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Abstract Stochastic programming is a well-known instrument to model many risk
management problems in finance. In this paper we consider a stochastic program-
ming model where the objective function is the variance of a random function and the
constraint function is the expected value of the random function. Instead of using pop-
ular scenario tree methods, we apply the well-known sample average approximation
(SAA) method to solve it. An advantage of SAA is that it can be implemented without
knowing the distribution of the random data. We investigate the asymptotic properties
of statistical estimators obtained from the SAA problem including examining the rate
of convergence of optimal solutions of the SAA problem as sample size increases.
By using the classical penalty function technique and recent results on uniform expo-
nential convergence of sample average random functions, we show that under some
mild conditions the statistical estimator of the optimal solution converges to its true
counterpart at an exponential rate. We apply the proposed model and the numerical
method to a portfolio management problem and present some numerical results.

Keywords Variance minimization · Sample average approximation ·
Risk management · Exponential convergence

1 Introduction

The practice of mean-risk models has been widely used in portfolio selection problems,
and had a profound impact on the economic modeling of financial markets and the
investment of assets since the first introduction of mean-variance models by Markowitz
(1959) in the financial literature. In most of real markets, returns are characterized and
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compared by two statistics: the expected value and the value of the risk measure.
A tradeoff is often required for each portfolio selection problem between the high
expected return and the low risk, where the risk measure plays an important role in
making the decisions. In spite of criticism and many proposals of new risk measures
such as Value-at-Risk and Conditional Value-at-Risk (Artzner et al. 1999; Rockafellar
and Uryasev 2002), variance which calculates the spread around the expected value of
a random variable is still one of the most widely used measures of risk in the portfolio
selection problems.

In this paper, we study the following mean-variance minimization problem with a
general return function:

min
x

Var [ f (x, ξ(ω))]

s.t. x ∈ X,
E[g(x, ξ(ω))] ≤ 0,

(1.1)

where f : R
n × R

k → R and g : R
n × R

k → R
m are locally Lipschitz continu-

ous, x ∈ X is a decision vector with X being a nonempty convex subset of R
n , and

ξ : � → � ⊂ R
k is a random vector defined on probability space (�,F , P) with

support�,E[·] denotes the expected value with respect to the distribution of ξ,Var[·]
denotes the variance of a random variable, that is,

Var [ f (x, ξ(ω))] = E

[
[ f (x, ξ(ω))− E( f (x, ξ(ω)))]2

]

= E

[
f 2(x, ξ(ω))

]
− (E[ f (x, ξ(ω))])2 . (1.2)

To ease the notation, we will use ξ to denote either random vector ξ(ω) or an element
of R

k depending on the context. Throughout this paper, we assume that E[ f (x, ξ)],
E[ f 2(x, ξ)] and E[g(x, ξ)] are well-defined for every x ∈ X . The stochastic pro-
gramming model (1.1) is well-known for measuring risks in finance pioneered by
Markowitz in 1950s (Markowitz 1959): it aims to minimize the variance which is
often used to measure the risks subject to the constraints of the expected revenues
or costs. This type of fundamental mean-variance modeling and analysis is instru-
mental to both practitioners and researchers in finance. For practitioners, the theory
suggests that mean-variance efficient portfolios can play an important role in portfolio
management applications. For researchers in finance, mean-variance analysis is cen-
tral to many asset pricing theories as well as to empirical tests of those theories, see
Alexander and Baptista (2004), Britten-Jones (1999).

The main objective of this paper is concerned with numerical methods for solving
(1.1). One of the main difficulties is to deal with the expected values. In practice, it is
often impossible to obtain a closed form of E[ f (x, ξ)] and E[ f 2(x, ξ)] either because
they are computationally too expensive or the distribution function of ξ is unknown.
However, it might be possible to obtain samples of ξ from past data or computer
simulation. Specifically, let ξ1, . . . , ξ N be a sample of ξ , we consider the following
sample average approximation problem for (1.1):
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min
x
φN (x) := 1

N − 1

N∑
i=1

(
f (x, ξ i )− 1

N

N∑
i=1

f (x, ξ i )

)2

s.t. x ∈ X,

gN (x) := 1

N

N∑
i=1

g(x, ξ i ) ≤ 0.

(1.3)

We refer to (1.1) as the true problem and (1.3) as the sample average approxima-
tion (SAA) problem. SAA is a very popular method in stochastic optimization and
it is known under various names such as sample path optimization (SPO) method
(Robinson 1996), stochastic counterpart and more broadly Monte Carlo method, see
Shapiro (2003) for a comprehensive review of the subject by Shapiro. The main benefit
of SAA is that one does not have to calculate the expected values.

Note that the sample average approximation problem (1.3) is slightly different
from those available in the literature: our objective function is the sample average
approximation of the variance of a random function rather than the expected value.
The difference makes it impossible to readily use the available analysis results of
SAA in stochastic programming which deal with expected values rather than vari-
ances. Wang and Ahmed (2008) considered a stochastic programming model with a
deterministic objective function and constraints of the expected value of a random
function. They proposed SAA method to solve the model and demonstrated the expo-
nential rate of convergence of the feasible set of SAA problem to its true counterpart.
The stochastic programming model and SAA scheme were consequently applied to
portfolio optimization problems in finance. Shapiro (1991) considered a general class
of stochastic programming problems which subsume (1.1) and proposed to solve
them by solving a sequence of approximating problems including sample average
approximation. He analyzed the asymptotic behavior of statistical estimators of the
optimal values and optimal solutions obtained from solving the approximating prob-
lems. His analysis is carried out by a parametric programming approach where the
approximating functionals are treated as a parameter defined on a Banach space,
and the asymptotics of the optimal value and optimal solution estimators is conse-
quently derived through an extended delta method by driving the parameter to its limit
value.

Our focus here is on the asymptotic convergence of the optimal solution of SAA
problem (1.3): assuming that we obtain an optimal solution to problem (1.3), denoted
by x N , we investigate the convergence of x N to its true counterpart, denoted by
x∗, as sample size increases. There are three differences between our analysis and
Shapiro’s asymptotic analysis in Shapiro (1991): (a) we intend to estimate the rate
of convergence of x N to x∗ rather than the asymptotic distribution of x N − x∗;
(b) instead of using sensitivity analysis of parametric programming, we use the recently
established theory of uniform exponential convergence of sample average random
functions in Xu (2010) to carry out our analysis; (c) the sampling is not necessarily
iid, that is, our analysis covers the case if the sampling is generated by Quasi-Monte
Carlo methods. Apart from the convergence analysis of sample average approxima-
tion for mean-variance models, we also apply the numerical scheme to a classical
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portfolio selection problem. In most portfolio selection problems in practice, a fund
manager makes his decision at the beginning of an investment period before knowing
the return of each available asset. The decision is required on the amount (propor-
tion) of capital to be invested in each of the available assets with the objective of
a desired tradeoff between the variance and the average return at the end of invest-
ment. In our portfolio selection model, the investor’s profit consists of two parts:
the net profit from the investment in financial market and the taxation on the profit,
where the taxation can be regarded as a transaction cost. In the literature of portfo-
lio optimization, the most well-studied transaction costs are constant or linear func-
tion of the portfolio return (Morton and Pliska 2006). Due to unavailability of the
distribution of uncertainty or computational complexity of the mathematical mod-
els, a closed form of the optimal decision can rarely be obtained for these portfolio
selection problems, see Bielecki and Pliska (2000), Morton and Pliska (2006). In
this paper we apply the SAA method to the mean-variance model and demonstrate
the exponential rate of convergence of approximate optimal decision (obtained from
solving sample average approximation problem) to its true counterpart as sample size
increases.

The rest of this paper is organized as follows. In Sect. 2, we reformulate (1.3)
as a minimization problem by moving the constraint to the objective through exact
penalization and show the boundedness of the penalization parameters. In Sect. 3, we
investigate the exponential rate of convergence of optimal solutions obtained from
solving an exactly penalized SAA problem under general sampling. In Sect. 4, we
apply SAA to a portfolio selection problem with taxation costs. Numerical results are
presented in Sect. 5.

Throughout this paper, we use the following notation. xT y denotes the scalar prod-
ucts of two vectors x and y, ‖·‖ denotes the Euclidean norm of a vector and a compact
set of vectors. d(x, D) := infx ′∈D ‖x − x ′‖ denotes the distance from point x to set D.
For two sets D1 and D2,D(D1, D2) := supx∈D1

d(x, D2) denotes the deviation from
set D1 to set D2 and H(D1, D2) denotes the Hausdorff distance between the two sets,
that is, H(D1, D2) := max (D(D1, D2),D(D1, D2)) . Finally, for a real valued func-
tion h(x), we use ∇h(x) to denote the gradient of h at x which is a column vector,
and when h(x) is vector valued, the same notation refers to the classical Jacobian
of h at x (where the gradient of each component forms a column of the Jacobian
matrix).

2 Exact penalization

One of the main aims of this paper is to analyze the convergence of optimal
solution x N as sample size increases. A natural way to do this is to consider the
uniform convergence of the objective function φN (x) and constraint function gN (x)
in SAA problem (1.3). Unfortunately this approach has a main technical difficulty:
the feasible set of (1.3) defined by gN (x) ≤ 0 varies as N increases. To get around
the complication in our analysis, we reformulate (1.3) as a minimization problem
by moving the constraint gN (x) ≤ 0 to the objective through exact penalization
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Monte Carlo methods for mean-risk optimization and portfolio selection 7

and subsequently leaving x ∈ X as the only constraint which is independent
of N .

2.1 Reformulation

We use the classical exact penalty function method to derive the reformulation. Let
us start with the true problem (1.1). By Fletcher (1987, Theorem 14.3.1), there exists
a positive constant λ∗ > 0 such that the optimal solution to (1.1) coincides with the
optimal solution of the following optimization problem:

min
x
ψ(x) := Var [ f (x, ξ)] + λ∗ p(E[g(x, ξ)])

s.t. x ∈ X,
(2.4)

if the second order sufficient conditions of both problems are satisfied at optimal solu-
tions. Here p(z) = ∑m

i=1 max(0, zi ) for z ∈ R
m and λ∗ > 0 is a constant. Likewise,

the SAA problem (1.3) can be reformulated as

min
x
ψN (x) := φN (x)+ λN p

(
1

N

N∑
i=1

g(x, ξ i )

)
,

s.t. x ∈ X,

(2.5)

if the second order sufficient conditions of (1.3) and (2.5) hold at optimal solutions,
where λN is some positive number. To avoid technical complexity, we make a blanket
assumption that the second order sufficient conditions of (1.1), (1.3), (2.4) and (2.5)
hold at their optimal solutions.

The reformulation makes our asymptotic analysis easier: now we may look into
the convergence of x N to x∗ by studying the uniform convergence of the objective
functions ψN (x) to ψ(x) in (2.4) and (2.5) in that the feasible sets of the two prob-
lems are identical and independent of N . This is a departure from Wang and Ahmed’s
analysis which depends on the sample average approximation of feasible sets (Wang
and Ahmed 2008, Proposition 2). The only technical issue to be resolved for the
uniform convergence of ψN (x) to ψ(x) is the boundedness of the sequence of the
penalization parameters {λN }. For this purpose, we need to investigate the Lagrange
multiplier of the SAA problem (1.3), denoted by μN . Let us start by making some
basic assumptions.

Assumption 2.1 Let f (x, ξ) and g(x, ξ) be defined as in (1.1).

(a) X is a nonempty convex and compact set;
(b) there exists a point x ∈ X such that E[ f (x, ξ)]<∞, E

[
f 2(x, ξ)

]
<∞,

E[gi (x, ξ)] < ∞, for i = 1, . . . ,m;
(c) f and g are Lipschitz continuous w.r.t. x and their Lipschitz modulus are bounded

by κ1(ξ) > 0, where E[κ1(ξ)] < ∞;
(d) ∇x f (x, ξ) and ∇x g(x, ξ) are Lipschitz continuous w.r.t. x and their Lipschitz

modulus are bounded by κ2(ξ) > 0, where E[κ2(ξ)] < ∞;
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(e) supx∈X | f (x, ξ)| ≤ κ3(ξ), where E[κ1(ξ)κ3(ξ)] < ∞.

The assumption is standard except part (a) where we require the feasible set X to be
compact. This is purely for the convenience of convergence analysis. In fact, we may
relax the condition from compactness to closedness and carry out our convergence
analysis on a compact subset of X which contains sequence {x N } w.p.1. From practical
point of view, this kind of assumption is reasonable as the quantities of decision vari-
ables are usually bounded, see a similar assumption by Wang and Ahmed (2008)
in portfolio optimization. Under Assumption 2.1, the mean-risk model (1.1) is well
defined in the sense that the underlying functions are finite valued for every x ∈ X .
To see this, let us explain that under conditions (b) and (c), we have

| f (x ′, ξ)| ≤ | f (x, ξ)| + κ1(ξ)‖x ′ − x‖

for any x ′ ∈ X , which implies that E[ f (x ′, ξ)] is well defined for every x ′ ∈ X .
This comment also applies the components of g(x, ξ). Moreover, from the inequality
above, we have

sup
x∈X

| f (x ′, ξ)| ≤ | f (x, ξ)| + κ1(ξ)D,

where D denotes the diameter of set X . This means that we can choose κ3(ξ) =
| f (x, ξ)| + κ1(ξ)D in part (e) of the assumption. Let us now comment on the well-
definedness of Var

[
f (x ′, ξ(ω))

]
for any x ′ ∈ X . It is easy to verify that under condi-

tions (c) and (e) for any x ′ ∈ X ,

E[ f 2(x ′, ξ)] ≤ E[ f 2(x, ξ)] + E[2κ3(ξ)κ1(ξ)]‖x ′ − x‖

which means that E[ f 2(x ′, ξ)] is well defined for any x ′ ∈ X , and through (1.2), that
Var

[
f (x ′, ξ(ω))

]
is well defined for any x ′ ∈ X .

For the convenience of discussion, we assume throughout this section that the sam-
pling is iid. This does not contradict with the discussion in the next section where the
sampling is assumed to be general (including both iid and non-iid). Indeed, all we
need in Propositions 2.1 and 2.2 are uniform convergence of the sample average of
f, g and their gradients, which can be proved through (Xu 2010, Theorem 3.1) under
Assumptions 3.1 and 3.2 when the sampling is non-iid.

Proposition 2.1 Let f, g and φN be defined respectively as in (1.1) and (1.3). If the
sampling is iid, then

(i) under Assumption 2.1 (a), (b) and (d), 1
N

∑N
i=1 f (x, ξ i ), 1

N

∑N
i=1 g(x, ξ i ) and

1
N

∑N
i=1 f 2(x, ξ i ) converge to E[ f (x, ξ)],E[g(x, ξ)] and E[ f 2(x, ξ)] respec-

tively uniformly over X as N → ∞;
(ii) under Assumption 2.1 (a) and (c), 1

N

∑N
i=1 ∇x f (x, ξ i ) and 1

N

∑N
i=1 ∇x g(x, ξ i )

converge to E[∇x f (x, ξ)],E[∇x g(x, ξ)] respectively uniformly over X as
N → ∞;
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Monte Carlo methods for mean-risk optimization and portfolio selection 9

(iii) if Assumption 2.1 (a) and (d) hold and λN → λ∗, then ∇φN (x) converges to
∇Var[ f (x, ξ)] uniformly over X as N → ∞.

Proof The claims can be easily proved by virtue of the classical uniform law of large
numbers, see for example (Rubinstein and Shapiro 1993, Lemma A). We omit the
details. ��

Let us introduce some notation. For a vector a ∈ R
n , we use a ≥ 0 to represent the

componentwise nonnegativity of the vector and ‘⊥’ to denote the perpendicularity of
two vectors. Let NX (x) denote the normal cone to X at point x , that is,

NX (x) :=
{ {η ∈ R

n : ηT (x ′ − x) ≤ 0, ∀ x ′ ∈ X}, if x ∈ X,
∅, otherwise.

Assumption 2.2 Consider the true problem (1.1). There is no non-zero multiplier
μ ∈ R

m+ such that

{
0 ∈ ∇E[g(x, ξ)]μ+ NX (x),
0 ≤ −E[g(x, ξ)] ⊥ μ ≥ 0.

Assumption 2.2 is known as no nonzero abnormal multipliers constraint qualifica-
tion (NNAMCQ) which was proposed by Ye (2000) for studying the first order optimal-
ity conditions of deterministic mathematical programs with equilibrium constraints
(MPEC). The constraint qualification is a dual form of the well-known Mangasarian–
Fromovitz constraint qualification (MFCQ). To see this, let us consider a simple case
when NX (x) = {0}, that is, x is in the interior of X . The constraint qualification reduces
to positive linear independence of the gradients of all active inequality constraints. By
the Farkas lemma, there exists a vector d ∈ R

n such that ∇E[gi (x, ξ)]T d < 0 for
active constraints i such that E[gi (x, ξ)] = 0. The latter is indeed the MFCQ, see
Xu and Ye (2010, p. 1696) for details.

Consider the first order necessary conditions of the SAA problem (1.3):

{
0 ∈ ∇φN (x)+ ∇gN (x)μ+ NX (x),
0 ≤ −gN (x) ⊥ μ ≥ 0.

(2.6)

Let {μN } be a sequence of Lagrange multipliers satisfying (2.6). The following prop-
osition states that {μN } is bounded under some moderate conditions.

Proposition 2.2 Consider the SAA problem (1.3) with iid samples. Under Assump-
tions 2.1 and 2.2, the sequence of the Lagrange multipliers {μN } is bounded w.p.1.

Proof Let x N be a KKT point and μN be a corresponding vector of Lagrange multi-
pliers. Then

0 ∈ ∇φN (x
N )+ ∇gN (x

N )μN + NX (x), (2.7)
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and 0 ≤ μN ⊥ −gN (x N ) ≥ 0. Assume for the sake of a contradiction that {μN } is
unbounded. Then {μN } has a subsequence going to infinity. Since X is a compact,
{x N } has a subsequence converging to some point x∗ ∈ X . Assume without loss of
generality that {x N } → x∗ and ‖μN ‖ → ∞. Under Assumption 2.1, it follows from
Proposition 2.1 that ∇φN (x N ) → ∇Var[ f (x∗, ξ)] and ∇gN (x N ) → ∇E[g(x∗, ξ)].
Dividing both sides of (2.7) by ‖μN ‖ and driving N to infinity, we arrive at

0 ∈ 0 + ∇E[g(x∗, ξ)]μ̂+ NX (x
∗), (2.8)

where μ̂ is the accumulation point of {μN/‖μN ‖} and hence μ̂ ≥ 0 and ‖μ̂‖ = 1.
This leads to a contradiction to Assumption 2.2. The proof is complete. ��

Proposition 2.2 gives a qualitative description of the boundedness of μN . In what
follows, we present a quantitative estimation of the multiplier.

Proposition 2.3 Let W∗ := (X∗,M∗) denote the set of KKT pairs of the true prob-
lem (1.1) and WN := (X N ,MN ) the set of KKT pairs of SAA problem (1.3). Under
Assumptions 2.1 and 2.2, for every ε > 0, there exists N (ε) > 0 such that

H(WN ,W∗) ≤ ε, (2.9)

for N ≥ N (ε).

Proof We can easily reformulate the KKT conditions (2.6) as a system of generalized
equations with both x and μ being treated as variables:

{
0 ∈ ∇φN (x)+ ∇gN (x)μ+ NX (x),
0 = min{−gN (x), μ}. (2.10)

Here the operation “ min” is taken componentwise. The domain of the underlying
function w.r.t. variable μ is [0,+∞) but we may assume without loss of generality
that μN ∈ [0, μ̄] for all N with some sufficiently large μ̄ given the boundedness of
{μN } proved in Proposition 2.2. Likewise the KKT conditions of (1.1) can be written
as

{
0 ∈ ∇Var[ f (x, ξ)] + ∇E[g(x, ξ)]μ+ NX (x),
0 = min{−E[g(x, ξ)], μ}. (2.11)

The set of KKT pairs WN is the set of solutions of problem (2.10) and W∗ is the
set of solutions of problem (2.11). Since the vector valued function (∇φN (x) +
∇gN (x)μ,min(gN (x), μ))T converges uniformly to (∇Var[ f (x, ξ)]+∇E[g(x, ξ)]μ,
min(E[g(x, ξ)], μ))T over compact set X × [0, μ̄], by Xu and Zhang (2009, Lemma
4.1), we immediately obtain (2.9). ��
Remark 2.1 From Proposition 2.2, we know that {μN } is bounded. By Fletcher (1987,
Theorem 14.3.1), (2.5) is equivalent to (1.3) so long as we set λN ≥ ‖μN ‖. From here
on, we assume that

{
λN
}

is an increasing bounded sequence satisfying this.
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3 Convergence analysis

We are now ready to investigate the convergence of the statistical estimator of the opti-
mal solution, denoted by x N , obtained from solving (2.5) as sample size increases.
We do so by looking into the uniform convergence of ψN (x) to ψ(x) which implies
the convergence x N to X∗, where X∗ denotes the set of optimal solutions of the true
problem (1.1), or equivalently (2.4). From computational perspective, one often need
estimate the sample size N given a prescribed error bound d(x N , X∗). A popular way
to address this issue is to consider the so-called exponential convergence, that is, with
probability approaching one exponentially fast, {x N } converges to X∗ based on the
classical Cramér’s large deviation theorem (Dembo and Zeitouni 1998), see Shapiro
(2003), Shapiro and Xu (2008) and the references therein.

Note that Cramér’s large deviation theorem is based on independent and identically
distributed (iid) sampling. In some practical instances, however, it is difficult or com-
putationally expensive to obtain an iid sample particularly when sample size is large.
Indeed, the well-known Quasi-Monte Carlo method does not require iid sampling and
yet it works remarkably well. This motivates one to study SAA under non-iid sam-
pling. Dai et al. (2000) investigated the convergence of SAA estimators under general
sampling (including iid and non-iid). They used the well-known Gärther-Ellis theorem
(Dembo and Zeitouni 1998) to establish the exponential convergence. More recently
Homen-De-Mello (2008) presented a comprehensive study of this issue and derived
the exponential convergence of statistical estimators of optimal solutions in stochas-
tic programming under non-iid sampling. To broaden the scope of the convergence
theorems to be established in this section, we consider general sampling.

Let us define the following moment generating functions:

M N
f (t) := E

{
e

t
[

1
N

∑N
i=1 f (x,ξ i )

]}
,

M N
f 2(t) := E

{
e

t
[

1
N

∑N
i=1 f 2(x,ξ i )

]}
,

and

M N
g (t) := E

{
e

t
[

1
N

∑N
i=1 g(x,ξ i )

]}
.

Assumption 3.1 For every x ∈ X and t ∈ R, the limits

M f (t) := lim
N→∞ M N

f (t),

M f 2(t) := lim
N→∞ M N

f 2(t)

and

Mg(t) := lim
N→∞ M N

g (t)
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12 H. Xu, D. Zhang

exist as an extended real number and M f (t) < ∞,Mg(t) < ∞ and M f 2(t) < ∞
for t close to 0, where Mh(t) = eht denotes the moment generating function for ran-
dom variables h = f, g, f 2. Moreover ∇gN (x) converges uniformly to E[∇g(x, ξ)]
over X .

Note that in the case when ξ1, . . . , ξ N is an iid sampling, Assumption 3.1 holds as
long as

max(M f (t),M f 2(t),Mg(t)) < ∞

for t close to zero, see Dembo and Zeitouni (1998, Section 2.3). The implication of
Assumption 3.1 is that when the sampling is not necessarily iid, one may use Gärther-
Ellis’ large deviation theorem, Dembo and Zeitouni (1998, Theorem 2.3.6), instead
of Cramér’s large deviation theorem to establish the exponential convergence of the
sample averages. The following pointwise exponential convergence is well-known,
see for instances Dai et al. (2000), Dembo and Zeitouni (1998).

Lemma 3.1 Let f : R
n × � → R be a real valued function and ξ : � → � ⊂ R

k

be a random vector defined on probability space (�,F , P). Let Assumption 3.1 hold.
Then for every x ∈ X and small positive number ε > 0,

Prob

{∣∣∣∣∣
1

N

N∑
i=1

f (x, ξ i )− E[ f (x, ξ)]
∣∣∣∣∣ ≥ ε

}
≤ e−N I f (−ε) + e−N I f (ε),

Prob

{∣∣∣∣∣
1

N

N∑
i=1

f 2(x, ξ i )− E[ f 2(x, ξ)]
∣∣∣∣∣ ≥ ε

}
≤ e−N I f 2 (−ε) + e−N I f 2 (ε)

Prob

{∣∣∣∣∣
1

N

N∑
i=1

g(x, ξ i )− E[g(x, ξ)]
∣∣∣∣∣ ≥ ε

}
≤ e−N Ig(−ε) + e−N Ig(ε)

for N sufficiently large, where

Ih(ε) := sup
t∈R

{εt − log Mh(t)}

for h = f, f 2, g, and Ih(ε) and Ih(−ε) and Ih(−ε) are positive.

To establish the uniform exponential convergence, we also need an assumption
on asymptotic behavior of the sample average of the modulus of function f . Similar
assumption is made in Shapiro and Xu (2008) for the uniform exponential convergence
of sample average random functions under iid sampling.

Assumption 3.2 Let κ1(ξ) and κ3(ξ) be defined as in Assumption 2.1. For any L ′ ≥
E[max{κ1(ξ), κ3(ξ)}], there is a positive constant τ such that
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Prob

{
min

(
1

N

N∑
i=1

κ1(ξ
i ),

1

N

N∑
i=1

κ3(ξ
i )

)
≥ L ′

}
≤ e−τN , (3.12)

for N sufficiently large.

Under Assumption 3.2, we may strengthen Lemma 3.1 to the uniform exponential
convergence.

Theorem 3.1 Let Assumptions 2.1, 2.2, 3.1 and 3.2 hold. Assume1 that {λN } → λ∗
as N → ∞. Then for every ε > 0, there exist positive constants c(ε) and β(ε),
independent of N , such that

Prob

{
sup
x∈X

|ψN (x)− ψ(x)| ≥ ε

}
≤ c(ε)e−Nβ(ε) (3.13)

for N sufficiently large.

Proof By a simple calculation,

φN (x) = N

N − 1

⎡
⎣ 1

N

N∑
i=1

f 2(x, ξ i )−
(

1

N

N∑
i=1

f (x, ξ i )

)2⎤
⎦

and through (1.2)

φN (x)− φ(x)= N

N − 1

⎡
⎣ 1

N

N∑
i=1

f 2(x, ξ i )− E[ f 2(x, ξ)] −
⎛
⎝
(

1

N

N∑
i=1

f (x, ξ i )

)2

− (E[ f (x, ξ)])2
)⎤⎦+ 1

N − 1
φ(x). (3.14)

On the other hand, it is easy to verify that function p(z) defined in (2.4) is globally
Lipschitz continuous with modulus 1 and p(z) ≤ ‖z‖ which means

∣∣∣∣∣λ
N p

(
1

N

N∑
i=1

g(x, ξ i )

)
− λ∗ p(E[g(x, ξ)])

∣∣∣∣∣ ≤
∣∣∣λN − λ∗

∣∣∣
∥∥∥∥∥

1

N

N∑
i=1

g(x, ξ i )

∥∥∥∥∥

+λ∗
∥∥∥∥∥

1

N

N∑
i=1

g(x, ξ i )− E[g(x, ξ)]
∥∥∥∥∥ .

(3.15)

1 Under Assumptions 2.1, 2.2, 3.1 and 3.2, we can prove the uniform convergence of φN (x),∇gN (x)
to E[φ(x, ξ)] and E[∇g(x, ξ)] over set X . Through Proposition 2.2, this means {μN } is bounded. For
simplicity of discussion, we assume {λN } → λ∗ as N → ∞ just for simplicity of discussion and it is
justified.
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14 H. Xu, D. Zhang

Combining (3.14) and (3.15), we have

|ψN (x)− ψ(x)| ≤ N

N − 1

∣∣∣∣∣
1

N

N∑
i=1

f 2(x, ξ i )− E[ f 2(x, ξ)]
∣∣∣∣∣

+ N

N − 1

∣∣∣∣∣∣

(
1

N

N∑
i=1

f (x, ξ i )

)2

− (E[ f (x, ξ)])2
∣∣∣∣∣∣

+ 1

N − 1
φ(x)+ λ∗

∥∥∥∥∥
1

N

N∑
i=1

g(x, ξ i )− E[g(x, ξ)]
∥∥∥∥∥

+|λN − λ∗|
∥∥∥∥∥

1

N

N∑
i=1

g(x, ξ i )

∥∥∥∥∥ .

Let ε > 0 be a fixed small positive number. In what follows, we estimate

Prob {|ψN (x)− ψ(x)| ≥ ε} .

Observe first that for N ≥ 2, we have N
N−1 ≤ 2. Moreover, since φ(x) is a con-

tinuous function and X is compact, there exists positive integer N such that when
N ≥ 5

ε
supx∈X φ(x)+ 1, we have 1

N−1φ(x) ≤ ε
5 . Subsequently

|ψN (x)− ψ(x)| ≤ 2

∣∣∣∣∣
1

N

N∑
i=1

f 2(x, ξ i )− E[ f 2(x, ξ)]
∣∣∣∣∣

+2

∣∣∣∣∣∣

(
1

N

N∑
i=1

f (x, ξ i )

)2

− (E[ f (x, ξ)])2
∣∣∣∣∣∣

+λ∗
∥∥∥∥∥

1

N

N∑
i=1

g(x, ξ i )− E[g(x, ξ)]
∥∥∥∥∥

+|λN − λ∗|
∥∥∥∥∥

1

N

N∑
i=1

g(x, ξ i )

∥∥∥∥∥+ ε

5
.

Denote the first, second, third and fourth terms on the right hand side of the above
inequality in sequel by RN

1 (x), RN
2 (x), RN

3 (x) and RN
4 (x). Under Assumption 2.1,

f 2(x, ξ) and g(x, ξ) are Lipschitz continuous with modulus κ1(ξ)κ3(ξ) and κ1(ξ).
Together with the pointwise exponential convergence in Lemma 3.1, we can use Xu
(2010, Theorem 3.1) to obtain the uniform exponential convergence, that is, there
exist positive constants cl(ε) and βl(ε) such that

Prob

{
sup
x∈X

RN
l (x) ≥ ε

5

}
≤ cl(ε)e

−βl (ε)N (3.16)

123



Monte Carlo methods for mean-risk optimization and portfolio selection 15

for l = 1, 3. In what follows, we look into RN
2 (x) and RN

4 (x). Note that

RN
2 (x) = 2

∣∣∣∣∣
1

N

N∑
i=1

f (x, ξ i )+ E[ f (x, ξ)]
∣∣∣∣∣

∣∣∣∣∣
1

N

N∑
i=1

f (x, ξ i )− E[ f (x, ξ)]
∣∣∣∣∣ .

Using the conditional probability (conditional on whether supx∈X

∣∣∣ 1
N

∑N
i=1 f (x, ξ i )+

E[ f (x, ξ)]
∣∣∣ exceeds 2E[κ3(ξ)] + 1 or not), we derive

Prob

{
sup
x∈X

RN
2 (x) ≥ ε

5

}

≤ Prob

{
sup
x∈X

∣∣∣∣∣
1

N

N∑
i=1

f (x, ξ i )+ E[ f (x, ξ)]
∣∣∣∣∣ sup

x∈X

∣∣∣∣∣
1

N

N∑
i=1

f (x, ξ i )− E[ f (x, ξ)]
∣∣∣∣∣ ≥ ε

10

}

×Prob

{
sup
x∈X

∣∣∣∣∣
1

N

N∑
i=1

f (x, ξ i )+ E[ f (x, ξ)]
∣∣∣∣∣ < 2E[κ3(ξ)] + 1

}

+Prob

{
sup
x∈X

∣∣∣∣∣
1

N

N∑
i=1

f (x, ξ i )+ E[ f (x, ξ)]
∣∣∣∣∣ sup

x∈X

∣∣∣∣∣
1

N

N∑
i=1

f (x, ξ i )− E[ f (x, ξ)]
∣∣∣∣∣ ≥ ε

10

}

×Prob

{
sup
x∈X

∣∣∣∣∣
1

N

N∑
i=1

f (x, ξ i )+ E[ f (x, ξ)]
∣∣∣∣∣ ≥ 2E[κ3(ξ)] + 1

}

≤ Prob

{
sup
x∈X

∣∣∣∣∣
1

N

N∑
i=1

f (x, ξ i )− E[ f (x, ξ)]
∣∣∣∣∣ ≥ ε

10(2E[κ3(ξ)] + 1)

}

+Prob

{
sup
x∈X

∣∣∣∣∣
1

N

N∑
i=1

f (x, ξ i )+ E[ f (x, ξ)]
∣∣∣∣∣ ≥ 2E[κ3(ξ)] + 1

}

Under Assumption 2.1 (b), f is Lipschitz continuous in x and Lemma 3.1 implies that
1
N

∑N
i=1 f (x, ξ i ) converges to E[ f (x, ξ)] pointwise on X at exponential rate. By Xu

(2010, Theorem 3.1), 1
N

∑N
i=1 f (x, ξ i ) converges to E[ f (x, ξ)] uniformly on X at

exponential rate, that is, there exist positive constants c2(ε) and β2(ε) such that

Prob

{
sup
x∈X

∣∣∣∣∣
1

N

N∑
i=1

f (x, ξ i )− E[ f (x, ξ)]
∣∣∣∣∣≥

ε

10(2E[κ3(ξ)] + 1)

}
≤c2(ε)e

−β2(ε)N .

(3.17)

On the other hand, under Assumption 2.1 (d),

∣∣∣∣∣
1

N

N∑
i=1

f (x, ξ i )+ E[ f (x, ξ)]
∣∣∣∣∣ ≤ 1

N

N∑
i=1

κ3(ξ
i )+ E[κ3(ξ)].
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16 H. Xu, D. Zhang

By Assumption 3.2,

Prob

{
sup
x∈X

∣∣∣∣∣
1

N

N∑
i=1

f (x, ξ i )+ E[ f (x, ξ)]
∣∣∣∣∣ ≥ 2E[κ3(ξ)] + 1

}

≤ Prob

{
1

N

N∑
i=1

κ3(ξ
i ) ≥ E[κ3(ξ)] + 1

}

≤ e−Nτ (3.18)

for N sufficiently large. Substituting (3.17) and (3.18) into the term RN
2 (x) yields the

following inequality

Prob

{
sup
x∈X

RN
2 (x) ≥ ε

5

}
≤ c2(ε)e

−β2(ε)N + e−Nτ .

Finally, we estimate the probability of supx∈X RN
4 (x) ≥ ε/5, where

RN
4 (x) =

∣∣∣λN − λ∗
∣∣∣
∣∣∣∣∣

1

N

N∑
i=1

g(x, ξ i )

∣∣∣∣∣ .

By Assumption 2.1 (b) and the pointwise exponential convergence of 1
N

∑N
i=1 g(x, ξ i )

to E[g(x, ξ)] on set X as established in Lemma 3.1, we can easily use Xu (2010,
Theorem 3.1) to show the uniform exponential convergence of 1

N

∑N
i=1 g(x, ξ i )

to E[g(x, ξ)] on set X . Since supx∈X E[g(x, ξ)] is bounded by E[g(x̄, ξ)] + ‖x −
x̄‖γE[κ1(ξ)] for any x̄ ∈ X , and λN → λ∗, then for given ε > 0, there exist
N (ε) > 0, c4(ε) > 0 and β4(ε) > 0 such that for any N > N (ε), that is,

Prob

{
sup
x∈X

RN
4 (x) ≥ ε

5

}
≤ c4(ε)e

−β4(ε)N .

Combining the estimation of probabilities of supx∈X RN
l (x) ≥ ε/5, l = 1, 2, 3 and 4,

we have

Prob {|ψN (x)− ψ(x)| ≥ ε} ≤ c(ε)e−β(ε)N ,

where c(ε) = 2c1(ε) + c2(ε) + 1 + c4(ε) and β(ε) = min{β1(ε), β2(ε), τ, c4(ε)}.
This shows (3.13) and hence completes the proof. ��

We now apply the uniform exponential convergence results to establish the expo-
nential convergence of {x N }.
Lemma 3.2 Consider a general constrained minimization problem

min p(x)
s.t. x ∈ X

(3.19)
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Monte Carlo methods for mean-risk optimization and portfolio selection 17

where p : R
n → R and X is a subset of R

n, and a perturbed program

min p̃(x)
s.t. x ∈ X

(3.20)

where p̃ : R
n → R is a perturbation of p. Let U∗ denote the set of optimal solutions

of (3.19) and V ∗ be the set of optimal solutions of (3.20). Assume that neither U∗ nor
V ∗ is empty. Then for any ε > 0, there exists a δ > 0 (depending on ε) such that if
supx∈X | p̃(x)− p(x)| ≤ δ, ∀x ∈ X, then D(V ∗,U∗) ≤ ε.

The result is proved by Dai et al. (2000, Lemma 3.2) when U∗ is a singleton. It
is not difficult to see from their proof that the conclusion holds when U∗ contains
multiple solutions.

Theorem 3.2 Assume the setting and conditions of Theorem 3.1. Let {x N } be a
sequence of optimal solutions to the SAA problem (1.3) and X∗ be the set of opti-
mal solutions to the true problem (1.1). For any ε > 0, there exist constants β(ε) > 0
and c(ε) > 0 such that

Prob
{

d
(

x N , X∗) ≥ ε
}

≤ c(ε)e−β(ε)N . (3.21)

Proof Let ε > 0 be fixed. By Lemma 3.2, there exists δ(ε) > 0 such that d(x N , X∗) ≤
ε when supx∈X |ψN (x)− ψ(x)| ≤ δ(ε). For the given δ(ε), it follows from Theorem
3.1 that there exists β(δ(ε)) > 0, c(δ(ε)) > 0 (for simplicity of notation, we write
them as c(ε) and β(ε)) and a sufficiently large integer N0, such that

Prob

{
sup
x∈X

|ψN (x)− ψ(x)| ≥ δ(ε)

}
≤ c(ε)e−β(ε)N ,

for any N ≥ N0. This implies

Prob
{

d(x N , X∗) ≥ ε
}

≤ Prob

{
sup
x∈X

|ψN (x)− ψ(x)| ≥ δ(ε)

}
≤ c(ε)e−β(ε)N ,

for any N ≥ N0. The proof is complete. ��

4 The portfolio selection problem with taxation costs

In this section, we apply the mean-risk model (1.1) and the sample average approx-
imation scheme discussed in the preceding sections to a portfolio selection problem
with taxation costs. The general background of this decision making problem is to
address the requirement of a traditional fund manager and the tax regime imposed
by a regulator over a particular investment period, see Roman et al. (2006) for more
details.

Consider a set of M assets indexed by m ∈ {1, 2, . . . ,M}. We denote the outcome
price for per unit of asset m at the beginning and the end of the investment period by
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18 H. Xu, D. Zhang

p0
m and pm respectively. The unit return rate of the asset is defined as rm := pm/p0

m .
The end price pm is often unknown at the beginning of the investment period due to
uncertainties in the investment. We describe the uncertainty by a vector of random
variables ξ(ω) and write pm and rm as a function of ξ , pm(ξ(ω)) and rm(ξ(ω)), for
m = 1, . . . ,M . To ease the notation, we use ξ to denote either random vector ξ(ω) or
an element of R

k depending on the context.
Let w denote the total capital available for the investment and wm,m = 1, . . . ,M ,

be invested in asset m. Let xm := wm/w denote the proportion of the capital invested
in asset m. Without loss of generality, we assume that the fund manager invests the rest
of his capitalw0 := w−∑M

m=1wm in a risk-free asset (such as bond and bank account)
with a deterministic return r0. Let x0 := w0/w and x := (x0, x1, x2, . . . , xM )

T denote
the manager’s decision vector. The return rate of this portfolio can be formulated as:

R(x, ξ) = x0r0 + x1r1(ξ)+ x2r2(ξ)+ · · · + xMrM (ξ).

By defining the vector of return rate as r(ξ) := (r0, r1(ξ), . . . , rM (ξ))
T , we can

rewrite R(x, ξ) in a concise form:

R(x, ξ) = xT r(ξ). (4.22)

From the definition, (x0, x1, x2, . . . , xM )must satisfy a set of basic constraints which
specify the feasible set X of the decision vector:

X =
{
(x0, x1, x2, . . . , xM )

∣∣∣∣∣
M∑

m=1

xm = 1, xm ≥ 0, for all m = 0, 1, 2, . . . ,M

}
.

(4.23)

The decision on making a choice between two portfolios x, x ′ ∈ X is based on the
random returns R(x, ξ) and R(x ′, ξ). Here we use a mean-variance optimization model
to give a reference criterion under which portfolio vector x ∈ X is considered ‘better’
or ‘preferred’ than others. Let us first formulate the profit that the manager might
obtain from the investment. Given the total amount of capital w and the rate of return
of the investment R(x, ξ), the total amount of capital at the end of the investment
period can be formulated as wR(x, ξ). Hence the profit of the fund manager obtained
from this investment period can be written as h(x, ξ) = wR(x, ξ)− w.

In the mean-variance optimization model to be discussed, we consider the case that
tax is paid by the manager. The tax function, denoted by T (h), gives the amount of
capital to be taxed when the manager’s profit from the investment is h. A popular tax
function is defined as follows:

T (h) =
{

t1h, for h ≤ β;
t1β + t2(h − β), for h > β,

(4.24)

where t1 and t2 are the tax rates, β is the tax threshold from rate t1 to rate t2 and T (h)
denotes the total tax on the profit h. In the literature, T (h) is known as a piecewise
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Monte Carlo methods for mean-risk optimization and portfolio selection 19

linear progressive tax function. Here the word ‘progressive’ is in the sense that T (h)/h
is an increasing function, see Ok (1997, Definition 2.4). Observe that this tax function
is nonsmooth and this might complicate the numerical solution of the problem. In
what follows, we consider another strictly progressive tax function defined as follows:

T (h) =

⎧
⎪⎪⎨
⎪⎪⎩

K2

(
1 − e

− h
v2

)
h, for h ∈ [−w, 0),

K1

(
1 − e

− h
v1

)
h, for h ∈ [0,+∞),

(4.25)

where K1, K2, v1 and v2 are positive constants with 0 < K2 ≤ K1 < 1, which
guarantees that the tax cost is less than the overall profit h. It is easy to verify that
T (h) defined above is smooth (continuously differentiable). In practice, parameter
K1, taken as the ceiling rate of tax T (h)/h, varies for different types of taxation. The
tax function has the following properties:

(a) for a sufficiently large income h, the rate of tax T (h)/h = K1

(
1 − e

− h
v1

)
≈ K1;

(b) if h = 0, i.e., there is no income from the investment, then T (h)/h =
K1

(
1 − e

− h
v1

)
= 0;

(c) if h ∈ [−w, 0), i.e., the manager loses the capital in the investment, then the rate

of tax T (h)/h = K2

(
1 − e

− h
v2

)
< 0.

Property (c) indicates that when the profit h from the investment is negative, the taxa-
tion rate T (h)/h is negative which implies certain amount of capital loss is refunded
to the investor by the tax authority. This reflects practical policies taken by some gov-
ernments and/or tax regimes that intend to promote investment. Note that by setting
parameter v2 sufficiently large we have from property (c) that the rate of the taxa-
tion T (h)/h is close to zero. Therefore the tax policy that no compensation will be
refunded for the investment can be viewed as part of the tax function (4.25).

For the simplicity of notation, we define K (x, ξ) := max(K1sign(h(x, ξ)),
−K2sign(h(x, ξ))) and v(x, ξ) := max(v1sign(h(x, ξ)),−v2sign(h(x, ξ))), where

sign(h) =
⎧⎨
⎩

1, h > 0,
0, h = 0,
−1, h < 0.

Taking the taxation costs into account, if the manager chooses the portfolio vector
x = (x0, x1, . . . , xM ) at the beginning of the investment, the post-tax profit obtained
from this investment can be formulated as

H(x, ξ) = h(x, ξ)− T (h(x, ξ))

= h(x, ξ)
(
(1 − K (x, ξ))+ K (x, ξ)e−h(x,ξ)/v(x,ξ)

)
. (4.26)
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The following lemma states the Lipschitz continuity of H and ∇x H in x , a property
that we need for the convergence analysis in Proposition 4.1.

Lemma 4.1 Let H(x, ξ) be defined as in (4.26). Then the following hold:

(i) H is Lipschitz continuous w.r.t x and its Lipschitz modulus is bounded by a
positive constant κ1 > 0;

(ii) ∇x H(x, ξ) is Lipschitz continuous w.r.t x with a bounded Lipschitz modulus.

The proof is long but standard. We attach it in the appendix. Note that it is possible to
show the continuous differentiability of function H(x, ξ) although we do not need it
in the following discussion.

Based on the discussions above, we are ready to develop a mean-variance optimi-
zation model for the portfolio problem: a portfolio x is chosen at the beginning of the
investment period to satisfy the requirements on both expected profit and risk-aversion.
Preference is then defined by considering a trade-off between a larger average return
rate of the portfolio E[H(x, ξ)] and a smaller variance Var[H(x, ξ)]. Let d denote
the threshold of the expected return from the portfolio. The optimal decision is to
minimize the variance of the investment subject to the constraint that the expected
profit is not lower than d:

min
x

Var[H(x, ξ)]
s.t. x ∈ X,

E[H(x, ξ)] ≥ d.
(4.27)

Our focus here is concerned with the numerical solution of problem (4.27). Obvi-
ously if the probability distribution function of rm(ξ),m = 1, 2, . . . ,M , is available
before the investment period and we can obtain a closed form of E[H(x, ξ)] and
Var[H(x, ξ)], then (4.27) becomes a deterministic optimization problem and we can
use any available nonlinear programming code to solve it. In practice, however, this
is often difficult, if not impossible. Instead, it is relatively easier to acquire a sample
of r(ξ) from historical data.

Based on this argument, we propose the sample average approximation scheme for
solving the portfolio optimization problem:

min
x

1

N − 1

N∑
i=1

H2(x, ξ i )− N

N − 1

(
1

N

N∑
i=1

H(x, ξ i )

)2

s.t. x ∈ X,

1

N

N∑
i=1

H(x, ξ i ) ≥ d,

(4.28)

where ξ1, . . . , ξ N is a sample of ξ .
We apply Theorem 3.2 to derive the rate of convergence of optimal solution x N

(obtained from solving from problem (4.28)) to its true counterpart as sample size N
increases. Observe that the tax function T (h) is not strictly convex, hence problem
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(4.27) may have multiple optimal solutions. In a real investment problem, the random
return rate rm does not go to infinity or negative. Therefore, we may assume that for
asset m, there exists a positive constant r̄m such that rm ∈ [0, r̄m]. We are now ready
to state the main result of this section.

Proposition 4.1 Let {x N } be a sequence of optimal solutions obtained from solving
the SAA problem (4.28) and X∗ the set of optimal solutions of the true problem (4.27).
Assume that the sampling is iid.2 Then

(i) for every ε > 0, there exists a positive integer N0 > 0 such that for N >

N0, d(x N , X∗) ≤ ε w.p.1;
(ii) for any ε > 0, there exist constants β(ε) > 0 and c(ε) > 0 such that

Prob
{

d(x N , X∗) ≥ ε
}

≤ c(ε)e−β(ε)N (4.29)

for N sufficiently large.

Proof We prove the claims by virtue of Theorem 3.2. To this end, we by verify the con-
ditions of the theorem in the context of (4.27). Let us start by verifying Assumption 2.1.
From (4.23), we see that X is a convex and compact set. This verifies Assumption
2.1 (a). Assumption 2.1 (b)–(d) follow from Lemma 4.1. Assumption 2.2 is trivially
satisfied because ∇xE[H(x, ξ)] is a nonzero vector for any x ∈ X .

Next we look at Assumption 3.1. Consider the moment generating function:

M N
H (t) = E

[
e

t
[

1
N

∑N
i=1 H(x,ξ i )

]]
.

By definition |H(x, ξ)| ≤ |h(x, ξ)| ≤ ∑M
m=1 |rm(ξ)| ≤ ∑M

m=1 r̄m . Consequently

M N
H (t) ≤ E

[
e
wt
[

1
N

∑N
i=1

∑M
m=1 |rm (ξ

i )|
]]

≤ E

[
e
w|t |

[
1
N

∑N
i=1

∑M
m=1 |r̄m |

]]

≤ ew|t |∑M
m=1 r̄m ,

which implies MH (t) < +∞ for t close to 0. Since the sampling is iid, by the Cramer’s
large deviation theorem, limN→∞ M N

H (t) exits and it equals to MH (t). Likewise we
can prove that MH2(t) = limN→∞ M N

H2(t) < +∞ for t close to 0. This verifies
Assumption 3.1. Finally, Assumption 3.2 follows from Cramer’s large deviation the-
orem and Lemma 3.1. This completes the proof. ��

To conclude this section, we comment that in some practical cases, a fund manager
may be interested in pre-tax profit maximization. In this case, the optimization model

2 In the case that the sampling is non-iid, we need Assumptions 3.1 and 3.2.
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becomes

min
x

Var[h(x, ξ)]
s.t. x ∈ X,

E[h(x, ξ)] ≥ d.
(4.30)

Applying the SAA scheme to it, we can obtain the exponential convergence of optimal
solution estimators as in Proposition 4.1.

5 Numerical tests

We have carried out some numerical tests on two mean-variance optimization prob-
lems. In this section, we report the test results.

The first test problem is under the portfolio selection framework discussed in Sect. 4.
We consider a set of stocks in iShare FTSE/Xinhua China 25 index of the New York
Stock Exchange (NYSE:FXI) which consists 25 of the largest and most liquid Chinese
stocks. The tests are performed over a set of 18 stocks from this index, excluding 7
stocks due to insufficient historical data. Our portfolio optimization model is similar
to the mean-CVaR model in Roman et al. (2007, Section 5) except that we consider
variance instead of CVaR in the objective as the risk measure. In the tests, we apply the
sample average approximation to the problem on the basis of historical data collected
from the stock market. The data set consists of daily closing prices for these 18 stocks,
over a two-year period spanning from March 23rd 2007 to March 23rd 2009, down-
loaded from http://finance.google.com with adjustment for stock splitting, including
300 historical samples of monthly return. The tests are implemented by using mathe-
matical programming codes of GAMS installed in a PC with Windows XP operating
system and the built-in solver PATHNLP.

To apply the proposed SAA framework to our numerical tests, we write the SAA
of the mean-variance model (4.28) in a standard nonlinear programming form:

min
x

1

N − 1

N∑
i=1

H2(x, ξ i )− N

N − 1

(
1

N

N∑
i=1

H(x, ξ i )

)2

s.t. xm ≥ 0, m = 0, 1, 2, . . . ,M,
x0 + x1 + x2 + · · · + xM = 1,

1

N

N∑
i=1

H(x, ξ i ) ≥ d.

(5.31)

Denote the set of candidate stocks by M = {1, . . . ,M}, and let xm,m ∈ M be
the proportion of the total capital (normalized to w = 1) to be invested into stock m,
where M = 18 in our problem. Moreover, we use rm,m = 1, 2, . . . ,M , to denote the
corresponding monthly return rates, where the sample of {rm}m∈M is calculated based
on a set of historical data: Let pi

m denote the closing price in the real market of stock
m on day i , we construct the data set of monthly return rates r i

m by r i
m = pi+�

m /pi
m

for each m ∈ M and each time point i , where � is a moving-window that slides
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Table 1 The compositions of portfolios and the minimum variances w.r.t the return levels

Level d Variance Pre-tax
return

CBA CEA CHA CHU NTE STP CASH

0.040 0.0123 0.0539 0.1997 0.1860 0.0986 0.0000 0.1358 0.1879 0.1920

0.035 0.0076 0.0445 0.1779 0.1613 0.0484 0.0432 0.1356 0.1284 0.3051

0.030 0.0048 0.0366 0.1558 0.1397 0.0030 0.0751 0.1239 0.0876 0.4149

0.025 0.0029 0.0294 0.1249 0.1207 0.0000 0.0713 0.1092 0.0574 0.5166

0.020 0.0017 0.0227 0.0956 0.0992 0.0000 0.0600 0.0897 0.0368 0.6186

0.015 0.0009 0.0165 0.0687 0.0758 0.0000 0.0459 0.0677 0.0226 0.7193

0.010 0.0004 0.0107 0.0439 0.0511 0.0000 0.0305 0.0450 0.0125 0.8170

over the historical data on the time dimension i . Because what we consider is monthly
return rate, the width of the moving-window� is set to be 30 days. In our analysis, we
can take the collection of data from the market, {r i

m, i = 1, 2, . . . , S}, as the sample
rm(ξ

i ) in (5.31), where S = 300 is the number of samples.
First, we perform comparative static analysis on the constraint of expected return

levels and the composition of the considered portfolio. One straightforward result that
we may expect is that the ratio of capital invested to the risk-free asset (here, we only
consider cash) decreases along with the increase requirement on the expected return
level. By fixing the taxation parameters K1 = K2 = 0.15 and v1 = v2 = 0.3 in (5.31),
we obtain the results on the composition of portfolios and the minimum variances for
different expected return levels as follows:

In Table 1, CBA, CEA, CHA, CHU are the codes for stocks in FTSE/Xinhua China
25 index. Full name of each stock can be found at http://finance.google.com. Note
that in our test, we consider 18 stocks in FTSE/Xinhua China 25 index. There are:
ACH, CBA, CEA, CEO, CHA, CHL, CHU, CYD, GSH, HNP, LFC, NTE, PTR, SHI,
SMI, STP, YZC, ZNH, and in the table we only list the stocks with non-zero capital
investment. In our analysis, we normalize the total capital invested to 1 and we can
regard the normalized investment on one stock as its weight in the selected portfolio.
For instance, when the expected return is 0.040, the weight of CBA in the selected
portfolio is 0.1997. From Table 1, we can easily see that, as the expected return level
d increases the proportion of investment on CASH (risk-free assets) decreases (from
0.8170 to 0.1920). On the other hand, when the capital invested on risk-free asset
(CASH) flows to the risky assets with higher return rate, the minimum variances
increases, see columns 2 and 10 in the table. Moreover, because stock CHA is of high
return and high volatility, it is not selected in the portfolio when the investor’s require-
ment on the expected return is not high, while its weight in the selected portfolio when
the investor’s expectation on the return rate increases from 0.030.

The resulting mean-variance efficient frontier is shown in Fig. 1, and the changes
of the weights of stocks CHA, CEA, NTE and STP are shown in Fig. 2.

Let us now look at the sensitivity of the minimum variances and the compositions
of the selected portfolio with respect to the tax rate K in H(x, ξ) in (5.31), where we
fix the expected return rate at d = 0.035 and v = 0.3. We perform the SAA scheme
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Fig. 1 Efficient frontier of the portfolio positions

Fig. 2 The weights of stocks in the portfolio positions
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Table 2 The compositions of portfolios and the minimum variances w.r.t the tax rates

K1, K2 Variance Pre-tax return CBA CEA CHA NTE STP CASH

0.5 0.0076 0.0508 0.2148 0.1929 0.1214 0.1801 0.1157 0.0176

0.4 0.0062 0.0451 0.1909 0.1816 0.1154 0.1683 0.0894 0.2544

0.3 0.0054 0.0415 0.1745 0.1781 0.1120 0.1625 0.0693 0.3035

0.2 0.0049 0.0388 0.1615 0.1778 0.1088 0.1590 0.0534 0.3394

0.1 0.0045 0.0367 0.1503 0.1790 0.1051 0.1567 0.0405 0.3684

0.0 0.0042 0.0350 0.1403 0.1807 0.1009 0.1548 0.0302 0.3931

to the model by varying the tax rate K1 and K2 from 0 to 0.5. The results are listed in
Table 2. In the table, we can see that the minimum variance increases along with the
increase of the tax rate. The underlying reason of this phenomena is that to satisfy the
required post-tax return level d = 0.035, the stocks with high return rate is preferred
by the investor rather than the stocks with low variance, and hence the weight of CASH
(risk-free assets) reduces along with the increase of the tax rate.

Note that due to the limitation on the availability of the published data, we are not
able to examine the rate of convergence with increasing sample size for this problem.
Consequently we propose an academic example to test the convergence of the optimal
values/solutions by drawing samples of increasing cardinality as a remedy.

Example 5.1 Consider a mean-variance optimization problem

min
x

Var [ f (x, ξ)]

s.t. x ∈ X,
E[g(x, ξ)] ≤ 0,

where f (x, ξ) = (x −ξ)2+7ξ and g(x, ξ) = 0.5(x −ξ)2+0.1ξ−20, X = [−10, 10]
and ξ satisfies a normal distribution with mean 1 and standard deviation σ . It is easy
to verify that the problem has a unique optimal solution x∗ = 4.5. We carry out some
numerical experiments on this problem with the SAA method (1.3) in Matlab 7.2
installed in a PC with Windows Vista where the SAA problem is solved by the Matlab
built-in optimization solver f mincon. The numerical results are displayed in Figs. 3
and 4.

The first set of tests are carried out with variance σ = 0.5. We perform comparative
analysis with respect to the sample size from 200 to 9200. Figure 3 depicts how the
optimal solutions obtained from solving SAA problem changes as the sample size
increases. For a fixed sample size, 100 independent tests are carried out each of which
solves the SAA problem and yields an approximation solution. In Fig. 3, we use a
vertical interval to indicate the range of the 100 approximate solutions. As sample size
increases, we observe a trend of exponential convergence of the range of the approxi-
mate optimal solutions. We repeat the tests with σ = 0.2 and obtain the similar trend
of convergence, see Fig. 4.
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Fig. 3 The convergence of the SAA problem when σ = 0.5

Fig. 4 The convergence of the SAA problem when σ = 0.2

123



Monte Carlo methods for mean-risk optimization and portfolio selection 27

Acknowledgments The authors would like to thank Professor Gautam Mitra for sending them his recent
papers on portfolio optimization. They would also like to express gratitude to the two anonymous referees
for valuable comments which helped improve the presentation of the paper, and to Dr Daniel Kuhn for
effective handling of the paper.

Appendix

Proof of Lemma 4.1 Part (i). By definition

|H(x ′, ξ)− H(x, ξ)| ≤ |h(x ′, ξ)− h(x, ξ)| + |h(x ′, ξ)K (x ′, ξ)− h(x, ξ)K (x, ξ)|
+
∣∣∣h(x ′, ξ)K (x ′, ξ)e−h(x ′,ξ)/v(x ′,ξ)

−h(x, ξ)K (x, ξ)e−h(x,ξ)/v(x,ξ)
∣∣∣ . (5.32)

Since ‖r(ξ)‖ ≤ r̄ , by the definition of h(x, ξ), we have

|h(x ′, ξ)− h(x, ξ)| ≤ r̄‖x ′ − x‖. (5.33)

In what follows, we estimate the second and third terms at the right hand side of (5.32).
To this end, we have to go through the cases according to the values of h(x, ξ) and
h(x ′, ξ).

Case (a): h(x, ξ) ≥ 0 and h(x ′, ξ) ≥ 0. Then

|h(x ′, ξ)K (x ′, ξ)− h(x, ξ)K (x, ξ)| ≤ K1r̄‖x ′ − x‖.

Case (b): both h(x, ξ) ≤ 0 and h(x ′, ξ) ≤ 0. Then

|h(x ′, ξ)K (x ′, ξ)− h(x, ξ)K (x, ξ)| ≤ K2r̄‖x ′ − x‖.

Case (c): h(x ′, ξ) ≥ 0 and h(x, ξ) ≤ 0 ( h(x ′, ξ) ≤ 0 and h(x, ξ) ≥ 0 can be
discussed similarly). Let x̂ be a point located on the line segment connect-
ing x and x ′ such that h(x̂, ξ) = 0. Note that x̂ may depend on ξ . Then
‖x ′ − x̂‖ + ‖x̂ − x‖ = ‖x ′ − x‖. Moreover,

|h(x ′, ξ)K (x ′, ξ)−h(x, ξ)K (x, ξ)| ≤ |h(x ′, ξ)K (x ′, ξ)−h(x0, ξ)K (x0, ξ)|
+|h(x, ξ)K (x, ξ)−h(x0, ξ)K (x0, ξ)|

≤ K1r̄‖x ′ − x0‖ + K2r̄‖x − x0‖
≤ max{K1, K2}r̄‖x ′ − x‖.

The last inequality follows from Cases (a) and (b). Taking into account of all cases,
we arrive at

|h(x ′, ξ)K (x ′, ξ)− h(x, ξ)K (x, ξ)| ≤ max{K1, K2}r̄‖x ′ − x‖ < r̄‖x ′ − x‖,
(5.34)
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where the second inequality is due to the fact that 0 < K2 ≤ K1 < 1. Analogously,
we can show that

∣∣∣∣h(x ′, ξ)K (x ′, ξ)e− h(x ′,ξ)
v(x ′,ξ) − h(x, ξ)K (x, ξ)e− h(x,ξ)

v(x,ξ)

∣∣∣∣
≤ max{K1, K2} max{ρ1, ρ2}r̄‖x ′ − x‖, (5.35)

where ρ1 and ρ2 are the Lipschitz modulus of functions h(x, ξ)e−h(x,ξ)/v1 and
h(x, ξ)e−h(x,ξ)/v2 respectively. By combining (5.32)–(5.35), we have

|H(x ′, ξ)− H(x, ξ)| ≤ κ1‖x ′ − x‖, (5.36)

where κ1 := max{r̄ ,max{K1, K2} max{ρ1, ρ2}r̄} is deterministic and bounded.
Part (ii). Let X (ξ) := {x ∈ X : h(x, ξ) = 0}. From the definition of K (x, ξ) and

v(x, ξ), H(x, ξ) is continuously differentiable on X\X (ξ). Let x̂ ∈ X (ξ) and B(x̂, δ)
be a closed ball in R

m with radius δ and center x̂ . Let S1 = B(x̂, δ) ∩ {x ∈ X :
h(x, ξ) ≥ 0}. Then for x ∈ S1,

H(x, ξ) = h(x, ξ)− T (h(x, ξ)) = h(x, ξ)
(
(1 − K1)+ K1e−h(x,ξ)/v1

)
,

and

∇x H(x, ξ) = ∇x h(x, ξ)

(
1 − K1 + K1e−h(x,ξ)/v1 − K1h

v1
e−h(x,ξ)/v1

)
.

Letting δ → 0, we have ∇x H(x, ξ) → ∇x h(x̂, ξ)(1 − K1 + K1) = wr T (ξ). On the
other hand, letting S2 = B(x̂, δ) ∩ {x ∈ X : h(x, ξ) ≤ 0}, we have

H(x, ξ) = h(x, ξ)− T (h(x, ξ)) = h(x, ξ)
(
(1 − K2)+ K2e−h(x,ξ)/v1

)
.

for x ∈ S2 and

∇x H(x, ξ) = ∇x h(x, ξ)

(
1 − K1 + K1e−h(x,ξ)/v1 − K h

v
e−h(x,ξ)/v1

)
.

Letting δ → 0, we have ∇x H(x, ξ) → ∇x h(x̂, ξ)(1 − K2 + K2) = wr T (ξ). This
shows that ∇x H(x̂, ξ) = wr T (ξ) and hence ∇x H(x, ξ) is Lipschitz continuous
w.r.t x . The proof is complete. ��
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