice. We use an approach that is similar to the one described
in Décamps et al. (2006), which extends the analysis of Dixit (1993) by providing
some conditions under which the optimal investment region is dichotomous under
price uncertainty.

Herbelot (1992) also applies option valuation techniques in a similar study, but it
analyses the investment situation of a coal-fired power plant that has to reduce its
sulfur emissions by either switching to lower-sulfur coal or investing in an emission
control system. The two stochastic variables in this study (allowance price and coal
price premium)1 follow correlated geometric Brownian motion (GBM) processes.
It develops a discrete-time binomial model to evaluate numerically the investment
opportunity. Pindyck (2002) proposes a continuous-time model of environmental pol-
icy adoption that takes into account uncertainty over both environmental change and
the social costs of environmental damage. The analytical solution to this problem is
formalised in Adkins and Paxson (2008), which examines an asset depending on both
uncertain revenues and operation costs that has a renewal opportunity. It provides a
stochastic two-factor real options model that is solved analytically. While Wickart and
Madlener (2007) also uses the real options approach to consider a two-factor model,
i.e., the mutually exclusive investment choice between combined heat-and-power pro-
duction and a conventional heat-only generation system, it accounts for uncertainty in
one variable at a time. Abadie and Chamarro (2008a), on the other hand, assumes two
sources of risk, viz., the price of emissions allowance and the price of electricity, and
evaluates the option to install a CCS unit in a coal-fired power plant via a lattice-based
approach. It models the electricity and CO2 emissions permit prices as evolving accord-
ing to correlated geometric mean-reverting (GMR) and GBM processes, respectively,
and obtains the allowance price thresholds above which it is optimal to invest in CCS
immediately. The results indicate that current permit prices do not lead to an immediate
adoption of this technology. Abadie and Chamarro (2008b), applying binomial lattices,
studies the choice between investing either in a natural gas combined cycle (NGCC)
power plant or in an integrated gasification combined cycle (IGCC) power plant.

The contribution of our paper is twofold: (i) we analyse the incentives for CCS
retrofits, and (ii) we expand the real options theory for mutually exclusive investment
under uncertainty to the case with two risk factors. We examine two situations:

1 The difference between low-sulfur and high-sulfur coal prices.

123



112 S. Heydari et al.

• Individual investment options, when investing in FCCS and PCCS technologies
are analysed independently.

• Mutually exclusive options, when the decision to invest in either FCCS or PCCS
technology is explored.

Having more than one stochastic variable and following the same procedure as
in Adkins and Paxson (2008), we evaluate the individual investment options ana-
lytically. Moreover, we calculate an optimal stopping boundary for the CO2 permit
price, depending on the fuel price, above which it is optimal to invest in FCCS/PCCS
technology immediately. The results of our study suggest that at current CO2 and
coal prices, adopting the emission-reduction policy is not optimal, although both
technologies (FCCS and PCCS) are in the money. This general conclusion is thor-
oughly consistent with previous studies, such as Abadie and Chamarro (2008a). How-
ever, as a result of applying different approaches and using different stochastic models
for prices, the CO2 thresholds may, unsurprisingly, differ in comparable studies.

Evaluating the mutually exclusive options, we generalise the theory proposed by
Décamps et al. (2006) into a two-dimensional space. We introduce an indifference
region around the intersection of the NPVs of the projects, over which it is opti-
mal to wait before investing in either technology. As the FCCS technology produces
higher cash flows than the PCCS one along with a significantly larger sunk capi-
tal cost, the optimal investment region may become dichotomous. After evaluating
each project separately, we have two different option values and, correspondingly,
two optimal stopping boundaries: C∗(pccs)(F) and C∗( f ccs)(F). If the CO2 price is
less than C∗(pccs)(F), then the plant owner waits until the CO2 price reaches this
value via either an increase in the CO2 price or a decrease in the fuel price. However,
for high values of CO2, around the indifference curve, the solution to the separate
valuation is no longer optimal. Over this region, there are two critical thresholds,
C∗

L(F) and C∗
U (F) (C∗

L(F) < C∗
U (F)). When the current CO2 price is included in

[C∗(pccs)(F), C∗
L(F)], it is optimal to invest immediately in PCCS technology, while

for those values greater than C∗
U (F), it is optimal to invest immediately in FCCS. For

values in [C∗
L(F), C∗

U (F)], however, it is optimal to wait. Since there is no analytical
solution to valuing the mutually exclusive option to retrofit, we propose an algorithm
in order to solve this two-factor real options problem numerically. After valuing the
mutually exclusive options, we show that without considering the waiting opportunity
over the indifference region, the plant owner may lose a modest amount of money by
investing immediately. We then explore how these variables, viz., the CO2 emission
allowance and coal prices, may interact in affecting the time of adoption. Finally, we
focus on the effects of price volatility on such mutually exclusive mitigation options.

The remainder of this paper is organised as follows. In Sect. 2, we briefly describe the
CCS technology. In Sect. 3, we introduce the models of stochastic prices, calculate the
analytical solution of the option value of investing in FCCS and PCCS technologies
independently, and derive the value of the opportunity to choose between the two
technologies. The optimal stopping boundaries are also calculated in both individual
and mutually exclusive options. Using the data provided in Sect. 4, we then, in Sect. 5,
discuss the implication of our study addressing two numerical examples along with
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a sensitivity analysis. Finally, Sect. 6 concludes and provides directions for future
research in this area.

2 Carbon capture and sequestration technology

CCS is a process by which CO2 is separated from industrial and energy-related sources.
It is then transported for geological storage, ocean storage, or mineral carbonation in
order to be isolated permanently from the atmosphere or for use in industrial processes
(IPCC 2005). A power plant equipped with CCS technology requires additional energy
for capture, transport, and storage, which causes a reduction in overall efficiency of
the plant.

According to IPCC (2005), there are three types of CO2 capture systems:

• Post-combustion, which captures CO2 from the flue gas and is applied in existing
power plants;

• Pre-combustion, in which CO2 in the fuel is separated before combustion, which
is more costly and applicable only to new fossil fuel plants;

• Oxyfuel combustion, which uses high purity of oxygen that causes CO2 with high
concentrations in flue gas to be easily separated. However, it is more expensive
because of a higher energy requirement to produce pure oxygen.

After CO2 is captured, it can be transported from the source to the storage site
either through pipelines or using ships. However, for a large amount of CO2 over short
distances, pipelines are preferred, although smaller volumes of CO2, specifically for
larger distances overseas, may be transported with ships (IPCC 2005).

Installing FCCS technology with access to geological or ocean storage, a coal-fired
power plant can capture up to 85–95% of its CO2 emissions (IPCC 2005), while using
approximately 10–40% more energy than before. However, achieving this CO2 cap-
ture is likely to be too expensive and almost impossible in near term. With regard
to this difficulty, Hildebrand and Herzog (2008) considers a lower rate of capturing,
PCCS, as a reasonable first step in putting CCS into action. A coal-fired power plant
equipped with PCCS could lower its CO2 emissions down to a gas-fired power plant’s,
i.e., a capture of nearly 45–65%. FCCS technology could cause up to 60% increase
in the capital cost of a pulverised coal power plant, while this increase for PCCS is
extremely less. Moreover, a power plant with PCCS requires less energy than a power
plant with FCCS, thereby limiting the efficiency loss.

3 Problem formulation

3.1 Assumptions

We take the perspective of the owner of a baseload coal-fired power plant with infinite
lifetime2 intending to reduce its CO2 emissions by investing in either PCCS or FCCS

2 Although a coal-fired power plant has a typical lifetime of forty years, for simplicity, in this paper, we
assume that it has an infinite lifetime. This is justified by the impact of discounting the cashflows that are
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technology. Since the timing of the retrofit is at the discretion of the owner, the option
is perpetual. Additionally, we assume that the investment is entirely irreversible and
cannot be scrapped once installed, nor is it possible to suspend the CCS unit to allow
venting. The option of switching from one technology to another is also assumed to
be impracticable in this study. Three sources of uncertainty are taken into consid-
eration: fuel input price, Ft (in $/MWh), electricity output price, Et (in $/MWhe),
and CO2 permit price, Ct (in $/tCO2). Future revenues and costs of the investment
are discounted at a subjective constant annual rate, μ. After investing in either tech-
nology, the electricity production of the plant, Q (in MWhe/year would remain the
same as before; however, the overall efficiency of the plant will decline due to further
energy requirements. Finally, once the retrofit decision is made, the CCS technology
is installed immediately, i.e., there is no time-to-build problem as in Majd and Pindyck
(1987).

3.2 NPV of mitigation projects

We assume that Et , Ft , and Ct evolve stochastically according to the following GBM
processes:3

d Et = αE Et dt + σE Et dzE
t (1)

d Ft = αF Ft dt + σF Ft dzF
t (2)

dCt = αC Ct dt + σC Ct dzC
t (3)

where {αi < μ; i = E, F, C} and {σi ; i = E, F, C} are, respectively, the drift and the
volatility parameters, and dzi

t stands for the increment of standard Brownian motion

process. Moreover, we suppose that the prices are correlated, i.e., E(dzi
t dz j

t ) = ρi j dt
for {(i, j) = (E, F), (E, C), (F, C)}. Therefore, the net expected discounted profit
of an existing power plant without any CCS, conditional on current prices E, F , and
C , is given by:

V (E, F, C) = QE
⎡
⎣

∞∫

0

(Et e
−μt −εF Ft e

−μt −εC Ct e
−μt ) dt |E0 = E, F0 = F, C0 =C

⎤
⎦

= Q

[
E

μ−αE
− εF F

μ − αF
− εC C

μ − αC

]
(4)

where εF and εC represent the heat rate (in MWh/MWhe) and the emission rate (in
tCO2/MWhe), respectively, of a power plant without CCS. Thus, the expected net

Footnote 2 continued
several decades in the future. Plus, assuming that all equipment lasts forever removes any complication
from having to compare technologies with different lifetimes.
3 As suggested in Pindyck (1999), although long-run energy prices are mean-reverting, since their rate of
mean reversion is low, the GBM assumption may be acceptable in many applications.
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present value (NPV) of investing in retrofit project j = {pccs, f ccs} can be calcu-
lated as follows:

V ( j)(E, F, C) = Q

[
E

μ − αE
− ε

( j)
F F

μ − αF
− ε

( j)
C C

μ − αC

]
− I ( j) − V (E, F, C)

⇒ V ( j)(F, C) = Q

[
(εF − ε

( j)
F )F

μ − αF
+ (εC − ε

( j)
C )C

μ − αC

]
− I ( j) (5)

where I ( j) includes the initial sunk capital cost of the retrofit to technology j together
with all other costs, such as additional operating and maintenance costs, which are
discounted at the constant rate μ. Here, ε

( j)
C and ε

( j)
F are the CO2 emissions and heat

rate, respectively, with retrofit j . From Eq. (5), it is revealed that the expected NPV of
mitigation no longer depends on the electricity price since the plant’s electricity output
is unaffected. As we could expect, the expected NPV is decreasing in F and increas-
ing in C because of the negative coefficient (εF − ε

( j)
F ) and the positive coefficient

(εC − ε
( j)
C ), respectively. Intuitively, CCS technology reduces the plant’s efficiency,

which increases its post-retrofit heat rate while decreasing its CO2 emissions rate.
Accordingly, the value of the opportunity to mitigate, W ( j)(F, C), depends only on
the fuel price and CO2 permit price.

3.3 Valuation of the mitigation options

3.3.1 Individual investment options

Using dynamic programming, we first derive the value of the option to invest in PCCS
and FCCS, independently. The Bellman equation, as the primary equation of optimi-
sation theory, states that the rate of return on the option, μW ( j)(F, C), must equal the
expected rate of capital gain on it, E[dW ( j)(F, C)]/dt (see Dixit and Pindyck 1994
for more details):

μW ( j)(F, C) = E[dW ( j)(F, C)]/dt (6)

Thus, by applying Itô’s lemma to the right-hand side of Eq. (6), the option to invest
in j must satisfy the following partial differential equation (PDE):

μW ( j)(F, C) = αF FW ( j)
F (F, C) + 1

2
σ 2

F F2W ( j)
F F (F, C) + αC CW ( j)

C (F, C)

+1

2
σ 2

C C2W ( j)
CC (F, C) + ρσFσC FCW ( j)

FC (F, C) (7)

where the subscripts denote the partial derivatives, e.g., W ( j)
F (F, C) = ∂W ( j)(F,C)

∂ F ,

and ρ = E(dzF
t dzC

t )

dt .4

4 Since the electricity price is not relevant to retrofits, from now on, we define ρ = ρFC .

123



116 S. Heydari et al.

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−40

−35

−30

−25

−20

−15

−10

−5

0

5

η

β

Fig. 1 Function H(β, η) = 0

A general solution to the PDE, Eq. (7), is of the power form as follows:

W ( j)(F, C) = A( j)Fβ( j)
Cη( j); 0 < F < ∞, 0 < C < C∗( j)(F) (8)

where A( j), β( j), and η( j) are endogenous coefficients, depending on F , which are
to be determined together with the free boundary, C∗( j)(F). Substituting Eq. (8) into
Eq. (7) yields:

H
(
β( j), η( j)

)
= αFβ( j) + 1

2
σ 2

Fβ( j)(β( j) − 1) + αCη( j) + 1

2
σ 2

Cη( j)(η( j) − 1)

+ρσFσCβ( j)η( j) − μ = 0 (9)

Equation (9) is that of an ellipse in η and β that passes through all four axes (Adkins
and Paxson 2008) and is graphed in Fig. 1 using the data provided in Table 1. This
implies that Eq. (8) can have the form:

W ( j)(F, C) = A( j)
1 Fβ

( j)
1 Cη

( j)
1 + A( j)

2 Fβ
( j)
2 Cη

( j)
2 + A( j)

3 Fβ
( j)
3 Cη

( j)
3 + A( j)

4 Fβ
( j)
4 Cη

( j)
4

(10)

where,

η
( j)
1 > 0 and β

( j)
1 < 0

η
( j)
2 < 0 and β

( j)
2 > 0

η
( j)
3 > 0 and β

( j)
3 > 0

η
( j)
4 < 0 and β

( j)
4 < 0

(11)
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Table 1 Price and plant parameter values

Parameter Description Value

αF Growth rate of coal price 0.04

αC Growth rate of CO2 price 0.03a

σF Volatility of coal price 0.05b

σC Volatility of CO2 price 0.47a

ρ Correlation between coal and CO2 prices 0.20c

μ Discount rate 0.08

	 Capacity of the plant (MWe) 500

Q Annual energy production of the plant (MWhe) 4,380,000

F0 Current price of coal ($/MWh) 15.5d

C0 Current price of CO2 ($/tCO2) 25.59a

a Abadie and Chamarro (2008a)’s data (using daily futures price data from ICE)
b Abadie and Chamarro (2008b)’s data (using yearly average prices gathered by the US Energy Information
Administration)
c Since there is little information on CO2 permit prices, we first assume a reasonable positive correlation
coefficient between CO2 and fuel prices. We then show how any changes in this coefficient may affect the
results
d The current price of coal is $95/tCO2. According to ORNL (2009), a ton of coal on average produces 22
GJ (6.11 MWh) of energy. Thus, $95/tCO2 divided by 6.11 MWh/tCO2 yields approximately $15.5/MWh

However, by imposing limiting boundary conditions on F and C , we can eliminate
the last three terms in Eq. (10). When the fuel price, F , tends to infinity, the option
value becomes worthless, therefore, the coefficients A( j)

2 and A( j)
3 in Eq. (10) must

be zero to prevent from diverging. Similarly, for low values of C (close to zero) it is
not justifiable to invest in any CCS technology, i.e., the option value is worthless and
the coefficient A( j)

4 in Eq. (10) must be zero, too. We then end up with the following
option value function:

W ( j)(F, C) = A( j)
1 Fβ

( j)
1 Cη

( j)
1 , 0 < F < ∞, 0 < C < C∗( j)(F) (12)

which can be rewritten as:

W ( j)(F, C) = A( j)Fβ( j)
Cη( j)

, 0 < F < ∞, 0 < C < C∗( j)(F) (13)

where η( j) > 0 and β( j) < 0. To prove uniqueness of the solution, standard techniques
for such elliptic PDEs usually rely on proof by contradiction, which are outlined in
Appendix A.

We now use a value-matching and two smooth-pasting conditions along with Eq. (9)
to solve for the four unknowns:
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A( j)Fβ( j)
Cη( j) = Q

⎡
⎣

(
εF −ε

( j)
F

)

μ−αF
F +

(
εC −ε

( j)
C

)

μ−αC
C

⎤
⎦ − I ( j) on C = C∗( j)(F)

(14)

A( j)β( j)Fβ( j)−1Cη( j) = Q

(
εF − ε

( j)
F

)

μ − αF
on C = C∗( j)(F) (15)

A( j)η( j)Fβ( j)
Cη( j)−1 =

(
εC − ε

( j)
C

)

μ − αC
on C = C∗( j)(F) (16)

Rearranging Eq. (16), we obtain the coefficient A( j) as follows:

A( j) =
Q

(
εC − ε

( j)
C

)

η( j)(μ − αC )
F−β( j)[C∗( j)(F)]1−η( j)

(17)

Substituting this into Eq. (15) gives the following equation for the optimal stopping
boundary:

C∗( j)(F) =
η( j)

(
εF − ε

( j)
F

)
(μ − αC )

β( j)
(
εC − ε

( j)
C

)
(μ − αF )

F (18)

Finally, a linear relationship between β( j) and η( j) using Eq. (14) is given by:

β( j) =
Q

(
εF − ε

( j)
F

) (
η( j) − 1

)
F

(μ − αF ) I ( j) − Q
(
εF − ε

( j)
F

)
F

, (19)

which is decreasing in η( j), because of the negative coefficient
(
εF − ε

( j)
F

)
and the

positive denominator.5 If we impose this line on H(β( j), η( j)) = 0, then it inter-
sects the function at two points, which we now try to obtain. In Fig. 2, using the
data for PCCS technology, provided in Table 2, we show the intersections of the two
lines, for the lowest and the highest value of F in our range of data, and the ellipse
H(β( j), η( j)) = 0.

After substituting the exponent β( j) from Eq. (19) into Eq. (9), we end up with the
following quadratic polynomial:

a(η( j))2 − bη( j) − c = 0 (20)

5 The denominator, [(μ − αF )I ( j) − Q(εF − ε
( j)
F )F], is positive because (μ − αF ) is positive and

(εF − ε
( j)
F ) is negative.
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Fig. 2 The intersection of function H(β, η) = 0 (data from Table 1) and Eq. (19) for PCCS technology

(data from Table 2), e.g., when F = $50/MWh, η
(pccs)
1 = 1.33 and β

(pccs)
1 = −0.21

Table 2 CCS parameter values

Parameter Description PC PC with PC with
PCCS FCCS

εC Emission rate (tCO2/MWhe) 0.80 0.32a 0.08b

εF Heat rate (MWh/MWhe) 2.42 2.55 2.8

O & M Additional operation and maintenance ($/MWhe) – 1.4 1.5

T & S Transport and storage ($/tCO2) – 9 9

K Initial capital cost of retrofit (m$) – 130 331.57

I ( j)c
Total retrofit investment cost (m$) – 443.17 768.475

a Capture of nearly 60% of the CO2 emissions
b Capture of nearly 90% of the CO2 emissions
c I ( j) = K ( j) + Q

μ (O & M) + Q
μ (T & S)(εC − ε

( j)
C )

where,

a =
(

1

2
σ 2

F + 1

2
σ 2

C − ρσFσC

)((
εF − ε

( j)
F

)
QF

)2

−
(
σ 2

C − ρσFσC

)
(μ − αF )

(
εF − ε

( j)
F

)
Q I ( j)F + 1

2
σ 2

C (μ − αF )2
(

I ( j)
)2

(21)

b =
(

1

2
σ 2

F + 1

2
σ 2

C − ρσFσC + αF − αC

) ((
εF − ε

( j)
F

)
QF

)2

−
(

σ 2
C − ρσFσC − 1

2
σ 2

F + αF − 2αC

)
(μ − αF )

(
εF − ε

( j)
F

)
Q I ( j)F

+
(

1

2
σ 2

C − αC

)
(μ − αF )2

(
I ( j)

)2
(22)
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c = (μ − αF )
((

εF − ε
( j)
F

)
QF

)2

+
(

αF − 1

2
σ 2

F − 2μ

)
(μ − αF )

(
εF − ε

( j)
F

)
Q I ( j)F

+μ(μ − αF )2
(

I ( j)
)2

(23)

Since (εF −ε
( j)
F ) < 0, (μ−αF ) > 0, and the volatility of coal price is always less than

that of the CO2 price (σF < σC ), coefficients a and c are positive. The discriminant

 = b2 + 4ac is, therefore, positive, which ensures the existence of two real and
distinct roots:

η
( j)
1 = b + √

b2 + 4ac

2a
(24)

η
( j)
2 = b − √

b2 + 4ac

2a
(25)

In Appendix B, we prove that η
( j)
1 is always greater than 1; as a result, the corre-

sponding β
( j)
1 calculated from Eq. (19) is negative. On the other hand, η( j)

2 is negative,

thus the corresponding β
( j)
2 is positive. It is observed that the boundary condition

W ( j)(F, C) → 0 as F → ∞ appears superfluous and seems entirely guaranteed by
value-matching and smooth-pasting conditions. Therefore, the unknowns η( j), β( j),
and A( j) in Eq. (13) are calculated, respectively, via Eqs. (24), (19), and (17). Figure 2
shows that, for this choice of data, η

( j)
1 is increasing in F while β

( j)
1 is decreasing.

Equation (19) also substantiates the inverse relationship between β
( j)
1 and η

( j)
1 . A list

of the calculated unknowns for some values of F are reported in Appendix C.
We may, finally, be interested in simplifying the option value function by substitut-

ing A( j) into Eq. (13) and combining Eqs. (19) and (18). We then have:

W ( j)(F, C) =
Q

(
εC − ε

( j)
C

)

η( j)(μ − αC )

[
C∗( j)(F)

]1−η( j)

Cη( j)
,

0 < F < ∞, 0 < C < C∗( j)(F) (26)

where η( j) is calculated from Eq. (24) and

C∗( j)(F) = η( j)(μ − αC )

(η( j) − 1)(μ − αF )

(μ − αF )I ( j) − Q
(
εF − ε

( j)
F

)
F

Q
(
εC − ε

( j)
C

) (27)
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3.3.2 Mutually exclusive options

Now, we would like to consider the mutually exclusive option to retrofit with either
PCCS or FCCS technology. By plotting the expected NPV of each technology, we
note that there will be an indifference curve, CI (F), where they intersect, and if the
volatilities are low enough, then it may be the case that the option value for investment
in PCCS technology is greater than that for the FCCS technology. In this event, an
indifference region will open up around the indifference curve, in which case it is
optimal to wait before investing in either technology.

This dichotomous option, which includes the option value functions of both technol-
ogies, must satisfy the Bellman equation [Eq. (9)]. Following the same methodology
as in Sect. 3.3.1, over the indifference region, {(F, C) | 0 < F < ∞, C∗

L(F) < C <

C∗
U (F)}, it must have the form:

�(F, C) = D1 Fδ1Cγ1 + D2 Fδ2Cγ2 + D3 Fδ3Cγ3 + D4 Fδ4Cγ2 (28)

where,

D1, D2, D3, D4 > 0

δ1 < 0 and γ1 > 0

δ2 > 0 and γ2 < 0

δ3 > 0 and γ3 > 0

δ4 < 0 and γ4 < 0

(29)

However, the limiting boundary conditions of F help us to get rid of the last two terms
in Eq. (28). For low values of F (close to zero), the option value of investing in PCCS
becomes worthless, and the mutually exclusive option value equals the option value
of investing in FCCS. This occurs if D4 = 0 and the coefficients D1, δ1, and γ1 tend
to, respectively, A( f ccs)

1 , β
( f ccs)
1 , and η

( f ccs)
1 . On the other hand, for large values of

F(F → ∞), the option value of investing in FCCS becomes worthless and the mutu-
ally exclusive option value approaches the option value of investing in PCCS. This
condition holds if D3 = 0 and the coefficients D2, δ2, and γ2 tend to A(pccs)

2 , β
(pccs)
2 ,

and η
(pccs)
2 , respectively. We, finally, end up with the following option value:

�(F, C) = D1 Fδ1Cγ1 + D2 Fδ2Cγ2 (30)

where,

D1, D2 > 0

δ1 < 0 and γ1 > 0

δ2 > 0 and γ2 < 0

(31)

Intuitively, in the indifference region, when the fuel price decreases and the CO2
permit price increases, investment in FCCS becomes more likely. Therefore, for any
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value of (F, C) in this region, the first term on the right-hand side of Eq. (30) can be
interpreted as the value of the option to upgrade to FCCS. On the other hand, since
the PCCS technology requires less energy than the FCCS one and captures less CO2,
it is more profitable when the fuel price increases and CO2 permit price decreases.
Thus, we interpret the second term on the right-hand side of Eq. (30) as the value
of the option to upgrade to PCCS for any value of (F, C) in the indifference region.
Now, the power coefficients, which are the two roots of Eq. (9), are to be determined
along with the endogenous coefficients, D1 and D2, as well as the upper, C∗

U (F),
and lower, C∗

L(F), free boundaries that indicate where the intermediate option value
curve value-matches and smooth-pastes with the expected NPV curves of the FCCS
and PCCS technologies, respectively.

Substituting Eq. (30) into Eq. (7) yields:

(
αF δ1 + 1

2
σ 2

F δ1(δ1 − 1) + αCγ1 + 1

2
σ 2

Cγ1(γ1 − 1) + ρσFσCδ1γ1 − μ

)
D1 Fδ1 Cγ1

+
(
αF δ2+ 1

2
σ 2

F δ2(δ2 − 1) + αCγ2 + 1

2
σ 2

Cγ2(γ2 − 1) + ρσFσCδ2γ2−μ

)
D2 Fδ2 Cγ2 =0

(32)

which holds if and only if,

αFδ1 + 1

2
σ 2

Fδ1(δ1 − 1) + αCγ1 + 1

2
σ 2

Cγ1(γ1 − 1) + ρσFσCδ1γ1 − μ = 0 (33)

αFδ2 + 1

2
σ 2

Fδ2(δ2 − 1) + αCγ2 + 1

2
σ 2

Cγ2(γ2 − 1) + ρσFσCδ2γ2 − μ = 0 (34)

These two equations together with the following six value-matching and smooth-
pasting conditions are used to solve for the eight unknowns (D1, D2, δ1, γ1, δ2, γ2,

C∗
L(F), and C∗

U (F)):

�(F, C) = Q

⎡
⎣

(
εF − ε

(pccs)
F

)

μ − αF
F +

(
εC − ε

(pccs)
C

)

μ − αC
C

⎤
⎦− I (pccs) on C =C∗

L(F)

(35)

�F (F, C) = Q

(
εF − ε

(pccs)
F

)

μ − αF
on C = C∗

L(F) (36)

�C (F, C) = Q

(
εC − ε

(pccs)
C

)

μ − αC
on C = C∗

L(F) (37)

�(F, C) = Q

⎡
⎣

(
εF − ε

( f ccs)
F

)

μ − αF
F +

(
εC − ε

( f ccs)
C

)

μ − αC
C

⎤
⎦− I ( f ccs) on C =C∗

U (F)

(38)
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Fig. 3 Numerical solution heuristic

�F (F, C) = Q

(
εF − ε

( f ccs)
F

)

μ − αF
on C = C∗

U (F) (39)

�C (F, C) = Q

(
εC − ε

( f ccs)
C

)

μ − αC
on C = C∗

U (F) (40)

From Eqs. (39) and (40), which are linear functions of D1 and D2, we can calculate
D1 and D2 in terms of the other unknowns:

D1 = Q

(
εC − ε

( f ccs)
C

)
(μ − αF )δ2C∗

U (F) −
(
εF − ε

( f ccs)
F

)
(μ − αC )γ2 F

(μ − αF )(μ − αC ) (γ1δ2 − γ2δ1) Fδ1C∗
U (F)γ1

(41)

D2 = Q

(
εF − ε

( f ccs)
F

)
(μ − αC )γ1 F −

(
εC − ε

( f ccs)
C

)
(μ − αF )δ1C∗

U (F)

(μ − αF )(μ − αC )(γ1δ2 − γ2δ1)Fδ2C∗
U (F)γ2

(42)

By substituting these coefficients into Eqs. (35–38), we reduce the system of eight
equations to a new system of six non-linear equations with six unknowns, �(F) =
{δ1(F), γ1(F), δ2(F), γ2(F), C∗

U (F), C∗
L(F)}, which must be solved numerically.

With an appropriate guess of the starting values using the fsolve command in
Matlab, we can solve this system numerically. First, we discretise the values of the
fuel price, e.g., in the ascending set {0, F1, F2, F3, . . .}. Starting from F1, the most
reasonable guess for the initial values of δ1(F1) and γ1(F1) might be β

( f ccs)
1 (F1) and

η
( f ccs)
1 (F1), respectively, calculated from Eqs. (24) and (19). Similarly, we can use

β
(pccs)
2 (F1) and η

(pccs)
2 (F1), Eqs. (25) and (19), as an appropriate choice for the ini-

tials of δ2(F1) and γ2(F1), respectively. However, the only information we have on the
initials of C∗

U (F1) and C∗
L(F1) is that they surround the indifference point, CI (F1).

Therefore, we consider CI (F1) + u1 and CI (F1) − u2 as the initials of C∗
U (F1) and

C∗
L(F1), respectively. Here, u1 and u2 may be chosen randomly, e.g., from the interval

(0, 1)$/tCO2. Using these initial values, we solve the problem for �(F1). Next, we
use the calculated �(F1) as the initial values for the unknown parameters �(F2) and
solve for them similarly. Successively, in each step k, the previous calculated �(Fk−1)

can be used as the initial value of the current step and solve the system for �(Fk)

(see Fig. 3).
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Table 3 NPV and option values
Mitigation technology NPV (m$) Option value (m$)
( j) V ( j)(F0, C0) − I ( j) W ( j)(F0, C0)

PCCS 412.20 608.92

FCCS 200.59 809.12

4 Data

Data are reported in Tables 1 and 2. Parameters of CO2 and coal price models and the
data for FCCS technology are roughly adopted with Abadie and Chamarro (2008a,b)’s
choice of parameters. The coal price in our study evolves according to a GBM process,
while the electricity price, which represents the efficiency loss from the CCS retro-
fit, follows a GMR process with a low rate of mean reversion (0.125) in Abadie and
Chamarro (2008b). The PCCS technology is proposed considering emissions reduc-
tion and initial capital cost provided by Hildebrand and Herzog (2008).

5 Numerical examples

5.1 Individual investment options

We first consider a super critical pulverised coal (SCPC) power plant that has the option
to invest in PCCS/FCCS technology in order to reduce its CO2 emissions. Given cur-
rent prices, we find the optimal stopping boundaries for independently investing in
PCCS and FCCS as follows:

C∗(pccs)(F0) = $66.33/tCO2

C∗( f ccs)(F0) = $92.12/tCO2

As we would expect, the critical CO2 price for investing in PCCS technology is
noticeably less than that for investing in FCCS technology. This difference between
the free boundaries can be attributed to the high option value of waiting (the differ-
ence between the option value and the NPV, which are reported in Table 3) for FCCS
($608.53m) in comparison to that for PCCS ($196.72m). Both technologies are in
the money, i.e., if the plant owner has to invest now or never, then she would invest
immediately. On the other hand, she would lose a large amount of money by killing
the waiting opportunity, specifically by investing in FCCS technology. Clearly, the
NPVs of investing in FCCS and PCCS are more sensitive to C than to F , because the
coefficient of C , in Eq. (5), is larger than the coefficient of F for both technologies.

The optimal stopping boundaries for each technology are graphed in Figs. 4 and 5.
As expected, these boundaries are strictly increasing with respect to F , i.e., the higher
the fuel price is, the less likely the plant owner is to adopt the emission-reducing pol-
icy. It is also revealed that the boundaries are approximately linear with respect to F .
This results from small changes in η( j) for different values of F , e.g., in Table 5, it
is observed that η(pccs) ranges from 1.2919 to 1.3339, which causes an approximate
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Fig. 4 Free boundary C∗(pccs)(F) as a function of F for PCCS retrofit
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Fig. 5 Free boundary C∗( f ccs)(F) as a function of F for FCCS retrofit

linear relationship between C∗( j)(F) and F in Eq. (27). These lines can be estimated
as follows:

C∗(pccs)(F) = 46.8520 + 1.2570F (43)

C∗( f ccs)(F) = 54.1245 + 2.4523F (44)

The NPV and the option value of investing in PCCS and FCCS are, respectively,
graphed in Figs. 6 and 7. From these graphs, the distinction between the NPV and the
option value of investing in FCCS compared with PCCS is clearly visible. Further-
more, the FCCS expected NPV is more sensitive to both F and C .

Our results for investing in the FCCS technology are similar to those of Abadie and
Chamarro (2008a). Although the option value of investing in such CCS technology in
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Fig. 6 NPV and option value for PCCS

Fig. 7 NPV and option value for FCCS

both studies are nearly equal, the NPV calculated in Abadie and Chamarro (2008a)
is almost twice as much as the value calculated in this paper, which may be due to
our different choice of model for the fuel price as the source of cost in our model.
The use of a GMR process with high volatility (50%) and high mean-reversion rate
(0.96) for the electricity price in Abadie and Chamarro (2008a) precipitates adoption
in comparison with our study with the assumption of a GBM process for the fuel
price. This results in a higher NPV and, thus, a lower critical threshold ($73.54/tCO2)
calculated in Abadie and Chamarro (2008a) in comparison with the value calculated
in our study ($92.12/tCO2).

5.1.1 Sensitivity analysis

Figure 8 shows the optimal stopping boundary, C∗( f ccs)(F), for different values of σF

and σC . The solid line shows the boundary for the base case values of the volatilities,
σF = 0.05 and σC = 0.47. It is revealed that C∗( f ccs)(F) is more sensitive to changes
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Fig. 8 FCCS Free boundary sensitivity analysis with respect to volatilities

in the CO2 price volatility than in the fuel price volatility. By letting σC to be fixed at
its base value, if we increase the value of σF to 0.2 (a 300% increase), then a negli-
gible increase in C∗( f ccs)(F) is observed. On the other hand, a 75% decrease in σC

(to 0.1175) can make a significant downward change in C∗( f ccs)(F). This is intuitively
because the CCS technology is more exposed to the CO2 price than to the fuel price.
In general, increasing uncertainty over the prices raises the value of waiting and, thus,
shifts the optimal stopping boundary upward.

The correlation between the two stochastic variables may also affect the value and
the time of adopting the emission-reduction policy. Figure 9 shows that a high positive
correlation between the two GBM processes makes the adoption more accessible by
reducing the critical threshold. Intuitively, high positive correlation reduces the risk
of large differences between the two variables because any increase (decrease) in one
variable may be accompanied by an increase (decrease) in the other. Hence, due to
decrease in overall uncertainty, investment is optimal sooner.

As we would expect, the larger the sunk capital cost of the investment is, the less
likely the plant owner is to invest. This is illustrated in Fig. 10 that compares the
optimal stopping boundary for the base value of the capital cost with the boundaries
for an increase of 100% as well as a decrease of 50%. Finally, we can generalise the
results from the sensitivity analysis of the FCCS technology to that of the PCCS one.

5.2 Mutually exclusive options

Now, suppose that the PC power plant has to choose between two alternative tech-
nologies: PCCS or FCCS. As discussed earlier in Sect. 3.3.2, using the data provided
in Sect. 4, we first plot the expected PV of each technology to realise whether or
not their intersection can lead to an indifference region. Figure 11 illustrates that the
PCCS technology, which has a lower sunk capital cost, is uniformly dominated by the
FCCS one. In this case, for CO2 prices greater than the optimal boundary of FCCS
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Fig. 9 FCCS free boundary sensitivity analysis with respect to the correlation coefficient
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Fig. 10 FCCS free boundary sensitivity analysis with respect to the capital cost

(C∗( f ccs)(F)), we invest immediately in FCCS, while for those prices less than this
critical boundary, we wait.

Although the data here suggest that the PCCS technology would be skipped, it may
be plausible that future innovations favour it. In order to determine how the method-
ology of Sect. 3.3.2 may cope with such an outcome, we modify the data such that
the optimal investment region becomes dichotomous. As discussed in Décamps et al.
(2006), a sufficient condition in order to have a dichotomous optimal investment region
is that the PCCS retrofit generate slightly lower output flow than the FCCS retrofit,
but at a considerably lower sunk capital cost. We would also require the volatilities of
the prices to be relatively low, otherwise the optimal investment region would never
be dichotomous. Concerning this, we propose a superior PCCS technology in which
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Fig. 11 NPV and option value (separate valuation) indicate that the PCCS technology is uniformly domi-
nated by the FCCS one (σF = 0.05 and σC = 0.47)

the CO2 emissions rate drops to 0.14tCO2/MWhe (capture of nearly 82%) while the
initial capital cost is reduced to $75m. All other parameters are kept unchanged. We
now plot the expected NPV of each technology in Fig. 12. It is observed that the
option value of investing in PCCS is greater than that of investing in FCCS. This fact
results in an indifference region opening up around the indifference line in which it
is optimal for the investor to wait before investing in either technology. It should be
mentioned that our solution to the individual investment options holds over the range
[0, C∗(pccs)(F)]. We now need to evaluate the intermediate option and to find the two
thresholds: C∗

L and C∗
U .

The intermediate option value as well as the thresholds are calculated using the
algorithm in Fig. 3 and graphed in Figs. 13 and 14, respectively. It is revealed
that for low values of CO2: (i) for a constant CO2 price, when the fuel price
increases, it is more attractive to wait for PCCS, and when it decreases, it is
more attractive to invest immediately; (ii) for a constant fuel price, increasing
the CO2 price results in investing in PCCS technology in order to reduce plant’s
CO2 emissions. Over the indifference region: (i) for any constant CO2 price, as
the fuel price increases, investing in PCCS becomes more economical, and as it
decreases, investing in FCCS is preferred; (ii) for a constant fuel price, when the
CO2 price increases, it is more attractive to invest in FCCS, and when it decreases,
it is more attractive to invest in PCCS because FCCS technology captures more
CO2 emissions than the PCCS technology does. Given the current price F0 =
15.5($/MWh), we find the free boundary C∗(pccs)(F0) = $50.83/tCO2. As the CO2
price ($25.59/tCO2) is currently below this free boundary, no retrofit is immedi-
ately adopted. However, suppose that the current CO2 price given F0 = $15.5/MWh
is located exactly on the indifference line, i.e., CI (F0) = $136.21/tCO2. The
expected NPVs of investing in FCCS and PCCS, which are identical, and the
mutually exclusive intermediate option value of investing in either technology are
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Fig. 12 NPV and option value with enhanced PCCS technology (separate valuation) indicate that the
option value of investing in PCCS (W (pccs)) is greater than that of investing in FCCS (W ( f ccs)), thereby
resulting in an indifference region around the indifference line (CI (F))(σF = 0.05 and σC = 0.47)

Fig. 13 NPV and option value with enhanced PCCS technology (mutually exclusive options) show that
for CO2 prices less than C∗(pccs)(F), we wait for PCCS, while for those prices between C∗(pccs)(F)

and C∗
L (F), we invest immediately in PCCS; over the indifferent region (�), we wait to invest either in

PCCS or FCCS, and for CO2 prices greater than C∗
U (F), we invest immediately in FCCS (σF = 0.05 and

σC = 0.47)

given in Table 4. The option value of waiting before investing in either technol-
ogy is then $20.042m which shows that by investing in any technology without
considering this waiting opportunity we may lose an amount equal to 0.28% of
the NPV of investing. Although such a high CO2 price is not currently plausi-
ble, future international agreements on emissions may make result in such prices.
For example, in Sweden, the CO2 tax is $145/tCO2 (Swedish Government Budget
Bill 2008).
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Table 4 NPVs, option value,
and thresholds with enhanced
PCCS technology and higher
initial CO2 price

V (pccs)(F0, CI (F0)) − I (pccs) $7.1776 billion
V ( f ccs)(F0, CI (F0)) − I ( f ccs) $7.1776 billion
�(F0, CI (F0)) $7.1976 billion
C∗

L (F0) $121.45/tCO2
C∗

U (F0) $151.96/tCO2

5.2.1 Sensitivity analysis

From the previous example with the models of irreversible investments, decreas-
ing the price volatilities reduces the waiting value. This can be seen from Fig. 15,
which depicts the optimal stopping boundaries with a 40% decrease in the base
values of the price volatilities. Comparing these boundaries to those for the
base values, it is observed that both the postponing areas are narrower for the
reduced volatilities. On the other hand, the mutually exclusive intermediate option
value at the indifference point, �(F0, CI (F0)), reduces to $7.1848 billion which
is equivalent to losing 0.10% of the NPV of investing by killing the waiting
opportunity. This value, however, rises to $7.2167 billion with a 40% increase
in the base values of the price volatilities, which reveals that we may lose
0.55% of the NPV of investing if we fail to take advantage of waiting. Further-
more, in Fig. 16 we plot the NPVs of FCCS and PCCS technologies and their
option values with the price volatilities twice as much as the base values. It is
observed that even the enhanced PCCS technology, which has a lower sunk cap-
ital cost, is uniformly dominated by the FCCS one. In this case, for CO2 prices
greater than the optimal boundary of FCCS (C∗( f ccs)(F)), we invest immediately
in FCCS.
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Fig. 16 NPV and option value with enhanced PCCS technology (separate valuation) indicate that the PCCS
technology is uniformly dominated by the FCCS one and for CO2 prices greater (less) than C∗( f ccs)(F),
we invest immediately in (wait for) FCCS (σF = 0.10 and σC = 0.94)

6 Conclusions

As industrialised countries have agreed to reduce their CO2 emissions, which is
assumed to be the most critical anthropogenic GHG, a wide range of mitigation options
have been proposed. Among these, the CCS technology is of high importance because
fossil fuels continue to be the dominant energy resources in the near term. Capturing
almost all emissions is the main objective of policymakers; however, it may critically
alter the technology, operation, and economics of a power plant. As a result, in this
paper we have analysed both full and partial capture technologies under uncertainty
over CO2 permit and coal prices.
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We first have taken the perspective of a coal-fired power plant that has to decide
whether to invest, now or anytime in the future, in an emission–reduction technol-
ogy. Thus, we have examined the opportunity to invest in FCCS and PCCS tech-
nologies separately. The options to invest in such technologies have been valued as
well as the optimal stopping boundaries. Using current market data, we find that
investing in any CCS technology is not optimal. The critical threshold for invest-
ing in FCCS given current coal price is $92.12/tCO2, while the current CO2 price
is $25.59/tCO2. By proposing a more achievable PCCS technology, although we
could reduce the critical threshold to $56.70/tCO2, it is still not optimal to invest
immediately.

We then assume that the plant owner has to decide between investing in either FCCS
or PCCS technology simultaneously and introduce the required conditions under which
the investment region becomes dichotomous. Regarding these conditions, we propose
an enhanced PCCS technology such that its calculated option value from the separate
valuation is greater than that of the FCCS technology. Therefore, their NPVs intersect
each other at an indifference curve that leads us to value a postponing area where
we wait before investing in either technology. Unlike our analytical solution to the
separate valuation, this mutually exclusive option value, depending on more than one
stochastic variable, must be solved numerically. As such, our solution method is a
quasi-analytical one.

The sensitivity of the investment opportunities to changes in the volatilities and
the correlation of the stochastic prices as well as in the sunk capital cost has been
analysed in this paper. Our numerical examples show that the investment option is
highly sensitive to alterations in the volatility of CO2 price. Generally, increases in
volatilities cause increases in optimal boundaries as well as in option values. How-
ever, the correlation between the two prices has an opposite impact on the optimal
boundaries, such that high positive correlation between prices makes the waiting area
narrower.

On the whole, the outcome of this paper is twofold. Firstly, we demonstrate that
investing in any CCS technology is not economically advisable in the near term. It
would be, however, more attractive should more rigorous climate policies be imposed,
e.g., which either increases the CO2 price level or reduces the uncertainty in the
CO2 price. Secondly, from a theoretical point of view, we develop a two-factor real
options model for mutually exclusive investment under uncertainty over two correlated
variables.

Although GBM processes are commonly assumed to be good models for energy
prices, as examined, e.g., in Pindyck (1999), they may not be suitable for CO2 per-
mit prices. Moreover, using alternative stochastic processes for energy prices, such as
mean-reverting models, as in Abadie and Chamarro (2008a), may result in different
outcomes. Considering other possible options, such as the option to suspend the CCS
unit to allow venting or the option of switching from one technology to another, may
also affect the option value. Finally, a complete model that accounts for the limited
lifetime of the equipment or the time-to-build problem would be better able to capture
the sequential decision-making challenges faced by a power plant. The methods in
this study can be extended to any similar utilities faced with investing in alternative
opportunities under uncertainty.
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Appendix A: Argument on the Uniqueness of the Solutions Obtained

The method of Adkins and Paxson (2008) used to obtain a solution for the real option
value appears successful but does not itself prove that the obtained solution is unique.
To prove uniqueness, standard techniques for such elliptic PDEs usually rely on proof
by contradiction (see Mattheij et al. 2005 for more details). Taking the individual
investment option problem solved in Sect. 3.3.1, if we assume that the solution found
W for the real option value is not unique and that a second solution W̃ exists, then the
difference φ = W − W̃ also satisfies the Bellman Eq. (7). For illustration, we take a
simpler form of the governing equation

(
F2φF

)
F

+
(

C2φC

)
C

− μφ = 0 (A-1)

and assume that the free boundary for W is at F = F∗(C) and the free boundary for
W̃ is at F = F̃(C). Then, multiplying the governing equation by φ and integrating
over the domain D, which is the region C > 0 and F > max

(
F∗(C), F̃(C)

)
in which

both W and W̃ are well defined, leads to

∫

max(F∗,F̃)

C2φφC d F +
∫

max(F∗,F̃)

F2φφF dC

=
∫ ∫

D
μφ2 + C2(φC )2 + F2(φF )2 dC d F (A-2)

where the right-hand side obviously must be greater than or equal to zero and the
left-hand side is dependent only on the values at the free boundary; here, the boundary
conditions at F → ∞ and C = 0 are already accounted for in the integration by
parts by assuming φ → 0 is a suitable manner. The proof of uniqueness then focuses
on showing that this left-hand side cannot be strictly positive leading to φ = 0 and,
thus, W = W̃ everywhere. Adopting this approach, it is trivial to show that two dis-
tinct solutions W �= W̃ cannot have the same free boundary, F∗(C) = F̃(C), as
in that case φ and its first derivatives are zero on the free boundary, and, hence, the
right-hand side of (A-2) is also zero. Indeed, for the case where say F̃(C) � F∗(C)

everywhere and for a solution domain of finite extent, a reasonable argument for
uniqueness can also be constructed. However, proving uniqueness via this approach
for arbitrary F∗(C) �= F̃(C) over a solution domain of infinite extent is more difficult,
and an adequate proof remains currently under investigation.

Appendix B: Characteristics of the roots of Eq. (20)

For simplicity, we rewrite exponents a, b, and c in Eqs. (21–23) as follows:
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a =
(

1

2
σ 2

F + 1

2
σ 2

C − ρσFσC

)
K1 +

(
σ 2

C − ρσFσC

)
K2 + 1

2
σ 2

C K3

b = a + (αF − αC ) K1 +
(

−1

2
σ 2

F + αF − 2αC

)
K2 − αC K3

c = (μ − αF )K1 −
(

αF − 1

2
σ 2

F − 2μ

)
K2 + μK3

where,

K1 =
((

εF − ε
( j)
F

)
QF

)2
> 0

K2 = −(μ − αF )
(
εF − ε

( j)
F

)
Q I ( j)F > 0

K3 = (μ − αF )2(I ( j))2 > 0

Next, it can be shown that c > a − b:

c − a + b = (αF − αC )K1 +
(

−1

2
σ 2

F + αF − 2αC

)
K2 − αC K3

+(μ − αF )K1 −
(

αF − 1

2
σ 2

F − 2μ

)
K2 + μK3

= (μ − αC )(K1 + 2K2 + K3) > 0 (B-1)

We may now finalise the proof as follows:

c > a − b ⇒ b2 + 4ac > 4a2 − 4ab + b2 = (2a − b)2 (B-2)

Thus,

−
√

b2 + 4ac < (2a − b) <
√

b2 + 4ac (B-3)

⇒ b −
√

b2 + 4ac < 2a < b +
√

b2 + 4ac (B-4)

Therefore, η
( j)
1 > 1 and η

( j)
2 < 1. On the other hand, η

( j)
2 is not only less than 1, but

also less than 0 because b <
√

b2 + 4ac.

Appendix C: Parameters of Eq. (13)

Table 5 provides the calculated parameters of Eq. 13,
{
η(pccs), β(pccs), C∗(pccs)(F),

A(pccs)
}
, for some values of F .
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Table 5 Parameters of Eq. (13) for some PCCS

F($/MWh) η(pccs) β(pccs) C∗(pccs) A(pccs) F η(pccs) β(pccs) C∗(pccs) A(pccs)

(F) (F)

1 1.2919 −0.0091 48.15 7.4100E+10 26 1.3214 −0.1463 79.52 4.2098E+10

1.5 1.2929 −0.0135 48.77 7.2170E+10 26.5 1.3218 −0.1479 80.15 4.1879E+10

2 1.2938 −0.0177 49.40 7.0435E+10 27 1.3221 −0.1496 80.78 4.1665E+10

2.5 1.2947 −0.0219 50.02 6.8853E+10 27.5 1.3224 −0.1512 81.41 4.1456E+10

3 1.2956 −0.0260 50.65 6.7397E+10 28 1.3228 −0.1528 82.04 4.1253E+10

3.5 1.2964 −0.0300 51.27 6.6048E+10 28.5 1.3231 −0.1544 82.67 4.1055E+10

4 1.2973 −0.0338 51.90 6.4790E+10 29 1.3235 −0.1560 83.29 4.0861E+10

4.5 1.2981 −0.0376 52.53 6.3614E+10 29.5 1.3238 −0.1575 83.92 4.0673E+10

5 1.2989 −0.0414 53.15 6.2510E+10 30 1.3241 −0.1590 84.55 4.0488E+10

5.5 1.2997 −0.0450 53.78 6.1470E+10 30.5 1.3244 −0.1605 85.18 4.0309E+10

6 1.3005 −0.0486 54.41 6.0489E+10 31 1.3247 −0.1620 85.81 4.0133E+10

6.5 1.3012 −0.0520 55.03 5.9561E+10 31.5 1.3250 −0.1635 86.44 3.9961E+10

7 1.3020 −0.0554 55.66 5.8681E+10 32 1.3253 −0.1649 87.07 3.9794E+10

7.5 1.3027 −0.0588 56.29 5.7846E+10 32.5 1.3256 −0.1663 87.70 3.9630E+10

8 1.3034 −0.0620 56.91 5.7052E+10 33 1.3259 −0.1677 88.33 3.9470E+10

8.5 1.3041 −0.0652 57.54 5.6296E+10 33.5 1.3262 −0.1691 88.96 3.9313E+10

9 1.3048 −0.0683 58.17 5.5574E+10 34 1.3265 −0.1704 89.59 3.9160E+10

9.5 1.3054 −0.0714 58.79 5.4885E+10 34.5 1.3268 −0.1718 90.21 3.9010E+10

10 1.3061 −0.0744 59.42 5.4227E+10 35 1.3271 −0.1731 90.84 3.8864E+10

10.5 1.3067 −0.0774 60.05 5.3596E+10 35.5 1.3273 −0.1744 91.47 3.8720E+10

11 1.3073 −0.0802 60.68 5.2992E+10 36 1.3276 −0.1757 92.10 3.8580E+10

11.5 1.3079 −0.0831 61.30 5.2413E+10 36.5 1.3279 −0.1769 92.73 3.8442E+10

12 1.3085 −0.0858 61.93 5.1858E+10 37 1.3281 −0.1782 93.36 3.8308E+10

12.5 1.3091 −0.0886 62.56 5.1324E+10 37.5 1.3284 −0.1794 93.99 3.8176E+10

13 1.3097 −0.0912 63.19 5.0810E+10 38 1.3286 −0.1806 94.62 3.8047E+10

13.5 1.3102 −0.0938 63.81 5.0316E+10 38.5 1.3289 −0.1818 95.25 3.7920E+10

14 1.3108 −0.0964 64.44 4.9841E+10 39 1.3291 −0.1830 95.88 3.7797E+10

14.5 1.3113 −0.0989 65.07 4.9382E+10 39.5 1.3294 −0.1842 96.51 3.7675E+10

15 1.3119 −0.1014 65.70 4.8940E+10 40 1.3296 −0.1854 97.14 3.7556E+10

15.5 1.3124 −0.1038 66.33 4.8514E+10 40.5 1.3299 −0.1865 97.77 3.7439E+10

16 1.3129 −0.1062 66.95 4.8102E+10 41 1.3301 −0.1876 98.39 3.7325E+10

16.5 1.3134 −0.1086 67.58 4.7705E+10 41.5 1.3303 −0.1887 99.02 3.7213E+10

17 1.3139 −0.1109 68.21 4.7320E+10 42 1.3306 −0.1898 99.65 3.7103E+10

17.5 1.3144 −0.1131 68.84 4.6949E+10 42.5 1.3308 −0.1909 100.28 3.6995E+10

18 1.3148 −0.1153 69.47 4.6589E+10 43 1.3310 −0.1920 100.91 3.6889E+10

18.5 1.3153 −0.1175 70.09 4.6241E+10 43.5 1.3312 −0.1931 101.54 3.6785E+10

19 1.3158 −0.1197 70.72 4.5904E+10 44 1.3315 −0.1941 102.17 3.6683E+10

19.5 1.3162 −0.1218 71.35 4.5577E+10 44.5 1.3317 −0.1952 102.80 3.6582E+10
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Table 5 continued

F($/MWh) η(pccs) β(pccs) C∗(pccs) A(pccs) F η(pccs) β(pccs) C∗(pccs) A(pccs)

(F) (F)

20 1.3166 −0.1239 71.98 4.5260E+10 45 1.3319 −0.1962 103.43 3.6484E+10

20.5 1.3171 −0.1259 72.61 4.4953E+10 45.5 1.3321 −0.1972 104.06 3.6387E+10

21 1.3175 −0.1279 73.24 4.4654E+10 46 1.3323 −0.1982 104.69 3.6293E+10

21.5 1.3179 −0.1299 73.86 4.4365E+10 46.5 1.3325 −0.1992 105.32 3.6199E+10

22 1.3183 −0.1318 74.49 4.4084E+10 47 1.3327 −0.2002 105.95 3.6108E+10

22.5 1.3187 −0.1337 75.12 4.3811E+10 47.5 1.3329 −0.2011 106.58 3.6018E+10

23 1.3191 −0.1356 75.75 4.3545E+10 48 1.3331 −0.2021 107.21 3.5930E+10

23.5 1.3195 −0.1374 76.38 4.3287E+10 48.5 1.3333 −0.2030 107.84 3.5843E+10

24 1.3199 −0.1393 77.01 4.3036E+10 49 1.3335 −0.2039 108.47 3.5758E+10

24.5 1.3203 −0.1411 77.64 4.2792E+10 49.5 1.3337 −0.2049 109.10 3.5674E+10

25 1.3207 −0.1428 78.26 4.2555E+10 50 1.3339 −0.2058 109.73 3.5591E+10

25.5 1.3210 −0.1446 78.89 4.2323E+10
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